1
|
Li Z, Zhu JF, Ouyang H. Progress on traditional Chinese medicine in improving hepatic fibrosis through inhibiting oxidative stress. World J Hepatol 2023; 15:1091-1108. [PMID: 37970620 PMCID: PMC10642434 DOI: 10.4254/wjh.v15.i10.1091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/26/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023] Open
Abstract
Hepatic fibrosis is a common pathological process that occurs in the development of various chronic liver diseases into cirrhosis and liver cancer, characterized by excessive deposition of the extracellular matrix. In the past, hepatic fibrosis was thought to be a static and irreversible pathological process. In recent years, with the rapid development of molecular biology and the continuous in-depth study of the liver at the microscopic level, more and more evidence has shown that hepatic fibrosis is a dynamic and reversible process. Therefore, it is particularly important to find an effective, simple, and inexpensive method for its prevention and treatment. Traditional Chinese medicine (TCM) occupies an important position in the treatment of hepatic fibrosis due to its advantages of low adverse reactions, low cost, and multi-target effectiveness. A large number of research results have shown that TCM monomers, single herbal extracts, and TCM formulas play important roles in the prevention and treatment of hepatic fibrosis. Oxidative stress (OS) is one of the key factors in the occurrence and development of hepatic fibrosis. Therefore, this article reviews the progress in the understanding of the mechanisms of TCM monomers, single herbal extracts, and TCM formulas in preventing and treating hepatic fibrosis by inhibiting OS in recent years, in order to provide a reference and basis for drug therapy of hepatic fibrosis.
Collapse
Affiliation(s)
- Zhen Li
- Department of Liver, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jun-Feng Zhu
- Department of Liver, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Department of Liver, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hao Ouyang
- Department of Liver, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
2
|
Mik P, Barannikava K, Surkova P. Biased Quantification of Rat Liver Fibrosis-Meta-Analysis with Practical Recommendations and Clinical Implications. J Clin Med 2023; 12:5072. [PMID: 37568474 PMCID: PMC10420125 DOI: 10.3390/jcm12155072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
For liver fibrosis assessment, the liver biopsy is usually stained with Masson's trichrome (MT) or picrosirius red (PSR) to quantify liver connective tissue (LCT) for fibrosis scoring. However, several concerns of such semiquantitative assessments have been raised, and when searching for data on the amount of LCT in healthy rats, the results vastly differ. Regarding the ongoing reproducibility crisis in science, it is necessary to inspect the results and methods, and to design an unbiased and reproducible method of LCT assessment. We searched the Medline database using search terms related to liver fibrosis, LCT and collagen, rat strains, and staining methods. Our search identified 74 eligible rat groups in 57 studies. We found up to 170-fold differences in the amount of LCT among healthy Wistar and Sprague-Dawley rats, with significant differences even within individual studies. Biased sampling and quantification probably caused the observed differences. In addition, we also found incorrect handling of liver fibrosis scoring. Assessment of LCT using stereological sampling methods (such as systematic uniform sampling) would provide us with unbiased data. Such data could eventually be used not only for the objective assessment of liver fibrosis but also for validation of noninvasive methods of the assessment of early stages of liver fibrosis.
Collapse
Affiliation(s)
- Patrik Mik
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
- Biomedical Center and Department of Histology, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Katsiaryna Barannikava
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Polina Surkova
- Department of Anatomy, Faculty of Medicine in Pilsen, Charles University, alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
3
|
Wang Y, Shi K, Tu J, Ke C, Chen N, Wang B, Liu Y, Zhou Z. Atractylenolide III Ameliorates Bile Duct Ligation-Induced Liver Fibrosis by Inhibiting the PI3K/AKT Pathway and Regulating Glutamine Metabolism. Molecules 2023; 28:5504. [PMID: 37513376 PMCID: PMC10383814 DOI: 10.3390/molecules28145504] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Liver fibrosis is one of the leading causes of hepatic sclerosis and hepatocellular carcinoma worldwide. However, the complex pathophysiological mechanisms of liver fibrosis are unknown, and no specific drugs are available to treat liver fibrosis. Atractylenolide III (ATL III) is a natural compound isolated from the plant Atractylodes lancea (Thunb.) DC. that possesses antioxidant properties and the ability to inhibit inflammatory responses. In this study, cholestatic hepatic fibrosis was induced in mice using a bile duct ligation (BDL) model and treated with 10 mg/kg and 50 mg/kg of ATL III via gavage for 14 days. ATL III significantly reduced the liver index, lowered serum ALT and AST levels, and reduced liver injury in bile-duct-ligated mice. In addition, ATL III significantly attenuated histopathological changes and reduced collagen deposition. ATL III reduced the expression of fibrosis-related genes α-smooth muscle actin (α-SMA), Collagen I (col1a1), Collagen IV (col4a2), and fibrosis-related proteins α-SMA and col1a1 in liver tissue. Using RNA sequencing (RNA-seq) to screen molecular targets and pathways, ATL III was found to affect the PI3K/AKT singling pathway by inhibiting the phosphorylation of PI3K and AKT, thereby ameliorating BDL-induced liver fibrosis. Gas chromatography-mass spectrometry (GC-MS) was used to evaluate the effect of ATL III on liver metabolites in BDL mice. ATL III further affected glutamine metabolism by down-regulating the activity of glutamine (GLS1) and glutamine metabolism. ATL III further affected glutamine metabolism by down-regulating the activity of glutaminase (GLS1), as well as glutamine metabolism. Therefore, we conclude that ATL III attenuates liver fibrosis by inhibiting the PI3K/AKT pathway and glutamine metabolism, suggesting that ATL III is a potential drug candidate for treating liver fibrosis.
Collapse
Affiliation(s)
- Yan Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (Y.W.); (K.S.); (J.T.); (C.K.); (N.C.)
| | - Kun Shi
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (Y.W.); (K.S.); (J.T.); (C.K.); (N.C.)
| | - Jiyuan Tu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (Y.W.); (K.S.); (J.T.); (C.K.); (N.C.)
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Chang Ke
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (Y.W.); (K.S.); (J.T.); (C.K.); (N.C.)
| | - Niping Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (Y.W.); (K.S.); (J.T.); (C.K.); (N.C.)
| | - Bo Wang
- Hubei Institute for Drug Control, NMPA Key Laboratory of Quality Control of Chinese Medicine, Hubei Engineering Research Center for Drug Quality Control, Wuhan 430075, China;
| | - Yanju Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (Y.W.); (K.S.); (J.T.); (C.K.); (N.C.)
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| | - Zhongshi Zhou
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; (Y.W.); (K.S.); (J.T.); (C.K.); (N.C.)
- Center for Hubei TCM Processing Technology Engineering, Wuhan 430065, China
| |
Collapse
|
4
|
Meng YX, Zhao R, Huo LJ. Interleukin-22 alleviates alcohol-associated hepatic fibrosis, inhibits autophagy, and suppresses the PI3K/AKT/mTOR pathway in mice. Alcohol Clin Exp Res 2023; 47:448-458. [PMID: 36799106 DOI: 10.1111/acer.15021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Alcohol-associated hepatic fibrosis is a widespread liver disease with no effective treatment. Recent studies have indicated that interleukin-22 (IL-22) can ameliorate alcohol-associated liver disease. However, the mechanism underlying the role of IL-22 in alcohol-associated hepatic fibrosis remains unclear. Therefore, we investigated the effect of IL-22 in a mouse model of alcohol-associated hepatic fibrosis and its underlying mechanisms. METHODS Alcohol-associated hepatic fibrosis was induced by feeding male C57BL/6J mice with a Lieber-DeCarli liquid diet containing 4% ethyl alcohol for 8 weeks and injecting them with 5% tetrachloromethane (CCl4 ) intraperitoneally for the last 4 weeks. During the last 4 weeks, IL-22 was also administered. We investigated the role of IL-22 in autophagy and the PI3K/AKT/mTOR signaling pathway using a 3-methyladenine intraperitoneal injection in the mice treated with IL-22. The effects of IL-22 on alcohol-associated hepatic fibrosis, autophagy-related gene expression, and PI3K/AKT/mTOR activity were assessed using histopathology, biochemical analysis, transmission electron microscopy, quantitative real-time PCR, immunohistochemistry, and western blotting. RESULTS Mice treated with ethanol and CCl4 displayed distinct liver injuries, including hepatocyte necrosis, inflammatory cell infiltration, and hepatic fibrosis, which were substantially attenuated by IL-22 treatment. In addition, we found that IL-22 regulated the expression of autophagy-related genes and inhibited the PI3K/AKT/mTOR pathway, as evidenced by the reduction in p-PI3K, p-AKT, and p-mTOR expression after IL-22 treatment. CONCLUSIONS IL-22 exerts a marked protective effect against alcohol-associated hepatic fibrosis. Its effect may be partly related to the alteration of autophagy-related gene expression and inhibition of the PI3K/AKT/mTOR pathway in the liver.
Collapse
Affiliation(s)
- Yu-Xi Meng
- Shanxi Medical University, Taiyuan, China.,Department of Gastroenterology, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Rui Zhao
- Department of Gastroenterology, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, China
| | - Li-Juan Huo
- Department of Gastroenterology, The First Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Zhang B, Xu D. Wogonoside preserves against ischemia/reperfusion-induced myocardial injury by suppression of apoptosis, inflammation, and fibrosis via modulating Nrf2/HO-1 pathway. Immunopharmacol Immunotoxicol 2022; 44:877-885. [PMID: 35708282 DOI: 10.1080/08923973.2022.2090955] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Myocardial ischemia/reperfusion (I/R) injury occurs after restoring blood supply, which brings about extra damage to heart tissue. Thus, exploring protection measures and underlying mechanisms appear to be particularly important. In this study, we investigated the cardioprotection of wogonoside against I/R injury in mice and further uncovered its mechanism. METHODS Mice model of myocardial I/R injury was established by left anterior descending coronary artery (LAD). Before modeling, mice were administered the wogonoside (10, 20, and 40 mg/kg) for 7 d. To evaluate the effect of wogonoside through nuclear factor E2-associated factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway, sh-Nrf2 was transfected into wogonoside-treated I/R mice. Subsequently, echocardiography detection, HE staining, western blotting, ELISA, TUNEL assay, and MASSON assay were utilized to evaluate the degree of myocardial injury. RESULTS In I/R group, mice had severe myocardial injury, however, pretreatment of wogonoside at doses of 20 and 40 mg/kg ameliorated the cardiac function, as evidenced by improving hemodynamic parameters. Besides, wogonoside could relieved the abnormality of cardiomyocytes structure, inflammatory reaction, apoptosis, and myocardial fibrosis. Importantly, wogonoside activated the Nrf2/HO-1 pathway, as demonstrated by increasing Nrf2 expression in nucleus and its downstream genes including HO-1 and NADPH quinone oxidoreductase-1 (NQO1). However, effects of wogonoside on cardioprotection were abolished by sh-Nrf2. CONCLUSIONS Wogonoside exerted the protective role against I/R-induced myocardial injury by suppression of apoptosis, inflammation, and fibrosis via activating Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Bingshan Zhang
- Department of Geriatrics, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, PR China
| | - Di Xu
- Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, PR China
| |
Collapse
|
6
|
Li WQ, Liu WH, Qian D, Liu J, Zhou SQ, Zhang L, Peng W, Su L, Zhang H. Traditional Chinese medicine: An important source for discovering candidate agents against hepatic fibrosis. Front Pharmacol 2022; 13:962525. [PMID: 36081936 PMCID: PMC9445813 DOI: 10.3389/fphar.2022.962525] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/28/2022] [Indexed: 12/24/2022] Open
Abstract
Hepatic fibrosis (HF) refers to the pathophysiological process of connective tissue dysplasia in the liver caused by various pathogenic factors. Nowadays, HF is becoming a severe threat to the health of human being. However, the drugs available for treating HF are limited. Currently, increasing natural agents derived from traditional Chinese medicines (TCMs) have been found to be beneficial for HF. A systemic literature search was conducted from PubMed, GeenMedical, Sci-Hub, CNKI, Google Scholar and Baidu Scholar, with the keywords of "traditional Chinese medicine," "herbal medicine," "natural agents," "liver diseases," and "hepatic fibrosis." So far, more than 76 natural monomers have been isolated and identified from the TCMs with inhibitory effect on HF, including alkaloids, flavones, quinones, terpenoids, saponins, phenylpropanoids, and polysaccharides, etc. The anti-hepatic fibrosis effects of these compounds include hepatoprotection, inhibition of hepatic stellate cells (HSC) activation, regulation of extracellular matrix (ECM) synthesis & secretion, regulation of autophagy, and antioxidant & anti-inflammation, etc. Natural compounds and extracts from TCMs are promising agents for the prevention and treatment of HF, and this review would be of great significance to development of novel drugs for treating HF.
Collapse
Affiliation(s)
- Wen-Qing Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wen-Hao Liu
- Department of Pharmacy, Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Die Qian
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shi-Qiong Zhou
- Hospital of Nursing, The Second Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Lei Zhang
- Department of Vascular Surgery, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Su
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Hong Zhang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Liu G, Wei C, Yuan S, Zhang Z, Li J, Zhang L, Wang G, Fang L. Wogonoside attenuates liver fibrosis by triggering hepatic stellate cell ferroptosis through SOCS1/P53/SLC7A11 pathway. Phytother Res 2022; 36:4230-4243. [PMID: 35817562 DOI: 10.1002/ptr.7558] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/30/2022] [Accepted: 06/20/2022] [Indexed: 11/06/2022]
Abstract
Wogonoside (WG) is a flavonoid chemical component extracted from Scutellaria baicalensis, which exerts therapeutic effects on liver diseases. Ferroptosis, a novel form of programmed cell death, regulates diverse physiological/pathological processes. In this study, we attempted to investigate a novel mechanism by which WG mitigates liver fibrosis by inducing ferroptosis in hepatic stellate cells (HSCs). A CCl4 -induced mouse liver fibrosis model and a rat HSC line were employed for in vivo and in vitro experiments, both treated with WG. Firstly, the levels of the fibrotic markers α-smooth muscle actin (α-SMA) and α1(I)collagen (COL1α1) were effectively decreased by WG in CCl4 -induced mice and HSC-T6 cells. Additionally, mitochondrial condensation and mitochondrial ridge breakage were observed in WG-treated HSC-T6 cells. Furthermore, ferroptotic events including depletion of SLC7A11, GPX4 and GSH, and accumulation of iron, ROS and MDA were discovered in WG-treated HSC-T6 cells. Intriguingly, these ferroptotic events did not appear in hepatocytes or macrophages. WG-elicited HSC ferroptosis and ECM reduction were dramatically abrogated by ferrostatin-1 (Fer-1), a ferroptosis inhibitor. Importantly, our results confirm that SOCS1/P53/SLC7A11 is a signaling pathway which promotes WG attenuation of liver fibrosis. On the contrary, WG mitigated liver fibrosis and inducted HSC-T6 cell ferroptosis were hindered by SOCS1 siRNA and pifithrin-α (PFT-α). These findings demonstrate that SOCS1/P53/SLC7A11-mediated HSC ferroptosis is associated with WG alleviating liver fibrosis, which provides a new clue for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Guofang Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Can Wei
- Department of Urology, The Second People's Hospital of Hefei, Hefei, China
| | - Siyu Yuan
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhe Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jiahao Li
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Lijun Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ling Fang
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
8
|
Shi Q, Wang Q, Liu L, Chen J, Wang B, Bellusci S, Chen C, Dong N. FGF10 protects against particulate matter (PM)-induced lung injury via regulation of endoplasmic reticulum stress. Int Immunopharmacol 2022; 105:108552. [PMID: 35114441 DOI: 10.1016/j.intimp.2022.108552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/08/2022] [Accepted: 01/16/2022] [Indexed: 11/05/2022]
Abstract
Exposure of the lungs to particulate matter (PM) leads to the development of respiratory disease and involves mechanisms such as oxydative stress, mitochondrial dysfunction and endoplasmic reticulum (ER) stress. However, there are no effective therapies to treat PM-induced lung diseases. Fibroblast growth factor 10 (FGF10) is a multifunctional growth factor mediating mesenchymal-to-epithelial signaling and displaying a significant therapeutic potential following injury. The present research aims to investigate the regulatory mechanism of FGF10 on ER stress in PM-induced lung injury. PM-induced lung injury leads to peribronchial wall thickening and marked infiltration of inflammatory cells which is associated with increased secretion of inflammatory cytokines. The results show that FGF10 treatment attenuates PM-induced lung injury in vivo and reversed ER stress protein GRP78 and CHOP levels. Moreover, comparison of human bronchial epithelial cells cultured with PM and FGF10 vs PM alone shows sustained cell proliferation and restrained secretion of inflammatory cytokines supporting FGF10's protective role. Significantly, both ERK1/2 and PI3K/AKT inhibitors largely abolished the impact of FGF10 on PM-induced ER stress. Taken together, both in vivo and in vitro experiments showed that FGF10, via the activation of ERK1/2 and PI3K/AKT signaling, protects against PM-induced lung injury through the regulation of ER stress. Therefore, FGF10 represents a potential therapy for PM-induced lung injury.
Collapse
Affiliation(s)
- Qiangqiang Shi
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Qiang Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Li Liu
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Junjie Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Beibei Wang
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Saverio Bellusci
- Cardio-Pulmonary Institute (CPI) and Department of Pulmonary and Critical Care Medicine and Infectious Diseases, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus-Liebig University Giessen, 35392, Giessen, Germany.
| | - Chengshui Chen
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| | - Nian Dong
- Key Laboratory of Interventional Pulmonology of Zhejiang Province, Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
| |
Collapse
|
9
|
Zhang Y, Shi G, Luo Z, Wang J, Wu S, Zhang X, Zhao Y. Activity Components from Gynostemma pentaphyllum for Preventing Hepatic Fibrosis and of Its Molecular Targets by Network Pharmacology Approach. Molecules 2021; 26:molecules26103006. [PMID: 34070150 PMCID: PMC8158484 DOI: 10.3390/molecules26103006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/10/2021] [Indexed: 01/14/2023] Open
Abstract
Hepatic fibrosis would develop into cirrhosis or cancer without treating. Hence, it is necessary to study the mechanism and prevention methods for hepatic fibrosis. Gynostemma pentaphyllum is a traditional medicinal material with a high medicinal and health value. In this study, nineteen compounds obtained from G. pentaphyllum were qualitative and quantitative by HPLC-FT-ICR MS and HPLC-UV, respectively. Among them, the total content of 19 gypenosides accurately quantified reaches 72.21 mg/g and their anti-proliferation against t-HSC/Cl-6 cells indicated compound 19 performed better activity (IC50: 28.1 ± 2.0 μM) than the other compounds. Further network pharmacology study demonstrated that compound 19 mainly plays an anti-fibrosis role by regulating the EGFR signaling pathway, and the PI3K-Akt signaling pathway. Overall, the verification result indicated that compound 19 appeared to be nontoxic to LO2, was able to modulate the PI3K/Akt signal, led to subG1 cells cycle arrest and the activation of mitochondrial-mediated apoptosis of t-HSC/Cl-6 cells for anti-hepatic fibrosis.
Collapse
Affiliation(s)
- Yumeng Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.Z.); (G.S.); (Z.L.); (J.W.); (S.W.)
| | - Guohui Shi
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.Z.); (G.S.); (Z.L.); (J.W.); (S.W.)
| | - Zhonghua Luo
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.Z.); (G.S.); (Z.L.); (J.W.); (S.W.)
| | - Jiewen Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.Z.); (G.S.); (Z.L.); (J.W.); (S.W.)
| | - Shao Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.Z.); (G.S.); (Z.L.); (J.W.); (S.W.)
| | - Xiaoshu Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.Z.); (G.S.); (Z.L.); (J.W.); (S.W.)
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence: (X.Z.); (Y.Z.); Tel.: +86-24-4352-0303 (X.Z.); +86-24-4352-0309 (Y.Z.); Fax: +86-24-4352-0300 (X.Z. & Y.Z.)
| | - Yuqing Zhao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (Y.Z.); (G.S.); (Z.L.); (J.W.); (S.W.)
- Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
- Correspondence: (X.Z.); (Y.Z.); Tel.: +86-24-4352-0303 (X.Z.); +86-24-4352-0309 (Y.Z.); Fax: +86-24-4352-0300 (X.Z. & Y.Z.)
| |
Collapse
|
10
|
Jiang G, Chen D, Li W, Liu C, Liu J, Guo Y. Effects of wogonoside on the inflammatory response and oxidative stress in mice with nonalcoholic fatty liver disease. PHARMACEUTICAL BIOLOGY 2020; 58:1177-1183. [PMID: 33253604 PMCID: PMC7875554 DOI: 10.1080/13880209.2020.1845747] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/31/2020] [Accepted: 10/28/2020] [Indexed: 06/06/2023]
Abstract
CONTEXT Wogonoside has many pharmacological activities, but whether it has a protective effect against non-alcoholic fatty liver disease (NAFLD) has not been reported. OBJECTIVE This study investigates the protective effect of wogonoside against NAFLD in mice and its potential mechanism. MATERIALS AND METHODS C57BL/6 mice were randomly divided into control group, NAFLD group and low-, medium- and high-dose wogonoside groups (5, 10 and 20 mg/kg, respectively) (n= 12). Mice in the control group were fed with the standard diet, and those in NAFLD group and low-, medium- and high-dose wogonoside groups were fed with a high-fat diet. The different doses of wogonoside were administered by gavage once a day for 12 weeks. RESULTS Compared with those in NAFLD group, the liver mass, liver index and the LDL, TG, TC, IL-2, IL-6, TNF-α, MDA and NF-κB p65 levels were decreased, and the SOD and GSH-Px activities, and HDL, IκBα, Nrf2 and HO-1 contents were increased in wogonoside groups. Compared with those in the NAFLD group, wogonoside (5, 10 and 20 mg/kg) reduced AST (132.21 ± 14.62, 115.70 ± 11.32 and 77.94 ± 8.86 vs. 202.35 ± 19.58 U/L) and ALT (104.37 ± 11.92, 97.53 ± 10.12 and 56.74 ± 6.33 vs. 154.66 ± 14.23 U/L) activities in the serum. DISCUSSION AND CONCLUSIONS Wogonoside has a protective effect against NAFLD in mice, which may be related to its anti-inflammation and inhibition of oxidative stress, suggesting that wogonoside may be a potential therapeutic agent for the treatment of NAFLD.
Collapse
Affiliation(s)
- Guangyu Jiang
- College of Pharmacy, Jiamusi University, Jiamusi, China
- Department of Neurosurgery, Shenzhen SAMII Medical Center, Shenzhen, China
| | - Dayin Chen
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Wenpeng Li
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Chengcheng Liu
- Heilongjiang Agricultural Vocational and Technical College, Jiamusi, China
| | - Jiguang Liu
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yingxue Guo
- College of Pharmacy, Jiamusi University, Jiamusi, China
| |
Collapse
|
11
|
Lei Y, Wang QL, Shen L, Tao YY, Liu CH. MicroRNA-101 suppresses liver fibrosis by downregulating PI3K/Akt/mTOR signaling pathway. Clin Res Hepatol Gastroenterol 2019; 43:575-584. [PMID: 30857885 DOI: 10.1016/j.clinre.2019.02.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/14/2019] [Accepted: 02/04/2019] [Indexed: 02/04/2023]
Abstract
BACKGROUND MicroRNA-101 (miR-101) is markedly downregulated in both hepatitis B virus-related liver cirrhosis and hepatocellular carcinoma (HCC). In this study, we aimed to investigate the effect and mechanism of miR-101 on hepatic stellate cell (HSC) activation and liver fibrosis. MATERIALS AND METHODS HSC LX-2 was treated with TGF-β1 and with or without miR-101 mimics. LX-2 vitality and proliferation, the expression of F-actin and mRNAs for α-SMA, collagen 1α1 (Col 1α1), and connective tissue growth factor 2 (CCN2) were measured. A 6-week intraperitoneal injection of carbon tetrachloride (CCl4) was used to induce experimental liver fibrosis in mice, which were treated using a miR-101 negative control or miR-101 agomir from the fourth week until the end of the experiment. Liver function, hepatic hydroxyproline, liver histopathology, collagen deposition, α-SMA, type I collagen (Col I) and the protein-expressions of p-PI3K, p-Akt and p-mTOR were measured. RESULTS MiR-101 significantly suppressed the increased LX-2 vitality and high accumulation of extracellular matrix (ECM) induced by TGF-β1. Exposure to CCl4 led to the impairment of liver function and disruption of normal hepatic parenchyma in mice, as well as obvious liver fibrosis indicated by elevated levels of hydroxyproline, α-SMA, and Col 1α1 in liver tissues. MiR-101 administration significantly improved liver function, relieved hepatic parenchyma damage, and reversed liver fibrosis by decreasing the accumulation of ECM components. Furthermore, miR-101 substantially downregulated the CCl4-increased p-PI3K, p-Akt, and p-mTOR in mouse liver. CONCLUSIONS MiR-101 has antifibrotic effects in experimental liver fibrosis, and downregulating the PI3K/Akt/mTOR signaling pathway may be one of its antifibrotic mechanisms.
Collapse
Affiliation(s)
- Yang Lei
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Qing-Lan Wang
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Li Shen
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China
| | - Yan-Yan Tao
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| | - Cheng-Hai Liu
- Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China; Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai 201203, PR China; Shanghai Innovation Center of TCM Health Service, Shanghai 201203, PR China.
| |
Collapse
|
12
|
Mahmoud NI, Messiha BA, Salehc IG, Abo-Saif AA, Abdel-Bakky MS. Interruption of platelets and thrombin function as a new approach against liver fibrosis induced experimentally in rats. Life Sci 2019; 231:116522. [DOI: 10.1016/j.lfs.2019.05.078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
|
13
|
Shan L, Liu Z, Ci L, Shuai C, Lv X, Li J. Research progress on the anti-hepatic fibrosis action and mechanism of natural products. Int Immunopharmacol 2019; 75:105765. [PMID: 31336335 DOI: 10.1016/j.intimp.2019.105765] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 07/15/2019] [Indexed: 12/15/2022]
Abstract
Hepatic fibrosis is the most common pathological feature of most chronic liver diseases, and its continuous deterioration gradually develops into liver cirrhosis and eventually leads to liver cancer. At present, there are many kinds of drugs used to treat liver fibrosis. However, Western drugs tend to only target single genes/proteins and induce many adverse reactions. Most of the mechanisms and active ingredients of traditional Chinese medicine (TCM) are not clear, and there is a lack of unified diagnosis and treatment standards. Natural products, which are characterized by structural diversity, low toxicity, and origination from a wide range of sources, have unique advantages and great potential in anti-liver fibrosis. This article summarizes the work done over the previous decade, on the active ingredients in natural products that are reported to have anti-hepatic fibrosis effects. The effective anti-hepatic fibrosis ingredients identified can be generally divided into flavonoids, saponins, polysaccharides and alkaloids. Mechanisms of anti-liver fibrosis include inhibition of liver inflammation, anti-lipid peroxidation injury, inhibition of the activation and proliferation of hepatic stellate cells (HSCs), modulation of the synthesis and secretion of pro-fibrosis factors, and regulation of the synthesis and degradation of the extracellular matrix (ECM). This review provides suggestions for the development of anti-hepatic fibrosis drugs.
Collapse
Affiliation(s)
- Liang Shan
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Zhenni Liu
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Leilei Ci
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Chen Shuai
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China.
| | - Jun Li
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China; The Key laboratory of Anti-inflammatory and Immune medicines, Ministry of Education Hefei, China; Institute for Liver Diseases of Anhui Medical University, Hefei, China
| |
Collapse
|
14
|
Saha P, Talukdar AD, Nath R, Sarker SD, Nahar L, Sahu J, Choudhury MD. Role of Natural Phenolics in Hepatoprotection: A Mechanistic Review and Analysis of Regulatory Network of Associated Genes. Front Pharmacol 2019; 10:509. [PMID: 31178720 PMCID: PMC6543890 DOI: 10.3389/fphar.2019.00509] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
The liver is not only involved in metabolism and detoxification, but also participate in innate immune function and thus exposed to frequent target Thus, they are the frequent target of physical injury. Interestingly, liver has the unique ability to regenerate and completely recoup from most acute, non-iterative situation. However, multiple conditions, including viral hepatitis, non-alcoholic fatty liver disease, long term alcohol abuse and chronic use of medications can cause persistent injury in which regenerative capacity eventually becomes dysfunctional resulting in hepatic scaring and cirrhosis. Despite the recent therapeutic advances and significant development of modern medicine, hepatic diseases remain a health problem worldwide. Thus, the search for the new therapeutic agents to treat liver disease is still in demand. Many synthetic drugs have been demonstrated to be strong radical scavengers, but they are also carcinogenic and cause liver damage. Present day various hepatic problems are encountered with number of synthetic and plant based drugs. Nexavar (sorafenib) is a chemotherapeutic medication used to treat advanced renal cell carcinoma associated with several side effects. There are a few effective varieties of herbal preparation like Liv-52, silymarin and Stronger neomin phages (SNMC) against hepatic complications. Plants are the huge repository of bioactive secondary metabolites viz; phenol, flavonoid, alkaloid etc. In this review we will try to present exclusive study on phenolics with its mode of action mitigating liver associated complications. And also its future prospects as new drug lead.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Life Science & Bioinformatics, Assam University, Silchar, India
| | - Anupam Das Talukdar
- Department of Life Science & Bioinformatics, Assam University, Silchar, India
| | - Rajat Nath
- Department of Life Science & Bioinformatics, Assam University, Silchar, India
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lutfun Nahar
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jagajjit Sahu
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
15
|
Protective Function of Novel Fungal Immunomodulatory Proteins Fip-lti1 and Fip-lti2 from Lentinus tigrinus in Concanavalin A-Induced Liver Oxidative Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:3139689. [PMID: 31198490 PMCID: PMC6526528 DOI: 10.1155/2019/3139689] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 03/20/2019] [Indexed: 11/17/2022]
Abstract
Fungal immunomodulatory proteins (FIPs) are a class of small proteins that have been extensively studied for their immunomodulatory activities. In this study, two novel FIPs from Lentinus tigrinus were identified and named Fip-lti1 and Fip-lti2. The bioactive characteristics of Fip-lti1 and Fip-lti2 were compared to a well-known FIP (LZ-8 from Ganoderma lucidum) to investigate the effect of Fip-lti1 and Fip-lti2 expression on concanavalin A- (Con A-) induced liver oxidative injury. Both Fip-lti1 and Fip-lti2 protected the livers from Con A-induced necrosis, as evidenced by decreased serum aminotransferase levels (AST, ALT) and relieved liver histology. Levels of proinflammatory cytokines (TNF-α, IL-1β, and IL-6) and oxidative stress (SOD, MDA) were shown to be reduced by expressing Fip-lti1 and Fip-lti2. In addition, the hepatoprotective effect of Fip-lti1, Fip-lti2, and LZ-8 correlated with ameliorating the imbalance of Th1/Th2 (IFN-γ/IL-4). The observed liver protection of Fip-lti1 and Fip-lti2 was mechanistically explored. Treatments with Fip-lti1 and Fip-lti2 regulated GATA3/T-bet expression, activated the decreased Nrf-2/HO-1 pathway, and countered the upregulated NLRP3/ASC/NF-κBp65 signaling in Con A-stimulated liver injury. Nrf2 activation was shown to be involved in the mechanisms underlying the protection of Fip-lti by RNA interference. In conclusion, we identified two new fungal proteins (Fip-lti1 and Fip-lti2) that can protect the liver from Con A-induced liver oxidative injury through the Nrf2/NF-κB/NLRP3/IL-1β pathway.
Collapse
|
16
|
Zhang Q, Chen K, Wu T, Song H. Swertiamarin ameliorates carbon tetrachloride-induced hepatic apoptosis via blocking the PI3K/Akt pathway in rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 23:21-28. [PMID: 30627006 PMCID: PMC6315090 DOI: 10.4196/kjpp.2019.23.1.21] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 04/04/2018] [Accepted: 06/01/2018] [Indexed: 01/07/2023]
Abstract
Swertiamarin (STM) is an iridoid compound that is present in the Gentianaceae swertia genus. Here we investigated antiapoptotic effects of STM on carbon tetrachloride (CCl4)-induced liver injury and its possible mechanisms. Adult male Sprague Dawley rats were randomly divided into a control group, an STM 200 mg/kg group, a CCl4 group, a CCl4+STM 100 mg/kg group, and a CCl4+STM 200 mg/kg group. Rats in experimental groups were subcutaneously injected with 40% CCl4 twice weekly for 8 weeks. STM (100 and 200 mg/kg per day) was orally given to experimental rats by gavage for 8 consecutive weeks. Hepatocyte apoptosis was determined by TUNEL assay and the expression levels of Bcl-2, Bax, and cleaved caspase-3 proteins were evaluated by western blot analysis. The expression of TGF-β1, collagen I, collagen III, CTGF and fibronectin mRNA were estimated by qRT-PCR. The results showed that STM significantly reduced the number of TUNEL-positive cells compared with the CCl4 group. The levels of Bax and cleaved caspase-3 proteins, and TGF-β1, collagen I, collagen III, CTGF, and fibronectin mRNA were significantly reduced by STM compared with the CCl4 group. In addition, STM markedly abrogated the repression of Bcl-2 by CCl4. STM also attenuated the activation of the PI3K/Akt pathway in the liver. These results suggested that STM ameliorated CCl4-induced hepatocyte apoptosis in rats.
Collapse
Affiliation(s)
- Qianrui Zhang
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuhan 430022, China
| | - Kang Chen
- Department of Pharmacy, Huanggang Central Hospital, Huanggang 438000, China
| | - Tao Wu
- Department of Pharmacy, Wuhan NO.4 Hospital, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongping Song
- Department of Pharmacy, Wuhan NO.4 Hospital, Wuhan Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
17
|
Chen DQ, Feng YL, Cao G, Zhao YY. Natural Products as a Source for Antifibrosis Therapy. Trends Pharmacol Sci 2018; 39:937-952. [PMID: 30268571 DOI: 10.1016/j.tips.2018.09.002] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/15/2023]
Abstract
Although fibrosis is a final pathological feature of many chronic diseases, few interventions are available that specifically target the pathogenesis of fibrosis. Natural products are becoming increasingly recognized as effective therapies for fibrosis. The highlights of common cellular and molecular mechanisms of fibrosis facilitate the discovery of effective antifibrotic drugs. We describe some new profibrotic mechanisms and corresponding therapeutic targets using natural products. Interleukin, ephrin-B2, Gas6/TAM, Wnt/β-catenin, hedgehog pathway, PPARγ, lysophosphatidic acid, and CTGF are promising therapeutic targets. Natural products can target these mediators and inhibit chronic inflammation, myofibroblast activation, epithelial-mesenchymal transition, and extracellular matrix accumulation to alleviate fibrosis. Of note, natural products have the potential to inhibit fibrosis in one organ, simultaneously targeting fibrosis in multiple other organs, which provides us new strategies to find antifibrotic drugs.
Collapse
Affiliation(s)
- Dan-Qian Chen
- School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Ya-Long Feng
- School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| | - Ying-Yong Zhao
- School of Life Science, Northwest University, No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China.
| |
Collapse
|
18
|
Magnesium isoglycyrrhizinate shows hepatoprotective effects in a cyclophosphamide-induced model of hepatic injury. Oncotarget 2018; 8:33252-33264. [PMID: 28402274 PMCID: PMC5464865 DOI: 10.18632/oncotarget.16629] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 03/04/2017] [Indexed: 12/19/2022] Open
Abstract
The purpose of the current study was to investigate the effect of Magnesium Isoglycyrrhizinate (GM) on cyclophosphamide (CP)-induced hepatic injury in vivo and in vitro. The results demonstrated that GM exerted a protective effect on CP-induced acute liver injury, as evidenced by the alleviations of hepatic pathological damage and serum transaminase activities. Meantime, GM attenuated serum and HepG2 cell supernatant levels of TNF-α, IL-6, IL-1β, SOD and MDA. Western blot results presented that GM down-regulated the expressions of the microtubule associated protein 1A/1B-light chain 3 (LC3), Lysosome associated membrane protein-1 (LAMP-1), p-phosphatidylinositol 3-kinase (PI3K), p-protein Kinase B(Akt), p-mechanistic target of rapamycin(mTOR), p-ribosomal protein S6 kinase 70 kDa (p70S6K), p-4E binding protein 1(4EBP1), p- inhibitor of NF-κB(IκB)α and p-nuclear factor kappa B(NF-κB)p65 in CP-stimulated hepatic tissue and HepG2 cells. Taken together, our results suggested that GM showed beneficial effect on CP-induced liver injury through NF-κB-mediated inflammation and PI3K/Akt/mTOR/p70S6K/4EBP1 axis-mediated autophagy in vivo and in vitro.
Collapse
|
19
|
Li S, Tan HY, Wang N, Cheung F, Hong M, Feng Y. The Potential and Action Mechanism of Polyphenols in the Treatment of Liver Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:8394818. [PMID: 29507653 PMCID: PMC5817364 DOI: 10.1155/2018/8394818] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/09/2018] [Indexed: 12/16/2022]
Abstract
Liver disease, involving a wide range of liver pathologies from fatty liver, hepatitis, and fibrosis to cirrhosis and hepatocellular carcinoma, is a serious health problem worldwide. In recent years, many natural foods and herbs with abundant phytochemicals have been proposed as health supplementation for patients with hepatic disorders. As an important category of phytochemicals, natural polyphenols have attracted increasing attention as potential agents for the prevention and treatment of liver diseases. The striking capacities in remitting oxidative stress, lipid metabolism, insulin resistance, and inflammation put polyphenols in the spotlight for the therapies of liver diseases. It has been reported that many polyphenols from a wide range of foods and herbs exert therapeutic effects on liver injuries via complicated mechanisms. Therefore, it is necessary to have a systematical review to sort out current researches to help better understand the potentials of polyphenols in liver diseases. In this review, we aim to summarize and update the existing evidence of natural polyphenols in the treatment of various liver diseases by in vitro, in vivo, and clinical studies, while special attention is paid to the action mechanisms.
Collapse
Affiliation(s)
- Sha Li
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hor Yue Tan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, Pok Fu Lam, The University of Hong Kong, Hong Kong
| | - Fan Cheung
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Ming Hong
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
- Shenzhen Institute of Research and Innovation, Pok Fu Lam, The University of Hong Kong, Hong Kong
| |
Collapse
|
20
|
Meng L, Li L, Lu S, Li K, Su Z, Wang Y, Fan X, Li X, Zhao G. The protective effect of dexmedetomidine on LPS-induced acute lung injury through the HMGB1-mediated TLR4/NF-κB and PI3K/Akt/mTOR pathways. Mol Immunol 2018; 94:7-17. [DOI: 10.1016/j.molimm.2017.12.008] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/24/2022]
|
21
|
Wang Q, Shi R, Dai Y, Li Y, Wang T, Ma Y, Cheng N. Mechanism in the existent difference in form of wogonin/wogonoside between plasma and intestine/liver in rats. RSC Adv 2018; 8:3364-3373. [PMID: 35542957 PMCID: PMC9077764 DOI: 10.1039/c7ra08270c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 01/02/2018] [Indexed: 11/21/2022] Open
Abstract
Wogonin (WO) and its glucuronide, wogonoside (WG) exhibit various beneficial bioactivities that may have potential for the development of novel drugs. In this study, we determined their pharmacokinetic characteristics in rats after intragastric administration of WO and intraportal vein injection of WG. WG was the predominant form in the portal vein and body plasma, and in bile; WO was detected only in the small intestine and liver. WG is a substrate of the multidrug resistance-associated protein (MRP) 1, 2, 3, and 4, and organic anion-transporting polypeptide (OATP) 2B1 and OATP1B3. Metabolism studies indicated that WG formation and WO decrease had similar CLint values in rat intestine S9 (RIS9) and rat liver microsome (RLM), and that the hydrolysis rate of WG in RIS9 and rat liver S9 (RLS9) was fast. Thus, WG could be excreted into the intestinal tract by MRP2, and transported into mesenteric blood by MRP1, 3, and 4. OATP2B1 and OATP1B3 mediated the hepatic uptake of WG and MRPs mediated WG efflux to the bile and circulation. The high transport capability of MRPs for WG and the fast hydrolysis in the small intestine and liver may be responsible for the presence of WO in these tissues. OATPs, MRPs, UGTs and β-glucuronidase mediate the difference of exposure form of wogonin and wogonoside in plasma and tissues.![]()
Collapse
Affiliation(s)
- Qian Wang
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- People's Republic of China
| | - Rong Shi
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- People's Republic of China
| | - Yan Dai
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- People's Republic of China
| | - Yuanyuan Li
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- People's Republic of China
| | - Tianming Wang
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- People's Republic of China
| | - Yueming Ma
- Department of Pharmacology
- School of Pharmacy
- Shanghai University of Traditional Chinese Medicine
- Shanghai 201203
- People's Republic of China
| | - Nengneng Cheng
- Department of Pharmacology
- School of Pharmacy
- Fudan University
- Shanghai 201203
- China
| |
Collapse
|
22
|
Zeng Y, Lian S, Li D, Lin X, Chen B, Wei H, Yang T. Anti-hepatocarcinoma effect of cordycepin against NDEA-induced hepatocellular carcinomas via the PI3K/Akt/mTOR and Nrf2/HO-1/NF-κB pathway in mice. Biomed Pharmacother 2017; 95:1868-1875. [PMID: 28968944 DOI: 10.1016/j.biopha.2017.09.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/05/2017] [Accepted: 09/13/2017] [Indexed: 02/05/2023] Open
Abstract
The purpose of the present study was to evaluate the effects of cordycepin (CA) on N-nitrosodiethylamine (NDEA)-induced hepatocellular carcinomas (HCC) and explore its potential mechanisms. Mice were randomly assigned to four groups: control group, NDEA group, NDEA+CA (20mg/kg) group, NDEA+CA (40mg/kg) group. The animal of each group were given NDEA (100ppm) in drinking water. One hour later, CA, which was dissolved in PBS, were intragastrically administered for continuous seven days. The results showed that CA reduced the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in liver and serum. CA also reduced the levels of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α), methane dicarboxylic aldehyde (MDA), and stored the activity of superoxygen dehydrogenises (SOD) in serum. CA could obviously attenuate the hepatic pathological alteration. Furthermore, CA effectively inhibited the phosphorylations of phosphatidylinositol 3 kinase(PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR). In conclusion, our research suggested that CA exhibited protective effects on NDEA-induced hepatocellular carcinomas via the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yongming Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, P.R. China
| | - Shuyi Lian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, P.R. China
| | - Danfeng Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, P.R. China
| | - Xiaosheng Lin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, P.R. China
| | - Bozan Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, P.R. China
| | - Hongfa Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, P.R. China
| | - Tian Yang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou 515041, P.R. China.
| |
Collapse
|
23
|
Chen L, Liu P, Feng X, Ma C. Salidroside suppressing LPS-induced myocardial injury by inhibiting ROS-mediated PI3K/Akt/mTOR pathway in vitro and in vivo. J Cell Mol Med 2017; 21:3178-3189. [PMID: 28905500 PMCID: PMC5706507 DOI: 10.1111/jcmm.12871] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 03/12/2016] [Indexed: 01/12/2023] Open
Abstract
The purpose of the present study was to investigate the effect of salidroside (Sal) on myocardial injury in lipopolysaccharide (LPS)‐induced endotoxemic in vitro and in vivo. SD rats were randomly divided into five groups: control group, LPS group (15 mg/kg), LPS plus dexamethasone (2 mg/kg), LPS plus Sal groups with different Sal doses (20, 40 mg/kg). Hemodynamic measurement and haematoxylin and eosin staining were performed. Serum levels of creatine kinase (CK), lactate dehydrogenase, the activities of the antioxidant enzymes catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GSH‐px), glutathione, tumour necrosis factor‐α (TNF‐α), interleukin‐6 (IL‐6), and interleukin‐1β (IL‐1β) were measured after the rats were killed. iNOS, COX‐2, NF‐κB and PI3K/Akt/mTOR pathway proteins were detected by Western blot. In vitro, we evaluated the protective effect of Sal on rat embryonic heart‐derived myogenic cell line H9c2 induced by LPS. Reactive oxygen species (ROS) in H9c2 cells was measured by flow cytometry, and the activities of the antioxidant enzymes CAT, SOD, GSH‐px, glutathione‐S‐transferase, TNF‐α, IL‐6 and IL‐1β in cellular supernatant were measured. PI3K/Akt/mTOR signalling was examined by Western blot. As a result, Sal significantly attenuated the above indices. In addition, Sal exerts pronounced cardioprotective effect in rats subjected to LPS possibly through inhibiting the iNOS, COX‐2, NF‐κB and PI3K/Akt/mTOR pathway in vivo. Furthermore, the pharmacological effect of Sal associated with the ROS‐mediated PI3K/Akt/mTOR pathway was proved by the use of ROS scavenger, N‐acetyl‐l‐cysteine, in LPS‐stimulated H9C2 cells. Our results indicated that Sal could be a potential therapeutic agent for the treatment of cardiovascular disease.
Collapse
Affiliation(s)
- Lvyi Chen
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Peng Liu
- School of Pharmacy, South-Central University for Nationalities, Wuhan, China
| | - Xin Feng
- Institute of Tibetan Medicine, China Tibetology Research Center, Beijing, China
| | - Chunhua Ma
- Department of Physiology and Pharmacology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
24
|
Zhu Y, Zhu H, Wang Z, Gao F, Wang J, Zhang W. Wogonoside alleviates inflammation induced by traumatic spinal cord injury by suppressing NF-κB and NLRP3 inflammasome activation. Exp Ther Med 2017; 14:3304-3308. [PMID: 28966691 DOI: 10.3892/etm.2017.4904] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 04/13/2017] [Indexed: 02/07/2023] Open
Abstract
Wogonoside possesses anti-oxidative, anti-inflammatory, anti-allergy and anti-tumor properties. The aim of the present study was to evaluate whether wogonoside alleviates spinal cord injury (SCI)-induced inflammation via nuclear factor (NF)-κB and nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation. Sprague-Dawley rats were positioned in the jaws of a calibrated aneurysm clip with a closing pressure of 55 g. The jaws were placed on the dorsal and ventral surfaces of the spinal cord and left in place for 1 min. SCI rats were treated with 12, 25 and 50 mg/kg wogonoside. Following this, the locomotor function was assessed using the Basso Beattie Bresnahan scale. The water content of the spinal cord was measured, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β and IL-6 levels were assessed and western blot analysis was performed to evaluate the expressions of NF-κB and NLRP3. Wogonoside was demonstrated to significantly ameliorate the SCI-induced reduction in Basso Beattie Bresnahan score (P<0.01) and significantly reduce the water content of the spinal cord in rats with SCI-induced inflammation (P<0.01). Results also indicated that treatment with wogonoside significantly reduced the levels of IL-1β, TNF-α and IL-6 in rats with SCI-induced inflammation (P<0.01), potentially via the phosphorylation of NF-κB inhibitor α. Furthermore, treatment with wogonoside inhibited the expressions of toll-like receptor 4, NLRP3 and caspase-1 protein in SCI model rats (P<0.01). In conclusion, the results of the present study suggest that wogonoside alleviates SCI-induced inflammation by suppressing NF-κB and NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yonglin Zhu
- Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264001, P.R. China
| | - Hanzhong Zhu
- Department of Orthopedics, Chengwu People's Hospital, Heze, Shandong 274200, P.R. China
| | - Zhaojie Wang
- Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264001, P.R. China
| | - Fengguang Gao
- Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264001, P.R. China
| | - Jingsheng Wang
- Department of Orthopedics, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, Shandong 264001, P.R. China
| | - Wenqiang Zhang
- Department of Orthopedics, Shandong Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
25
|
Antihepatocarcinoma Effect of Portulaca oleracea L. in Mice by PI3K/Akt/mTOR and Nrf2/HO-1/NF- κB Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:8231358. [PMID: 28659990 PMCID: PMC5474246 DOI: 10.1155/2017/8231358] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/06/2016] [Indexed: 12/25/2022]
Abstract
The purpose of the present study was to evaluate the pharmacological effects of Portulaca oleracea L. (Purslane) (PL) on N-nitrosodiethylamine- (NDEA-) induced hepatocellular carcinomas (HCC) and explore its potential mechanism. Mice were randomly assigned to four groups: control group, NDEA group, NDEA + Purslane (100 mg/kg) group, and NDEA + Purslane (200 mg/kg) group. The animal of each group was given NDEA (100 ppm) in drinking water. 1 h later, Purslane dissolved in PBS was intragastrically administered for continuous seven days. The results showed that Purslane reduced the activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in liver and serum. Purslane also reduced the contents of interleukin-6 (IL-6), IL-1β, tumor necrosis factor-α (TNF-α), and methane dicarboxylic aldehyde (MDA) and restored the activity of superoxygen dehydrogenises (SOD) in serum. Purslane could obviously attenuate the hepatic pathological alteration. Furthermore, treatment with Purslane effectively inhibited the phosphorylations of phosphatidylinositol 3 kinase (PI3K), protein kinase B (Akt), mammalian target of rapamycin (mTOR), nuclear factor-kappa B (NF-κB), and inhibitor of NF-κBα (IκBα) and upregulated the expressions of NF-E2-related factor 2 (Nrf2) and heme oxygenase- (HO-) 1. In conclusion, our research suggested that Purslane exhibited protective effects on NDEA-induced hepatocellular carcinomas by anti-inflammatory and antioxidative properties via the PI3K/Akt/mTOR and Nrf2/HO-1/NF-κB pathway.
Collapse
|
26
|
Xiao R, Gan M, Jiang T. Wogonoside exerts growth-suppressive effects against T acute lymphoblastic leukemia through the STAT3 pathway. Hum Exp Toxicol 2017; 36:1169-1176. [PMID: 27941168 DOI: 10.1177/0960327116679716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Wogonoside is the main flavonoid of the traditional Chinese medicinal herb Scutellaria baicalensis Georgi and has been found to induce growth suppression in myelogenous leukemia cells. However, its activity in T acute lymphoblastic leukemia (T-ALL) is still unclear. In this study, T-ALL cell lines MOLT-3 and Jurkat were exposed to different concentrations of wogonoside for 48 h, and cell viability, cell cycle distribution, and apoptosis were measured. The involvement of signal transducers and activators of transcription 3 (STAT3) signaling in the activity of wogonoside was checked. The in vivo effect of wogonoside on T-ALL growth was investigated in a xenograft mouse model. Wogonoside significantly inhibited the viability of MOLT-3 and Jurkat cells, with the IC50 (the half maximal concentration) of 68.5 ± 3.8 and 52.6 ± 4.3 μM, respectively. However, healthy T lymphocytes were unaffected. Wogonoside-treated Jurkat cells exhibited a G1-phase cell cycle arrest and significant apoptosis, which was coupled with inactivation of STAT3 signaling. Overexpression of constitutively active STAT3 reversed wogonoside-mediated growth suppression and apoptosis and restored the expression of cyclin D1, Mcl-1, and Bcl-xL. In vivo studies demonstrated that wogonoside retarded tumor growth and suppressed STAT3 phosphorylation in Jurkat xenografts. In conclusion, wogonoside suppresses the growth of T-ALL through the STAT3 pathway and may have therapeutic benefits in this disease.
Collapse
Affiliation(s)
- R Xiao
- Department of Hematology, Sichuan Provincial Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - M Gan
- Department of Hematology, Sichuan Provincial Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| | - T Jiang
- Department of Hematology, Sichuan Provincial Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
27
|
Nan J, Zhongyan Z. Bone marrow mesenchymal stem cells inhibited bleomycin-induced lung fibrosis. RSC Adv 2017. [DOI: 10.1039/c7ra03971a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study was performed to evaluate the protective effect of bone marrow mesenchymal stem cells (BMSCs), TLR2-silencing BMSCs (BMSCTLR2−/−), on bleomycin (BLM)-induced lung fibrosis and elucidate the critical role of TLR2 during the process.
Collapse
Affiliation(s)
- Jiang Nan
- The Third Teaching Hospital
- Jilin University
- Changchun 130033
- China
| | - Zhao Zhongyan
- The Third Teaching Hospital
- Jilin University
- Changchun 130033
- China
| |
Collapse
|
28
|
Li Y, Shi Y, Sun Y, Liu L, Bai X, Wang D, Li H. Restorative effects of hydroxysafflor yellow A on hepatic function in an experimental regression model of hepatic fibrosis induced by carbon tetrachloride. Mol Med Rep 2016; 15:47-56. [PMID: 27909717 PMCID: PMC5355700 DOI: 10.3892/mmr.2016.5965] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 09/16/2016] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is a reversible pathological process, in which fibrotic tissue is excessively deposited in the liver during the repair process that follows hepatic injury. Early prevention or treatment of hepatic fibrosis has great significance on the treatment of chronic hepatic diseases. Hydroxysafflor yellow A (HSYA) is a water-soluble monomer extracted from safflower, which serves numerous pharmacological roles. However, it remains to be elucidated how HSYA regulates hepatic fibrogenesis. The aim of the present study was to reveal the possible mechanisms underlying the effects of HSYA on the prevention and treatment of hepatic fibrosis. A rat model of hepatic fibrosis was established in the present study, and the rats were administered various doses of HSYA. The effects of HSYA on pathological alterations of the liver tissue in rats with hepatic fibrosis were observed using hematoxylin-eosin staining and Masson staining. In order to explore the anti-hepatic fibrosis effects and underlying mechanisms of HSYA, serum levels, and hepatic function and hepatic fibrosis indices were evaluated. The results demonstrated that HSYA can improve the general condition of rats with hepatic fibrosis and relieve cellular swelling of the liver, fatty degeneration, necrosis, inflammatory cell infiltration and fibroplastic proliferation. Subsequent to administration of HSYA, globulin was increased during hepatic fibrosis caused by tetrachloromethane. However, total cholesterol, triglyceride, alanine aminotransferase, aspartate aminotransferase and levels of hyaluronic acid, laminin, procollagen III N-terminal peptide, collagen type IV and hydroxyproline were significantly reduced. The results additionally demonstrated that HSYA could enhance superoxide dismutase activity and reduce malondialdehyde levels, inhibiting lipid peroxidation caused by free radicals.
Collapse
Affiliation(s)
- Yanuo Li
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yan Shi
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Yan Sun
- Department of Osteology, Yantaishan Hospital, Yantai, Shandong 264000, P.R. China
| | - Luying Liu
- Department of Pathology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Xianyong Bai
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Dong Wang
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| | - Hongxing Li
- Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, P.R. China
| |
Collapse
|
29
|
Wang H, Chen L, Zhang L, Gao X, Wang Y, Weiwei T. Protective effect of Sophoraflavanone G on streptozotocin (STZ)-induced inflammation in diabetic rats. Biomed Pharmacother 2016; 84:1617-1622. [PMID: 27832995 DOI: 10.1016/j.biopha.2016.10.113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
The present study was designed to investigate the protective effect of Sophoraflavanone G (SG) on streptozotocin (STZ)-induced diabetic rats. The rats were intraperitoneally injected with STZ (35mg/kg). 7days later, the rats were intragastrically administered with Metformin (MET, 150mg/kg), SG (20mg/kg) or SG (40mg/kg) once daily for consecutive 30 days. The animals were anaesthetized, the blood and liver samples were also collected for further assay. SG significantly decreased the serum levels of glucose, insulin, aspartate transaminase (AST), alanine aminotransferase (ALT). In addition, SG increased superoxide dismutase (SOD) activity and inhibited malondialdehyde (MDA) content in serum. SG also ameliorated the histopathological condition. Furthermore, SG attenuated the expressions of thioredoxin (Trx), thioredoxin-interacting protein (Txnip) and the phosphorylations of inhibitory kappa B kinase (IKK)α, IKKβ, nuclear factor-κB inhibitory proteins (IκB)α, nuclear factor κB (NF-κB). These findings demonstrated that SG showed beneficial effects on STZ-induced diabetic rats.
Collapse
Affiliation(s)
- Hanqing Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China.
| | - Li Chen
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Liming Zhang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Xiaojuan Gao
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Yinghua Wang
- College of Pharmacy, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia 750004, PR China
| | - Tao Weiwei
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
30
|
Hong Y, Han YQ, Wang YZ, Gao JR, Li YX, Liu Q, Xia LZ. Paridis Rhizoma Sapoinins attenuates liver fibrosis in rats by regulating the expression of RASAL1/ERK1/2 signal pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 192:114-122. [PMID: 27396351 DOI: 10.1016/j.jep.2016.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/10/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE Paridis Rhizoma is a Chinese medicinal herb that has been used in liver disease treatment for thousands of years. Our previous studies found that Paridis Rhizoma saponins (PRS) are the critical components of Paridis Rhizoma which has good liver protection effect. However, the anti-hepatic fibrosis effect and the mechanism of PRS have seldom been reported. AIM OF THE STUDY To investigate the potential of PRS in the treatment of experimental liver fibrosis and the underlying mechanism. MATERIALS AND METHODS The chemical feature fingerprint of PRS was analyzed by UPLC-PDA. A total of 40 Male Sprague-Dawley (SD) rats were randomly divided into the control group, the model group, the PRS high dose group (PRS H) and the PRS low dose group (PRS L) with 10 rats in each group. The model, PRS H and L groups as liver fibrosis models were established with carbon tetrachloride (CCl4) method. PRS H and L groups were adopted PRS (300 and 150mg/kgd-1) treatment since the twelfth week of modeling till the sixteenth week. Pathological changes in hepatic tissue were examined using hematoxylin and eosin (H&E) and MASSON trichrome staining. Immunohistochemical analysis was performed to determine the protein expression of the RASAL1. RT-PCR and western blotting were used to detect the expression of ERK1/2 mRNA and protein. RESULTS Four saponins in PRS were identified from 19 detected chromatographic peaks on UPLC-PDA by comparing to the standard compounds. PRS can improve the degeneration and necrosis of hepatic tissue, reduce the extent of its fibrous hyperplasia according to H&E and MASSON staining detection. As was detected in PRS H and L groups, PRS down-regulated p-ERK1/2 mRNA and RASAL1 protein, and up-regulated the level of p-ERK1/2 mRNA and RASAL1 protein. CONCLUSION These results demonstrated that PRS can attenuate CCl4-induced liver fibrosis through the regulation of RAS/ERK1/2 signal pathway.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Carbon Tetrachloride
- Chemical and Drug Induced Liver Injury/enzymology
- Chemical and Drug Induced Liver Injury/pathology
- Chemical and Drug Induced Liver Injury/prevention & control
- Chromatography, High Pressure Liquid
- Cytoprotection
- GTPase-Activating Proteins/genetics
- GTPase-Activating Proteins/metabolism
- Gene Expression Regulation, Enzymologic
- Hyperplasia
- Immunohistochemistry
- Liver/drug effects
- Liver/enzymology
- Liver/pathology
- Liver Cirrhosis, Experimental/chemically induced
- Liver Cirrhosis, Experimental/enzymology
- Liver Cirrhosis, Experimental/pathology
- Liver Cirrhosis, Experimental/prevention & control
- Male
- Melanthiaceae/chemistry
- Mitogen-Activated Protein Kinase 1/genetics
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Necrosis
- Phosphorylation
- Phytotherapy
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
- Saponins/isolation & purification
- Saponins/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Yan Hong
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Yan-Quan Han
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Yong-Zhong Wang
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Jia-Rong Gao
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Yu-Xin Li
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Qing Liu
- Anhui University of Chinese Medicine, Hefei, Anhui 230031, China; The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| | - Lun-Zhu Xia
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Grade 3 Laboratory of TCM Preparation, State Administration of Anhui University of Chinese Medicine, Hefei, Anhui 230031, China.
| |
Collapse
|
31
|
Meng XM, Ren GL, Gao L, Li HD, Wu WF, Li XF, Xu T, Wang XF, Ma TT, Li Z, Huang C, Huang Y, Zhang L, Lv XW, Li J. Anti-fibrotic effect of wogonin in renal tubular epithelial cells via Smad3-dependent mechanisms. Eur J Pharmacol 2016; 789:134-143. [DOI: 10.1016/j.ejphar.2016.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/22/2016] [Accepted: 07/07/2016] [Indexed: 12/16/2022]
|
32
|
Jiang W, Zhou R, Li P, Sun Y, Lu Q, Qiu Y, Wang J, Liu J, Hao K, Ding X. Protective effect of chrysophanol on LPS/d-GalN-induced hepatic injury through the RIP140/NF-κB pathway. RSC Adv 2016. [DOI: 10.1039/c5ra19841k] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Chrysophanol prevented LPS/d-GalN-induced liver injury through the induction of antioxidant defence, suppression of apoptosis and reduction of inflammatory response via inhibition of the RIP140/NF-κB pathway.
Collapse
Affiliation(s)
- Wenjiao Jiang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Rui Zhou
- Department of Physiology and Pharmacology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Peijin Li
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yilin Sun
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Qianfeng Lu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yue Qiu
- School of Pharmacy
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jinglei Wang
- School of Life Sciences
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Jingyan Liu
- Department of Physiology and Pharmacology
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Kun Hao
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Xuansheng Ding
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
- Department of Clinical Pharmacy
| |
Collapse
|