1
|
Lin HY, Jeon AJ, Chen K, Lee CJM, Wu L, Chong SL, Anene-Nzelu CG, Foo RSY, Chow PKH. The epigenetic basis of hepatocellular carcinoma - mechanisms and potential directions for biomarkers and therapeutics. Br J Cancer 2025; 132:869-887. [PMID: 40057667 DOI: 10.1038/s41416-025-02969-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/23/2025] [Accepted: 02/20/2025] [Indexed: 05/17/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth leading cancer worldwide and has complex pathogenesis due to its heterogeneity, along with poor prognoses. Diagnosis is often late as current screening methods have limited sensitivity for early HCC. Moreover, current treatment regimens for intermediate-to-advanced HCC have high resistance rates, no robust predictive biomarkers, and limited survival benefits. A deeper understanding of the molecular biology of HCC may enhance tumor characterization and targeting of key carcinogenic signatures. The epigenetic landscape of HCC includes complex hallmarks of 1) global DNA hypomethylation of oncogenes and hypermethylation of tumor suppressors; 2) histone modifications, altering chromatin accessibility to upregulate oncogene expression, and/or suppress tumor suppressor gene expression; 3) genome-wide rearrangement of chromatin loops facilitating distal enhancer-promoter oncogenic interactions; and 4) RNA regulation via translational repression by microRNAs (miRNAs) and RNA modifications. Additionally, it is useful to consider etiology-specific epigenetic aberrancies, especially in viral hepatitis and metabolic dysfunction-associated steatotic liver disease (MASLD), which are the main risk factors of HCC. This article comprehensively explores the epigenetic signatures in HCC, highlighting their potential as biomarkers and therapeutic targets. Additionally, we examine how etiology-specific epigenetic patterns and the integration of epigenetic therapies with immunotherapy could advance personalized HCC treatment strategies.
Collapse
Affiliation(s)
- Hong-Yi Lin
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Ah-Jung Jeon
- Department of Research and Development, Mirxes, Singapore, Singapore
| | - Kaina Chen
- Department of Gastroenterology and Hepatology, Singapore General Hospital, Singapore, Singapore
| | - Chang Jie Mick Lee
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
| | - Lingyan Wu
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore
| | - Shay-Lee Chong
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore
| | | | - Roger Sik-Yin Foo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular Research Institute, National University Heart Centre, Singapore, Singapore
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
| | - Pierce Kah-Hoe Chow
- Program in Translational and Clinical Research in Liver Cancer, National Cancer Centre Singapore, Singapore, Singapore.
- Department of Hepato-pancreato-biliary and Transplant Surgery, Division of Surgery and Surgical Oncology, Singapore General Hospital and National Cancer Centre Singapore, Singapore, Singapore.
- Surgery Academic Clinical Programme, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
2
|
Zhou Y, Luo Q, Gu L, Tian X, Zhao Y, Zhang Y, Wang F. Histone Deacetylase Inhibitors Promote the Anticancer Activity of Cisplatin: Mechanisms and Potential. Pharmaceuticals (Basel) 2025; 18:563. [PMID: 40283998 PMCID: PMC12030095 DOI: 10.3390/ph18040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Cisplatin is a widely used DNA-targeting anticancer drug. Histone deacetylase inhibitors (HDACi) cause histone hyperacetylation, changing chromatin structure and accessibility of genomic DNA by the genotoxic drug. As a consequence, HDACi could promote cisplatin cytotoxicity. Hence, the underlying mechanisms by which HDACi alter the action pathways of cisplatin to promote its anticancer activity have attracted increasing attention during the past decades. It has been commonly accepted that HDACi elevate the acetylation level of histones to release genomic DNA to cisplatin attack, increasing the level of cisplatin-induced DNA lesions to promote cisplatin cytotoxicity. However, how the HDACi-enhanced cisplatin lesion on DNA impacts the downstream biological processes, and whether the promotion of HDACi to cisplatin activity is attributed to their inherent anticancer activity or to their induced elevation of histone acetylation, have been in debate. Several studies showed that HDACi-enhanced DNA lesion could promote cisplatin-induced apoptosis, cell cycle arrest, and reactive oxygen species (ROS) generation, subsequently promoting cisplatin efficiency. In contrast, HDACi-induced elimination of ROS and inhibition of ferroptosis were thought to be the main ways by which HDACi protect kidneys from acute injury caused by cisplatin. Based on our recent research, we herein review and discuss the advances in research on the mechanisms of HDACi-induced enhancement in cisplatin cytotoxicity. Given that histone acetyltransferase (HAT) inhibitors also show an effect enhancing cisplatin cytotoxicity, we will discuss the diverse roles of histone acetylation in cancer therapy in addition to the synergistic anticancer effect and potential of HDACi with genotoxic drugs and radiotherapy.
Collapse
Affiliation(s)
- Yang Zhou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liangzhen Gu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao Tian
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China (Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
- National Centre for Mass Spectrometry in Beijing, Beijing 100190, China
| |
Collapse
|
3
|
Magar AG, Morya VK, Koh YH, Noh KC. Synergistic HDAC4/8 Inhibition Sensitizes Osteosarcoma to Doxorubicin via pAKT/RUNX2 Pathway Modulation. Int J Mol Sci 2025; 26:3574. [PMID: 40332124 PMCID: PMC12026469 DOI: 10.3390/ijms26083574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Osteosarcoma is a highly aggressive bone malignancy, particularly challenging in metastatic cases, with a 5-year survival rate remaining under 30%. Although doxorubicin (doxo) is a standard first-line chemotherapeutic agent, its clinical utility is often hindered by the development of drug resistance and associated systemic toxicity. Emerging evidence highlights the role of epigenetic alterations, particularly those involving histone deacetylases (HDACs), in promoting chemoresistance. In this context, the present study aimed to evaluate the therapeutic potential of combining doxo with the selective HDAC inhibitors, tasquinimod (Tas, targeting HDAC4) and PCI-34051 (PCI, targeting HDAC8), in SJSA-1 osteosarcoma cells. Utilizing both 2D and 3D in vitro models, the combination treatment (referred to as the T4 group) significantly reduced cell viability by 57.69% in 2D cultures and decreased spheroid volume by 35.19% in 3D models. The apoptotic response was markedly enhanced, with late apoptosis reaching 64.59% and necrosis at 32.07%, both surpassing the effects observed with doxo alone. Furthermore, wound healing assays demonstrated a 37.74% inhibition of migration, accompanied by a decreased expression of the matrix metalloproteinases MMP9 and MMP13. Mechanistically, the combination therapy led to the downregulation of protein kinase B (pAKT) and RUNX2, along with upregulation of apoptotic markers, including caspase 8, caspase 3, and cleaved caspase 3, indicating a disruption of key survival pathways. These findings suggest that dual HDAC inhibition with Tas and PCI can potentiate doxo efficacy by enhancing apoptosis, inhibiting proliferation, and reducing metastatic potential, thus offering a promising strategy to overcome chemoresistance in osteosarcoma. Further preclinical and clinical studies are required to validate these therapeutic benefits.
Collapse
Affiliation(s)
- Anuja Gajanan Magar
- School of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea
| | - Vivek Kumar Morya
- School of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
- Hallym University Dongtan Sacred Heart Hospital, Hwaseong-si 18450, Republic of Korea
| | - Young-Ho Koh
- Ilsong Institute of Life Science, Hallym University, Seoul-si 14068, Republic of Korea
| | - Kyu-Cheol Noh
- School of Medicine, Hallym University, Chuncheon-si 24252, Republic of Korea
- Hallym University Sacred Heart Hospital, Anyang-si 14068, Republic of Korea
| |
Collapse
|
4
|
Zhao Q, Liu H, Peng J, Niu H, Liu J, Xue H, Liu W, Liu X, Hao H, Zhang X, Wu J. HDAC8 as a target in drug discovery: Function, structure and design. Eur J Med Chem 2024; 280:116972. [PMID: 39427514 DOI: 10.1016/j.ejmech.2024.116972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/06/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Histone deacetylases (HDACs) have emerged as prominent therapeutic targets in drug discovery. Among the members of the HDAC family, HDAC8 exhibits distinct structural and physiological features from other members of the class Ⅰ HDACs. In addition to histones, numerous non-histone substrates such as structural maintenance of chromosomes 3 (SMC3), p53, estrogen-related receptor alpha (ERRα), etc., have been identified for HDAC8, suggesting the involvement of HDAC8 in diverse biological processes. Studies have demonstrated that HDAC8 plays essential roles in certain disease development, e.g., acute myeloid leukemia (AML), neuroblastoma, and X-Linked disorders. Despite several HDAC8 inhibitors have been discovered, only one compound has progressed to clinical studies. Recently, novel strategies targeting HDAC8 have emerged, including identifying innovative zinc-chelating groups (ZBG), developing multi-target drugs, and HDAC8 PROTACs. This review aims to summarize recent progress in developing new HDAC8 inhibitors that incorporate novel strategies and provide an overview of the clinical improvements associated with HDAC8 inhibitors.
Collapse
Affiliation(s)
- Qianlong Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Hongyan Liu
- The People's Hospital of Zhaoyuan City, No. 168 Yingbin Road, Zhaoyuan, 265400, Shandong Province, PR China
| | - Jie Peng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Haoqian Niu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jingqian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Haoyu Xue
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Wenjia Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xinyu Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Huabei Hao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xinbo Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jingde Wu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
5
|
Hua H, Guan L, Pan B, Gao J, Geng Y, Niu MM, Li Z, Li J. The identification of potent dual-target monopolar spindle 1 (MPS1) and histone deacetylase 8 (HDAC8) inhibitors through pharmacophore modeling, molecular docking, molecular dynamics simulations, and biological evaluation. Front Pharmacol 2024; 15:1454523. [PMID: 39351092 PMCID: PMC11439681 DOI: 10.3389/fphar.2024.1454523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Background Overexpression of monopolar spindle 1 (MPS1) and histone deacetylase 8 (HDAC8) is associated with the proliferation of liver cancer cells, so simultaneous inhibition of both MPS1 and HDAC8 could offer a promising therapeutic approach for the treatment of liver cancer. Dual-targeted MPS1/HDAC8 inhibitors have not been reported. Methods A combined approach of pharmacophore modeling and molecular docking was used to identify potent dual-target inhibitors of MPS1 and HDAC8. Enzyme inhibition assays were performed to evaluate the optimal compound with the strongest inhibitory activity against MPS1 and HDAC8. The selectivity of MPH-5 for MPS1 and HDAC8 was assessed on a panel of 68 kinases and other histone deacetylases. Subsequently, molecular dynamics (MD) simulation verified the binding stability of the optimal compound to MPS1 and HDAC8. Ultimately, in vitro cellular assays and in vivo antitumor assays evaluated the antitumor efficacy of the most promising compound for the treatment of hepatocellular carcinoma. Results Six dual-target compounds (MPHs 1-6) of both MPS1 and HDAC8 were identified from the database using a combined virtual screening protocol. Notably, MPH-5 showed nanomolar inhibitory effect on both MPS1 (IC50 = 4.52 ± 0.21 nM) and HDAC8 (IC50 = 6.07 ± 0.37 nM). MD simulation indicated that MPH-5 stably binds to both MPS1 and HDAC8. Importantly, cellular assays revealed that MPH-5 exhibited significant antiproliferative activity against human liver cancer cells, especially HepG2 cells. Moreover, MPH-5 exhibited low toxicity and high efficacy against tumor cells, and it overcomes drug resistance to some extent. In addition, MPH-5 may exert its antitumor effects by downregulating MPS1-driven phosphorylation of histone H3 and upregulating HDAC8-mediated K62 acetylation of PKM2. Furthermore, MPH-5 showed potent inhibition of HepG2 xenograft tumor growth in mice with no apparent toxicity and presented favorable pharmacokinetics. Conclusion The study suggests that MPH-5 is a potent, selective, high-efficacy, and low-toxicity antitumor candidate for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Huilian Hua
- Department of Pharmacy, The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People’s Hospital), Taizhou, China
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Bo Pan
- Department of Pharmacy, The Hospital Affiliated to Medical School of Yangzhou University (Taizhou People’s Hospital), Taizhou, China
| | - Junyi Gao
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yifei Geng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Zhiqin Li
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Jindong Li
- Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
6
|
Naik D, Kalle AM. MicroRNA-mediated epigenetic regulation of HDAC8 and HDAC6: Functional significance in cervical cancer. Noncoding RNA Res 2024; 9:732-743. [PMID: 38577018 PMCID: PMC10990743 DOI: 10.1016/j.ncrna.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/25/2024] [Accepted: 02/17/2024] [Indexed: 04/06/2024] Open
Abstract
Cervical cancer, a leading global cause of female mortality, exhibits diverse molecular aberrations influencing gene expression and signaling pathways. Epigenetic factors, including histone deacetylases (HDACs) such as HDAC8 and HDAC6, along with microRNAs (miRNAs), play pivotal roles in cervical cancer progression. Recent investigations have unveiled miRNAs as potential regulators of HDACs, offering a promising therapeutic avenue. This study employed in-silico miRNA prediction, qRT-PCR co-expression studies, and Dual-Luciferase reporter assays to identify miRNAs governing HDAC8 and HDAC6 in HeLa, cervical cancer cells. Results pinpointed miR-497-3p and miR-324-3p as novel negative regulators of HDAC8 and HDAC6, respectively. Functional assays demonstrated that miR-497-3p overexpression in HeLa cells suppressed HDAC8, leading to increased acetylation of downstream targets p53 and α-tubulin. Similarly, miR-324-3p overexpression inhibited HDAC6 mRNA and protein expression, enhancing acetylation of Hsp90 and α-tubulin. Notably, inhibiting HDAC8 via miRNA overexpression correlated with reduced cell viability, diminished epithelial-to-mesenchymal transition (EMT), and increased microtubule bundle formation in HeLa cells. In conclusion, miR-497-3p and miR-324-3p emerge as novel negative regulators of HDAC8 and HDAC6, respectively, with potential therapeutic implications. Elevated expression of these miRNAs in cervical cancer cells holds promise for inhibiting metastasis, offering a targeted approach for intervention in cervical malignancy.
Collapse
Affiliation(s)
- Debasmita Naik
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India
| | - Arunasree M. Kalle
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana State, 500046, India
| |
Collapse
|
7
|
Zhang L, Guan L, Wang Y, Niu MM, Yan J. Discovery of a dual-target DYRK2 and HDAC8 inhibitor for the treatment of hepatocellular carcinoma. Biomed Pharmacother 2024; 177:116839. [PMID: 38889633 DOI: 10.1016/j.biopha.2024.116839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/20/2024] Open
Abstract
Dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) and histone deacetylase 8 (HDAC8) have been shown to be associated with the development of several cancers. Here, we identified a dual-target DYRK2/HDAC8 inhibitor (DYC-1) through a combined virtual screening protocol. DYC-1 exhibited nanomolar inhibitory activity against both DYRK2 (IC50 = 5.27 ± 0.13 nM) and HDAC8 (IC50 = 8.06 ± 0.47 nM). Molecular dynamics simulations showed that DYC-1 had positive binding stability with DYRK2 and HDAC8. Importantly, the cytotoxicity assay indicated that DYC-1 exhibited superior antiproliferative activity against human liver cancer, especially SK-HEP-1 cells, and had no significant inhibition on normal liver cells. Moreover, DYC-1 showed a strong inhibitory effect on the growth of SK-HEP-1 xenograft tumors with no significant side effects. These data suggest that DYC-1 is a high-efficacy and low-toxic antitumor agent for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Li Zhang
- Department of Pharmacy, Changzhi People's Hospital, Changzhi Medical College, Changzhi 046000, China.
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Yuting Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Jinhu Yan
- Department of Pain Treatment, Changzhi Hospital of Traditional Chinese Medicine, Changzhi 046000, China.
| |
Collapse
|
8
|
Karati D, Mukherjee S, Roy S. Emerging therapeutic strategies in cancer therapy by HDAC inhibition as the chemotherapeutic potent and epigenetic regulator. Med Oncol 2024; 41:84. [PMID: 38438564 DOI: 10.1007/s12032-024-02303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
In developing new cancer medications, attention has been focused on novel epigenetic medicines called histone deacetylase (HDAC) inhibitors. Our understanding of cancer behavior is being advanced by research on epigenetics, which also supplies new targets for improving the effectiveness of cancer therapy. Most recently published patents emphasize HDAC selective drugs and multitarget HDAC inhibitors. Though significant progress has been made in emerging HDAC selective antagonists, it is urgently necessary to find new HDAC blockers with novel zinc-binding analogues to avoid the undesirable pharmacological characteristics of hydroxamic acid. HDAC antagonists have lately been explored as a novel approach to treating various diseases, including cancer. The complicated terrain of HDAC inhibitor development is summarized in this article, starting with a discussion of the many HDAC isotypes and their involvement in cancer biology, followed by a discussion of the mechanisms of action of HDAC inhibitors, their current level of development, effect of miRNA, and their combination with immunotherapeutic.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
9
|
Fukuda M, Fujita Y, Hino Y, Nakao M, Shirahige K, Yamashita T. Inhibition of HDAC8 Reduces the Proliferation of Adult Neural Stem Cells in the Subventricular Zone. Int J Mol Sci 2024; 25:2540. [PMID: 38473789 DOI: 10.3390/ijms25052540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
In the adult mammalian brain, neurons are produced from neural stem cells (NSCs) residing in two niches-the subventricular zone (SVZ), which forms the lining of the lateral ventricles, and the subgranular zone in the hippocampus. Epigenetic mechanisms contribute to maintaining distinct cell fates by suppressing gene expression that is required for deciding alternate cell fates. Several histone deacetylase (HDAC) inhibitors can affect adult neurogenesis in vivo. However, data regarding the role of specific HDACs in cell fate decisions remain limited. Herein, we demonstrate that HDAC8 participates in the regulation of the proliferation and differentiation of NSCs/neural progenitor cells (NPCs) in the adult mouse SVZ. Specific knockout of Hdac8 in NSCs/NPCs inhibited proliferation and neural differentiation. Treatment with the selective HDAC8 inhibitor PCI-34051 reduced the neurosphere size in cultures from the SVZ of adult mice. Further transcriptional datasets revealed that HDAC8 inhibition in adult SVZ cells disturbs biological processes, transcription factor networks, and key regulatory pathways. HDAC8 inhibition in adult SVZ neurospheres upregulated the cytokine-mediated signaling and downregulated the cell cycle pathway. In conclusion, HDAC8 participates in the regulation of in vivo proliferation and differentiation of NSCs/NPCs in the adult SVZ, which provides insights into the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Momoko Fukuda
- Department of Anatomy and Developmental Biology, School of Medicine, Shimane University, 89-1, Enya-cho, Izumo-shi 693-8501, Japan
| | - Yuki Fujita
- Department of Anatomy and Developmental Biology, School of Medicine, Shimane University, 89-1, Enya-cho, Izumo-shi 693-8501, Japan
| | - Yuko Hino
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Mitsuyoshi Nakao
- Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
- Department of Cell and Molecular Biology, Karolinska Institutet, Biomedicum, Quarter A6, 171 77 Stockholm, Sweden
| | - Toshihide Yamashita
- Department of Molecular Neuroscience, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, 3-1, Yamadaoka, Suita 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3, Yamadaoka, Suita 565-0871, Japan
- Department of Neuro-Medical Science, Graduate School of Medicine, Osaka University, 2-2, Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
10
|
Beljkas M, Ilic A, Cebzan A, Radovic B, Djokovic N, Ruzic D, Nikolic K, Oljacic S. Targeting Histone Deacetylases 6 in Dual-Target Therapy of Cancer. Pharmaceutics 2023; 15:2581. [PMID: 38004560 PMCID: PMC10674519 DOI: 10.3390/pharmaceutics15112581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Histone deacetylases (HDACs) are the major regulators of the balance of acetylation of histone and non-histone proteins. In contrast to other HDAC isoforms, HDAC6 is mainly involved in maintaining the acetylation balance of many non-histone proteins. Therefore, the overexpression of HDAC6 is associated with tumorigenesis, invasion, migration, survival, apoptosis and growth of various malignancies. As a result, HDAC6 is considered a promising target for cancer treatment. However, none of selective HDAC6 inhibitors are in clinical use, mainly because of the low efficacy and high concentrations used to show anticancer properties, which may lead to off-target effects. Therefore, HDAC6 inhibitors with dual-target capabilities represent a new trend in cancer treatment, aiming to overcome the above problems. In this review, we summarize the advances in tumor treatment with dual-target HDAC6 inhibitors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Katarina Nikolic
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (A.I.); (A.C.); (B.R.); (N.D.); (D.R.)
| | - Slavica Oljacic
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia; (M.B.); (A.I.); (A.C.); (B.R.); (N.D.); (D.R.)
| |
Collapse
|
11
|
Aleksandrova Y, Neganova M. Deciphering the Mysterious Relationship between the Cross-Pathogenetic Mechanisms of Neurodegenerative and Oncological Diseases. Int J Mol Sci 2023; 24:14766. [PMID: 37834214 PMCID: PMC10573395 DOI: 10.3390/ijms241914766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The relationship between oncological pathologies and neurodegenerative disorders is extremely complex and is a topic of concern among a growing number of researchers around the world. In recent years, convincing scientific evidence has accumulated that indicates the contribution of a number of etiological factors and pathophysiological processes to the pathogenesis of these two fundamentally different diseases, thus demonstrating an intriguing relationship between oncology and neurodegeneration. In this review, we establish the general links between three intersecting aspects of oncological pathologies and neurodegenerative disorders, i.e., oxidative stress, epigenetic dysregulation, and metabolic dysfunction, examining each process in detail to establish an unusual epidemiological relationship. We also focus on reviewing the current trends in the research and the clinical application of the most promising chemical structures and therapeutic platforms that have a modulating effect on the above processes. Thus, our comprehensive analysis of the set of molecular determinants that have obvious cross-functional pathways in the pathogenesis of oncological and neurodegenerative diseases can help in the creation of advanced diagnostic tools and in the development of innovative pharmacological strategies.
Collapse
Affiliation(s)
- Yulia Aleksandrova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
| | - Margarita Neganova
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia;
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 420088 Kazan, Russia
| |
Collapse
|
12
|
Xue J, Ge P, Wu Y. The prognosis and clinicopathological significance of histone deacetylase in hepatocellular carcinoma: a meta-analysis. Clin Exp Med 2023; 23:1515-1536. [PMID: 36342581 DOI: 10.1007/s10238-022-00934-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
The value of the different types of HDACs (histone deacetylases) for HCC (hepatocellular carcinoma) prognosis and clinicopathological features is still controversial. Here, we performed a meta-analysis to investigate the possible role of different types of HDACs in HCC. Until October 28, 2021, we have searched the Embase, Cochrane, PubMed, Scopus, Web of Science (WOS), SinoMed, Chinese China National Knowledge Infrastructure (CNKI), Chinese WanFang, and Chinese Weipu databases and evaluated eligible studies according to the criteria. We used hazard ratio (HR) and 95% confidence interval (95% CI) to evaluate the prognostic effects of different types of HDACs on overall survival (OS), disease-free survival (DFS)/recurrence-free survival (RFS) and used odds ratio (OR) and corresponding 95% CI to evaluate the significance of HDACs on clinicopathological characteristics. The I2 statistic and chi-square-based Q test were used to assess the heterogeneity. When the heterogeneity was significant, we conducted a subgroup analysis. In addition, Egger's test and funnel chart were used to assess publication bias. The high expression of class I HDACs was associated with poorer OS, DFS/RFS and differentiation, intrahepatic metastasis, tumor-node-metastasis (TNM), tumor number, tumor size, vascular invasion, and other poor clinicopathological characteristics. The high expression of class II HDACs was related to poor OS and multiple and larger tumors. After subgroup analysis, class II HDACs may also be related to worse TNM and Edmondson grading. The high expression of class III HDACs was related to poor OS, hepatitis B, liver cirrhosis, serum AFP, and vascular invasion. But it was more common in women and was related to single, smaller tumors. Type I, II, and III HDACs are associated with poor prognosis, and there are also correlations with some clinicopathological features, suggesting that different types of HDACs may be valuable biomarkers for HCC.
Collapse
Affiliation(s)
- Jiahao Xue
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, China
| | - Penglei Ge
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, China
| | - Yang Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, Henan, China.
| |
Collapse
|
13
|
Moinul M, Amin SA, Khatun S, Das S, Jha T, Gayen S. A detail survey and analysis of selectivity criteria for indole-based histone deacetylase 8 (HDAC8) inhibitors. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.133967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
Ko HJ, Chiou SJ, Tsai CY, Loh JK, Lin XY, Tran TH, Hou CC, Cheng TS, Lai JM, Chang PMH, Wang FS, Su CL, Huang CYF, Hong YR. BMX, a specific HDAC8 inhibitor, with TMZ for advanced CRC therapy: a novel synergic effect to elicit p53-, β-catenin- and MGMT-dependent apoptotic cell death. Cell Commun Signal 2022; 20:200. [PMID: 36575468 PMCID: PMC9793577 DOI: 10.1186/s12964-022-01007-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/26/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Despite advances in treatment, patients with refractory colorectal cancer (CRC) still have poor long-term survival, so there is a need for more effective therapeutic options. METHODS To evaluate the HDAC8 inhibition efficacy as a CRC treatment, we examined the effects of various HDAC8 inhibitors (HDAC8i), including BMX (NBM-T-L-BMX-OS01) in combination with temozolomide (TMZ) or other standard CRC drugs on p53 mutated HT29 cells, as well as wild-type p53 HCT116 and RKO cells. RESULTS We showed that HDAC8i with TMZ cotreatment resulted in HT29 arrest in the S and G2/M phase, whereas HCT116 and RKO arrest in the G0/G1 phase was accompanied by high sub-G1. Subsequently, this combination approach upregulated p53-mediated MGMT inhibition, leading to apoptosis. Furthermore, we observed the cotreatment also enabled triggering of cell senescence and decreased expression of stem cell biomarkers. Mechanistically, we found down-expression levels of β-catenin, cyclin D1 and c-Myc via GSK3β/β-catenin signaling. Intriguingly, autophagy also contributes to cell death under the opposite status of β-catenin/p62 axis, suggesting that there exists a negative feedback regulation between Wnt/β-catenin and autophagy. Consistently, the Gene Set Enrichment Analysis (GSEA) indicated both apoptotic and autophagy biomarkers in HT29 and RKO were upregulated after treating with BMX. CONCLUSIONS BMX may act as a HDAC8 eraser and in combination with reframed-TMZ generates a remarkable synergic effect, providing a novel therapeutic target for various CRCs. Video Abstract.
Collapse
Affiliation(s)
- Huey-Jiun Ko
- grid.412019.f0000 0000 9476 5696Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan ,grid.412019.f0000 0000 9476 5696Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| | - Shean-Jaw Chiou
- grid.412019.f0000 0000 9476 5696Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| | - Cheng-Yu Tsai
- grid.412019.f0000 0000 9476 5696Post Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan ,grid.412027.20000 0004 0620 9374Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708 Taiwan
| | - Joon-Khim Loh
- grid.412027.20000 0004 0620 9374Department of Neurosurgery, Kaohsiung Medical University Hospital, Kaohsiung, 80708 Taiwan
| | - Xin-Yi Lin
- grid.412019.f0000 0000 9476 5696Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan ,grid.412019.f0000 0000 9476 5696Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| | - Thu-Ha Tran
- grid.260539.b0000 0001 2059 7017Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11211 Taiwan
| | - Chia-Chung Hou
- New Drug Research & Development Center, NatureWise Biotech & Medicals Corporation, Taipei, 112 Taiwan
| | - Tai-Shan Cheng
- grid.260539.b0000 0001 2059 7017Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11211 Taiwan
| | - Jin-Mei Lai
- grid.256105.50000 0004 1937 1063Department of Life Science, Fu-Jen Catholic University, New Taipei City, 24205 Taiwan
| | - Peter Mu-Hsin Chang
- grid.260539.b0000 0001 2059 7017Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11211 Taiwan ,grid.278247.c0000 0004 0604 5314Department of Oncology, Taipei Veterans General Hospital, Taipei, 11217 Taiwan ,grid.260539.b0000 0001 2059 7017Faculty of Medicine, National Yang Ming Chiao Tung University, Taipei, 11211 Taiwan
| | - Feng-Sheng Wang
- grid.412047.40000 0004 0532 3650Department of Chemical Engineering, National Chung Cheng University, Chiayi, 62102 Taiwan
| | - Chun-Li Su
- grid.412090.e0000 0001 2158 7670Graduate Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei, 11677 Taiwan
| | - Chi-Ying F. Huang
- grid.412019.f0000 0000 9476 5696Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan ,grid.260539.b0000 0001 2059 7017Taiwan International Graduate Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, 112 Taiwan ,grid.260539.b0000 0001 2059 7017Institute of Biopharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei, 11211 Taiwan ,grid.260539.b0000 0001 2059 7017Department of Biotechnology and Laboratory Science in Medicine, National Yang Ming Chiao Tung University, Taipei, 11211 Taiwan
| | - Yi-Ren Hong
- grid.412019.f0000 0000 9476 5696Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan ,grid.412019.f0000 0000 9476 5696Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan ,grid.412036.20000 0004 0531 9758Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 804 Taiwan ,grid.412027.20000 0004 0620 9374Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708 Taiwan ,grid.412019.f0000 0000 9476 5696Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan ,grid.412019.f0000 0000 9476 5696Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung, 80708 Taiwan
| |
Collapse
|
15
|
Morse JS, Sheng YJ, Hampton JT, Sylvain LD, Das S, Alugubelli YR, Chen PC, Yang KS, Xu S, Fierke CA, Liu WR. Phage-assisted, active site-directed ligand evolution of a potent and selective histone deacetylase 8 inhibitor. Protein Sci 2022; 31:e4512. [PMID: 36382882 PMCID: PMC9703592 DOI: 10.1002/pro.4512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
Phage-assisted, active site-directed ligand evolution (PADLE) is a recently developed technique that uses an amber codon-encoded noncanonical amino acid (ncAA) as an anchor to direct phage-displayed peptides to a target for an enhanced ligand identification process. 2-Amino-8-oxodecanoic acid (Aoda) is a ketone-containing ncAA residue in the macrocyclic peptide natural product apicidin that is a pan-inhibitor of Zn2+ -dependent histone deacetylases (HDACs). Its ketone serves as an anchoring point to coordinate the catalytic zinc ion in HDACs. Using a previously evolved N𝜀 -acetyl-lysyl-tRNA synthetase in combination with tRNAPyl , we showed that Aoda was efficiently incorporated into proteins in Escherichia coli by amber suppression. By propagating an amber codon-obligate phagemid library in E. coli encoding Aoda, we generated an Aoda-containing phage-displayed peptide library. Using this library to conduct PADLE against HDAC8 revealed a 7-mer peptide GH8P01F1 with Aoda-flanking amino acid residues that matched existing peptide sequences in identified HDAC8 substrates. Switching Aoda in GH8P01F1 to a more Zn2+ -chelating ncAA S-2-amino-8-hydroxyamino-8-oxooctanoic acid (Asuha) led to an extremely potent compound GH8HA01, which has an HDAC8-inhibition Ki value of 0.67 nM. GH8HA01 and its 5-mer truncation analogue Ac-GH8HA01Δ1Δ7 that has an HDAC8-inhibition Ki value of 0.31 nM are two of the most potent HDAC8 inhibitors that have been developed. Furthermore, both are highly selective against HDAC8 compared with other HDACs tested, demonstrating the great potential of using PADLE to identify highly potent and selective ligands for targets with conserved active sites among homologues.
Collapse
Affiliation(s)
- Jared S. Morse
- Texas A&M Drug Discovery Laboratory, Department of ChemistryTexas A&M UniversityTexasUSA
| | - Yan J. Sheng
- Texas A&M Drug Discovery Laboratory, Department of ChemistryTexas A&M UniversityTexasUSA
| | - Joshua Trae Hampton
- Texas A&M Drug Discovery Laboratory, Department of ChemistryTexas A&M UniversityTexasUSA
| | - Lauralee D. Sylvain
- Texas A&M Drug Discovery Laboratory, Department of ChemistryTexas A&M UniversityTexasUSA
| | - Sukant Das
- Texas A&M Drug Discovery Laboratory, Department of ChemistryTexas A&M UniversityTexasUSA
| | - Yugendar R. Alugubelli
- Texas A&M Drug Discovery Laboratory, Department of ChemistryTexas A&M UniversityTexasUSA
| | - Peng‐Hsun Chase Chen
- Texas A&M Drug Discovery Laboratory, Department of ChemistryTexas A&M UniversityTexasUSA
| | - Kai S. Yang
- Texas A&M Drug Discovery Laboratory, Department of ChemistryTexas A&M UniversityTexasUSA
| | - Shiqing Xu
- Texas A&M Drug Discovery Laboratory, Department of ChemistryTexas A&M UniversityTexasUSA
| | - Carol A. Fierke
- Department of BiochemistryBrandeis UniversityWalthamMassachusettsUSA
| | - Wenshe Ray Liu
- Texas A&M Drug Discovery Laboratory, Department of ChemistryTexas A&M UniversityTexasUSA
- Institute of Biosciences and Technology and Department of Translational Medical Sciences, College of MedicineTexas A&M UniversityHoustonTexasUSA
- Department of Biochemistry and BiophysicsTexas A&M UniversityTexasUSA
- Department of Molecular and Cellular Medicine, College of MedicineTexas A&M UniversityTexasUSA
| |
Collapse
|
16
|
Banerjee S, Baidya SK, Adhikari N, Jha T. A comparative quantitative structural assessment of benzothiazine-derived HDAC8 inhibitors by predictive ligand-based drug designing approaches. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2022; 33:987-1011. [PMID: 36533308 DOI: 10.1080/1062936x.2022.2155241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Histone deacetylase 8 (HDAC8) is a verified biomolecular target associated with diverse diseases including cancer. Though several HDAC inhibitors emerged effective against such diseases, no selective HDAC8 inhibitor is approved to date. Therefore, the development of potent HDAC8-selective inhibitors is inevitable to combat such diseases. Here, some benzothiazine-derived HDAC8 inhibitors were considered for a comparative QSAR analysis which may elucidate the prime structural components responsible for modulating their efficacy. Several outcomes from these diverse modelling techniques justified one another and thus validated each other. The ligand-based pharmacophore modelling study identified ring aromatic, positive ionizable, and hydrophobic features as essential structural attributes for HDAC8 inhibition. Besides, MLR, HQSAR and field-based 3D-QSAR studies signified the utility of the positive ionizable and hydrophobic features for potent HDAC8 inhibition. Again, the field-based 3D-QSAR study provided useful insight regarding the substitution in the fused phenyl ring. Moreover, the current observations also validated the previously reported molecular docking observations. Based on the outcomes, some new molecules were designed and predicted. Therefore, this comparative structural analysis of these HDAC8 inhibitors will surely assist in the development of potent HDAC8 inhibitors as promising anticancer therapeutics in the future.
Collapse
Affiliation(s)
- S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
17
|
HDAC8-Selective Inhibition by PCI-34051 Enhances the Anticancer Effects of ACY-241 in Ovarian Cancer Cells. Int J Mol Sci 2022; 23:ijms23158645. [PMID: 35955780 PMCID: PMC9369251 DOI: 10.3390/ijms23158645] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/27/2022] [Accepted: 07/30/2022] [Indexed: 01/25/2023] Open
Abstract
HDAC6 is overexpressed in ovarian cancer and is known to be correlated with tumorigenesis. Accordingly, ACY-241, a selective HDAC6 inhibitor, is currently under clinical trial and has been tested in combination with various drugs. HDAC8, another member of the HDAC family, has recently gained attention as a novel target for cancer therapy. Here, we evaluated the synergistic anticancer effects of PCI-34051 and ACY-241 in ovarian cancer. Among various ovarian cancer cells, PCI-34051 effectively suppresses cell proliferation in wild-type p53 ovarian cancer cells compared with mutant p53 ovarian cancer cells. In ovarian cancer cells harboring wild-type p53, PCI-34051 in combination with ACY-241 synergistically represses cell proliferation, enhances apoptosis, and suppresses cell migration. The expression of pro-apoptotic proteins is synergistically upregulated, whereas the expressions of anti-apoptotic proteins and metastasis-associated proteins are significantly downregulated in combination treatment. Furthermore, the level of acetyl-p53 at K381 is synergistically upregulated upon combination treatment. Overall, co-inhibition of HDAC6 and HDAC8 through selective inhibitors synergistically suppresses cancer cell proliferation and metastasis in p53 wild-type ovarian cancer cells. These results suggest a novel approach to treating ovarian cancer patients and the therapeutic potential in developing HDAC6/8 dual inhibitors.
Collapse
|
18
|
Herp D, Ridinger J, Robaa D, Shinsky SA, Schmidtkunz K, Yesiloglu TZ, Bayer T, Steimbach RR, Herbst‐Gervasoni CJ, Merz A, Romier C, Sehr P, Gunkel N, Miller AK, Christianson DW, Oehme I, Sippl W, Jung M. First Fluorescent Acetylspermidine Deacetylation Assay for HDAC10 Identifies Selective Inhibitors with Cellular Target Engagement. Chembiochem 2022; 23:e202200180. [PMID: 35608330 PMCID: PMC9308754 DOI: 10.1002/cbic.202200180] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/18/2022] [Indexed: 11/06/2022]
Abstract
Histone deacetylases (HDACs) are important epigenetic regulators involved in many diseases, especially cancer. Five HDAC inhibitors have been approved for anticancer therapy and many are in clinical trials. Among the 11 zinc-dependent HDACs, HDAC10 has received relatively little attention by drug discovery campaigns, despite its involvement, e. g., in the pathogenesis of neuroblastoma. This is due in part to a lack of robust enzymatic conversion assays. In contrast to the protein lysine deacetylase and deacylase activity of most other HDAC subtypes, it has recently been shown that HDAC10 has strong preferences for deacetylation of oligoamine substrates like acetyl-putrescine or -spermidine. Hence, it is also termed a polyamine deacetylase (PDAC). Here, we present the first fluorescent enzymatic conversion assay for HDAC10 using an aminocoumarin-labelled acetyl-spermidine derivative to measure its PDAC activity, which is suitable for high-throughput screening. Using this assay, we identified potent inhibitors of HDAC10-mediated spermidine deacetylation in vitro. Based on the oligoamine preference of HDAC10, we also designed inhibitors with a basic moiety in appropriate distance to the zinc binding hydroxamate that showed potent inhibition of HDAC10 with high selectivity, and we solved a HDAC10-inhibitor structure using X-ray crystallography. We could demonstrate selective cellular target engagement for HDAC10 but a lysosomal phenotype in neuroblastoma cells that was previously associated with HDAC10 inhibition was not observed. Thus, we have developed new chemical probes for HDAC10 that allow further clarification of the biological role of this enzyme.
Collapse
Affiliation(s)
- Daniel Herp
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstraße 2579104FreiburgGermany
| | - Johannes Ridinger
- Hopp Children's Cancer Center Heidelberg (KiTZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Dina Robaa
- Institute of PharmacyMartin-Luther University of Halle-Wittenberg06120Halle (Saale)Halle/SaaleGermany
| | - Stephen A. Shinsky
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of Pennsylvania231 South 34th StreetPhiladelphiaPennsylvania19104-6323USA
| | - Karin Schmidtkunz
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstraße 2579104FreiburgGermany
| | - Talha Z. Yesiloglu
- Institute of PharmacyMartin-Luther University of Halle-Wittenberg06120Halle (Saale)Halle/SaaleGermany
| | - Theresa Bayer
- Institute of PharmacyMartin-Luther University of Halle-Wittenberg06120Halle (Saale)Halle/SaaleGermany
| | | | - Corey J. Herbst‐Gervasoni
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of Pennsylvania231 South 34th StreetPhiladelphiaPennsylvania19104-6323USA
| | - Annika Merz
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstraße 2579104FreiburgGermany
| | - Christophe Romier
- Université de StrasbourgCNRSINSERMInstitut de Génétique et de Biologie Moléculaire et CellulaireUMR 7104, U 125867404IllkirchFrance
- IGBMCDepartment of Integrated Structural Biology1 rue Laurent Fries, B.P. 1014267404Illkirch CedexFrance
| | - Peter Sehr
- Chemical Biology Core FacilityEuropean Molecular Biology Laboratory69117HeidelbergGermany
| | - Nikolas Gunkel
- German Cancer Consortium (DKTK)Im Neuenheimer Feld 28069120HeidelbergGermany
- Cancer Drug Development GroupIm Neuenheimer Feld 28069120HeidelbergGermany
| | - Aubry K. Miller
- German Cancer Consortium (DKTK)Im Neuenheimer Feld 28069120HeidelbergGermany
- Cancer Drug Development GroupIm Neuenheimer Feld 28069120HeidelbergGermany
| | - David W. Christianson
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of Pennsylvania231 South 34th StreetPhiladelphiaPennsylvania19104-6323USA
| | - Ina Oehme
- Hopp Children's Cancer Center Heidelberg (KiTZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- Clinical Cooperation Unit Pediatric OncologyGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 28069120HeidelbergGermany
- German Cancer Consortium (DKTK)Im Neuenheimer Feld 28069120HeidelbergGermany
| | - Wolfgang Sippl
- Institute of PharmacyMartin-Luther University of Halle-Wittenberg06120Halle (Saale)Halle/SaaleGermany
| | - Manfred Jung
- Institute of Pharmaceutical SciencesUniversity of FreiburgAlbertstraße 2579104FreiburgGermany
- German Cancer Consortium (DKTK), Partner site FreiburgHugstetter Str. 5579106FreiburgGermany
- CIBSS - Centre for Integrative Biological Signalling StudiesUniversity of Freiburg (Germany)
| |
Collapse
|
19
|
Sun Z, Deng B, Yang Z, Mai R, Huang J, Ma Z, Chen T, Chen J. Discovery of pomalidomide-based PROTACs for selective degradation of histone deacetylase 8. Eur J Med Chem 2022; 239:114544. [PMID: 35759908 DOI: 10.1016/j.ejmech.2022.114544] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 11/03/2022]
Abstract
Overexpression of histone deacetylase 8 (HDAC8) is associated with various diseases such as cancer. Thus, compounds that can modulate HDAC8 levels have therapeutic potential for these diseases. Based on the proteolysis targeting chimera (PROTAC) strategy, we designed and synthesized a series of HDAC8 degraders by tethering an HDAC6/8 dual inhibitor with pomalidomide (a cereblon ligand). Among them, compound ZQ-23 exhibited significant and selective degradation of HDAC8 with DC50 of 147 nM and Dmax of 93%, and exhibited no effects on HDAC1 and HDAC3. Interestingly, we found that the degradation of target protein started at ∼2 h after treatment with ZQ-23 and the maximal degradation effect was achieved at 10 h. The HDAC8 level was partially recovered within 24 h. In addition, ZQ-23 had no degrading effects on HDAC1 and HDAC3 at all concentrations, but could dose-dependently increase the levels of acetylated SMC-3 (HDAC8 substrate). Mechanism study demonstrated that ZQ-23 degraded HDAC8 through the ubiquitin-protease pathway, rather than lysosome system. Collectively, these results suggest that ZQ-23 represents a novel PROTAC-based HDAC8 degrader worthy of further investigation.
Collapse
Affiliation(s)
- Zhiqiang Sun
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Bulian Deng
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Zichao Yang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Ruiyao Mai
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Junli Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China
| | - Zeli Ma
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ting Chen
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Screening, Southern Medical University, Guangzhou, 510515, China; Department of General Surgery & Guangdong Provincial Key Laboratory of Precision Medicine for Gastrointestinal Tumor, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| |
Collapse
|
20
|
Experimental, insilico, DFT studies of novel compound 2-{2-[(3,4-dimethoxyphenyl)methylidene]hydrazinecarbonothioyl}-N-methyl-N- phenylhydrazine-1-carbothioamide. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
21
|
Zhai S, Zhang H, Chen R, Wu J, Ai D, Tao S, Cai Y, Zhang JQ, Wang L. Design, synthesis and biological evaluation of novel hybrids targeting mTOR and HDACs for potential treatment of hepatocellular carcinoma. Eur J Med Chem 2021; 225:113824. [PMID: 34509167 DOI: 10.1016/j.ejmech.2021.113824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/19/2021] [Accepted: 08/28/2021] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major contributor to global cancer incidence and mortality. Many pathways are involved in the development of HCC and various proteins including mTOR and HDACs have been identified as potential drug targets for HCC treatment. In the present study, two series of novel hybrid molecules targeting mTOR and HDACs were designed and synthesized based on parent inhibitors (MLN0128 and PP121 for mTOR, SAHA for HDACs) by using a fusion-type molecular hybridization strategy. In vitro antiproliferative assays demonstrated that these novel hybrids with suitable linker lengths exhibited broad cytotoxicity against various cancer cell lines, with significant activity against HepG2 cells. Notably, DI06, an MLN0128-based hybrid, exhibited antiproliferative activity against HepG2 cells with an IC50 value of 1.61 μM, which was comparable to those of both parent drugs (MLN0128, IC50 = 2.13 μM and SAHA, IC50 = 2.26 μM). In vitro enzyme inhibition assays indicated that DI06, DI07 and DI17 (PP121-based hybrid) exhibited nanomolar inhibitory activity against mTOR kinase and HDACs (e.g., HDAC1, HDAC2, HDAC3, HADC6 and HADC8). Cellular studies and western blot analyses uncovered that in HepG2 cells, DI06 and DI17 induced cell apoptosis by targeting mTOR and HDACs, blocked the cell cycle at the G0/G1 phase and suppressed cell migration. The potential binding modes of the hybrids (DI06 and DI17) with mTOR and HDACs were investigated by molecular docking. DI06 displayed better stability in rat liver microsomes than DI07 and DI17. Collectively, DI06 as a novel mTOR and HDACs inhibitor presented here warrants further investigation as a potential treatment of HCC.
Collapse
Affiliation(s)
- Shiyang Zhai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Huimin Zhang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Rui Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Jiangxia Wu
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Daiqiao Ai
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Shunming Tao
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yike Cai
- Center for Certification and Evaluation, Guangdong Drug Administration, Guangzhou, 510080, China
| | - Ji-Quan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & College of Pharmacy, Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, Guizhou Medical University, Guiyang, 550004, China
| | - Ling Wang
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, Joint International Research Laboratory of Synthetic Biology and Medicine, Guangdong Provincial Engineering and Technology Research Center of Biopharmaceuticals, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
22
|
Yan Y, Huang C, Shu Y, Wen H, Shan C, Wang X, Liu J, Li W. An HDAC8-selective fluorescent probe for imaging in living tumor cell lines and tissue slices. Org Biomol Chem 2021; 19:8352-8366. [PMID: 34528053 DOI: 10.1039/d1ob01367j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Histone deacetylase 8 (HDAC8) has been used as a therapeutic target for many cancers as it is highly expressed in neuroblastoma cells and breast cancer cells. HDAC8-selective fluorescent probes need to be urgently developed. Herein, two novel fluorescent probes, namely NP-C6-PCI and AM-C6-PCI, based on the conjugation of 1,8-naphthalimide with a highly selective inhibitor of HDAC8 (PCI-34051) were reported. Compared with PCI-34051 (KD = 6.25 × 10-5 M), NP-C6-PCI (KD = 8.05 × 10-6 M) and AM-C6-PCI (KD = 7.42 × 10-6 M) showed great selectivity toward HDAC8. Two fluorescent probes exhibited high fluorescence intensity under λex = 450 nm and a large Stokes shift (100 nm). NP-C6-PCI was selected for cell and tissue imaging due to the similarity in the bioactivity of NP-C6-PCI with PCI-34051. The ability of NP-C6-PCI to target imaging HDAC8 in SH-SY5Y and MDA-MB-231 tumor cells was demonstrated. Furthermore, NP-C6-PCI was applied to imaging SH-SY5Y tumor tissue slices to indicate the relative expression level of HDAC8. Therefore, this HDAC8-selective fluorescent probe can be expected for applications in HDAC8-targeted drug screening as well as in pathologic diagnoses.
Collapse
Affiliation(s)
- Yinyu Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Chaoqun Huang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Yi Shu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Hongmei Wen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Chenxiao Shan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Xinzhi Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, PR China.
| |
Collapse
|
23
|
Unraveling the Epigenetic Role and Clinical Impact of Histone Deacetylases in Neoplasia. Diagnostics (Basel) 2021; 11:diagnostics11081346. [PMID: 34441281 PMCID: PMC8394077 DOI: 10.3390/diagnostics11081346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) have long been implicated in tumorigenesis and tumor progression demonstrating their important participation in neoplasia. Therefore, numerous studies have been performed, highlighting the mechanism of HDACs action in tumor cells and demonstrating the potential role of HDAC inhibitors in the treatment of different cancer types. The outcome of these studies further delineated and strengthened the solid role that HDACs and epigenetic modifications exert in neoplasia. These results have spread promise regarding the potential use of HDACs as prospective therapeutic targets. Nevertheless, the clinical significance of HDAC expression and their use as biomarkers in cancer has not been extensively elucidated. The aim of our study is to emphasize the clinical significance of HDAC isoforms expression in different tumor types and the correlations noted between the clinicopathological parameters of tumors and patient outcomes. We further discuss the obstacles that the next generation HDAC inhibitors need to overcome, for them to become more potent.
Collapse
|
24
|
Cheng F, Zheng B, Wang J, Zhao G, Yao Z, Niu Z, He W. Comprehensive analysis of a new prognosis signature based on histone deacetylases in clear cell renal cell carcinoma. Cancer Med 2021; 10:6503-6514. [PMID: 34308568 PMCID: PMC8446567 DOI: 10.1002/cam4.4156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/27/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
Histone deacetylases (HDAC) family is vital for tumorigenesis and tumor progression. However, the exact role of the HDAC family in clear cell renal cell carcinoma (ccRCC) remains unclear. Based on The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC), and The Human Protein Atlas (HPA) database, we investigated and validated the expression profile, clinical significance and prognostic value of HDAC family members in ccRCC. Moreover, we further explored the correlation between HDACs and tumor microenvironment, tumor stemness, drug activity and immune subtype. The HDAC8, HDAC10, and HDAC11 manifested potential clinical value for prognosis, and the correlation analyses reveals underlying molecular mechanisms, which deserve further investigation for ccRCC. This Integrated bioinformatics analysis, based on transcriptomics and proteomics, implied that HDAC8, HDAC10, and HDAC11 may serve as potential molecular biomarkers and therapeutic targets for ccRCC, but some underlying molecular mechanisms still need to be elucidated.
Collapse
Affiliation(s)
- Fajuan Cheng
- Department of Nephrology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Department of Nephrology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Bin Zheng
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Jianwei Wang
- Department of Urology, Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Guiting Zhao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Zhongshun Yao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Zhihong Niu
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, P.R. China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| | - Wei He
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, P.R. China
| |
Collapse
|
25
|
Chen L, Fei Y, Zhao Y, Chen Q, Chen P, Pan L. Expression and prognostic analyses of HDACs in human gastric cancer based on bioinformatic analysis. Medicine (Baltimore) 2021; 100:e26554. [PMID: 34232196 PMCID: PMC8270587 DOI: 10.1097/md.0000000000026554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/01/2021] [Indexed: 01/04/2023] Open
Abstract
Gastric cancer (GC) is a common cancerous tumor, and is the third leading cause of cancer mortality worldwide. Although comprehensive therapies of GC have been widely used in clinical set ups, advanced gastric cancer carries is characterized by poor prognosis, probably due to lack of effective prognostic biomarkers. Mammalian histone deacetylase family, histone deacetylases (HDACs), play significant roles in initiation and progression of tumors. Aberrant expression of HDACs is reported in many cancer types including gastric cancer, and may serve as candidate biomarkers or therapeutic targets for GC patients.Gene Expression Profiling Interactive Analysis was used to explore mRNA levels of HDACs in GC. Kaplan-Meier plotter was used to determine the prognostic value of HDACs mRNA expression in GC. Genomic profiles including mutations of HDACs were retrieved from cBioPortal webserver. A protein-protein interaction network was constructed using STRING database. GeneMANIA was used to retrieve additional genes or proteins related to HDACs. R software was used for functional enrichment analyses.Analysis of mRNA levels of HDAC1/2/4/8/9 showed that they were upregulated in GC tissues, whereas HDAC6/10 was downregulated in GC tissues. Aberrant expression of HDAC1/3/4/5/6/7/8/10/11 was all correlated with prognosis in GC. In addition, expression levels of HDACs were correlated with different Lauren classifications, and clinical stages, lymph node status, treatment, and human epidermal growth factor receptor 2 status in GC.The findings of this study showed that HDAC members are potential biomarkers for diagnosis or prognosis of gastric cancer. However, further studies should be conducted to validate these findings.
Collapse
Affiliation(s)
- Luting Chen
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Yuchang Fei
- Department of Integrated Chinese and Western Medicine, The First People's Hospital of Jiashan, Jiaxing, Zhejiang, China
| | - Yurong Zhao
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Quan Chen
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Peifeng Chen
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| | - Lei Pan
- Department of First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou
| |
Collapse
|
26
|
Role of Nitric Oxide in Gene Expression Regulation during Cancer: Epigenetic Modifications and Non-Coding RNAs. Int J Mol Sci 2021; 22:ijms22126264. [PMID: 34200849 PMCID: PMC8230456 DOI: 10.3390/ijms22126264] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) has been identified and described as a dual mediator in cancer according to dose-, time- and compartment-dependent NO generation. The present review addresses the different epigenetic mechanisms, such as histone modifications and non-coding RNAs (ncRNAs), miRNA and lncRNA, which regulate directly or indirectly nitric oxide synthase (NOS) expression and NO production, impacting all hallmarks of the oncogenic process. Among lncRNA, HEIH and UCA1 develop their oncogenic functions by inhibiting their target miRNAs and consequently reversing the inhibition of NOS and promoting tumor proliferation. The connection between miRNAs and NO is also involved in two important features in cancer, such as the tumor microenvironment that includes key cellular components such as tumor-associated macrophages (TAMs), cancer associated fibroblasts (CAFs) and cancer stem cells (CSCs).
Collapse
|
27
|
Fu S, Yu M, Tan Y, Liu D. Role of histone deacetylase on nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2021; 15:353-361. [PMID: 33213187 DOI: 10.1080/17474124.2021.1854089] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022]
Abstract
Introduction: Nonalcoholic fatty liver disease (NAFLD) is a group of diseases related to metabolic abnormalities, which severely impairs the life and health of patients, and brings great pressure to the society and medical resources. Currently, there is no specific treatment. Histone deacetylases (HDACs) have recently been reported to be involved in the pathogenesis of NAFLD and are considered as new targets for the treatment of NAFLD.Area covered: In this review, we summarized the role of HDACs in the pathogenesis of NAFLD and proposed possible therapeutic targets in order to provide new strategies for the treatment of NAFLD.Expert commentary: HDACs and related signal pathways are widely involved in the pathogenesis of NAFLD and have the potential to become therapeutic targets. However, based on current research alone, HDACs cannot be practical applied to the treatment of NAFLD. Therefore, more research on the pathogenesis of NAFLD and the mechanism of HDACs is what we need most now.
Collapse
Affiliation(s)
- Shifeng Fu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China
- Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| | - Meihong Yu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China
- Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| | - Yuyong Tan
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China
- Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| | - Dengliang Liu
- Department of Gastroenterology, the Second Xiangya Hospital, Central South University, Changsha, Hunan China
- Research Center of Digestive Disease, Central South University, Changsha, HunanChina
| |
Collapse
|
28
|
Zhang R, Shen M, Wu C, Chen Y, Lu J, Li J, Zhao L, Meng H, Zhou X, Huang G, Zhao X, Liu J. HDAC8-dependent deacetylation of PKM2 directs nuclear localization and glycolysis to promote proliferation in hepatocellular carcinoma. Cell Death Dis 2020; 11:1036. [PMID: 33279948 PMCID: PMC7719180 DOI: 10.1038/s41419-020-03212-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/04/2020] [Accepted: 11/06/2020] [Indexed: 01/11/2023]
Abstract
Pyruvate kinase M2 (PKM2) is not only a key rate-limiting enzyme that guides glycolysis, but also acts as a non-metabolic protein in regulating gene transcription. In recent years, a series of studies have confirmed that post-translational modification has become an important mechanism for regulating the function of PKM2, which in turn affects tumorigenesis. In this study, we found that K62 residues were deacetylated, which is related to the prognosis of HCC. Further studies indicate that HDAC8 binds and deacetylates the K62 residue of PKM2. Mechanistically, K62 deacetylation facilitate PKM2 transport into the nucleus and bind β-catenin, thereby promoting CCND1 gene transcription and cell cycle progression. In addition, the deacetylation of K62 affects the enzyme activity of PKM2 and the flux of glucose metabolism. Therefore, these results suggest that HDAC8 / PKM2 signaling may become a new target for the treatment of HCC.
Collapse
Affiliation(s)
- Ruixue Zhang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Mengqin Shen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Chunhua Wu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Yumei Chen
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jiani Lu
- Division of Physical Therapy Education, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jiajin Li
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Li Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Huannan Meng
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xiang Zhou
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xiaoping Zhao
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
- Division of Physical Therapy Education, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
29
|
Hontecillas-Prieto L, Flores-Campos R, Silver A, de Álava E, Hajji N, García-Domínguez DJ. Synergistic Enhancement of Cancer Therapy Using HDAC Inhibitors: Opportunity for Clinical Trials. Front Genet 2020; 11:578011. [PMID: 33024443 PMCID: PMC7516260 DOI: 10.3389/fgene.2020.578011] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 12/25/2022] Open
Abstract
Chemotherapy is one of the most established and effective treatments for almost all types of cancer. However, the elevated toxicity due to the non-tumor-associated effects, development of secondary malignancies, infertility, radiation-induced fibrosis and resistance to treatment limit the effectiveness and safety of treatment. In addition, these multiple factors significantly impact quality of life. Over the last decades, our increased understanding of cancer epigenetics has led to new therapeutic approaches and the promise of improved patient outcomes. Epigenetic alterations are commonly found in cancer, especially the increased expression and activity of histone deacetylases (HDACs). Dysregulation of HDACs are critical to the development and progression of the majority of tumors. Hence, HDACs inhibitors (HDACis) were developed and now represent a very promising treatment strategy. The use of HDACis as monotherapy has shown very positive pre-clinical results, but clinical trials have had only limited success. However, combinatorial regimens with other cancer drugs have shown synergistic effects both in pre-clinical and clinical studies. At the same time, these combinations have enhanced the efficacy, reduced the toxicity and tumor resistance to therapy. In this review, we will examine examples of HDACis used in combination with other cancer drugs and highlight the synergistic effects observed in recent preclinical and clinical studies.
Collapse
Affiliation(s)
- Lourdes Hontecillas-Prieto
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| | - Rocío Flores-Campos
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| | - Andrew Silver
- Centre for Genomics and Child Health, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Enrique de Álava
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain.,Department of Normal and Pathological Cytology and Histology, School of Medicine, University of Seville, Seville, Spain
| | - Nabil Hajji
- Division of Brain Sciences, Imperial College London, London, United Kingdom
| | - Daniel J García-Domínguez
- Institute of Biomedicine of Seville, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla/CIBERONC, Seville, Spain
| |
Collapse
|
30
|
Spreafico M, Gruszka AM, Valli D, Mazzola M, Deflorian G, Quintè A, Totaro MG, Battaglia C, Alcalay M, Marozzi A, Pistocchi A. HDAC8: A Promising Therapeutic Target for Acute Myeloid Leukemia. Front Cell Dev Biol 2020; 8:844. [PMID: 33015043 PMCID: PMC7498549 DOI: 10.3389/fcell.2020.00844] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 08/06/2020] [Indexed: 12/23/2022] Open
Abstract
Histone deacetylase 8 (HDAC8), a class I HDAC that modifies non-histone proteins such as p53, is highly expressed in different hematological neoplasms including a subtype of acute myeloid leukemia (AML) bearing inversion of chromosome 16 [inv(16)]. To investigate HDAC8 contribution to hematopoietic stem cell maintenance and myeloid leukemic transformation, we generated a zebrafish model with Hdac8 overexpression and observed an increase in hematopoietic stem/progenitor cells, a phenotype that could be reverted using a specific HDAC8 inhibitor, PCI-34051 (PCI). In addition, we demonstrated that AML cell lines respond differently to PCI treatment: HDAC8 inhibition elicits cytotoxic effect with cell cycle arrest followed by apoptosis in THP-1 cells, and cytostatic effect in HL60 cells that lack p53. A combination of cytarabine, a standard anti-AML chemotherapeutic, with PCI resulted in a synergistic effect in all the cell lines tested. We, then, searched for a mechanism behind cell cycle arrest caused by HDAC8 inhibition in the absence of functional p53 and demonstrated an involvement of the canonical WNT signaling in zebrafish and in cell lines. Together, we provide the evidence for the role of HDAC8 in hematopoietic stem cell differentiation in zebrafish and AML cell lines, suggesting HDAC8 inhibition as a therapeutic target in hematological malignancies. Accordingly, we demonstrated the utility of a highly specific HDAC8 inhibition as a therapeutic strategy in combination with standard chemotherapy.
Collapse
Affiliation(s)
- Marco Spreafico
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Alicja M Gruszka
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia IRCCS, Milan, Italy
| | - Debora Valli
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia IRCCS, Milan, Italy
| | - Mara Mazzola
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | | | | | | | - Cristina Battaglia
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Myriam Alcalay
- Dipartimento di Oncologia Sperimentale, Istituto Europeo di Oncologia IRCCS, Milan, Italy.,Dipartimento di Oncologia ed Emato-Oncologia, Università degli Studi di Milano, Milan, Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
31
|
Du J, Li W, Liu B, Zhang Y, Yu J, Hou X, Fang H. An in silico mechanistic insight into HDAC8 activation facilitates the discovery of new small-molecule activators. Bioorg Med Chem 2020; 28:115607. [PMID: 32690262 DOI: 10.1016/j.bmc.2020.115607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 11/25/2022]
Abstract
Research interest in the development of histone deacetylase 8 (HDAC8) activators has substantially increased since loss-of-function HDAC8 mutations were found in patients with Cornelia de Lange syndrome (CdLS). A series of N-acetylthioureas (e.g., TM-2-51) have been identified as HDAC8-selective activators, among others; however, their activation mechanisms remain elusive. Herein, we performed molecular dynamics (MD) simulations and fragment-centric topographical mapping (FCTM) to investigate the mechanism of HDAC8 activation. Our results revealed that improper binding of the coumarin group of fluorescent substrates leads to the "flipping out" of catalytic residue Y306, which reduces the enzymatic activity of HDAC8 towards fluorescent substrates. A pocket between the coumarin group of the substrate and thed catalytic residue Y306 was filled with the activator TM-2-51, which not only enhanced binding between HDAC8 and the fluorescent substrate complex but also stabilized Y306 in a catalytically active conformation. Based on this newly proposed substrate-dependent activation mechanism, we performed structure-based virtual screening and successfully identified low-molecular-weight scaffolds as new HDAC8 activators.
Collapse
Affiliation(s)
- Jintong Du
- Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250012, China; Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Wen Li
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Bo Liu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY 10003, United States; NYU-ECNU Center for Computational Chemistry, New York University-Shanghai, Shanghai 200122, China
| | - Jinming Yu
- Shandong Cancer Hospital, Shandong University, Jinan, Shandong 250012, China; Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Xuben Hou
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China; Department of Chemistry, New York University, New York, NY 10003, United States.
| | - Hao Fang
- Department of Medicinal Chemistry and Key Laboratory of Chemical Biology of Natural Products (MOE), School of Pharmacy, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
32
|
Wang B, Xu L, Zhang J, Cheng X, Xu Q, Wang J, Mao F. LncRNA NORAD accelerates the progression and doxorubicin resistance of neuroblastoma through up-regulating HDAC8 via sponging miR-144-3p. Biomed Pharmacother 2020; 129:110268. [PMID: 32563146 DOI: 10.1016/j.biopha.2020.110268] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 05/10/2020] [Indexed: 01/29/2023] Open
Abstract
The dysregulation of non-coding RNAs (ncRNAs) often caused aberrant cell behaviors. In the present study, we focused on the role of long noncoding RNA (lncRNA) non-coding RNA activated by DNA damage (NORAD) in the development of neuroblastoma (NB). The enrichment of NORAD, miRNA-144-3p (miR-144-3p) and histone deacetylase 8 (HDAC8) was measured by quantitative real time polymerase chain reaction (qRT-PCR). The proliferation, chemoresistance, apoptosis, metastasis and autophagy of NB cells were determined by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), flow cytometry, transwell migration and invasion assays and Western blot assay, respectively. The target relationship between miR-144-3p and NORAD or HDAC8 was predicted by Starbase software and validated through dual-luciferase reporter assay, RIP and RNA-pull down assays. The protein expression of HDAC8 was measured by Western blot assay. Murine xenograft model was used to verify the function of NORAD in vivo. We found that the level of NORAD was up-regulated in NB tissues and cells, and the level of NORAD was negatively correlated with the prognosis of NB patients. NORAD promoted the proliferation, metastasis and doxorubicin (DOX) resistance while inhibited the apoptosis and autophagy of NB cells. MiR-144-3p was a target of NORAD in NB cells, and NORAD accelerated the progression and DOX resistance of NB through sponging miR-144-3p. HDAC8 was a direct target of miR-144-3p in NB cells, and miR-144-3p suppressed the progression of NB through down-regulating HDAC8. NORAD up-regulated the expression of HDAC8 through sponging miR-144-3p in NB cells. NORAD accelerated the growth of NB tumors at least partly through miR-144-3p/HDAC8 signaling in vivo. In conclusion, NORAD promoted the progression and DOX resistance of NB through miR-144-3p/HDAC8 axis in vivo and in vitro.
Collapse
Affiliation(s)
- Baiqi Wang
- Department of Oncology Hematology, the Second Affiliated Hospital of South China University, Hengyang, Hunan China
| | - Lili Xu
- Department of Oncology Hematology, the Second Affiliated Hospital of South China University, Hengyang, Hunan China
| | - Ju Zhang
- Department of Newborn Pediatrics, the First Affiliated Hospital of South China University, Hengyang, Hunan China
| | - Xinru Cheng
- Department of Newborn Pediatrics, the First Affiliated Hospital of South China University, Hengyang, Hunan China
| | - Qianya Xu
- Department of Newborn Pediatrics, the First Affiliated Hospital of South China University, Hengyang, Hunan China
| | - Jian Wang
- Department of Emergency, the First Affiliated Hospital of South China University, Hengyang, Hunan China
| | - Fengxia Mao
- Department of Newborn Pediatrics, the First Affiliated Hospital of South China University, Hengyang, Hunan China.
| |
Collapse
|
33
|
Mikami D, Kobayashi M, Uwada J, Yazawa T, Kamiyama K, Nishimori K, Nishikawa Y, Nishikawa S, Yokoi S, Taniguchi T, Iwano M. AR420626, a selective agonist of GPR41/FFA3, suppresses growth of hepatocellular carcinoma cells by inducing apoptosis via HDAC inhibition. Ther Adv Med Oncol 2020; 12:1758835920913432. [PMID: 33014144 PMCID: PMC7517987 DOI: 10.1177/1758835920913432] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/17/2020] [Indexed: 12/11/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is a major cause of cancer death worldwide and establishment of new chemotherapies for HCC is urgently needed. GPR41 [free fatty acid receptor 3 (FFA3)] is a G protein-coupled receptor for short chain fatty acids, including acetate, propionate, and butyrate. In our previous study, we showed that propionate enhances the cytotoxic effect of cisplatin in HCC cells and that this mechanism is dependent on inhibition of histone deacetylases (HDACs) via GPR41/FFA3. However, the antitumor action of GPR41/FFA3 has not been elucidated. Methods In this study, we examined AR420626 as a GPR41-selective agonist in HepG2 and HLE cells. Nude mice were used for HepG2 xenograft studies. The apoptotic effect of AR420626 was evaluated using flow cytometry analysis. Expression of apoptosis-related proteins and HDACs was evaluated by Western immunoblot. Gene silencing of HDAC 3/5/7 and GPR41 was performed using small interfering RNA. Expression of TNF-α mRNA was evaluated by TaqMan real-time polymerase chain reaction. Results We found that AR420626, a selective GPR41/FFA3 agonist, suppressed growth of HepG2 xenografts and inhibited proliferation of HCC cells by inducing apoptosis. AR420626 induced proteasome activation through mTOR phosphorylation, which reduced HDAC proteins, and then increased expression of TNF-α. Conclusion AR420626, a selective GPR41/FFA3 agonist, may be a candidate as a therapeutic agent for HCC.
Collapse
Affiliation(s)
- Daisuke Mikami
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, 23-3 Matsuoka-shimoaizuki, Eiheiji, Yoshida, Fukui 910-1193 Japan
| | - Mamiko Kobayashi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Junsuke Uwada
- Department of Biochemistry, Division of Cellular Signal Transduction, Asahikawa Medical University, Asahikawa, Japan
| | - Takashi Yazawa
- Department of Biochemistry, Division of Cellular Signal Transduction, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuko Kamiyama
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Kazuhisa Nishimori
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Yudai Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Sho Nishikawa
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Seiji Yokoi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Takanobu Taniguchi
- Department of Biochemistry, Division of Cellular Signal Transduction, Asahikawa Medical University, Asahikawa, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
34
|
Chen CY, Chen CC, Chuang WY, Leu YL, Ueng SH, Hsueh C, Yeh CT, Wang TH. Hydroxygenkwanin Inhibits Class I HDAC Expression and Synergistically Enhances the Antitumor Activity of Sorafenib in Liver Cancer Cells. Front Oncol 2020; 10:216. [PMID: 32158695 PMCID: PMC7052045 DOI: 10.3389/fonc.2020.00216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 02/07/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal histone deacetylase (HDAC) expression is closely related to cancer development and progression. Many HDAC inhibitors have been widely used in cancer treatment; however, severe side effects often limit their clinical application. In this study, we attempted to identify natural compounds with HDAC inhibitory activity and low physiological toxicity and explored their feasibility and mechanisms of action in liver cancer treatment. A yeast screening system was used to identify natural compounds with HDAC inhibitory activity. Further, western blotting was used to verify inhibitory effects on HDAC in human liver cancer cell lines. Cell functional analysis was used to explore the effects and mechanisms and the in vitro results were verified in BALB/c nude mice. We found that hydroxygenkwanin (HGK), an extract from Daphne genkwa, inhibited class I HDAC expression, and thereby induced expression of tumor suppressor p21 and promoted acetylation and activation of p53 and p65. This resulted in the inhibition of growth, migration, and invasion of liver cancer cells and promoted cell apoptosis. Animal models revealed that HGK inhibited tumor growth in a synergistic manner with sorafenib. HGK inhibited class I HDAC expression and had low physiological toxicity. It has great potential as an adjuvant for liver cancer treatment and may be used in combination with anticancer drugs like sorafenib to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Chi-Yuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Chin-Chuan Chen
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Yu Chuang
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan.,Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shir-Hwa Ueng
- Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chuen Hsueh
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Anatomic Pathology, Chang Gung Memorial Hospital, Chang Gung University School of Medicine, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology and Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Department of Hepato-Gastroenterology, Liver Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
35
|
Tilekar K, Upadhyay N, Jänsch N, Schweipert M, Mrowka P, Meyer-Almes F, Ramaa C. Discovery of 5-naphthylidene-2,4-thiazolidinedione derivatives as selective HDAC8 inhibitors and evaluation of their cytotoxic effects in leukemic cell lines. Bioorg Chem 2020; 95:103522. [DOI: 10.1016/j.bioorg.2019.103522] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/14/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023]
|
36
|
Zhu YJ, Xu Q, Shao MY, Cao XY, Wu ZR, Chen YW, Bu H, Shi YJ. Decreased expression of HDAC8 indicates poor prognosis in patients with intrahepatic cholangiocarcinoma. Hepatobiliary Pancreat Dis Int 2019; 18:464-470. [PMID: 31402267 DOI: 10.1016/j.hbpd.2019.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 07/17/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is a highly malignant primary tumor in the liver, and the rates of incidence and mortality are rapidly increasing globally. Histone deacetylase 8 (HDAC8) is a transcriptional regulator and is associated with tumorigenesis of several tumor types. This study aimed to evaluate the correlation between HDAC8 expression and clinicopathological parameters in ICC patients. METHODS ICC tissues and corresponding nonmalignant bile duct tissues were obtained from 60 patients. HDAC8 and Ki-67 expression were evaluated by immunohistochemistry staining. HDAC8 expression and the clinicopathological features and prognosis of the patients were analyzed. The mRNA level of HDAC8 in ICC was further analyzed using data from The Cancer Genome Atlas (TCGA). RESULTS The expression of HDAC8 were lower in ICC tissues (39/60, 65%) than in the corresponding nonmalignant bile duct tissues (54/60, 90%) (P = 0.001). Low HDAC8 expression in ICC was significantly associated with lymph node metastases (47.6% vs. 17.9%, P = 0.015). In addition, the positive cells rate of HDAC8 was statistically and negatively correlated with the Ki-67 index in ICC lesions (r = -0.7660, P < 0.001). Importantly, the overall survival rate and recurrence-free survival rate in ICC patients with low HDAC8 expression were lower than those with high HDAC8 expression (P = 0.008 and P = 0.011, respectively). CONCLUSIONS Decreased HDAC8 expression in ICC is related to poor prognosis, and HDAC8 may be an independent prognostic indicator of ICC patients after curative resection.
Collapse
Affiliation(s)
- Yong-Jie Zhu
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Xu
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ming-Yang Shao
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiao-Yue Cao
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhen-Ru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China
| | - Yu-Wei Chen
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hong Bu
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yu-Jun Shi
- Laboratory of Pathology, West China Hospital, Sichuan University, 37 Guoxue Road, Chengdu 610041, China; Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
37
|
Luo Z, Mao X, Cui W. Circular RNA expression and circPTPRM promotes proliferation and migration in hepatocellular carcinoma. Med Oncol 2019; 36:86. [PMID: 31494761 DOI: 10.1007/s12032-019-1311-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 08/28/2019] [Indexed: 12/25/2022]
Abstract
Circular RNAs (circRNAs) play a critical role during hepatocellular carcinoma (HCC) development. CircRNA PTPRM (circPTPRM) has not been reported to cause disease and its role in HCC is unclear. This study explored circRNA expression and the function of circPTPRM in HCC. RNA sequencing (RNA-seq) was performed on 3 randomly selected pairs of HCC tissues and their corresponding adjacent non-tumor tissues. Three differentially expressed circRNAs, circPTPRM, circSMAD2 and circPTBP3 were selected and verified by real-time quantitative reverse transcription-polymerase chain reactions in 30 pairs of tissue samples, In vitro cultured hepatoma cells, and normal liver cells. Clinical data analysis was performed to select target circRNAs. Anti-target circRNA siRNAs were transfected into hepatoma cell lines, and the biological behavior of hepatoma cells following silencing of the target circRNA were detected by cell proliferation, plate cloning, and transwell assays. There were 86 differentially expressed circRNAs from RNA-seq, of which 53 were significantly upregulated and 33 were significantly downregulated in HCC. CircPTPRM expression was significantly upregulated in HCC tissue (p = 0.023) based on the analysis of 30 paired samples. CircPTPRM expression positively correlated with HCC recurrence and metastasis (p = 0.039). CircPTPRM silencing reduced HCC cell proliferation, migration and invasion. CircRNAs were differentially expressed in HCC samples. CircPTPRM was significantly upregulated in HCC and may function during the tumorigenesis and metastasis of HCC.
Collapse
Affiliation(s)
- Zhun Luo
- Department of Infectious Diseases, The First Affiliated Hospital, China Medical University, Shenyang, China.,Department of Infectious Diseases, Yueyang Second People's Hospital, Yueyang, China
| | - Xuelan Mao
- Department of Infectious Diseases, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Wei Cui
- Department of Infectious Diseases, The First Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
38
|
Banerjee S, Adhikari N, Amin SA, Jha T. Structural exploration of tetrahydroisoquinoline derivatives as HDAC8 inhibitors through multi-QSAR modeling study. J Biomol Struct Dyn 2019; 38:1551-1564. [PMID: 31074329 DOI: 10.1080/07391102.2019.1617782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Histone deacetylase 8 (HDAC8) is one of the crucial HDACs responsible for influencing the epigenetic functions of the body. Overexpression of HDAC8 is found to be involved in numerous disease conditions such as tumorigenesis, cell proliferation, cancer, viral infections, neuronal disorders and other epigenetic diseases. Therefore, inhibition of HDAC8 is a primary method to combat these diseases. In this article, a multi-QSAR modeling study on tetrahydroisoquinoline derivatives was conducted to identify important contributions of the structural features of these compounds toward HDAC8 inhibition. All these QSAR modeling techniques were individually validated and justified the observations of each other. The results implied that the tetrahydroisoquinoline moiety may be effective as a cap group than as a linker moiety for HDAC8 inhibition. Different substitutions at the tetrahydroisoquinoline scaffold were also found to be crucial in modulating HDAC8 inhibition.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suvankar Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Nilanjan Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
- School of Pharmaceutical Technology, ADAMAS University, Kolkata, West Bengal, India
| | - Sk. Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal, India
| |
Collapse
|
39
|
Zhao J, Gray SG, Greene CM, Lawless MW. Unmasking the pathological and therapeutic potential of histone deacetylases for liver cancer. Expert Rev Gastroenterol Hepatol 2019; 13:247-256. [PMID: 30791763 DOI: 10.1080/17474124.2019.1568870] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, currently ranking as one of the highest neoplastic-related mortalities in the world. Due to the difficulty in early diagnosis and lack of effective treatment options, the 5-year survival rate of HCC remains extremely low. Histone deacetylation is one of the most important epigenetic mechanisms, regulating cellular events such as differentiation, proliferation and cell cycle. Histone deacetylases (HDACs), the chief mediators of this epigenetic mechanism, are often aberrantly expressed in various tumours including HCC. Areas covered: This review focuses on the most up-to-date findings of HDACs and their associated molecular mechanisms in HCC onset and progression. In addition, a potential network between HDACs and non-coding RNAs including microRNAs and long noncoding RNAs underlying hepatocarcinogenesis is considered. Expert opinion: Unmasking the role of HDACs and their association with HCC pathogenesis could have implications for future personalized therapeutic and diagnostic targeting.
Collapse
Affiliation(s)
- Jun Zhao
- a Experimental Medicine, UCD School of Medicine and Medical Science , Mater Misericordiae University Hospital , Dublin , Ireland
| | - Steven G Gray
- b Department of Clinical Medicine , Trinity Centre for Health Sciences, Trinity Translational Medicine Institute, St. James's Hospital & Trinity College , Dublin , Ireland
| | - Catherine M Greene
- c Clinical Microbiology , Royal College of Surgeons in Ireland, Beaumont Hospital , Dublin , Ireland
| | - Matthew W Lawless
- a Experimental Medicine, UCD School of Medicine and Medical Science , Mater Misericordiae University Hospital , Dublin , Ireland
| |
Collapse
|
40
|
Ferreira RG, Cardoso MV, de Souza Furtado KM, Espíndola KMM, Amorim RP, Monteiro MC. Epigenetic alterations caused by aflatoxin b1: a public health risk in the induction of hepatocellular carcinoma. Transl Res 2019; 204:51-71. [PMID: 30304666 DOI: 10.1016/j.trsl.2018.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/27/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
Aflatoxin B1 (AFB1) is currently the most commonly studied mycotoxin due to its great toxicity, its distribution in a wide variety of foods such as grains and cereals and its involvement in the development of + (hepatocellular carcinoma; HCC). HCC is one of the main types of liver cancer, and has become a serious public health problem, due to its high incidence mainly in Southeast Asia and Africa. Studies show that AFB1 acts in synergy with other risk factors such as hepatitis B and C virus leading to the development of HCC through genetic and epigenetic modifications. The genetic modifications begin in the liver through the biomorphic AFB1, the AFB1-exo-8.9-Epoxy active, which interacts with DNA to form adducts of AFB1-DNA. These adducts induce mutation in codon 249, mediated by a transversion of G-T in the p53 tumor suppressor gene, causing HCC. Thus, this review provides an overview of the evidence for AFB1-induced epigenetic alterations and the potential mechanisms involved in the development of HCC, focusing on a critical analysis of the importance of severe legislation in the detection of aflatoxins.
Collapse
Affiliation(s)
- Roseane Guimarães Ferreira
- Neurosciences and Cell Biology Post-Graduation Program, Biological Sciences Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil.
| | - Magda Vieira Cardoso
- Pharmaceutical Science Post-Graduation Program, Health Science Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil.
| | | | | | | | - Marta Chagas Monteiro
- Neurosciences and Cell Biology Post-Graduation Program, Pharmaceutical Science Post-Graduation Program, Health Science Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil.
| |
Collapse
|
41
|
Ruoß M, Damm G, Vosough M, Ehret L, Grom-Baumgarten C, Petkov M, Naddalin S, Ladurner R, Seehofer D, Nussler A, Sajadian S. Epigenetic Modifications of the Liver Tumor Cell Line HepG2 Increase Their Drug Metabolic Capacity. Int J Mol Sci 2019; 20:347. [PMID: 30654452 PMCID: PMC6358789 DOI: 10.3390/ijms20020347] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 01/31/2023] Open
Abstract
Although human liver tumor cells have reduced metabolic functions as compared to primary human hepatocytes (PHH) they are widely used for pre-screening tests of drug metabolism and toxicity. The aim of the present study was to modify liver cancer cell lines in order to improve their drug-metabolizing activities towards PHH. It is well-known that epigenetics is strongly modified in tumor cells and that epigenetic regulators influence the expression and function of Cytochrome P450 (CYP) enzymes through altering crucial transcription factors responsible for drug-metabolizing enzymes. Therefore, we screened the epigenetic status of four different liver cancer cell lines (Huh7, HLE, HepG2 and AKN-1) which were reported to have metabolizing drug activities. Our results showed that HepG2 cells demonstrated the highest similarity compared to PHH. Thus, we modified the epigenetic status of HepG2 cells towards 'normal' liver cells by 5-Azacytidine (5-AZA) and Vitamin C exposure. Then, mRNA expression of Epithelial-mesenchymal transition (EMT) marker SNAIL and CYP enzymes were measured by PCR and determinate specific drug metabolites, associated with CYP enzymes by LC/MS. Our results demonstrated an epigenetic shift in HepG2 cells towards PHH after exposure to 5-AZA and Vitamin C which resulted in a higher expression and activity of specific drug metabolizing CYP enzymes. Finally, we observed that 5-AZA and Vitamin C led to an increased expression of Hepatocyte nuclear factor 4α (HNF4α) and E-Cadherin and a significant down regulation of Snail1 (SNAIL), the key transcriptional repressor of E-Cadherin. Our study shows, that certain phase I genes and their enzyme activities are increased by epigenetic modification in HepG2 cells with a concomitant reduction of EMT marker gene SNAIL. The enhancing of liver specific functions in hepatoma cells using epigenetic modifiers opens new opportunities for the usage of cell lines as a potential liver in vitro model for drug testing and development.
Collapse
Affiliation(s)
- Marc Ruoß
- Siegfried Weller Institute, BG Trauma Clinic, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany.
| | - Massoud Vosough
- Royan Institute for Stem Cell Biology and Technology, Department of Stem Cells and Developmental Biology, Tehran 16635-148, Iran.
| | - Lisa Ehret
- Siegfried Weller Institute, BG Trauma Clinic, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| | - Carl Grom-Baumgarten
- Siegfried Weller Institute, BG Trauma Clinic, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| | - Martin Petkov
- Siegfried Weller Institute, BG Trauma Clinic, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| | - Silvio Naddalin
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076 Tübingen, Germany.
| | - Ruth Ladurner
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076 Tübingen, Germany.
| | - Daniel Seehofer
- Department of Hepatobiliary Surgery and Visceral Transplantation, University of Leipzig, 04103 Leipzig, Germany.
| | - Andreas Nussler
- Siegfried Weller Institute, BG Trauma Clinic, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| | - Sahar Sajadian
- Siegfried Weller Institute, BG Trauma Clinic, Eberhard Karls University Tübingen, 72076 Tübingen, Germany.
| |
Collapse
|
42
|
Abstract
Histone deacetylase 8 (HDAC8) is one of the attractive therapeutic anticancer targets. HDAC8 has been overexpressed in a variety of human cancers. Therefore, HDAC8 inhibitors offer beneficial effects in the treatment of solid and hematological tumors. Different HDAC inhibitors entered into different phases of clinical studies. However, selectivity towards specific HDAC8 enzyme is still demanding. In this patent review, a number of patented selective and nonselective HDAC8 inhibitors along with their implication as anticancer agents have been discussed in details. Molecules should possess modified fish-like structural arrangement to impart potency and selectivity towards HDAC8. This comprehensive patent analysis will surely provide newer aspects of designing selective HDAC8 inhibitors targeted to anticancer therapy in future.
Collapse
|
43
|
Bottai D, Spreafico M, Pistocchi A, Fazio G, Adami R, Grazioli P, Canu A, Bragato C, Rigamonti S, Parodi C, Cazzaniga G, Biondi A, Cotelli F, Selicorni A, Massa V. Modeling Cornelia de Lange syndrome in vitro and in vivo reveals a role for cohesin complex in neuronal survival and differentiation. Hum Mol Genet 2019; 28:64-73. [PMID: 30239720 DOI: 10.1093/hmg/ddy329] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/12/2018] [Indexed: 02/07/2023] Open
Abstract
Cornelia de Lange syndrome (CdLS), which is reported to affect ∼1 in 10 000 to 30 000 newborns, is a multisystem organ developmental disorder with relatively mild to severe effects. Among others, intellectual disability represents an important feature of this condition. CdLS can result from mutations in at least five genes: nipped-B-like protein, structural maintenance of chromosomes 1A, structural maintenance of chromosomes 3, RAD21 cohesin complex component and histone deacetylase 8 (HDAC8). It is believed that mutations in these genes cause CdLS by impairing the function of the cohesin complex (to which all the aforementioned genes contribute to the structure or function), disrupting gene regulation during critical stages of early development. Since intellectual disorder might result from alterations in neural development, in this work, we studied the role of Hdac8 gene in mouse neural stem cells (NSCs) and in vertebrate (Danio rerio) brain development by knockdown and chemical inhibition experiments. Underlying features of Hdac8 deficiency is an increased cell death in the developing neural tissues, either in mouse NSCs or in zebrafish embryos.
Collapse
Affiliation(s)
- Daniele Bottai
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Marco Spreafico
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università degli Studi di Milano-Bicocca, Fondazione MBBM/Ospedale S. Gerardo, Monza, Italy
| | - Raffaella Adami
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Paolo Grazioli
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Adriana Canu
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milan, Italy
| | - Cinzia Bragato
- Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
- PhD program in Neuroscience, University of Milano-Bicocca, Monza, Italy
| | - Silvia Rigamonti
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università degli Studi di Milano-Bicocca, Fondazione MBBM/Ospedale S. Gerardo, Monza, Italy
| | - Chiara Parodi
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università degli Studi di Milano-Bicocca, Fondazione MBBM/Ospedale S. Gerardo, Monza, Italy
| | - Andrea Biondi
- Clinica Pediatrica, Università degli Studi di Milano-Bicocca, Fondazione MBBM/Ospedale S. Gerardo, Monza, Italy
| | - Franco Cotelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milan, Italy
| | | | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
44
|
Histone deacetylase 8 (HDAC8) and its inhibitors with selectivity to other isoforms: An overview. Eur J Med Chem 2018; 164:214-240. [PMID: 30594678 DOI: 10.1016/j.ejmech.2018.12.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 12/04/2018] [Accepted: 12/16/2018] [Indexed: 01/08/2023]
Abstract
The histone deacetylases (HDACs) enzymes provided crucial role in transcriptional regulation of cells through deacetylation of nuclear histone proteins. Discoveries related to the HDAC8 enzyme activity signified the importance of HDAC8 isoform in cell proliferation, tumorigenesis, cancer, neuronal disorders, parasitic/viral infections and other epigenetic regulations. The pan-HDAC inhibitors can confront these conditions but have chances to affect epigenetic functions of other HDAC isoforms. Designing of selective HDAC8 inhibitors is a key feature to combat the pathophysiological and diseased conditions involving the HDAC8 activity. This review is concerned about the structural and positional aspects of HDAC8 in the HDAC family. It also covers the contributions of HDAC8 in the pathophysiological conditions, a preliminary discussion about the recent scenario of HDAC8 inhibitors. This review might help to deliver the structural, functional and computational information in order to identify and design potent and selective HDAC8 inhibitors for target specific treatment of diseases involving HDAC8 enzymatic activity.
Collapse
|
45
|
Tsilimigras DI, Ntanasis-Stathopoulos I, Moris D, Spartalis E, Pawlik TM. Histone deacetylase inhibitors in hepatocellular carcinoma: A therapeutic perspective. Surg Oncol 2018; 27:611-618. [PMID: 30449480 DOI: 10.1016/j.suronc.2018.07.015] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 07/06/2018] [Accepted: 07/29/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major contributor to the global cancer burden. Given the current limited options to treat advanced HCC, understanding the molecular basis of HCC carcinogenesis and pinpointing druggable targets will be important to identify future HCC treatments. Epigenetic modification by inhibiting histone deacetylases (HDAC) is an emerging approach with promising results in cancer treatment. In the preclinical setting, HDAC inhibitors such as valproic acid sodium, panobinostat, vorinostat, trichostatin A, sodium butyrate, belinostat and romidepsin have demonstrated antitumor efficacy via activation of classic and alternative cell death molecular cascades. Combination regimens with the tyrosine kinase inhibitor sorafenib, poly(ADP-ribose) polymerases, proteasome and mammalian target of rapamycin inhibitors have shown promise. Phase I/II clinical studies with belinostat monotherapy and the combination of resminostat with sorafenib have suggested response and survival benefits. The safety profile was favorable with manageable adverse events and a low incidence of grade 3/4 toxicity. We herein review the role and potential therapeutic impact of epigenetic regulation through histone deacetylase inhibitors (HDACi) in the treatment of HCC.
Collapse
Affiliation(s)
- Diamantis I Tsilimigras
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Laboratory of Experimental Surgery and Surgical Research, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Demetrios Moris
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Eleftherios Spartalis
- Laboratory of Experimental Surgery and Surgical Research, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Cancer Hospital and Solove Research Institute, Columbus, OH, USA.
| |
Collapse
|
46
|
Xiao T, Fu Y, Zhu W, Xu R, Xu L, Zhang P, Du Y, Cheng J, Jiang H. HDAC8, A Potential Therapeutic Target, Regulates Proliferation and Differentiation of Bone Marrow Stromal Cells in Fibrous Dysplasia. Stem Cells Transl Med 2018; 8:148-161. [PMID: 30426726 PMCID: PMC6344909 DOI: 10.1002/sctm.18-0057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 08/06/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
Fibrous dysplasia (FD) is a disease of postnatal skeletal stem cells caused by activating mutations of guanine nucleotide-binding protein alpha-stimulating activity polypeptide (GNAS). FD is characterized by high proliferation and osteogenesis disorder of bone marrow stromal cells (BMSCs), resulting in bone pain, deformities, and fractures. The cAMP-CREB pathway, which is activated by GNAS mutations, is known to be closely associated with the occurrence of FD. However, so far there is no available targeted therapeutic strategy for FD, as a critical issue that remains largely unknown is how this pathway is involved in FD. Our previous study revealed that histone deacetylase 8 (HDAC8) inhibited the osteogenic differentiation of BMSCs via epigenetic regulation. Here, compared with normal BMSCs, FD BMSCs exhibited significantly high proliferation and weak osteogenic capacity in response to HDAC8 upregulation and tumor protein 53 (TP53) downregulation. Moreover, inhibition of cAMP reduced HDAC8 expression, increased TP53 expression and resulted in the improvement of FD phenotype. Importantly, HDAC8 inhibition prevented cAMP-induced cell phenotype and promoted osteogenesis in nude mice that were implanted with FD BMSCs. Mechanistically, HDAC8 was identified as a transcriptional target gene of CREB1 and its transcription was directly activated by CREB1 in FD BMSCs. In summary, our study reveals that HDAC8 associates with FD phenotype and demonstrates the mechanisms regulated by cAMP-CREB1-HDAC8 pathway. These results provide insights into the molecular regulation of FD pathogenesis, and offer novel clues that small molecule inhibitors targeting HDAC8 are promising clinical treatment for FD. Stem Cells Translational Medicine 2019;8:148&14.
Collapse
Affiliation(s)
- Tao Xiao
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yu Fu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Weiwen Zhu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China
| | - Rongyao Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ling Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China
| | - Ping Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Yifei Du
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China
| | - Hongbing Jiang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People's Republic of China.,Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
47
|
Ferrari L, Bragato C, Brioschi L, Spreafico M, Esposito S, Pezzotta A, Pizzetti F, Moreno‐Fortuny A, Bellipanni G, Giordano A, Riva P, Frabetti F, Viani P, Cossu G, Mora M, Marozzi A, Pistocchi A. HDAC8 regulates canonical Wnt pathway to promote differentiation in skeletal muscles. J Cell Physiol 2018; 234:6067-6076. [DOI: 10.1002/jcp.27341] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Luca Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Cinzia Bragato
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico C. Besta Milano Italy
- PhD Program in Neuroscience, University of Milano‐Bicocca Milano Italy
| | - Loredana Brioschi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Marco Spreafico
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Simona Esposito
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Alex Pezzotta
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Fabrizio Pizzetti
- Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Artal Moreno‐Fortuny
- Division of Cell Matrix Biology and Regenerative Medicine Faculty of Biology, Medicine and Health, University of Manchester Manchester UK
- Developmental Genetics, Department of Biomedicine University of Basel Basel Switzerland
| | - Gianfranco Bellipanni
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University Philadelphia
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University Philadelphia
- Department of Medicine Surgery & Neuroscience, University of Siena Siena Italy
| | - Paola Riva
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Flavia Frabetti
- Department of Experimental, Diagnostic and Specialty Medicine University of Bologna Bologna Italy
| | - Paola Viani
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Giulio Cossu
- Division of Cell Matrix Biology and Regenerative Medicine Faculty of Biology, Medicine and Health, University of Manchester Manchester UK
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico C. Besta Milano Italy
| | - Anna Marozzi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale Università degli Studi di Milano Milano Italy
| |
Collapse
|
48
|
Kobayashi M, Mikami D, Uwada J, Yazawa T, Kamiyama K, Kimura H, Taniguchi T, Iwano M. A short-chain fatty acid, propionate, enhances the cytotoxic effect of cisplatin by modulating GPR41 signaling pathways in HepG2 cells. Oncotarget 2018; 9:31342-31354. [PMID: 30140374 PMCID: PMC6101142 DOI: 10.18632/oncotarget.25809] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023] Open
Abstract
Short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate are generated by microbial fermentation of indigestible fiber by gut flora. SCFAs are ligands of two orphan G protein-coupled receptors, GPR41 and GPR43, that modulate cell proliferation and induce apoptosis. However, it is unclear if SCFAs enhance the effects of chemotherapy in a GPR41- or GPR43-dependent manner. The aim of this study was to investigate whether SCFAs, and particularly propionate, activate GPR41 or GPR43, and thereby enhance the antitumor effects of cisplatin in HepG2 human hepatocellular carcinoma (HCC) cells. The inhibitory effects of propionate and cisplatin on proliferation of HCC cells were determined by MTS assay. Changes in apoptosis rate were analyzed by flow cytometry. The effects of combined propionate and cisplatin on these properties in HCC cells were significantly higher than those of cisplatin alone. With combined treatment, the levels of cleaved caspase-3, active caspase-3 forms, and acetylated histone H3 were enhanced in a GPR41-dependent manner; expression of histone deacetylases (HDAC) 3, 4, 5, 6, 8 proteins was significantly reduced; and induction of TNF-α expression was significantly enhanced. These results suggest that propionate and cisplatin synergistically and significantly induce apoptosis of HepG2 cells by increasing expression of autocrine TNF-α via reduction of HDACs through GPR41 signaling. From clinical and translational perspectives, our data suggest that a combination of propionate with cisplatin may have better therapeutic effects on HCC compared with conventional treatment, and that a selective GPR41 agonist may be a candidate as an adjuvant therapeutic agent for HCC.
Collapse
Affiliation(s)
- Mamiko Kobayashi
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Daisuke Mikami
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Junsuke Uwada
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Takashi Yazawa
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Kazuko Kamiyama
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Hideki Kimura
- Department of Clinical Laboratory, University of Fukui Hospital, Fukui, Japan
| | - Takanobu Taniguchi
- Division of Cellular Signal Transduction, Department of Biochemistry, Asahikawa Medical University, Asahikawa, Japan
| | - Masayuki Iwano
- Department of Nephrology, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| |
Collapse
|
49
|
Amin SA, Adhikari N, Jha T. Structure-activity relationships of HDAC8 inhibitors: Non-hydroxamates as anticancer agents. Pharmacol Res 2018. [DOI: 10.1016/j.phrs.2018.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
50
|
He P, Li K, Li SB, Hu TT, Guan M, Sun FY, Liu WW. Upregulation of AKAP12 with HDAC3 depletion suppresses the progression and migration of colorectal cancer. Int J Oncol 2018; 52:1305-1316. [PMID: 29484387 DOI: 10.3892/ijo.2018.4284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 02/16/2018] [Indexed: 11/05/2022] Open
Abstract
A-kinase anchor protein 12 (AKAP12; also known as Gravin) functions as a tumor suppressor in several human primary cancers. However, the potential correlation between histone deacetylase 3 (HDAC3) and AKAP12 and the underlying mechanisms remain unclear. Thus, in this study, in an aim to shed light into this matter, the expression levels of HDAC3 and AKAP12 in 96 colorectal cancer (CRC) and adjacent non-cancerous tissues, as well as in SW480 cells were examined by immunohistochemical, RT-qPCR and western blot analyses. The effects of HDAC3 and AKAP12 on the proliferation, apoptosis and metastasis of CRC cells were examined by cell counting kit-8 (CCK-8) assay, colony formation assays, flow cytometry, cell cycle analysis and Transwell assays. The results revealed that the reduction or loss of AKAP12 expression was detected in 69 (71.8%) of the 96 tissue specimens, whereas HDAC3 was upregulated in 50 (52.1%) of the 96 tumor tissue specimens. AKAP12 expression was markedly increased upon treatment with the HDAC3 inhibitors, trichostatin A (TSA) and RGFP966, at both the mRNA and protein level. Mechanistically, the direct binding of HDAC3 within the intron-1 region of AKAP12 was identified to be indispensable for the inhibition of AKAP12 expression. Moreover, the proliferation, colony-forming ability, cell cycle progression and the migration of the CRC cells were found to be promoted in response to AKAP12 silencing or AKAP12/HDAC3 co-silencing, whereas transfection with si-HDAC3 yielded opposite effects. Apart from the elevated expression of the anti-apoptotic protein, Bcl-2, after AKAP12 knockdown, the increased activity of PI3K/AKT signaling was found to be indispensable for AKAP12-mediated colony formation and migration. On the whole, these findings indicate that AKAP12 may be a potential prognostic predictor and therapeutic target for the treatment of CRC in combination with HDAC3.
Collapse
Affiliation(s)
- Ping He
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| | - Ke Li
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| | - Shi-Bao Li
- Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical College, Xuzhou, Jiangsu 221100, P.R. China
| | - Ting-Ting Hu
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Ming Guan
- Department of Laboratory Medicine, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200040, P.R. China
| | - Fen-Yong Sun
- Department of Laboratory Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| | - Wei-Wei Liu
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai 200070, P.R. China
| |
Collapse
|