1
|
Luccarini A, Marcheggiani F, Galeazzi R, Zuccarotto A, Castellano I, Damiani E. Characterizing the Ultraviolet (UV) Screening Ability of L-5-Sulfanylhistidine Derivatives on Human Dermal Fibroblasts. Mar Drugs 2025; 23:57. [PMID: 39997180 PMCID: PMC11857345 DOI: 10.3390/md23020057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025] Open
Abstract
Using sunscreens is one of the most widespread measures to protect human skin from sun ultraviolet radiation (UVR) damage. However, several studies have highlighted the toxicity of certain inorganic and organic UV filters used in sunscreens for the marine environment and human health. An alternative strategy may involve the use of natural products of marine origin to counteract UVR-mediated damage. Ovothiols are sulfur-containing amino acids produced by marine invertebrates, microalgae, and bacteria, endowed with unique antioxidant and UV-absorption properties. This study aimed to evaluate the protective effect of synthetic L-5-sulfanyl histidine derivatives, inspired by natural ovothiols, on human dermal fibroblasts (HDFs) upon UVA exposure. By using a custom-made experimental set-up to assess the UV screening ability, we measured the levels of cytosolic and mitochondrial reactive oxygen species (ROS), as well as cell viability and apoptosis in HDFs, in the presence of tested compounds, after UVA exposure, using flow cytometry assays with specific fluorescent probes. The results show that L-5-sulfanyl histidine derivatives display a UV screening capacity and prevent loss in cell viability, the production of cytosolic and mitochondrial ROS induced by UVA exposure in HDFs, and subsequent apoptosis. Overall, this study sheds light on the potential applications of marine-inspired sulfur-containing amino acids in developing alternative eco-safe sunscreens for UVR skin protection.
Collapse
Affiliation(s)
- Alessia Luccarini
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.L.); (R.G.)
| | - Fabio Marcheggiani
- Department for the Promotion of Human Sciences and Quality of Life, San Raffaele Roma University, 00166 Rome, Italy;
| | - Roberta Galeazzi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.L.); (R.G.)
| | - Annalisa Zuccarotto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Immacolata Castellano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy;
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, 80121 Naples, Italy
| | - Elisabetta Damiani
- Department of Life and Environmental Sciences, Polytechnic University of Marche, 60131 Ancona, Italy; (A.L.); (R.G.)
| |
Collapse
|
2
|
Altundag-Erdogan O, Tutar R, Yüce E, Çelebi-Saltik B. Targeting resistant breast cancer stem cells in a three-dimensional culture model with oleuropein encapsulated in methacrylated alginate microparticles. Daru 2024; 32:471-483. [PMID: 38722566 PMCID: PMC11555036 DOI: 10.1007/s40199-024-00512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are a subpopulation of cancer cells that are believed to be responsible for tumor initiation, progression, metastasis, and resistance to conventional therapies. Oleuropein as a natural compound found in olive leaves and olive oil, has potential therapeutic effects in cancer treatment, particularly in targeting CSCs. It induces apoptosis in CSCs while sparing normal cells, inhibit proliferation, migration, and invasion, and suppress the self-renewal ability of CSCs. Additionally, oleuropein has shown synergistic effects with conventional chemotherapy drugs, enhancing their efficacy against CSCs. OBJECTIVES This study aims to selectively target therapeutically resistant cancer stem cells (CSCs) within a heterogeneous tumor population by utilizing oleuropein (OLE) encapsulated in methacrylated alginate (OLE-mALG) within an in vivo-like microenvironment. PURPOSE This study aims to target therapeutically resistant cancer stem cells (CSCs) with oleuropein (OLE) encapsulated in the methacrylated alginate (OLE-mALG) in a heterogeneous tumor population with an in vivo-like microenvironment. METHODS Co-culture of CSCs with non-tumorogenic MCF-12 A cells was performed, the 3D breast cancer model was supported with methocel/matrigel/collagen-I, and vascularization was ensured with human umbilical vein endothelial cells (HUVEC). Then, OLE-loaded methacrylated alginate microparticles (mALG) were formed by dual crosslinking in the presence of both ionic and visible light obtained with a droplet based microfluidic system. The characterization and effectiveness of the produced OLE-mALG were evaluated by the FTIR, swelling/degradation/release analysis. Before producing OLE loaded mALG microparticles, a preliminary study was carried out to determine the effective dose of OLE for cells and the duration of OLE action on MCF-7, CSCs and MCF-12 A. Subsequently, CSC viability (WST-1), apoptosis (Bcl-2, Bax, caspase-3, caspase-9), stemness (OCT3/4, NANOG, SOX2), EMT profile (E-cadherin, Vimentin, Slug) and proliferation (SURVIVIN, p21, CYCLIN D1) after OLE-mALG treatment were all evaluated in the 3D model. RESULTS OLE was encapsulated in mALG with an efficiency of 90.49% and released 73% within 7 h. OLE-mALG induced apoptosis through the decrease in anti-apoptotic Bcl-2 and an increase in pro-apoptotic Bax, caspase-3, and caspase-9 protein levels. While Vimentin and Slug protein levels decreased after 200 µg/mL OLE-mALG treatment to 3D breast cancer culture, E-cadherin levels increased. OLE-mALG treatment to CSC co-culture led to a decrease in proliferation by triggering p21/SURVIVIN expressions, and also resulted in an increase in stemness genes (OCT3/4/NANOG/SOX2). CONCLUSION 200 µg/mL OLE-loaded mALG microparticles suppressed epithelial-to-mesenchymal transition by suppressing Vimentin and Slug protein levels, and increased E-cadherin levels in the 3D breast cancer model we created with CSCs, MCF-12 A and HUVECs. This complex system may allow the use of personalized cells for rapid drug screening in preclinical studies compared to animal experiments. OLE-mALG showed apoptotic and metastasis suppressive properties in cancer cells and it was concluded that it can be used in combination with or alternatively with chemotherapeutic agents to target breast cancer stem cells.
Collapse
Affiliation(s)
- Ozlem Altundag-Erdogan
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Elif Yüce
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey.
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
3
|
Villegas-Aguilar MDC, Cádiz-Gurrea MDLL, Salumets A, Arráez-Román D, Segura-Carretero A, Sola-Leyva A, Carrasco-Jiménez MP. Targeted breast cancer therapy using novel nanovesicle formulations of Olea europaea extract. Biomed Pharmacother 2024; 180:117583. [PMID: 39423755 DOI: 10.1016/j.biopha.2024.117583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
Olive leaf is a byproduct of the olive tree that is rich in phenolic compounds with potential anticarcinogenic effects against various cancers, including breast cancer. Nevertheless, the ingestion or topical application of such plant extracts faces certain limitations. These limitations can be addressed by encapsulating the extracts in nanovesicles to enhance their release and bioavailability. This study aims to develop nanovesicles using Olea europaea leaf extract to exploit its potential anti-cancer properties. Soy lecithin was used to form liposomes for encapsulation of the olive leaf extract. In addition, ethanol and glycerol were added to form ethosomes and glycerosomes, respectively. The antiproliferative effect of both the free extract and the three formed nanovesicles was tested in MCF7 and MCF10A cell lines. To comprehend the mechanisms leading to reduced cell viability after exposure to olive leaf extract and its nanovesicles, levels of reactive oxygen species (ROS), mitochondrial membrane potential, and apoptotic stage were evaluated. The results suggest that both, the nanovesicles and the free extract, are antiproliferative agents against MCF7 tumour cells. However, when examining the impact of olive leaf extract and the formulated nanovesicles on MCF10A cells, no reduction in cell viability was observed. Our findings indicate that the anti-tumour effect of the extract and its nanovesicles may be due to increased oxidative stress, mediated by mitochondrial damage. The mechanism through which olive leaf extract exerts its antiproliferative effect on the breast cancer tumour line implies that apoptosis may be induced by the extract via the involvement of a mitochondria-dependent ROS-mediated pathway.
Collapse
Affiliation(s)
| | | | - Andres Salumets
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm 14186, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Stockholm 14186, Sweden; Department of Obstetrics and Gynecology, Institute of Clinical Medicine, University of Tartu, Tartu 50406, Estonia; Celvia CC, Tartu 50411, Estonia
| | - David Arráez-Román
- Department of Analytical Chemistry, University of Granada, Granada 18071, Spain
| | | | - Alberto Sola-Leyva
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Huddinge, Stockholm 14186, Sweden; Division of Obstetrics and Gynecology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Huddinge, Stockholm 14186, Sweden; Celvia CC, Tartu 50411, Estonia.
| | - María Paz Carrasco-Jiménez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Granada 18071, Spain
| |
Collapse
|
4
|
Al-Shaebi EM, Al-Quraishy S, Abdel-Gaber R. Potential role of the methanolic extract for Olea europaea (stem and leaves) on sporulation of Eimeria papillata oocysts: In vitro study. Biomed Chromatogr 2024; 38:e5972. [PMID: 39079944 DOI: 10.1002/bmc.5972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 10/19/2024]
Abstract
Many plants are efficient anticoccidial agents owing to their content of active chemicals. Drug-resistant Eimeria species have emerged as a result of excessive drug use. The current work aimed to investigate the oocysticidal activity (Eimeria papillata) of Olea europaea stem extract (OESE) and leaf extract (OELE) in vitro. The results of gas chromatography-mass spectrometry analysis for OELE and OESE showed the presence of 12 and 9 phytochemical compounds, respectively. Also, chemical examination revealed that the plant extracts are rich in phenols, flavonoids and tannins. Additionally, the best radical scavenging activity of OESE and OELE was at a concentration of 100 μg/ml, reaching 92.04 ± 0.02 and 92.4 ± 0.2%, respectively. The in vitro study revealed that concentrations of 200 mg/ml from OESE and OELE caused significant inhibition (100%) of process sporulation for E. papillata oocysts, in contrast to the other commercial products, which displayed varying degrees of suppression sporulation. Our findings showed that OESE and OELE have anticoccidial activity, which motivates further the conduction of in vivo studies in the search for a less expensive and more efficient cure.
Collapse
Affiliation(s)
- Esam M Al-Shaebi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saleh Al-Quraishy
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rewaida Abdel-Gaber
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Wang E, Jiang Y, Zhao C. Hydroxytyrosol isolation, comparison of synthetic routes and potential biological activities. Food Sci Nutr 2024; 12:6899-6912. [PMID: 39479663 PMCID: PMC11521723 DOI: 10.1002/fsn3.4349] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 11/02/2024] Open
Abstract
Hydroxytyrosol (HT) is a polyphenol found in the olive plant (Olea europaea) that has garnered attention from the food, feed, supplement, and pharmaceutical industries. HT has evolved from basic separation and extraction to chemical and biocatalytic synthesis. The yield of HT can reach 1.93 g/L/h through chemical synthesis and 7.7 g/L/h through biocatalysis; however, both methods are subject to inherent limitations. Furthermore, the potential health benefits associated with HT have been highlighted, including its ability to act as an antioxidant, reduce inflammation, combat cancer and obesity, and exert antibacterial and antiviral effects. Its neuroprotective effects, skin protection, and wound healing capabilities are also discussed. Given these remarkable biological properties, HT stands out as one of the most extensively investigated natural phenols. This review highlights future methods and pathways for the synthesis of HT, providing insights based on its bioactivity characteristics, health benefits, and potential future applications.
Collapse
Affiliation(s)
- Enhui Wang
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| | - Yanfei Jiang
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| | - Chunyue Zhao
- Beijing Qingyan Boshi Health Management Co., LtdBeijingChina
| |
Collapse
|
6
|
Pessoa HR, Zago L, Difonzo G, Pasqualone A, Caponio F, Ferraz da Costa DC. Olive Leaves as a Source of Anticancer Compounds: In Vitro Evidence and Mechanisms. Molecules 2024; 29:4249. [PMID: 39275097 PMCID: PMC11397062 DOI: 10.3390/molecules29174249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/15/2024] [Accepted: 09/04/2024] [Indexed: 09/16/2024] Open
Abstract
Olive trees not only produce olives but also generate a substantial amount of waste and by-products, including leaves, pomace (the solid remains after pressing olives for oil), and wastewater from the olive oil-making process. The waste products, particularly the leaves, contain bioactive compounds, especially phenolic compounds, known for their health benefits, such as high antioxidant potential and the ability to reduce inflammation. These compounds have shown promise in preventing and treating cancer. This review, based on in vitro evidence, provides a detailed description and discussion of the mechanisms through which these compounds from olive leaves can prevent development, the ways they might act against cancer cells, and their potential to increase the sensitivity of tumor cells to conventional anticancer therapy. The possible synergistic effects of these compounds suggest that olive leaf extracts may offer a promising approach for cancer treatment, compared with isolated compounds, thus providing novel possibilities for cancer therapy.
Collapse
Affiliation(s)
- Heloisa Rodrigues Pessoa
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
| | - Lilia Zago
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
| | - Graziana Difonzo
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola 165/A, I-70126 Bari, Italy
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola 165/A, I-70126 Bari, Italy
| | - Francesco Caponio
- Department of Soil, Plant and Food Sciences, Food Science and Technology Unit, University of Bari Aldo Moro, Via Amendola 165/A, I-70126 Bari, Italy
| | - Danielly C Ferraz da Costa
- Laboratory of Physiopathology and Biochemistry of Nutrition, Nutrition Institute, Rio de Janeiro State University, Rio de Janeiro 20550-013, Brazil
| |
Collapse
|
7
|
Kusuma IY, Habibie H, Bahar MA, Budán F, Csupor D. Anticancer Effects of Secoiridoids-A Scoping Review of the Molecular Mechanisms behind the Chemopreventive Effects of the Olive Tree Components Oleocanthal, Oleacein, and Oleuropein. Nutrients 2024; 16:2755. [PMID: 39203892 PMCID: PMC11357637 DOI: 10.3390/nu16162755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/09/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
The olive tree (Olea europaea) and olive oil hold significant cultural and historical importance in Europe. The health benefits associated with olive oil consumption have been well documented. This paper explores the mechanisms of the anti-cancer effects of olive oil and olive leaf, focusing on their key bioactive compounds, namely oleocanthal, oleacein, and oleuropein. The chemopreventive potential of oleocanthal, oleacein, and oleuropein is comprehensively examined through this systematic review. We conducted a systematic literature search to identify eligible articles from Scopus, PubMed, and Web of Science databases published up to 10 October 2023. Among 4037 identified articles, there were 88 eligible articles describing mechanisms of chemopreventive effects of oleocanthal, oleacein, and oleuropein. These compounds have the ability to inhibit cell proliferation, induce cell death (apoptosis, autophagy, and necrosis), inhibit angiogenesis, suppress tumor metastasis, and modulate cancer-associated signalling pathways. Additionally, oleocanthal and oleuropein were also reported to disrupt redox hemostasis. This review provides insights into the chemopreventive mechanisms of O. europaea-derived secoiridoids, shedding light on their role in chemoprevention. The bioactivities summarized in the paper support the epidemiological evidence demonstrating a negative correlation between olive oil consumption and cancer risk. Furthermore, the mapped and summarized secondary signalling pathways may provide information to elucidate new synergies with other chemopreventive agents to complement chemotherapies and develop novel nutrition-based anti-cancer approaches.
Collapse
Affiliation(s)
- Ikhwan Yuda Kusuma
- Institute of Clinical Pharmacy, University of Szeged, 6725 Szeged, Hungary; (I.Y.K.); (M.A.B.)
- Pharmacy Study Program, Universitas Harapan Bangsa, Purwokerto 53182, Indonesia
| | - Habibie Habibie
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia;
| | - Muh. Akbar Bahar
- Institute of Clinical Pharmacy, University of Szeged, 6725 Szeged, Hungary; (I.Y.K.); (M.A.B.)
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Indonesia;
| | - Ferenc Budán
- Institute of Physiology, University of Pécs, 7624 Pécs, Hungary
| | - Dezső Csupor
- Institute of Clinical Pharmacy, University of Szeged, 6725 Szeged, Hungary; (I.Y.K.); (M.A.B.)
- Institute for Translational Medicine, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
8
|
Xiang Q, Wang J, Tao K, Huang H, Zhao Y, Jia J, Tan H, Chang H. Optimization of Phenolic-Enriched Extracts from Olive Leaves via Ball Milling-Assisted Extraction Using Response Surface Methodology. Molecules 2024; 29:3658. [PMID: 39125062 PMCID: PMC11314388 DOI: 10.3390/molecules29153658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/23/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
This study aims to extract phenolic-enriched compounds, specifically oleuropein, luteoloside, and hydroxytyrosol, from olive leaves using ball milling-assisted extraction (BMAE). Response surface methodology (RSM) and the Box-Behnken design (BBD) were used to evaluate the effects of the temperature, solvent-to-solid ratio, and milling speed on extraction recovery. The contents of the extract were determined by ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS) and converted to recoveries to evaluate the extraction efficiency. The optimal extraction conditions for oleuropein, luteoloside, and hydroxytyrosol were identified. Oleuropein had a recovery of 79.0% ± 0.9% at a temperature of 56.4 °C, a solvent-to-solid ratio of 39.1 mL/g, and a milling speed of 429 rpm. Luteoloside's recovery was 74.6% ± 1.2% at 58.4 °C, 31.3 mL/g, and 328 rpm. Hydroxytyrosol achieved 43.1% ± 1.3% recovery at 51.5 °C, 32.7 mL/g, and 317 rpm. The reason for the high recoveries might be that high energy ball milling could reduce the sample size further, breaking down the cell walls of olive leaves, to enhance the mass transfer of these components from the cell to solvent. BMAE is displayed to be an efficient approach to extracting oleuropein, luteoloside, and hydroxytyrosol from olive leaves, which is easy to extend to industrial production.
Collapse
Affiliation(s)
- Qixuan Xiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China; (Q.X.); (Y.Z.); (J.J.)
| | - Jingyi Wang
- Research and Development Department, Shanghai Chicmax Cosmetic Co., Ltd., 38th Floor, Global Harbor Tower B, No. 3300 North Zhongshan Road, Putuo District, Shanghai 200065, China; (J.W.); (K.T.); (H.H.)
| | - Kan Tao
- Research and Development Department, Shanghai Chicmax Cosmetic Co., Ltd., 38th Floor, Global Harbor Tower B, No. 3300 North Zhongshan Road, Putuo District, Shanghai 200065, China; (J.W.); (K.T.); (H.H.)
| | - Hu Huang
- Research and Development Department, Shanghai Chicmax Cosmetic Co., Ltd., 38th Floor, Global Harbor Tower B, No. 3300 North Zhongshan Road, Putuo District, Shanghai 200065, China; (J.W.); (K.T.); (H.H.)
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China; (Q.X.); (Y.Z.); (J.J.)
| | - Jinping Jia
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China; (Q.X.); (Y.Z.); (J.J.)
| | - Huijun Tan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China; (Q.X.); (Y.Z.); (J.J.)
| | - Huailong Chang
- Research and Development Department, Shanghai Chicmax Cosmetic Co., Ltd., 38th Floor, Global Harbor Tower B, No. 3300 North Zhongshan Road, Putuo District, Shanghai 200065, China; (J.W.); (K.T.); (H.H.)
| |
Collapse
|
9
|
El-Deen IM, Eltamany EH, Ali NM. In vitro cytotoxicity screening of some 3-substituted-4-oxo-imidazolidin-2-(1H)-thione derivatives as anticancer drug. Future Med Chem 2024; 16:1379-1393. [PMID: 39190474 DOI: 10.1080/17568919.2024.2350925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/25/2024] [Indexed: 08/28/2024] Open
Abstract
Aim: This study aimed to investigate the in vitro antitumor activity of new series of 2-thiohydanotin derivatives (7 and 9) against two cancer cell lines.Materials & methods: A new series of 2-thioxoimidazolidine derivatives (3-9) were synthesized and investigated for its structure through spectral analysis and also tested against (HepG-2) and (HCT-116) cell line.Results: Among the synthesized compounds, compound 7 halted liver cancer cells at the G0/G1 phase and triggered apoptosis of liver cancer. Contrarily, compound 9 caused colon cancer cells to be arrested at the S phase and trigger apoptosis. Also, they had a good inhibitory effect on (Nrf2).Conclusion: Both compounds had attractive lead molecules for the creation of colon and liver cancer medications.
Collapse
Affiliation(s)
- Ibrahim Mohey El-Deen
- Department of Chemistry (The Division of Organic Chemistry), Faculty of Science, Port Said University, Port Said, Egypt
| | - Elsayed H Eltamany
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Nourhan M Ali
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
10
|
Marrero AD, Quesada AR, Martínez-Poveda B, Medina MÁ. Anti-Cancer, Anti-Angiogenic, and Anti-Atherogenic Potential of Key Phenolic Compounds from Virgin Olive Oil. Nutrients 2024; 16:1283. [PMID: 38732529 PMCID: PMC11085358 DOI: 10.3390/nu16091283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
The Mediterranean diet, renowned for its health benefits, especially in reducing cardiovascular risks and protecting against diseases like diabetes and cancer, emphasizes virgin olive oil as a key contributor to these advantages. Despite being a minor fraction, the phenolic compounds in olive oil significantly contribute to its bioactive effects. This review examines the bioactive properties of hydroxytyrosol and related molecules, including naturally occurring compounds (-)-oleocanthal and (-)-oleacein, as well as semisynthetic derivatives like hydroxytyrosyl esters and alkyl ethers. (-)-Oleocanthal and (-)-oleacein show promising anti-tumor and anti-inflammatory properties, which are particularly underexplored in the case of (-)-oleacein. Additionally, hydroxytyrosyl esters exhibit similar effectiveness to hydroxytyrosol, while certain alkyl ethers surpass their precursor's properties. Remarkably, the emerging research field of the effects of phenolic molecules related to virgin olive oil on cell autophagy presents significant opportunities for underscoring the anti-cancer and neuroprotective properties of these molecules. Furthermore, promising clinical data from studies on hydroxytyrosol, (-)-oleacein, and (-)-oleocanthal urge further investigation and support the initiation of clinical trials with semisynthetic hydroxytyrosol derivatives. This review provides valuable insights into the potential applications of olive oil-derived phenolics in preventing and managing diseases associated with cancer, angiogenesis, and atherosclerosis.
Collapse
Affiliation(s)
- Ana Dácil Marrero
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Ana R. Quesada
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Beatriz Martínez-Poveda
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Miguel Ángel Medina
- Facultad de Ciencias, Departamento de Biología Molecular y Bioquímica, Andalucía Tech, Universidad de Málaga, E-29071 Málaga, Spain; (A.D.M.); (A.R.Q.); (B.M.-P.)
- Instituto de Investigación Biomédica y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND (Biomedical Research Institute of Málaga), E-29071 Málaga, Spain
- CIBER de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| |
Collapse
|
11
|
Gervasi F, Pojero F. Use of Oleuropein and Hydroxytyrosol for Cancer Prevention and Treatment: Considerations about How Bioavailability and Metabolism Impact Their Adoption in Clinical Routine. Biomedicines 2024; 12:502. [PMID: 38540115 PMCID: PMC10968586 DOI: 10.3390/biomedicines12030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/12/2024] [Accepted: 02/18/2024] [Indexed: 11/11/2024] Open
Abstract
The fact that the Mediterranean diet could represent a source of natural compounds with cancer-preventive and therapeutic activity has been the object of great interest, especially with regard to the mechanisms of action of polyphenols found in olive oil and olive leaves. Secoiridoid oleuropein (OLE) and its derivative hydroxytyrosol (3,4-dihydroxyphenylethanol, HT) have demonstrated anti-proliferative properties against a variety of tumors and hematological malignancies both in vivo and in vitro, with measurable effects on cellular redox status, metabolism, and transcriptional activity. With this review, we aim to summarize the most up-to-date information on the potential use of OLE and HT for cancer treatment, making important considerations about OLE and HT bioavailability, OLE- and HT-mediated effects on drug metabolism, and OLE and HT dual activity as both pro- and antioxidants, likely hampering their use in clinical routine. Also, we focus on the details available on the effects of nutritionally relevant concentrations of OLE and HT on cell viability, redox homeostasis, and inflammation in order to evaluate if both compounds could be considered cancer-preventive agents or new potential chemotherapy drugs whenever their only source is represented by diet.
Collapse
Affiliation(s)
- Francesco Gervasi
- Specialistic Oncology Laboratory Unit, ARNAS Hospitals Civico Di Cristina e Benfratelli, 90127 Palermo, Italy;
| | - Fanny Pojero
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, 90123 Palermo, Italy
| |
Collapse
|
12
|
Yılmaz G, Özdemir F. Novel Anti-tumor Strategy for Breast Cancer: Synergistic Role of Oleuropein with Paclitaxel Therapeutic in MCF-7 Cells. Anticancer Agents Med Chem 2024; 24:224-234. [PMID: 38629155 PMCID: PMC10909830 DOI: 10.2174/0118715206284107231120063630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 04/19/2024]
Abstract
BACKGROUND The side effects of conventional therapeutics pose a problem for cancer treatment. Recently, combination treatments with natural compounds have attracted attention regarding limiting the side effects of treatment. Oleuropein is a natural polyphenol in olives that has antioxidant and anticancer effects. OBJECTIVES This study aimed to investigate the oxidative stress effect of a combination of Paclitaxel, a chemotherapeutic agent, and Oleuropein in the MCF-7 cell line. METHODS The xCELLigence RTCA method was used to determine the cytotoxic effects of Oleuropein and Paclitaxel in the MCF-7 cell line. The Total Oxidant and Total Antioxidant Status were analyzed using a kit. The Oxidative Stress Index was calculated by measuring Total Oxidant and Total Antioxidant states. The levels of superoxide dismutase, reduced glutathione and malondialdehyde, which are oxidative stress markers, were also measured by ELISA assay kit. RESULTS As a result of the measurement, IC50 doses of Oleuropein and Paclitaxel were determined as 230 μM and 7.5 μM, respectively. Different percentages of combination ratios were generated from the obtained IC50 values. The effect of oxidative stress was investigated at the combination rates of 10%, 20%, 30%, and 40% which were determined to be synergistic. In terms of the combined use of Oleuropein and Paclitaxel on oxidative stress, antioxidant defense increased, and Oxidative Stress Index levels decreased. CONCLUSION These findings demonstrate that the doses administered to the Oleuropein+Paclitaxel combination group were lower than those administered to groups using one agent alone (e.g. Paclitaxel), the results of which reduce the possibility of administering toxic doses.
Collapse
Affiliation(s)
- Gamze Yılmaz
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| | - Filiz Özdemir
- Department of Biochemistry, Faculty of Pharmacy, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
13
|
Coscarella M, Nardi M, Alipieva K, Bonacci S, Popova M, Procopio A, Scarpelli R, Simeonov S. Alternative Assisted Extraction Methods of Phenolic Compounds Using NaDESs. Antioxidants (Basel) 2023; 13:62. [PMID: 38247486 PMCID: PMC10812405 DOI: 10.3390/antiox13010062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
A renewed understanding of eco-friendly principles is moving the industrial sector toward a shift in the utilization of less harmful solvents as a main strategy to improve manufacturing. Green analytical chemistry (GAC) has definitely paved the way for this transition by presenting green solvents to a larger audience. Among the most promising, surely DESs (deep eutectic solvents), NaDESs (natural deep eutectic solvents), HDESs (hydrophobic deep eutectic solvents), and HNaDESs (hydrophobic natural deep eutectic solvents), with their unique features, manifest a wide-range of applications, including their use as a means for the extraction of small bioactive compounds. In examining recent advancements, in this review, we want to focus our attention on some of the most interesting and novel 'solvent-free' extraction techniques, such as microwave-assisted extraction (MAE) and ultrasound-assisted extraction (UAE) in relation to the possibility of better exploiting DESs and NaDESs as plausible extracting solvents of the phenolic compounds (PCs) present in different matrices from olive oil components, such as virgin olive pomace, olive leaves and twigs, virgin and extra virgin olive oil (VOO and EVOO, respectively), and olive cake and olive mill wastewaters (OMWW). Therefore, the status of DESs and NaDESs is shown in terms of their nature, efficacy and selectivity in the extraction of bioactive phytochemicals such as secoiridoids, lignans, phenolic acids and alcohols. Related studies on experimental design and processes' optimization of the most promising DESs/NaDESs are also reviewed. In this framework, an extensive list of relevant works found in the literature is described to consider DESs/NaDESs as a suitable alternative to petrochemicals in cosmetics, pharmaceutical, or food applications.
Collapse
Affiliation(s)
- Mario Coscarella
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Monica Nardi
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Kalina Alipieva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria; (K.A.); (M.P.); (S.S.)
| | - Sonia Bonacci
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Milena Popova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria; (K.A.); (M.P.); (S.S.)
| | - Antonio Procopio
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Rosa Scarpelli
- Department of Health Sciences, Università “Magna Græcia” di Catanzaro, Viale Europa, Campus Universitario “S. Venuta”, Germaneto, 88100 Catanzaro, Italy; (M.C.); (S.B.); (A.P.); (R.S.)
| | - Svilen Simeonov
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bontchev Str. Bl. 9, 1113 Sofia, Bulgaria; (K.A.); (M.P.); (S.S.)
| |
Collapse
|
14
|
Veronico V, Morelli S, Piscioneri A, Gristina R, Casiello M, Favia P, Armenise V, Fracassi F, De Bartolo L, Sardella E. Anticancer Effects of Plasma-Treated Water Solutions from Clinically Approved Infusion Liquids Supplemented with Organic Molecules. ACS OMEGA 2023; 8:33723-33736. [PMID: 37744835 PMCID: PMC10515361 DOI: 10.1021/acsomega.3c04061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/25/2023] [Indexed: 09/26/2023]
Abstract
Water solutions treated by cold atmospheric plasmas (CAPs) currently stand out in the field of cancer treatment as sources of exogenous blends of reactive oxygen and nitrogen species (RONS). It is well known that the balance of RONS inside both eukaryotic and prokaryotic cells is directly involved in physiological as well as pathological pathways. Also, organic molecules including phenols could exert promising anticancer effects, mostly attributed to their pro-oxidant ability in vitro and in vivo to generate RONS like O2-, H2O2, and a mixture of potentially cytotoxic compounds. By our vision of combining the efficacy of plasma-produced RONS and the use of organic molecules, we could synergistically attack cancer cells; yet, so far, this combination, to the best of our knowledge, has been completely unexplored. In this study, l-tyrosine, an amino acid with a phenolic side chain, is added to a physiological solution, often used in clinical practice (SIII) to be exposed to plasma. The efficacy of the gas plasma-oxidized SIII solution, containing tyrosine, was evaluated on four cancer cell lines selected from among tumors with poor prognosis (SHSY-5Y, MCF-7, HT-29, and SW-480). The aim was to induce tumor toxicity and trigger apoptosis pathways. The results clearly indicate that the plasma-treated water solution (PTWS) reduced cell viability and oxygen uptake due to an increase in intracellular ROS levels and activation of apoptosis pathways in all investigated cancer cells, which may be related to the activation of the mitochondrial-mediated and p-JNK/caspase-3 signaling pathways. This research offers improved knowledge about the physiological mechanisms underlying cancer treatment and a valid method to set up a prompt, adequate, and effective cancer treatment in the clinic.
Collapse
Affiliation(s)
- Valeria Veronico
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
| | - Sabrina Morelli
- CNR-Institute
on Membrane Technology (CNR-ITM), Via Pietro Bucci Cubo, 17/C, 87036 Rende, CS, Italy
| | - Antonella Piscioneri
- CNR-Institute
on Membrane Technology (CNR-ITM), Via Pietro Bucci Cubo, 17/C, 87036 Rende, CS, Italy
| | - Roberto Gristina
- CNR-Institute
of Nanotechnology (CNR-NANOTEC), Via Amendola, 122/D, 70124 Bari, Italy
| | - Michele Casiello
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
| | - Pietro Favia
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
- CNR-Institute
of Nanotechnology (CNR-NANOTEC), Via Amendola, 122/D, 70124 Bari, Italy
| | - Vincenza Armenise
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
| | - Francesco Fracassi
- Department
of Chemistry, University of Bari Aldo Moro, via Orabona, 4, 70126 Bari, Italy
- CNR-Institute
of Nanotechnology (CNR-NANOTEC), Via Amendola, 122/D, 70124 Bari, Italy
| | - Loredana De Bartolo
- CNR-Institute
on Membrane Technology (CNR-ITM), Via Pietro Bucci Cubo, 17/C, 87036 Rende, CS, Italy
| | - Eloisa Sardella
- CNR-Institute
of Nanotechnology (CNR-NANOTEC), Via Amendola, 122/D, 70124 Bari, Italy
| |
Collapse
|
15
|
Karousi P, Kontos CK, Papakotsi P, Kostakis IK, Skaltsounis AL, Scorilas A. Next-generation sequencing reveals altered gene expression and enriched pathways in triple-negative breast cancer cells treated with oleuropein and oleocanthal. Funct Integr Genomics 2023; 23:299. [PMID: 37707691 PMCID: PMC10501944 DOI: 10.1007/s10142-023-01230-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/06/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023]
Abstract
Triple-negative breast cancer (TNBC) is a subtype of breast cancer characterized by poor prognosis and limited treatment options. Oleuropein and oleocanthal are bioactive chemicals found in extra-virgin olive oil; they have been shown to have anti-cancer potential. In this study, we examined the inhibitory effects of these two natural compounds, on MDA-MB-231 and MDA-MB-468 TNBC cell lines. The human TNBC MDA-MB-231 and MDA-MB-468 cell lines were treated with oleuropein or oleocanthal at ranging concentrations for 48 h. After determining the optimum concentration to reach IC50, using the sulforhodamine B assay, total RNA was extracted after 12, 24, and 48 h from treated and untreated cells. Poly(A)-RNA selection was conducted, followed by library construction and RNA sequencing. Differential gene expression (DEG) analysis was performed to identify DEGs between treated and untreated cells. Pathway analysis was carried out using the KEGG and GO databases. Oleuropein and oleocanthal considerably reduced the proliferation of TNBC cells, with oleocanthal having a slightly stronger effect than oleuropein. Furthermore, multi-time series RNA sequencing showed that the expression profile of TNBC cells was significantly altered after treatment with these compounds, with temporal dynamics and groups of genes consistently affected at all time points. Pathway analysis revealed several significant pathways associated with TNBC, including cell death, apoptotic process, programmed cell death, response to stress, mitotic cell cycle process, cell division, and cancer progression. Our findings suggest that oleuropein and oleocanthal have potential therapeutic benefits for TNBC and can be further investigated as alternative treatment options.
Collapse
Affiliation(s)
- Paraskevi Karousi
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos K Kontos
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| | | | - Ioannis K Kostakis
- Division of Pharmaceutical Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios-Leandros Skaltsounis
- Division of Pharmacognosy & Natural Products Chemistry, Department of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Scorilas
- Department of Biochemistry and Molecular Biology, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
16
|
Bal Y, Sürmeli Y, Şanlı-Mohamed G. Antiproliferative and Apoptotic Effects of Olive Leaf Extract Microcapsules on MCF-7 and A549 Cancer Cells. ACS OMEGA 2023; 8:28984-28993. [PMID: 37599941 PMCID: PMC10433482 DOI: 10.1021/acsomega.3c01493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023]
Abstract
Alginate microcapsules are a talented means for the delivery of broad curative biomacromolecules. In this study, we immobilized olive leaf extract (OLE) by calcium alginate (CA) and chitosan-coated CA (CCA) and characterized the OLE-loaded CA and CCA. The cytotoxic effect, the cell cycle arrest, and the apoptotic effect of OLE and its microcapsules were investigated against breast adenocarcinoma (MCF-7) and lung carcinoma (A549). As a result, the loading capacity of OLE-CA and OLE-CCA was found to be 80 and 99%, respectively, in optimal conditions. Also, OLE-CA and OLE-CCA were characterized by unique FTIR peaks and morphological display relative to the empty CCA microcapsules. The cytotoxicity analysis showed that the IC50 values of OLE-CA and OLE-CCA were determined to be 312 and 0.94 μg mL-1 against A549, respectively, whereas these were found to be 865.4 and 425.5 μg mL-1 for MCF-7 cells. On the other hand, the OLE microcapsules did not possess in any concentration of cytotoxic influence on the BEAS 2B healthy cell line. Also, the exposure of OLE-CCA to MCF-7 and A549 resulted in the arrest of more MCF-7 and A549 cells at the G0/G1 phase compared to the OLE. A549 and MCF-7 cells were predominantly found in the late apoptosis phase and necrosis phase, respectively. Optical microscopy images confirmed that OLE microcapsules were more effective against MCF-7 and A549 than free OLE. The present work suggested that the OLE microcapsules might be administered as nutrition supplements for cancer therapy.
Collapse
Affiliation(s)
- Yıldız Bal
- Department
of Biotechnology and Bioengineering, İzmir
Institute of Technology, 35430 İzmir, Turkey
| | - Yusuf Sürmeli
- Department
of Biotechnology and Bioengineering, İzmir
Institute of Technology, 35430 İzmir, Turkey
- Department
of Agricultural Biotechnology, Tekirdağ
Namık Kemal University, 59030 Tekirdağ, Turkey
| | - Gülşah Şanlı-Mohamed
- Department
of Biotechnology and Bioengineering, İzmir
Institute of Technology, 35430 İzmir, Turkey
- Department
of Chemistry, İzmir Institute of
Technology, 35430 İzmir, Turkey
| |
Collapse
|
17
|
Mahmood TH, Al-Samydai A, Sulaibi MA, Alqaraleh M, Abed AI, Shalan N, Alsanabrah A, Alsotari ST, Nsairat H, Alshaer W. Development of Pegylated Nano-Phytosome Formulation with Oleuropein and Rutin to Compare Anti-Colonic Cancer Activity with Olea Europaea Leaves Extract. Chem Biodivers 2023; 20:e202300534. [PMID: 37498138 DOI: 10.1002/cbdv.202300534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Olive leaf extract is a valuable source of phenolic compounds; primarily, oleuropein (major component) and rutin. This natural olive leaf extract has potential use as a therapeutic agent for cancer treatment. However, its clinical application is hindered by poor pharmacokinetics and low stability. To overcome these limitations, this study aimed to enhance the anticancer activity and stability of oleuropein and rutin by loading them into PEGylated Nano-phytosomes. The developed PEGylated Nano-phytosomes exhibited favorable characteristics in terms of size, charge, and stability. Notably, the anticolonic cancer activity of the Pegylated Nano-phytosomes loaded with oleuropein (IC50=0.14 μM) and rutin (IC50=0.44 μM) surpassed that of pure oleuropein and rutin alone. This outcome highlights the advantageous impact of Nano-phytosomes to augment the anticancer potential of oleuropein and rutin. These results present a promising pathway for the future development of oleuropein and rutin Nano-phytosomes as effective options for passive tumor-targeted therapy, given their improved stability and efficacy.
Collapse
Affiliation(s)
- Tabarek H Mahmood
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan
| | - Ali Al-Samydai
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan
| | - Mazen Al Sulaibi
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan
| | - Moath Alqaraleh
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan
| | - Anas Ibrahim Abed
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan
| | - Naeem Shalan
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan
| | - Alaa Alsanabrah
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan
| | | | - Hamdi Nsairat
- Faculty of Pharmacy, Pharmacological and Diagnostic Research Center, Al-Ahliyya Amman University, Amman, Jordan
| | - Walhan Alshaer
- Cell Therapy Center, The University of Jordan, Amman, 11942, Jordan
| |
Collapse
|
18
|
Salehi A, Naserzadeh P, Tarighi P, Afjeh-Dana E, Akhshik M, Jafari A, Mackvandi P, Ashtari B, Mozafari M. Fabrication of a microfluidic device for probiotic drug's dosage screening: Precision Medicine for Breast Cancer Treatment. Transl Oncol 2023; 34:101674. [PMID: 37224765 PMCID: PMC10302160 DOI: 10.1016/j.tranon.2023.101674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 05/26/2023] Open
Abstract
Breast cancer is the most common cancer in women; it has been affecting the lives of millions each year globally and microfluidic devices seem to be a promising method for the future advancements in this field. This research uses a dynamic cell culture condition in a microfluidic concentration gradient device, helping us to assess breast anticancer activities of probiotic strains against MCF-7 cells. It has been shown that MCF-7 cells could grow and proliferate for at least 24 h; however, a specific concentration of probiotic supernatant could induce more cell death signaling population after 48 h. One of our key findings was that our evaluated optimum dose (7.8 mg/L) was less than the conventional static cell culture treatment dose (12 mg/L). To determine the most effective dose over time and the percentage of apoptosis versus necrosis, flowcytometric assessment was performed. Exposing the MCF-7 cells to probiotic supernatant after 6, 24 and 48 h, confirmed that the apoptotic and necrotic cell death signaling were concentration and time dependent. We have shown a case that these types of microfluidics platforms performing dynamic cell culture could be beneficial in personalized medicine and cancer therapy.
Collapse
Affiliation(s)
- Ali Salehi
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran
| | - Parvaneh Naserzadeh
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Parastoo Tarighi
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences. Tehran, Iran
| | - Elham Afjeh-Dana
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Akhshik
- Centre for Biocomposites and Biomaterials Processing. University of Toronto, Canada; EPICentre, University of Windsor, Canada
| | - Amir Jafari
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran
| | - Pooyan Mackvandi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran; Centre for Materials Interfaces, Istituto Italiano di Tecnologia, viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy
| | - Behnaz Ashtari
- Radiation Biology Research Centre, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences. Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Masoud Mozafari
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.
| |
Collapse
|
19
|
Zakraoui M, Hannachi H, Pasković I, Vidović N, Polić Pasković M, Palčić I, Major N, Goreta Ban S, Hamrouni L. Effect of Geographical Location on the Phenolic and Mineral Composition of Chetoui Olive Leaves. Foods 2023; 12:2565. [PMID: 37444304 DOI: 10.3390/foods12132565] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, we investigated the influence of pedological parameters and variation of altitude on the mineral nutrients, phenolic compounds, and antioxidant activities of olive leaves. Samples of the Chetoui cultivar were collected from eight geographical locations with different altitudes. Levels of phenolic compounds varied according to the altitude. Classification of the locations revealed that altitude 1 (>500 m) was characterized by high levels of secoiridoids and simple phenols, while altitude 2 (500-300 m) and altitude 3 (<300 m) were higher in flavonoids. Levels of Mn, Ca and B in the leaves and level of Zn in the soil were significantly correlated with the abundance of oleuropein and luteolin-7-O glucoside, the most important phenols in Chetoui olive leaves. The results suggest that, in addition to pedological criteria, environmental conditions also influence the formation of phenolic compounds.
Collapse
Affiliation(s)
- Mariem Zakraoui
- Laboratory of Management and Valorization of Forest Resources, National Researches Institute of Water, Forests and Rural Engineering, University of Carthage, Ariana 2080, Tunisia
- Faculty of Sciences of Tunis, University of El Manar, Tunis 2092, Tunisia
| | - Hédia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint, Department of Biology, Faculty of Sciences, University Tunis El Manar, Tunis 2029, Tunisia
| | - Igor Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Nikolina Vidović
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Marija Polić Pasković
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Igor Palčić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Nikola Major
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Smiljana Goreta Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, Karla Huguesa 8, 52440 Poreč, Croatia
| | - Lamia Hamrouni
- Laboratory of Management and Valorization of Forest Resources, National Researches Institute of Water, Forests and Rural Engineering, University of Carthage, Ariana 2080, Tunisia
| |
Collapse
|
20
|
Khalil AA, Rahman MM, Rauf A, Islam MR, Manna SJ, Khan AA, Ullah S, Akhtar MN, Aljohani ASM, Abdulmonem WA, Simal-Gandara J. Oleuropein: Chemistry, extraction techniques and nutraceutical perspectives-An update. Crit Rev Food Sci Nutr 2023; 64:9933-9954. [PMID: 37272499 DOI: 10.1080/10408398.2023.2218495] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Olive family (Oleaceae) contains several species among which Olea europaea L. is mostly used for production of olive oils. Various parts of olive tree are rich source of diverse bioactive compounds such as Apigenin, elenolic acid, Hydroxytyrosol, Ligstroside, Oleoside, Oleuropein, Oleuropein aglycone, Tyrosol, etc. Among these, oleuropein, a secoiridoid is predominantly found in olive leaves and young olive fruits of different species of Oleaceae family. Scientists have adopted numerous extraction methods (conventional & latest) to increase the yield of oleuropein. Among these techniques, maceration, soxhlet, microwave-assisted, ultrasonication, and supercritical fluid methods are most commonly employed for extraction of oleuropein. Evidently, this review emphasizes on various in-vitro and in-vivo studies focusing on nutraceutical properties of oleuropein. Available literature highlights the pharmaceutical potential of oleuropein against various diseases such as obesity, diabetes, cardiovascular complications, neurodegenerative diseases, cancer, inflammation, microbial infections, and oxidation. This review will benefit the scientific community as it narrates comprehensive literature regarding absorption, metabolism, bioavailability, extraction techniques, and nutraceutical perspectives associated with oleuropein.
Collapse
Affiliation(s)
- Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Md Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Sultana Juhara Manna
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Ammar Ahmed Khan
- University Institute of Food Science and Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Samee Ullah
- University Institute of Food Science and Technology, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Muhammad Nadeem Akhtar
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Abdullah S M Aljohani
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Nutrition and Bromatology Group, Ourense, Spain
| |
Collapse
|
21
|
Shimamoto Y, Fujitani T, Uchiage E, Isoda H, Tominaga KI. Solid acid-catalyzed one-step synthesis of oleacein from oleuropein. Sci Rep 2023; 13:8275. [PMID: 37217598 DOI: 10.1038/s41598-023-35423-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/17/2023] [Indexed: 05/24/2023] Open
Abstract
In this study, we developed a new synthetic strategy to convert secoiridoid glucosides into unique dialdehydic compounds using solid acid catalysts. Specifically, we succeeded in the direct synthesis of oleacein, a rare component of extra-virgin olive oil, from oleuropein, which is abundant in olive leaves. Whereas the conventional total synthesis of oleacein from lyxose requires more than 10 steps, these solid acid catalysts enabled the one-step synthesis of oleacein from oleuropein. A key step in this synthesis was the selective hydrolysis of methyl ester. Density functional theory calculations at the B3LYP/631+G (d) level of theory revealed the formation of a tetrahedral intermediate bonded to one H2O molecule. These solid acid catalysts were easily recovered and reused at least five times by simple cleaning. Importantly, this synthetic procedure was not only applicable to other secoiridoid glucosides, but could also be employed for the corresponding scale-up reaction using oleuropein extracted from olive leaves as the starting material.
Collapse
Affiliation(s)
- Yasuhiro Shimamoto
- National Institute of Advanced Industrial Science and Technology (AIST), Interdisciplinary Research Center of Catalytic Chemistry, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tadahiro Fujitani
- National Institute of Advanced Industrial Science and Technology (AIST), Interdisciplinary Research Center of Catalytic Chemistry, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Eriko Uchiage
- National Institute of Advanced Industrial Science and Technology (AIST), Open Innovation Laboratory for Food and Medicinal Resource Engineering, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
| | - Hiroko Isoda
- National Institute of Advanced Industrial Science and Technology (AIST), Open Innovation Laboratory for Food and Medicinal Resource Engineering, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan
- School of Life and Environmental Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8572, Japan
| | - Ken-Ichi Tominaga
- National Institute of Advanced Industrial Science and Technology (AIST), Interdisciplinary Research Center of Catalytic Chemistry, Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
- National Institute of Advanced Industrial Science and Technology (AIST), Open Innovation Laboratory for Food and Medicinal Resource Engineering, 1-1-1 Tennodai, Tsukuba, 305-8577, Japan.
| |
Collapse
|
22
|
Garcia-Guasch M, Escrich E, Moral R, Duarte IF. Metabolomics Insights into the Differential Response of Breast Cancer Cells to the Phenolic Compounds Hydroxytyrosol and Luteolin. Molecules 2023; 28:molecules28093886. [PMID: 37175295 PMCID: PMC10179918 DOI: 10.3390/molecules28093886] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/02/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
The aim of this study was to investigate the effects of two phenolic compounds found in extra virgin olive oil, hydroxytyrosol (HT) and luteolin (LUT), on the metabolism of breast cancer (BC) cells of different molecular subtypes. An untargeted metabolomics approach was used to characterize the metabolic responses of both triple-negative MDA-MB-231 cells and hormone-responsive MCF-7 cells to treatment with these phenols. Notably, while some effects were common across both cell types, others were dependent on the cell type, highlighting the importance of cellular metabolic phenotype. Common effects included stimulation of mitochondrial metabolism, acetate production, and formate overflow. On the other hand, glucose metabolism and lactate production were differentially modulated. HT and LUT appeared to inhibit glycolysis and promote the hexosamine biosynthetic pathway in MDA-MB-231 cells, while MCF-7 cells exhibited higher glycolytic flux when treated with phenolic compounds. Another significant difference was observed in lipid metabolism. Treated MDA-MB-231 cells displayed increased levels of neutral lipids (likely stored in cytosolic droplets), whereas treatment of MCF-7 cells with HT led to a decrease in triacylglycerols. Additionally, glutathione levels increased in MDA-MB-231 cells treated with HT or LUT, as well as in MCF-7 cells treated with LUT. In contrast, in HT-treated MCF-7 cells, glutathione levels decreased, indicating different modulation of cellular redox status. Overall, this work provides new insights into the metabolic impact of HT and LUT on different BC cell subtypes, paving the way for a better understanding of the nutritional relevance of these phenolic compounds in the context of BC prevention and management.
Collapse
Affiliation(s)
- Maite Garcia-Guasch
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Eduard Escrich
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Raquel Moral
- Physiology Unit, Department of Cell Biology, Physiology and Immunology, Faculty of Medicine, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Iola F Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
23
|
González-Acedo A, Ramos-Torrecillas J, Illescas-Montes R, Costela-Ruiz VJ, Ruiz C, Melguizo-Rodríguez L, García-Martínez O. The Benefits of Olive Oil for Skin Health: Study on the Effect of Hydroxytyrosol, Tyrosol, and Oleocanthal on Human Fibroblasts. Nutrients 2023; 15:2077. [PMID: 37432217 DOI: 10.3390/nu15092077] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 07/12/2023] Open
Abstract
Fibroblasts contribute to maintaining tissue integrity and homeostasis and are a key cell population in wound healing. This cell population can be stimulated by some bioactive compounds such as extra virgin olive oil (EVOO) polyphenols. The aim of this study was to determine the effects of hydroxytyrosol (htyr), tyrosol (tyr), and oleocanthal (ole) phenolic compounds present in EVOO on the proliferation, migration, cell cycle, and antigenic profile of cultured human fibroblasts. CCD-1064Sk human fibroblast cells were treated for 24 h with each polyphenol at doses ranging 10-5 to 10-9 M. Cell proliferation was evaluated using the MTT spectrophotometric technique, migration capacity by culture insert assay, and cell cycle and antigenic profile with flow cytometry. Cell proliferation was significantly increased by treatment with all compounds. The highest increases followed treatments with htyr or tyr at doses of 10-5 or 10-6 M and with ole at 10-6 and 10-7 M, and these compounds and doses were used for assays of antigenic profile, cell cycle, and migration. During the first few hours after treatment, increased fibronectin and α-actin expressions and greater cell migration were observed, with no cell cycle changes. In conclusion, these in vitro results suggest that phenolic compounds in EVOO might contribute to wound healing through action on fibroblasts related to tissue regeneration.
Collapse
Affiliation(s)
- Anabel González-Acedo
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, C/Santander, 1, 52005 Melilla, Spain
| | - Javier Ramos-Torrecillas
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4a Planta, 18012 Granada, Spain
| | - Rebeca Illescas-Montes
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4a Planta, 18012 Granada, Spain
| | - Víctor J Costela-Ruiz
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4a Planta, 18012 Granada, Spain
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, C/Cortadura del Valle, s.n., 51001 Ceuta, Spain
| | - Concepción Ruiz
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4a Planta, 18012 Granada, Spain
- Institute of Neuroscience, Centro de Investigación Biomédica (CIBM), University of Granada, Parque de Tecnológico de la Salud (PTS) Avda. del Conocimiento S/N, Armilla, 18016 Granada, Spain
| | - Lucía Melguizo-Rodríguez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4a Planta, 18012 Granada, Spain
| | - Olga García-Martínez
- Biomedical Group (BIO277), Department of Nursing, Faculty of Health Sciences, University of Granada, Avda. Ilustración 60, 18016 Granada, Spain
- Institute of Biosanitary Research, ibs.Granada, C/Doctor Azpitarte 4, 4a Planta, 18012 Granada, Spain
| |
Collapse
|
24
|
Kumbhar PS, Manjappa AS, Shah RR, Nadaf SJ, Disouza JI. Nanostructured Lipid Carrier-Based Gel for Repurposing Simvastatin in Localized Treatment of Breast Cancer: Formulation Design, Development, and In Vitro and In Vivo Characterization. AAPS PharmSciTech 2023; 24:106. [PMID: 37085596 DOI: 10.1208/s12249-023-02565-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023] Open
Abstract
Simvastatin (SMV) is noticed as a repurposed candidate to be effective against breast cancer (BC). However, poor solubility, dose-limiting toxicities, and side effects are critical hurdles in its use against BC. The above drawbacks necessitate the site-specific (localized) delivery of SMV via suitable nanocarriers. Therefore, the present study intended to develop SMV nanostructured lipid carrier (NLC)-based gel using carbopol-934 as a gelling agent to achieve local delivery and improve patient compliance while combating BC. The SMV NLCs were fabricated by melt-emulsification ultrasonication technique using stearic acid as solid lipid, olive oil (OO) as liquid lipid, tween 20 as a surfactant, and PEG-200 as a co-surfactant, and optimized by Box-Behnken design. The optimized SMV-loaded NLCs displayed % entrapment efficiency of 91.66 ± 5.2% and particle size of 182 ± 11.9 nm. The pH of NLC-based gels prepared using a 2.0% w/v of carbopol-934 was found in the range of 5.3-5.6 while the viscosity was in the range of 5.1-6.6 Pa.S. Besides, NLC-based gels exhibited higher and controlled SMV release (71-76%) at pH 6.8 and (78-84%) at pH 5.5 after 48 h than SMV conventional gel (37%) at both pH 6.8 and 5.5 after 48 h. The ex vivo permeation of SMV from NLC-based gel was 3.8 to 4.5 times more than conventional gel. Notably, SMV-loaded NLCs displayed ameliorated cytotoxicity than plain SMV against MCF-7 and MDA-MB-231 BC cells. No substantial difference was noticed in the cytotoxicity of NLC-based gels and pure SMV against both cell lines. The SMV NLC-based gel exhibited the absence of skin irritation in vivo in the mice following topical application. In addition, the histopathological study revealed no alteration in the mice skin anatomy. Furthermore, the SMV-loaded NLCs and NLC-based gels were stable for 6 months at refrigerator conditions (4°C ± 2°C). Thus, the present research confirms that NLC-based gel can be a safe, efficacious, and novel alternative to treat BC.
Collapse
Affiliation(s)
- Popat S Kumbhar
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist , Kolhapur, Maharashtra, India, 416113
| | - Arehalli S Manjappa
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist , Kolhapur, Maharashtra, India, 416113
| | - Rohit R Shah
- Appasaheb Birnale College of Pharmacy, Sangli, Maharashtra, India, 416416
| | - Sameer J Nadaf
- Sant Gajanan Maharaj College of Pharmacy, Mahagaon, Gadhinglaj, Maharashtra, India
| | - John I Disouza
- Tatyasaheb Kore College of Pharmacy, Warananagar, Tal: Panhala, Dist , Kolhapur, Maharashtra, India, 416113.
| |
Collapse
|
25
|
Micheli L, Bertini L, Bonato A, Villanova N, Caruso C, Caruso M, Bernini R, Tirone F. Role of Hydroxytyrosol and Oleuropein in the Prevention of Aging and Related Disorders: Focus on Neurodegeneration, Skeletal Muscle Dysfunction and Gut Microbiota. Nutrients 2023; 15:1767. [PMID: 37049607 PMCID: PMC10096778 DOI: 10.3390/nu15071767] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/16/2023] [Accepted: 03/24/2023] [Indexed: 04/09/2023] Open
Abstract
Aging is a multi-faceted process caused by the accumulation of cellular damage over time, associated with a gradual reduction of physiological activities in cells and organs. This degeneration results in a reduced ability to adapt to homeostasis perturbations and an increased incidence of illnesses such as cognitive decline, neurodegenerative and cardiovascular diseases, cancer, diabetes, and skeletal muscle pathologies. Key features of aging include a chronic low-grade inflammation state and a decrease of the autophagic process. The Mediterranean diet has been associated with longevity and ability to counteract the onset of age-related disorders. Extra virgin olive oil, a fundamental component of this diet, contains bioactive polyphenolic compounds as hydroxytyrosol (HTyr) and oleuropein (OLE), known for their antioxidant, anti-inflammatory, and neuroprotective properties. This review is focused on brain, skeletal muscle, and gut microbiota, as these systems are known to interact at several levels. After the description of the chemistry and pharmacokinetics of HTyr and OLE, we summarize studies reporting their effects in in vivo and in vitro models of neurodegenerative diseases of the central/peripheral nervous system, adult neurogenesis and depression, senescence and lifespan, and age-related skeletal muscle disorders, as well as their impact on the composition of the gut microbiota.
Collapse
Affiliation(s)
- Laura Micheli
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Laura Bertini
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Agnese Bonato
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Carla Caruso
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Maurizia Caruso
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, 01100 Viterbo, Italy
| | - Felice Tirone
- Institute of Biochemistry and Cell Biology, National Research Council (IBBC-CNR), Via E. Ramarini 32, Monterotondo, 00015 Rome, Italy
| |
Collapse
|
26
|
Chlorophyll Pigments of Olive Leaves and Green Tea Extracts Differentially Affect Their Antioxidant and Anticancer Properties. Molecules 2023; 28:molecules28062779. [PMID: 36985751 PMCID: PMC10053222 DOI: 10.3390/molecules28062779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/11/2023] [Accepted: 03/18/2023] [Indexed: 03/22/2023] Open
Abstract
Plant-based extracts possess biological potential due to their high content of phytochemicals. Nevertheless, photosynthetic pigments (e.g., chlorophylls) that are also present in plant extracts could produce undesirable pro-oxidant activity that might cause a negative impact on their eventual application. Herein, the phenolic content of olive leaf (OLE) and green tea (GTE) extracts was assayed, and their antioxidant and anticancer activities were evaluated before and after the removal of chlorophylls. Regarding phenolic content, OLE was rich in hydroxytyrosol, tyrosol as well as oleuropein, whereas the main compounds present in GTE were gallocatechin, epigallocatechin (EGC), epigallocatechin gallate (EGCG), gallocatechin gallate, and caffeine. Interestingly, fresh extracts’ antioxidant ability was dependent on phenolic compounds; however, the elimination of chlorophyll compounds did not modify the antioxidant activity of extracts. In addition, both OLE and GTE had high cytotoxicity against HL-60 leukemic cell line. Of note, the removal of chlorophyll pigments remarkably reduced the cytotoxic effect in both cases. Therefore, our findings emphasize the remarkable antioxidant and anticancer potential of OLE and GTE and suggest that chlorophylls are of paramount importance for the tumor-killing ability of such plant-derived extracts.
Collapse
|
27
|
The Oleoside-type Secoiridoid Glycosides: Potential Secoiridoids with Multiple Pharmacological Activities. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
28
|
Razali RA, Yazid MD, Saim A, Idrus RBH, Lokanathan Y. Approaches in Hydroxytyrosol Supplementation on Epithelial-Mesenchymal Transition in TGFβ1-Induced Human Respiratory Epithelial Cells. Int J Mol Sci 2023; 24:ijms24043974. [PMID: 36835384 PMCID: PMC9967984 DOI: 10.3390/ijms24043974] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Hydroxytyrosol (HT) is an olive polyphenol with anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of HT treatment on epithelial-mesenchymal transition (EMT) in primary human respiratory epithelial cells (RECs) isolated from human nasal turbinate. HT dose-response study and growth kinetic study on RECs was performed. Several approaches on HT treatment and TGFβ1 induction with varying durations and methods was studied. RECs morphology and migration ability were evaluated. Vimentin and E-cadherin immunofluorescence staining and Western blotting [E-cadherin, vimentin, SNAIL/SLUG, AKT, phosphorylated (p)AKT, SMAD2/3 and pSMAD2/3] were performed after 72-h treatment. In silico analysis (molecular docking) of HT was performed to evaluate the potential of HT to bind with the TGFβ receptor. The viability of the HT-treated RECs was concentration-dependent, where the median effective concentration (EC50) was 19.04 μg/mL. Testing of the effects of 1 and 10 µg/mL HT revealed that HT suppressed expression of the protein markers vimentin and SNAIL/SLUG while preserving E-cadherin protein expression. Supplementation with HT protected against SMAD and AKT pathway activation in the TGFβ1-induced RECs. Furthermore, HT demonstrated the potential to bind with ALK5 (a TGFβ receptor component) in comparison to oleuropein. TGFβ1-induced EMT in RECs and HT exerted a positive effect in modulating the effects of EMT.
Collapse
Affiliation(s)
- Rabiatul Adawiyah Razali
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Aminuddin Saim
- Graduate School of Medicine, KPJ Healthcare University College, Kota Seriemas, Nilai 71800, Malaysia
| | - Ruszymah Bt Hj Idrus
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia
- Correspondence: ; Tel.: +60-3-9145-9590; Fax: +60-3-9145-7678
| |
Collapse
|
29
|
Ercelik M, Tekin C, Tezcan G, Ak Aksoy S, Bekar A, Kocaeli H, Taskapilioglu MO, Eser P, Tunca B. Olea europaea Leaf Phenolics Oleuropein, Hydroxytyrosol, Tyrosol, and Rutin Induce Apoptosis and Additionally Affect Temozolomide against Glioblastoma: In Particular, Oleuropein Inhibits Spheroid Growth by Attenuating Stem-like Cell Phenotype. Life (Basel) 2023; 13:470. [PMID: 36836827 PMCID: PMC9964321 DOI: 10.3390/life13020470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
The effects of Olea europaea leaf extract (OLE) phenolics, including oleuropein (OL), hydroxytyrosol (HT), tyrosol (TYR), and rutin against glioblastoma (GB), independently and in combination with temozolomide (TMZ), were investigated in T98G and A172 cells. Cell growth was assessed by WST-1, real-time cell analysis, colony formation, and cell cycle distribution assays. A dual acridine orange propidium iodide (AO/PI) staining and annexin V assay determined cell viability. A sphere-forming assay, an intracellular oxidative stress assay, and the RNA expression of CD133 and OCT4 investigated the GB stem-like cell (GSC) phenotype. A scratch wound-healing assay evaluated migration capacity. OL was as effective as OLE in terms of apoptosis promotion (p < 0.001) and GSC inhibition (p < 0.001). HT inhibited cell viability, GSC phenotype, and migration rate (p < 0.001), but its anti-GB effect was less than the total effect of OLE alone. Rutin decreased reactive oxygen species production and inhibited colony formation and cell migration (p < 0.001). TYR demonstrated the least effect. The additive effects of OL, HT, TYR and rutin with TMZ were significant (p < 0.001). Our data suggest that OL may represent a novel therapeutic approach against GB cells, while HT and rutin show promise in increasing the efficacy of TMZ therapy.
Collapse
Affiliation(s)
- Melis Ercelik
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Cagla Tekin
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Gulcin Tezcan
- Department of Fundamental Sciences, Faculty of Dentistry, Bursa Uludag University, 16059 Bursa, Turkey
| | - Secil Ak Aksoy
- Inegol Vocation School, Bursa Uludag University, 16059 Bursa, Turkey
- Experimental Animal Breeding and Research Unit, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Ahmet Bekar
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Hasan Kocaeli
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | | | - Pınar Eser
- Department of Neurosurgery, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| | - Berrin Tunca
- Department of Medical Biology, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Turkey
| |
Collapse
|
30
|
Novel thiourea derivative compounds: thermal behavior, biological evaluation, Hirshfeld surfaces and frontier orbitals analyses, in silico ADMET profiling and molecular docking studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Analysis of Antioxidant and Antiviral Effects of Olive ( Olea europaea L.) Leaf Extracts and Pure Compound Using Cancer Cell Model. Biomolecules 2023; 13:biom13020238. [PMID: 36830607 PMCID: PMC9953111 DOI: 10.3390/biom13020238] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 01/28/2023] Open
Abstract
The present study aims to assess the antioxidant and antiviral effectiveness of leaf extracts obtained from Olea europaea L. var. sativa and Olea europaea L. var. sylvestris. The total antioxidant activity was determined via both an ammonium phosphomolybdate assay and a nitric oxide radical inhibition assay. Both extracts showed reducing abilities in an in vitro system and in human HeLa cells. Indeed, after oxidative stress induction, we found that exposition to olive leaf extracts protects human HeLa cells from lipid peroxidation and increases the concentration of enzyme antioxidants such as catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase. Additionally, OESA treatment affects viral DNA accumulation more than OESY, probably due to the exclusive oleuropein content. In fact, subtoxic concentrations of oleuropein inhibit HSV-1 replication, stimulating the phosphorylation of PKR, c-FOS, and c-JUN proteins. These results provide new knowledge about the potential health benefits and mechanisms of action of oleuropein and oleuropein-rich extracts.
Collapse
|
32
|
Scicchitano S, Vecchio E, Battaglia AM, Oliverio M, Nardi M, Procopio A, Costanzo F, Biamonte F, Faniello MC. The Double-Edged Sword of Oleuropein in Ovarian Cancer Cells: From Antioxidant Functions to Cytotoxic Effects. Int J Mol Sci 2023; 24:ijms24010842. [PMID: 36614279 PMCID: PMC9821453 DOI: 10.3390/ijms24010842] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
Oleuropein plays a key role as a pro-oxidant as well as an antioxidant in cancer. In this study, the activity of oleuropein, in an in vitro model of ovarian (OCCs) and breast cancer cells (BCCs) was investigated. Cell viability and cell death were analyzed. Oxidative stress was measured by CM-H2DCFDA flow cytometry assay. Mitochondrial dysfunction was evaluated based on mitochondrial reactive oxygen species (ROS) and GPX4 protein levels. Further, the effects on iron metabolism were analyzed by measuring the intracellular labile iron pool (LIP). We confirmed that high doses of oleuropein show anti-proliferative and pro-apoptotic activity on HEY and MCF-7 cells. Moreover, our results indicate that low doses of oleuropein impair cell viability without affecting the mortality of cells, and also decrease the LIP and ROS levels, keeping them unchanged in MCF-7 cells. For the first time, our data show that low doses of oleuropein reduce erastin-mediated cell death. Interestingly, oleuropein decreases the levels of intracellular ROS and LIP in OCCs treated with erastin. Noteworthily, we observed an increased amount of ROS scavenging enzyme GPX4 together with a consistent reduction in mitochondrial ROS, confirming a reduction in oxidative stress in this model.
Collapse
Affiliation(s)
- Stefania Scicchitano
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Eleonora Vecchio
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Centre of Services, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Anna Martina Battaglia
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Manuela Oliverio
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Monica Nardi
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Antonio Procopio
- Department of Health Science, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Correspondence:
| | - Francesco Costanzo
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Centre of Services, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Flavia Biamonte
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
- Interdepartmental Centre of Services, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| | - Maria Concetta Faniello
- Research Center of Biochemistry and Advanced Molecular Biology, Department of Experimental and Clinical Medicine, “Magna Graecia” University of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
33
|
Mitra S, Dash R, Sohel M, Chowdhury A, Munni YA, Ali C, Hannan MA, Islam T, Moon IS. Targeting Estrogen Signaling in the Radiation-induced Neurodegeneration: A Possible Role of Phytoestrogens. Curr Neuropharmacol 2023; 21:353-379. [PMID: 35272592 PMCID: PMC10190149 DOI: 10.2174/1570159x20666220310115004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/06/2022] [Indexed: 11/22/2022] Open
Abstract
Radiation for medical use is a well-established therapeutic method with an excellent prognosis rate for various cancer treatments. Unfortunately, a high dose of radiation therapy comes with its own share of side effects, causing radiation-induced non-specific cellular toxicity; consequently, a large percentage of treated patients suffer from chronic effects during the treatment and even after the post-treatment. Accumulating data evidenced that radiation exposure to the brain can alter the diverse cognitive-related signaling and cause progressive neurodegeneration in patients because of elevated oxidative stress, neuroinflammation, and loss of neurogenesis. Epidemiological studies suggested the beneficial effect of hormonal therapy using estrogen in slowing down the progression of various neuropathologies. Despite its primary function as a sex hormone, estrogen is also renowned for its neuroprotective activity and could manage radiation-induced side effects as it regulates many hallmarks of neurodegenerations. Thus, treatment with estrogen and estrogen-like molecules or modulators, including phytoestrogens, might be a potential approach capable of neuroprotection in radiation-induced brain degeneration. This review summarized the molecular mechanisms of radiation effects and estrogen signaling in the manifestation of neurodegeneration and highlighted the current evidence on the phytoestrogen mediated protective effect against radiationinduced brain injury. This existing knowledge points towards a new area to expand to identify the possible alternative therapy that can be taken with radiation therapy as adjuvants to improve patients' quality of life with compromised cognitive function.
Collapse
Affiliation(s)
- Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Md. Sohel
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Apusi Chowdhury
- Department of Pharmaceutical Science, North-South University, Dhaka-12 29, Bangladesh
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| | - Chayan Ali
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala SE-751 08, Sweden
| | - Md. Abdul Hannan
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Tofazzal Islam
- Institute of Biotechnology and Genetic Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju38066, Republic of Korea
| |
Collapse
|
34
|
Yeşilkaynak T, Özkömeç FN, Çeşme M, Demirdöğen RE, Kutlu E, Kutlu HM, Emen FM. Synthesis of new thiourea derivatives and metal complexes: Thermal behavior, biological evaluation, in silico ADMET profiling and molecular docking studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Liu H, Wu X, Ma H, Li J, Liu Z, Guo X, Dong J, Zou S, Luo Y. High-Level Production of Hydroxytyrosol in Engineered Saccharomyces cerevisiae. ACS Synth Biol 2022; 11:3706-3713. [PMID: 36345886 DOI: 10.1021/acssynbio.2c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Hydroxytyrosol (HT) is a valuable aromatic compound with numerous applications. Herein, we enabled the efficient and scalable de novo HT production in engineered Saccharomyces cerevisiae (S. cerevisiae) from glucose. Starting from a tyrosol-overproducing strain, six HpaB/HpaC combinations were investigated, and the best catalytic performance was acquired with HpaB from Pseudomonas aeruginosa (PaHpaB) and HpaC from Escherichia coli (EcHpaC), resulting in 425.7 mg/L HT in shake flasks. Next, weakening the tryptophan biosynthetic pathway through downregulating the expression of TRP2 (encoding anthranilate synthase) further improved the HT titer by 27.2% compared to the base strain. Moreover, the cytosolic NADH supply was improved through introducing the feedback-resistant mutant of the TyrA (the NAD+-dependent chorismate mutase/prephenate dehydrogenase, TyrA*) from E. coli, which further increased the HT titer by 36.9% compared to the base strain. The best performing strain was obtained by optimizing the biosynthesis of HT in S. cerevisiae through a screening for an effective HpaB/HpaC combination, biosynthetic flux rewiring, and cofactor engineering, which enabled the titer of HT reaching 1120.0 mg/L in the shake flask. Finally, the engineered strain produced 6.97 g/L of HT by fed-batch fermentation, which represents the highest titer for de novo HT biosynthesis in microorganisms reported to date.
Collapse
Affiliation(s)
- Huayi Liu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xinxin Wu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - He Ma
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jian Li
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Zhenyu Liu
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Xufan Guo
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Jia Dong
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Shaolan Zou
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yunzi Luo
- Frontiers Science Center of Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
36
|
Laghezza Masci V, Bernini R, Villanova N, Clemente M, Cicaloni V, Tinti L, Salvini L, Taddei AR, Tiezzi A, Ovidi E. In Vitro Anti-Proliferative and Apoptotic Effects of Hydroxytyrosyl Oleate on SH-SY5Y Human Neuroblastoma Cells. Int J Mol Sci 2022; 23:12348. [PMID: 36293207 PMCID: PMC9604296 DOI: 10.3390/ijms232012348] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022] Open
Abstract
The antitumor activity of polyphenols derived from extra virgin olive oil and, in particular the biological activity of HTyr, has been studied extensively. However, the use of HTyr as a therapeutic agent for clinical applications is limited by its low bioavailability and rapid excretion in humans. To overcome these limitations, several synthetic strategies have been optimized to prepare lipophenols and new compounds derived from HTyr to increase lipophilicity and bioavailability. One very promising ester is hydroxytyrosyl oleate (HTyr-OL) because the chemical structure of HTyr, which is responsible for several biological activities, is linked to the monounsaturated chain of oleic acid (OA), giving the compound high lipophilicity and thus bioavailability in the cellular environment. In this study, the in vitro cytotoxic, anti-proliferative, and apoptotic induction activities of HTyr-OL were evaluated against SH-SY5Y human neuroblastoma cells, and the effects were compared with those of HTyr and OA. The results showed that the biological activity of HTyr was maintained in HTyr-OL treatments at lower dosages. In addition, the shotgun proteomic approach was used to study HTyr-OL-treated and untreated neuroblastoma cells, revealing that the antioxidant, anti-proliferative and anti-inflammatory activities of HTyr-OL were observed in the unique proteins of the two groups of samples.
Collapse
Affiliation(s)
- Valentina Laghezza Masci
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Roberta Bernini
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Noemi Villanova
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Mariangela Clemente
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Vittoria Cicaloni
- Toscana Life Science Foundation, Via Fiorentina 1, 53100 Siena, Italy
| | - Laura Tinti
- Toscana Life Science Foundation, Via Fiorentina 1, 53100 Siena, Italy
| | - Laura Salvini
- Toscana Life Science Foundation, Via Fiorentina 1, 53100 Siena, Italy
| | - Anna Rita Taddei
- High Equipment Centre, Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy
| | - Antonio Tiezzi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| | - Elisa Ovidi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Largo dell’Università, 01100 Viterbo, Italy
| |
Collapse
|
37
|
The Effect of Aflatoxin B1 on Tumor-Related Genes and Phenotypic Characters of MCF7 and MCF10A Cells. Int J Mol Sci 2022; 23:ijms231911856. [PMID: 36233156 PMCID: PMC9570345 DOI: 10.3390/ijms231911856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
The fungal toxin aflatoxin B1 (AB1) and its reactive intermediate, aflatoxin B1-8, 9 epoxide, could cause liver cancer by inducing DNA adducts. AB1 exposure can induce changes in the expression of several cancer-related genes. In this study, the effect of AB1 exposure on breast cancer MCF7 and normal breast MCF10A cell lines at the phenotypic and epigenetic levels was investigated to evaluate its potential in increasing the risk of breast cancer development. We hypothesized that, even at low concentrations, AB1 can cause changes in the expression of important genes involved in four pathways, i.e., p53, cancer, cell cycle, and apoptosis. The transcriptomic levels of BRCA1, BRCA2, p53, HER1, HER2, cMyc, BCL2, MCL1, CCND1, WNT3A, MAPK1, MAPK3, DAPK1, Casp8, and Casp9 were determined in MCF7 and MCF10A cells. Our results illustrate that treating both cells with AB1 induced cytotoxicity and apoptosis with reduction in cell viability in a concentration-dependent manner. Additionally, AB1 reduced reactive oxygen species levels. Phenotypically, AB1 caused cell-cycle arrest at G1, hypertrophy, and increased cell migration rates. There were changes in the expression levels of several tumor-related genes, which are known to contribute to activating cancer pathways. The effects of AB1 on the phenotype and epigenetics of both MCF7 and MCF10A cells associated with cancer development observed in this study suggest that AB1 is a potential risk factor for developing breast cancer.
Collapse
|
38
|
Gallardo-Fernández M, Gonzalez-Ramirez M, Cerezo AB, Troncoso AM, Garcia-Parrilla MC. Hydroxytyrosol in Foods: Analysis, Food Sources, EU Dietary Intake, and Potential Uses. Foods 2022; 11:foods11152355. [PMID: 35954121 PMCID: PMC9368174 DOI: 10.3390/foods11152355] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Hydroxytyrosol (HT) is a phenolic compound with proven biological properties present in a limited number of foods such as table olives, virgin olive oil (VOO) and wines. The present work aims to evaluate the dietary intake of HT in the European (EU) population by compiling scattered literature data on its concentration in foods. The consumption of the involved foods was estimated based on the EFSA Comprehensive European Food Consumption Database. The updated average contents of HT are as follows: 629.1, 5.2 and 2.1 µg/g for olives, olive oil and wine, respectively. The HT estimated intake in the European Union (EU) adult population falls within 0.13–6.82 mg/day/person, with table olives and wine being the main contributors. The estimated mean dietary intake of HT in EU countries is 1.97 ± 2.62 mg/day. Greece showed the highest HT intake (6.82 mg/day), while Austria presented the lowest (0.13 mg/day). Moreover, HT is an authorized novel food ingredient in the EU that can be added to different foods. Since the estimated HT intake is substantially low, the use of HT as a food ingredient seems feasible. This opens new possibilities for revalorizing waste products from olive oil and olive production which are rich HT sources.
Collapse
|
39
|
A Comprehensive Review on the Anti-Cancer Effects of Oleuropein. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081140. [PMID: 36013319 PMCID: PMC9409738 DOI: 10.3390/life12081140] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/20/2022]
Abstract
In Mediterranean cuisine and culture, olive oil and olive fruits play a significant role. Many people believe that those who consume olive oil and its fruit live longer and have a decreased risk of illness. Olive leaves were used to treat a range of diseases in ancient times, including malaria fever and lower earaches. Although it was not understood at the time what key components were responsible for these effects because they had not yet been discovered, Oleuropein is now recognized as one of the primary elements in immature olive fruits and leaves. Later research was carried out to determine the effects of this molecule, and it was determined that it functions as an antioxidant. Oleuropein consumption has aided in cancer treatment over the years, and this was assumed to be owing to its antioxidant properties. Oleuropein’s effects on cancer, however, go beyond that; it is now known that Oleuropein functions as both an anti-proliferative and an apoptotic promoter in many cancer cells. The kinetics and dosages of Oleuropein and the mechanisms behind its involvement and effects in cancer are explored in this review. Finally, the effects of Oleuropein in combination with anticancer medicines are investigated.
Collapse
|
40
|
Caponio GR, Lippolis T, Tutino V, Gigante I, De Nunzio V, Milella RA, Gasparro M, Notarnicola M. Nutraceuticals: Focus on Anti-Inflammatory, Anti-Cancer, Antioxidant Properties in Gastrointestinal Tract. Antioxidants (Basel) 2022; 11:antiox11071274. [PMID: 35883765 PMCID: PMC9312044 DOI: 10.3390/antiox11071274] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/24/2022] [Indexed: 02/07/2023] Open
Abstract
In recent years, nutraceuticals have gained great popularity, owing to their physiological and potential health effects, such as anti-inflammatory, anti-cancer, antioxidant, and prebiotic effects, and their regulation of lipid metabolism. Since the Mediterranean diet is a nutritionally recommended dietary pattern including high-level consumption of nutraceuticals, this review aimed to summarize the main results obtained by our in vitro and in vivo studies on the effects of the major constituents of the Mediterranean diet (i.e., extra virgin olive oil compounds, polyunsaturated fatty acids, and fruit components). Based on experimental studies, the therapeutic purpose of nutraceuticals depends on their bioavailability, solubility, toxicity, and delivery system. This review provides more in-depth knowledge on the effects linked to nutraceuticals administration on human health, focusing the gastrointestinal tract and suggesting specific dietary components for personalized adjuvant therapies.
Collapse
Affiliation(s)
- Giusy Rita Caponio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Tamara Lippolis
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Valeria Tutino
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Isabella Gigante
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Valentina De Nunzio
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
| | - Rosa Anna Milella
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, 70010 Bari, Italy; (R.A.M.); (M.G.)
| | - Marica Gasparro
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics, Turi, 70010 Bari, Italy; (R.A.M.); (M.G.)
| | - Maria Notarnicola
- National Institute of Gastroenterology “Saverio de Bellis”, Research Hospital, Castellana Grotte, 70013 Bari, Italy; (G.R.C.); (T.L.); (V.T.); (I.G.); (V.D.N.)
- Correspondence: ; Tel.: +39-080-4994342
| |
Collapse
|
41
|
Involvement of the PI3K/AKT Intracellular Signaling Pathway in the AntiCancer Activity of Hydroxytyrosol, a Polyphenol from Olea europaea, in Hematological Cells and Implication of HSP60 Levels in Its Anti-Inflammatory Activity. Int J Mol Sci 2022; 23:ijms23137053. [PMID: 35806065 PMCID: PMC9266908 DOI: 10.3390/ijms23137053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Hydroxytyrosol (HT), the main representative of polyphenols of olive oil, has been described as one of the most powerful natural antioxidants, also showing anti-inflammatory, antimicrobial, cardioprotective and anticancer activity in different type of cancers, but has been little studied in hematological neoplasms. The objective of this work was to evaluate the anticancer potential of HT in acute human leukemia T cells (Jurkat and HL60) and the anti-inflammatory potential in murine macrophages (Raw264.7). For this, cytotoxicity tests were performed for HT, showing IC50 values, at 24 h, for Jurkat, HL60 and Raw264.7 cells, of 27.3 µg·mL−1, 109.8 µg·mL−1 and 45.7 µg·mL−1, respectively. At the same time, HT caused cell arrest in G0/G1 phase in both Jurkat and HL60 cells by increasing G0/G1 phase and significantly decreasing S phase. Apoptosis and cell cycle assays revealed an antiproliferative effect of HT, decreasing the percentage of dividing cells and increasing apoptosis. Furthermore, HT inhibited the PI3K signaling pathway and, consequently, the MAPK pathway was activated. Inflammation tests revealed that HT acts as an anti-inflammatory agent, reducing NO levels in Raw264.7 cells previously stimulated by lipopolysaccharide (LPS). These processes were confirmed by the changes in the expression of the main markers of inflammation and cancer. In conclusion, HT has an anticancer and anti-inflammatory effect in the cell lines studied, which were Raw264.7, Jurkat, and HL60, and could be used as a natural drug in the treatment of liquid cancers, leukemias, myelomas and lymphomas.
Collapse
|
42
|
Ibrahim M. El-Deen, El-Zend MA, Tantawy MA, Barakat LAA. Synthesis and Cytotoxicity Screening of Some Synthesized Coumarin and Aza-Coumarin Derivatives as Anticancer Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s106816202202011x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Rufino-Palomares EE, Pérez-Jiménez A, García-Salguero L, Mokhtari K, Reyes-Zurita FJ, Peragón-Sánchez J, Lupiáñez JA. Nutraceutical Role of Polyphenols and Triterpenes Present in the Extracts of Fruits and Leaves of Olea europaea as Antioxidants, Anti-Infectives and Anticancer Agents on Healthy Growth. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27072341. [PMID: 35408740 PMCID: PMC9000726 DOI: 10.3390/molecules27072341] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/28/2022] [Accepted: 04/01/2022] [Indexed: 11/16/2022]
Abstract
There is currently a worldwide consensus and recognition of the undoubted health benefits of the so-called Mediterranean diet, with its intake being associated with a lower risk of mortality. The most important characteristics of this type of diet are based on the consumption of significant amounts of fruit, vegetables, legumes, and nuts, which provide, in addition to some active ingredients, fiber and a proportion of vegetable protein, together with extra virgin olive oil (EVOO) as the main sources of vegetable fat. Fish and meat from poultry and other small farm animals are the main sources of protein. One of the main components, as already mentioned, is EVOO, which is rich in monounsaturated fatty acids and to a lesser extent in polyunsaturated fatty acids. The intake of this type of nutrient also provides an important set of phytochemicals whose health potential is widely spread and agreed upon. These phytochemicals include significant amounts of anthocyanins, stilbenes, flavonoids, phenolic acids, and terpenes of varying complexities. Therefore, the inclusion in the diet of this type of molecules, with a proven healthy effect, provides an unquestionable preventive and/or curative activity on an important group of pathologies related to cardiovascular, infectious, and cancerous diseases, as well as those related to the metabolic syndrome. The aim of this review is therefore to shed light on the nutraceutical role of two of the main phytochemicals present in Olea europaea fruit and leaf extracts, polyphenols, and triterpenes, on healthy animal growth. Their immunomodulatory, anti-infective, antioxidant, anti-aging, and anti-carcinogenic capabilities show them to be potential nutraceuticals, providing healthy growth.
Collapse
Affiliation(s)
- Eva E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Amalia Pérez-Jiménez
- Department of Zoology, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain;
| | - Leticia García-Salguero
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Khalida Mokhtari
- Department of Biology, Faculty of Sciences, Mohammed I University, Oujda BP 717 60000, Morocco;
| | - Fernando J. Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
| | - Juan Peragón-Sánchez
- Department of Experimental Biology, Biochemistry and Molecular Biology Section, Faculty of Experimental Biology, University of Jaén, 23071 Jaén, Spain;
| | - José A. Lupiáñez
- Department of Biochemistry and Molecular Biology I, Faculty of Sciences, University of Granada, Avenida Fuentenueva, 18071 Granada, Spain; (E.E.R.-P.); (L.G.-S.); (F.J.R.-Z.)
- Correspondence: ; Tel.: +34-958-243-089; Fax: +34-958-249-945
| |
Collapse
|
44
|
Hussain A, Bourguet-Kondracki ML, Hussain F, Rauf A, Ibrahim M, Khalid M, Hussain H, Hussain J, Ali I, Khalil AA, Alhumaydhi FA, Khan M, Hussain R, Rengasamy KRR. The potential role of dietary plant ingredients against mammary cancer: a comprehensive review. Crit Rev Food Sci Nutr 2022; 62:2580-2605. [DOI: 10.1080/10408398.2020.1855413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Amjad Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 MNHN-CNRS, Muséum National d’Histoire Naturelle, Paris, France
| | - Farhad Hussain
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pukhtanuk (KP), Pakistan
| | - Muhammad Ibrahim
- Department of Applied Chemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Punjab, Pakistan
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Salle), Germany
| | - Javid Hussain
- Department of Biological Sciences & Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Sultanate of Oman
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Anees Ahmed Khalil
- University Institute of Diet and Nutritional Sciences, Faculty of Allied Health Sciences, The University of Lahore, Lahore, Pakistan
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Khan
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Riaz Hussain
- Department of Chemistry, University of Okara, Okara, Pakistan
| | - Kannan R. R. Rengasamy
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, Vietnam
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
45
|
Dhanavath R, Dharavath R, Kothula D, Bitla S, Yaku G, Birdaraju S, Puchakayala MR, Atcha KR. Synthesis and Biological Evaluation of Novel 2‐Arylquinoline‐3‐Fused Thiazolo
[2,3‐c]1,2,
4‐Triazole Heterocycles as Potential Antiproliferative and Antimicrobial Agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramulu Dhanavath
- Department of Chemistry, Nizam College Osmania University Hyderabad India
| | - Ravinder Dharavath
- Green & Medicinal Chemistry Lab, Department of Chemistry Osmania University Hyderabad India
| | - Devender Kothula
- Department of Chemistry, Nizam College Osmania University Hyderabad India
| | - Sampath Bitla
- Department of Chemistry, Nizam College Osmania University Hyderabad India
| | - Gugulothu Yaku
- Green & Medicinal Chemistry Lab, Department of Chemistry Osmania University Hyderabad India
| | - Saritha Birdaraju
- Department of Chemistry, Nizam College Osmania University Hyderabad India
| | | | | |
Collapse
|
46
|
Moral R, Escrich E. Influence of Olive Oil and Its Components on Breast Cancer: Molecular Mechanisms. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020477. [PMID: 35056792 PMCID: PMC8780060 DOI: 10.3390/molecules27020477] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/31/2021] [Accepted: 01/08/2022] [Indexed: 02/06/2023]
Abstract
Breast cancer is the most frequent malignant neoplasia and a leading cause of mortality in women worldwide. The Mediterranean diet has been proposed as a healthy dietary pattern with protective effects in several chronic diseases, including breast cancer. This diet is characterized by the consumption of abundant plant foods and olive oil as the principal source of fat, which is considered one of the main components with potential antioxidant, anti-inflammatory and anticancer effects. Extra-virgin olive oil (EVOO) has several bioactive compounds, mainly including monounsaturated fatty acids, triterpenes and polyphenols, such as phenolic alcohols (e.g., hydroxytyrosol), secoiridoids (e.g., oleuropein and oleocanthal), lignans (e.g., pinoresinol) or flavonoids (e.g., luteolin). While epidemiological evidence is still limited, experimental in vivo and in vitro data have shown a protective effect of this oil and its compounds on mammary carcinogenesis. Such effects account through complex and multiple mechanisms, including changes in epigenetics, transcriptome and protein expression that modulate several signaling pathways. Molecular targets of EVOO compounds have a role in the acquisition of cancer hallmarks. Although further research is needed to elucidate their beneficial effects on human prevention and progression of the disease, evidence points to EVOO in the context of the Mediterranean diet as a heathy choice, while EVOO components may be promising adjuvants in anticancer strategies.
Collapse
|
47
|
Sánchez-Quesada C, Gutiérrez-Santiago F, Rodríguez-García C, Gaforio JJ. Synergistic Effect of Squalene and Hydroxytyrosol on Highly Invasive MDA-MB-231 Breast Cancer Cells. Nutrients 2022; 14:nu14020255. [PMID: 35057436 PMCID: PMC8780125 DOI: 10.3390/nu14020255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/27/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
Several studies relate Mediterranean diet and virgin olive oil (VOO) intake with lower risk of several chronic diseases, including breast cancer. Many of them described antitumor properties of isolated minor compounds present in VOO, but beneficial properties of VOO arise from the effects of all its compounds acting together. The aim of the present study was to test the antitumor effects of two minor compounds from VOO (hydroxytyrosol (HT) and squalene (SQ)) on highly metastatic human breast tumor cells (MDA-MB-231) when acting in combination. Both isolated compounds were previously analyzed without showing any antitumoral effect on highly invasive MDA-MB-231 breast cancer cells, but the present results show that HT at 100 µM, combined with different concentrations of SQ, could exert antitumor effects. When they are combined, HT and SQ are able to inhibit cell proliferation, promoting apoptosis and DNA damage in metastatic breast cancer cells. Therefore, our results suggest that the health-promoting properties of VOO may be due, at least in part, to the combined action of these two minor compounds.
Collapse
Affiliation(s)
- Cristina Sánchez-Quesada
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain; (C.S.-Q.); (F.G.-S.); (C.R.-G.)
- University Institute of Research in Olive Groves and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaen, Spain
- Agri-Food Campus of International Excellence (ceiA3), 14071 Cordoba, Spain
| | - Francisco Gutiérrez-Santiago
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain; (C.S.-Q.); (F.G.-S.); (C.R.-G.)
| | - Carmen Rodríguez-García
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain; (C.S.-Q.); (F.G.-S.); (C.R.-G.)
- University Institute of Research in Olive Groves and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaen, Spain
| | - José J. Gaforio
- Department of Health Sciences, Faculty of Experimental Sciences, University of Jaen, 23071 Jaen, Spain; (C.S.-Q.); (F.G.-S.); (C.R.-G.)
- University Institute of Research in Olive Groves and Olive Oils, University of Jaen, Campus las Lagunillas s/n, 23071 Jaen, Spain
- Agri-Food Campus of International Excellence (ceiA3), 14071 Cordoba, Spain
- CIBER Epidemiología y Salud Pública (CIBER-ESP), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-953-212-002
| |
Collapse
|
48
|
Yang D, Li J, Liang C, Tian L, Shi C, Hui N, Liu Y, Ling M, Xin L, Wan M, Li H, Zhao Q, Ren X, Liu H, Cao W. Syringa microphylla Diels: A comprehensive review of its phytochemical, pharmacological, pharmacokinetic, and toxicological characteristics and an investigation into its potential health benefits. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153770. [PMID: 34678528 DOI: 10.1016/j.phymed.2021.153770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/31/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Syringa microphylla Diels is a plant in the family Syringa Linn. For hundreds of years, its flowers and leaves have been used as a folk medicine for the treatment of cough, inflammation, colds, sore throat, acute hepatitis, chronic hepatitis, early liver cirrhosis, fatty liver, and oesophageal cancer. PURPOSE For the first time, we have comprehensively reviewed information on Syringa microphylla Diels that is not included in the Pharmacopoeia, clarified the pharmacological mechanisms of Syringa microphylla Diels and its active ingredients from a molecular biology perspective, compiled in vivo and in vitro animal experimental data and clinical data, and summarized the toxicology and pharmacokinetics of Syringa microphylla Diels. The progress in toxicology research is expected to provide a theoretical basis for the development of new drugs from Syringa microphylla Diels, a natural source of compounds that are potentially beneficial to human health. METHODS The PubMed, Google Scholar, China National Knowledge Infrastructure, Web of Science, SciFinder Scholar and Thomson Reuters databases were utilized to conduct a comprehensive search of published literature as of July 2021 to find original literature related to Syringa microphylla Diels and its active ingredients. RESULTS To date, 72 compounds have been isolated and identified from Syringa microphylla Diels, and oleuropein, verbascoside, isoacteoside, echinacoside, forsythoside B, and eleutheroside B are the main active components. These compounds have antioxidant, antibacterial, anti-inflammatory, and neuroprotective effects, and their safety and effectiveness have been demonstrated in long-term traditional applications. Molecular pharmacology experiments have indicated that the active ingredients of Syringa microphylla Diels exert their pharmacological effects in various ways, primarily by reducing oxidative stress damage via Nrf2/ARE pathway regulation, regulating inflammatory factors and inducing apoptosis through the MAPK and NF-κB pathways. CONCLUSION This comprehensive review of Syringa microphylla Diels provides new insights into the correlations among molecular mechanisms, the importance of toxicology and pharmacokinetics, and potential ways to address the limitations of current research. As Syringa microphylla Diels is a natural low-toxicity botanical medicine, it is worthy of development and utilization and is an excellent choice for treating various diseases.
Collapse
Affiliation(s)
- Dan Yang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Jingyi Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Lei Tian
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chunyang Shi
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Nan Hui
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuan Liu
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Mei Ling
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Liang Xin
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Minge Wan
- School of Medicine and Pharmacy, Shaanxi University of Business & Commerce, Xi'an 712046, PR China
| | - Han Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Qianqian Zhao
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, PR China.
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China.
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| |
Collapse
|
49
|
Ly TTG, Yun J, Lee DH, Chung JS, Kwon SM. Protective Effects and Benefits of Olive Oil and Its Extracts on Women's Health. Nutrients 2021; 13:4279. [PMID: 34959830 PMCID: PMC8705829 DOI: 10.3390/nu13124279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/26/2021] [Accepted: 11/26/2021] [Indexed: 01/05/2023] Open
Abstract
Women and men share similar diseases; however, women have unique issues, including gynecologic diseases and diseases related to menstruation, menopause, and post menopause. In recent decades, scientists paid more attention to natural products and their derivatives because of their good tolerability and effectiveness in disease prevention and treatment. Olive oil is an essential component in the Mediterranean diet, a diet well known for its protective impact on human well-being. Investigation of the active components in olive oil, such as oleuropein and hydroxytyrosol, showed positive effects in various diseases. Their effects have been clarified in many suggested mechanisms and have shown promising results in animal and human studies, especially in breast cancer, ovarian cancer, postmenopausal osteoporosis, and other disorders. This review summarizes the current evidence of the role of olives and olive polyphenols in women's health issues and their potential implications in the treatment and prevention of health problems in women.
Collapse
Affiliation(s)
- Thanh Truong Giang Ly
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
| | - Jisoo Yun
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
| | - Dong-Hyung Lee
- Department of Obstetrics and Gynecology, Pusan National University Yangsan Hospital, Yangsan 50612, Korea;
| | - Joo-Seop Chung
- Department of Hematology-Oncology, Medical Research Institute, Pusan National University Hospital, Busan 49241, Korea
| | - Sang-Mo Kwon
- Laboratory for Vascular Medicine and Stem Cell Biology, Department of Physiology, Medical Research Institute, School of Medicine, Pusan National University, Yangsan 50612, Korea; (T.T.G.L.); (J.Y.)
- Convergence Stem Cell Research Center, Pusan National University, Yangsan 50612, Korea
| |
Collapse
|
50
|
Mohammed FZ, Rizzk YW, El Deen IM, Mourad AAE, El Behery M. Design, Synthesis, Cytotoxic Screening and Molecular Docking Studies of Novel Hybrid Thiosemicarbazone Derivatives as Anticancer Agents. Chem Biodivers 2021; 18:e2100580. [PMID: 34699127 DOI: 10.1002/cbdv.202100580] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/26/2021] [Indexed: 12/28/2022]
Abstract
Thiosemicarbazones have been the focus of scientists owing to their broad clinical anticancer range. Herein, A Series of new thiosemicarbazone derivatives 5-9 were synthesized and confirmed through the use of different spectroscopic techniques along with elemental analysis. The in vitro cytotoxic activity of compounds 5-9 against MCF-7 and A549 cell lines and normal breast cells were assessed. Several compounds were found to be active. The most active compound 7 caused MCF-7 cell cycle arrest at G1/ S phases; and induced apoptosis at the pre-G1 phase. The apoptosis-inducing activity of compound 7 was proofed by the elevation of caspase 3/7 activity and also by up-regulation of the expression of Bax and p53 proteins together with the down-regulation of the expression of the Bcl-2 protein. It also had a strong inhibitory effect topoisomerase IIβ enzyme. Molecular Docking study revealed that the synthesized compounds had good docking scores compared to the standard drug Etoposide towards the topoisomerase IIβ protein (3QX3). Overall, these findings confirmed that the new thiosemicarbazone derivatives could aid in the development of promising cancer drug candidates.
Collapse
Affiliation(s)
- Faten Zahran Mohammed
- Chemistry Department (The Division of Biochemistry), Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Youstina William Rizzk
- Chemistry Department (The Division of Biochemistry), Faculty of Science, Port Said University, Port Said, Egypt
| | - Ibrahim Mohey El Deen
- Chemistry Department (The Division of Organic chemistry), Faculty of Science, Port Said University, Port Said, Egypt
| | - Ahmed A E Mourad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohammed El Behery
- Chemistry Department (The Division of Biochemistry), Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|