1
|
Ramos R, Vale N. Dual Drug Repurposing: The Example of Saracatinib. Int J Mol Sci 2024; 25:4565. [PMID: 38674150 PMCID: PMC11050334 DOI: 10.3390/ijms25084565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024] Open
Abstract
Saracatinib (AZD0530) is a dual Src/Abl inhibitor initially developed by AstraZeneca for cancer treatment; however, data from 2006 to 2024 reveal that this drug has been tested not only for cancer treatment, but also for the treatment of other diseases. Despite the promising pre-clinical results and the tolerability shown in phase I trials, where a maximum tolerated dose of 175 mg was defined, phase II clinical data demonstrated a low therapeutic action against several cancers and an elevated rate of adverse effects. Recently, pre-clinical research aimed at reducing the toxic effects and enhancing the therapeutic performance of saracatinib using nanoparticles and different pharmacological combinations has shown promising results. Concomitantly, saracatinib was repurposed to treat Alzheimer's disease, targeting Fyn. It showed great clinical results and required a lower daily dose than that defined for cancer treatment, 125 mg and 175 mg, respectively. In addition to Alzheimer's disease, this Src inhibitor has also been studied in relation to other health conditions such as pulmonary and liver fibrosis and even for analgesic and anti-allergic functions. Although saracatinib is still not approved by the Food and Drug Administration (FDA), the large number of alternative uses for saracatinib and the elevated number of pre-clinical and clinical trials performed suggest the huge potential of this drug for the treatment of different kinds of diseases.
Collapse
Affiliation(s)
- Raquel Ramos
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal
| |
Collapse
|
2
|
Yang F, He Y, Ge N, Guo J, Yang F, Sun S. Exploring KRAS-mutant pancreatic ductal adenocarcinoma: a model validation study. Front Immunol 2024; 14:1203459. [PMID: 38268915 PMCID: PMC10805828 DOI: 10.3389/fimmu.2023.1203459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) has the highest mortality rate among all solid tumors. Tumorigenesis is promoted by the oncogene KRAS, and KRAS mutations are prevalent in patients with PDAC. Therefore, a comprehensive understanding of the interactions between KRAS mutations and PDAC may expediate the development of therapeutic strategies for reversing the progression of malignant tumors. Our study aims at establishing and validating a prediction model of KRAS mutations in patients with PDAC based on survival analysis and mRNA expression. METHODS A total of 184 and 412 patients with PDAC from The Cancer Genome Atlas (TCGA) database and the International Cancer Genome Consortium (ICGC), respectively, were included in the study. RESULTS After tumor mutation profile and copy number variation (CNV) analyses, we established and validated a prediction model of KRAS mutations, based on survival analysis and mRNA expression, that contained seven genes: CSTF2, FAF2, KIF20B, AKR1A1, APOM, KRT6C, and CD70. We confirmed that the model has a good predictive ability for the prognosis of overall survival (OS) in patients with KRAS-mutated PDAC. Then, we analyzed differential biological pathways, especially the ferroptosis pathway, through principal component analysis, pathway enrichment analysis, Gene Ontology (GO) enrichment analysis, and gene set enrichment analysis (GSEA), with which patients were classified into low- or high-risk groups. Pathway enrichment results revealed enrichment in the cytokine-cytokine receptor interaction, metabolism of xenobiotics by cytochrome P450, and viral protein interaction with cytokine and cytokine receptor pathways. Most of the enriched pathways are metabolic pathways predominantly enriched by downregulated genes, suggesting numerous downregulated metabolic pathways in the high-risk group. Subsequent tumor immune infiltration analysis indicated that neutrophil infiltration, resting CD4 memory T cells, and resting natural killer (NK) cells correlated with the risk score. After verifying that the seven gene expression levels in different KRAS-mutated pancreatic cancer cell lines were similar to that in the model, we screened potential drugs related to the risk score. DISCUSSION This study established, analyzed, and validated a model for predicting the prognosis of PDAC based on risk stratification according to KRAS mutations, and identified differential pathways and highly effective drugs.
Collapse
Affiliation(s)
- Fan Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanjie He
- Department of Surgery, New York University School of Medicine and NYU-Langone Medical Center, New York, NY, United States
| | - Nan Ge
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jintao Guo
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Fei Yang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Siyu Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Poh AR, Ernst M. Functional roles of SRC signaling in pancreatic cancer: Recent insights provide novel therapeutic opportunities. Oncogene 2023:10.1038/s41388-023-02701-x. [PMID: 37120696 DOI: 10.1038/s41388-023-02701-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignant disease with a 5-year survival rate of <10%. Aberrant activation or elevated expression of the tyrosine kinase c-SRC (SRC) is frequently observed in PDAC and is associated with a poor prognosis. Preclinical studies have revealed a multifaceted role for SRC activation in PDAC, including promoting chronic inflammation, tumor cell proliferation and survival, cancer cell stemness, desmoplasia, hypoxia, angiogenesis, invasion, metastasis, and drug resistance. Strategies to inhibit SRC signaling include suppressing its catalytic activity, inhibiting protein stability, or by interfering with signaling components of the SRC signaling pathway including suppressing protein interactions of SRC. In this review, we discuss the molecular and immunological mechanisms by which aberrant SRC activity promotes PDAC tumorigenesis. We also provide a comprehensive update of SRC inhibitors in the clinic, and discuss the clinical challenges associated with targeting SRC in pancreatic cancer.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute and La Trobe University School of Cancer Medicine, Melbourne, VIC, 3084, Australia.
| |
Collapse
|
4
|
Shetu SA, James N, Rivera G, Bandyopadhyay D. Molecular Research in Pancreatic Cancer: Small Molecule Inhibitors, Their Mechanistic Pathways and Beyond. Curr Issues Mol Biol 2023; 45:1914-1949. [PMID: 36975494 PMCID: PMC10047141 DOI: 10.3390/cimb45030124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Pancreatic enzymes assist metabolic digestion, and hormones like insulin and glucagon play a critical role in maintaining our blood sugar levels. A malignant pancreas is incapable of doing its regular functions, which results in a health catastrophe. To date, there is no effective biomarker to detect early-stage pancreatic cancer, which makes pancreatic cancer the cancer with the highest mortality rate of all cancer types. Primarily, mutations of the KRAS, CDKN2A, TP53, and SMAD4 genes are responsible for pancreatic cancer, of which mutations of the KRAS gene are present in more than 80% of pancreatic cancer cases. Accordingly, there is a desperate need to develop effective inhibitors of the proteins that are responsible for the proliferation, propagation, regulation, invasion, angiogenesis, and metastasis of pancreatic cancer. This article discusses the effectiveness and mode of action at the molecular level of a wide range of small molecule inhibitors that include pharmaceutically privileged molecules, compounds under clinical trials, and commercial drugs. Both natural and synthetic small molecule inhibitors have been counted. Anti-pancreatic cancer activity and related benefits of using single and combined therapy have been discussed separately. This article sheds light on the scenario, constraints, and future aspects of various small molecule inhibitors for treating pancreatic cancer-the most dreadful cancer so far.
Collapse
Affiliation(s)
- Shaila A. Shetu
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Nneoma James
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| | - Gildardo Rivera
- Laboratorio de Biotecnología Farmacéutica, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Reynosa 88710, Mexico
| | - Debasish Bandyopadhyay
- Department of Chemistry, The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
- School of Earth Environment & Marine Sciences (SEEMS), The University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX 78539, USA
| |
Collapse
|
5
|
Nie L, Sun K, Gong Z, Li H, Quinn JP, Wang M. Src Family Kinases Facilitate the Crosstalk between CGRP and Cytokines in Sensitizing Trigeminal Ganglion via Transmitting CGRP Receptor/PKA Pathway. Cells 2022; 11:cells11213498. [PMID: 36359895 PMCID: PMC9655983 DOI: 10.3390/cells11213498] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/30/2022] [Accepted: 11/01/2022] [Indexed: 11/09/2022] Open
Abstract
The communication between calcitonin gene-related peptide (CGRP) and cytokines plays a prominent role in maintaining trigeminal ganglion (TG) and trigeminovascular sensitization. However, the underlying regulatory mechanism is elusive. In this study, we explored the hypothesis that Src family kinases (SFKs) activity facilitates the crosstalk between CGRP and cytokines in sensitizing TG. Mouse TG tissue culture was performed to study CGRP release by enzyme-linked immunosorbent assay, cytokine release by multiplex assay, cytokine gene expression by quantitative polymerase chain reaction, and phosphorylated SFKs level by western blot. The results demonstrated that a SFKs activator, pYEEI (YGRKKRRQRRREPQY(PO3H2)EEIPIYL) alone, did not alter CGRP release or the inflammatory cytokine interleukin-1β (IL-1β) gene expression in the mouse TG. In contrast, a SFKs inhibitor, saracatinib, restored CGRP release, the inflammatory cytokines IL-1β, C-X-C motif ligand 1, C-C motif ligand 2 (CCL2) release, and IL-1β, CCL2 gene expression when the mouse TG was pre-sensitized with hydrogen peroxide and CGRP respectively. Consistently with this, the phosphorylated SFKs level was increased by both hydrogen peroxide and CGRP in the mouse TG, which was reduced by a CGRP receptor inhibitor BIBN4096 and a protein kinase A (PKA) inhibitor PKI (14–22) Amide. The present study demonstrates that SFKs activity plays a pivotal role in facilitating the crosstalk between CGRP and cytokines by transmitting CGRP receptor/PKA signaling to potentiate TG sensitization and ultimately trigeminovascular sensitization.
Collapse
Affiliation(s)
- Lingdi Nie
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
| | - Kai Sun
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - Ziyang Gong
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - Haoyang Li
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
| | - John P. Quinn
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
| | - Minyan Wang
- Centre for Neuroscience, Department of Biological Sciences, Xi’an Jiaotong-Liverpool University (XJTLU), Suzhou 215123, China
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Liverpool L69 7ZB, UK
- Correspondence:
| |
Collapse
|
6
|
Rudloff U. Emerging kinase inhibitors for the treatment of pancreatic ductal adenocarcinoma. Expert Opin Emerg Drugs 2022; 27:345-368. [PMID: 36250721 PMCID: PMC9793333 DOI: 10.1080/14728214.2022.2134346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Pancreatic cancer is one of the deadliest solid organ cancers. In the absence of specific warning symptoms pancreatic cancer is diagnosed notoriously late. Current systemic chemotherapy regimens extend survival by a mere few months. With the advances in genetic, proteomic, and immunological profiling there is strong rationale to test kinase inhibitors to improve outcome. AREAS COVERED This review article provides a comprehensive summary of approved treatments and past, present, and future developments of kinase inhibitors in pancreatic cancer. Emerging roles of protein kinase inhibitors are discussed in the context of the unique stroma, the lack of high-prevalence therapeutic targets and rapid emergence of acquired resistance, novel immuno-oncology kinase targets, and recent medicinal chemistry advances. EXPERT OPINION Due to the to-date frequent failure of protein kinase inhibitors indiscriminately administered to unselected pancreatic cancer patients, there is a shift toward the development of these agents in molecularly defined subgroups which are more likely to respond. The development of accurate biomarkers to select patients who are the best candidates based on a detailed understanding of mechanism of action, pro-survival roles, and mediation of resistance of targeted kinases will be critical for the future development of protein kinase inhibitors in this disease.
Collapse
Affiliation(s)
- Udo Rudloff
- Rare Tumor Initiative, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
7
|
Garmendia I, Redin E, Montuenga LM, Calvo A. YES1: a novel therapeutic target and biomarker in cancer. Mol Cancer Ther 2022; 21:1371-1380. [PMID: 35732509 DOI: 10.1158/1535-7163.mct-21-0958] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
YES1 is a non-receptor tyrosine kinase that belongs to the SRC family of kinases (SFKs) and controls multiple cancer signaling pathways. YES1 is amplified and overexpressed in many tumor types, where it promotes cell proliferation, survival and invasiveness. Therefore, YES1 has been proposed as an emerging target in solid tumors. In addition, studies have shown that YES1 is a prognostic biomarker and a predictor of dasatinib activity. Several SFKs-targeting drugs have been developed and some of them have reached clinical trials. However, these drugs have encountered challenges to their utilization in the clinical practice in unselected patients due to toxicity and lack of efficacy. In the case of YES1, novel specific inhibitors have been developed and tested in preclinical models, with impressive antitumor effects. In this review, we summarize the structure and activation of YES1 and describe its role in cancer as a target and prognostic and companion biomarker. We also address the efficacy of SFKs inhibitors that are currently in clinical trials, highlighting the main hindrances for their clinical use. Current available information strongly suggests that inhibiting YES1 in tumors with high expression of this protein is a promising strategy against cancer.
Collapse
Affiliation(s)
- Irati Garmendia
- INSERM UMRS1138. Centre de Recherche des Cordeliers, Paris, France
| | | | - Luis M Montuenga
- CIMA and Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| | - Alfonso Calvo
- Center for Applied Medical Research (CIMA), Pamplona, Spain
| |
Collapse
|
8
|
Chen B, Zhao X, Zhang J. Extending the two-stage single arm phase II clinical trial design to the delayed response scenario. Pharm Stat 2021; 21:317-326. [PMID: 34585517 DOI: 10.1002/pst.2171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/12/2021] [Accepted: 09/12/2021] [Indexed: 11/10/2022]
Abstract
Two-stage single arm designs are widely used in phase II clinical trials with binary endpoints. The trial may be stopped early due to insufficient positive responses in the first stage. There may be some enrolled subjects who have yet to respond by the end of the first stage, and their data are ignored if the first stage results in rejection of the trial. It is possible that the result after the first stage is rejection by a slim margin, while the results of pipeline subjects are quite positive. In this case, combining the data from the two sources may provide a valuable opportunity to rescue a promising treatment that was mistakenly rejected. We propose a novel double-check design to take advantage of the pipeline subjects' data to establish a rescue criterion based on two-stage design. When the rescue criterion is met, the decision to reject the trial at the end of the first stage can be reversed, allowing the trial to continue. A derivation based on a binomial distribution shows that the double-check strategy can strictly preserve the type I error rate. Further examination shows that the strategy can provide a slight increase in overall power and a substantial increase in conditional power when the proportion of positive response at the end of the first stage is at the margin. The extra rescue opportunity's cost is pretty low, only a slight increasing in the expected sample size.
Collapse
Affiliation(s)
- Bo Chen
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xing Zhao
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Juying Zhang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Ortiz MA, Mikhailova T, Li X, Porter BA, Bah A, Kotula L. Src family kinases, adaptor proteins and the actin cytoskeleton in epithelial-to-mesenchymal transition. Cell Commun Signal 2021; 19:67. [PMID: 34193161 PMCID: PMC8247114 DOI: 10.1186/s12964-021-00750-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Over a century of scientific inquiry since the discovery of v-SRC but still no final judgement on SRC function. However, a significant body of work has defined Src family kinases as key players in tumor progression, invasion and metastasis in human cancer. With the ever-growing evidence supporting the role of epithelial-mesenchymal transition (EMT) in invasion and metastasis, so does our understanding of the role SFKs play in mediating these processes. Here we describe some key mechanisms through which Src family kinases play critical role in epithelial homeostasis and how their function is essential for the propagation of invasive signals. Video abstract.
Collapse
Affiliation(s)
- Maria A. Ortiz
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Tatiana Mikhailova
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Xiang Li
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Baylee A. Porter
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| | - Alaji Bah
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
| | - Leszek Kotula
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, USA
- Department of Urology, SUNY Upstate Medical University, Syracuse, USA
| |
Collapse
|
10
|
Li ZY, Sun XY. Recent progress in SRC targeted therapy for pancreatic cancer. Shijie Huaren Xiaohua Zazhi 2021; 29:621-627. [DOI: 10.11569/wcjd.v29.i12.621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Zi-Yi Li
- Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Xue-Ying Sun
- Hepatosplenic Surgery Center, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| |
Collapse
|
11
|
Wang L, Zheng Y, Li D, Yang J, Lei L, Yan W, Zheng W, Tang M, Shi M, Zhang R, Cai X, Ni H, Ma X, Li N, Hong F, Ye H, Chen L. Design, Synthesis, and Bioactivity Evaluation of Dual-Target Inhibitors of Tubulin and Src Kinase Guided by Crystal Structure. J Med Chem 2021; 64:8127-8141. [PMID: 34081857 DOI: 10.1021/acs.jmedchem.0c01961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Klisyri (KX01) is a dual tubulin/Src protein inhibitor that has shown potential therapeutic effects in several tumor models. However, a phase II clinical trial in patients with bone-metastatic castration-resistant prostate cancer was halted because of lack of efficacy. We previously reported that KX01 binds to the colchicine site of β-tubulin and its morpholine group lies close to α-tubulin's surface. Thus, we hypothesized that enhancing the interaction of KX01 with α-tubulin could increase tubulin inhibition and synthesized a series of KX01 derivatives directed by docking studies. Among these derivatives, 8a exhibited more than 10-fold antiproliferation activity in several tumor cells than KX01 and significantly improved in vivo antitumor effects. The X-ray crystal structure suggested that 8a both bound to the colchicine site and extended into the interior of α-tubulin to form potent interactions, presenting a novel binding mode. A potential clinical candidate for cancer therapy was identified in this study.
Collapse
Affiliation(s)
- Lun Wang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Yunhua Zheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Dan Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Jianhong Yang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lei Lei
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Yan
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Wei Zheng
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Mingsong Shi
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Hengfan Ni
- The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, State Key Laboratory, Breeding Base of Systematic Research Development and Utilization of Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China
| | - Xu Ma
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Na Li
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Feng Hong
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Haoyu Ye
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Lijuan Chen
- State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital of Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
George TJ, Ali A, Wang Y, Lee JH, Ivey AM, DeRemer D, Daily KC, Allegra CJ, Hughes SJ, Fan ZH, Cameron ME, Judge AR, Trevino JG. Phase II Study of 5-Fluorouracil, Oxaliplatin plus Dasatinib (FOLFOX-D) in First-Line Metastatic Pancreatic Adenocarcinoma. Oncologist 2021; 26:825-e1674. [PMID: 34101295 DOI: 10.1002/onco.13853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
LESSONS LEARNED Preclinical studies have demonstrated that Src inhibition through dasatinib synergistically enhances the antitumor effects of oxaliplatin. In this phase II, single-arm study, FOLFOX with dasatinib in previously untreated patients with mPC only showed only modest clinical activity, with a progressive-free survival of 4 months and overall survival of 10.6 months. Continued investigation is ongoing to better understand the role of Src inhibition with concurrent 5-fluorouracil and oxaliplatin in a subset of exceptional responders. BACKGROUND Src tyrosine kinase activity is overexpressed in many human cancers, including metastatic pancreatic cancer (mPC). Dasatinib is a potent inhibitor of Src family of tyrosine kinases. This study was designed to investigate whether dasatinib can synergistically enhance antitumor effects of FOLFOX regimen (FOLFOX-D). METHODS In this single-arm, phase II study, previously untreated patients received dasatinib 150 mg oral daily on days 1-14, oxaliplatin 85 mg/m2 intravenous (IV) on day 1 every 14 days, leucovorin (LV) 400 mg/m2 IV on day 1 every 14 days, 5-fluorouracil (5-FU) bolus 400 mg/m2 on day 1 every 14 days, and 5-FU continuous infusion 2,400 mg/m2 on day 1 every 14 days. Primary endpoint was progression-free survival (PFS) with preplanned comparison to historical controls. RESULTS Forty-four patients enrolled with an estimated median PFS of 4.0 (95% confidence interval [CI], 2.3-8.5) months and overall survival (OS) of 10.6 (95% CI, 6.9-12.7) months. Overall response rate (ORR) was 22.7% (n = 10): one patient (2.3%) with complete response (CR) and nine patients (20.5%) with partial response (PR). Fifteen patients (34.1%) had stable disease (SD). Nausea was the most common adverse event (AE) seen in 35 patients (79.5%). CONCLUSION The addition of dasatinib did not appear to add incremental clinical benefit to FOLFOX in untreated patients with mPC.
Collapse
Affiliation(s)
- Thomas J George
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA.,University of Florida Health Cancer Center, Gainesville, Florida, USA
| | - Azka Ali
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA.,University of Florida Health Cancer Center, Gainesville, Florida, USA
| | - Yu Wang
- Division of Quantitative Sciences, University of Florida Health Cancer Center, Gainesville, Florida, USA
| | - Ji-Hyun Lee
- Department of Biostatistics, University of Florida, Gainesville, Florida, USA.,Division of Quantitative Sciences, University of Florida Health Cancer Center, Gainesville, FL, USA
| | - Alison M Ivey
- University of Florida Health Cancer Center, Gainesville, Florida, USA
| | - David DeRemer
- University of Florida Health Cancer Center, Gainesville, Florida, USA.,Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Karen C Daily
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA.,University of Florida Health Cancer Center, Gainesville, Florida, USA
| | - Carmen J Allegra
- Division of Hematology Oncology, Department of Medicine, University of Florida, Gainesville, Florida, USA.,University of Florida Health Cancer Center, Gainesville, Florida, USA
| | - Steven J Hughes
- Department of Surgery, University of Florida, Gainesville, Florida, USA
| | - Z Hugh Fan
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL, USA
| | - Miles E Cameron
- College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Andrew R Judge
- Department of Physical Therapy, University of Florida, Gainesville, Florida, USA
| | - Jose G Trevino
- Department of Surgery, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
13
|
Src Family Kinases as Therapeutic Targets in Advanced Solid Tumors: What We Have Learned so Far. Cancers (Basel) 2020; 12:cancers12061448. [PMID: 32498343 PMCID: PMC7352436 DOI: 10.3390/cancers12061448] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/17/2022] Open
Abstract
Src is the prototypal member of Src Family tyrosine Kinases (SFKs), a large non-receptor kinase class that controls multiple signaling pathways in animal cells. SFKs activation is necessary for the mitogenic signal from many growth factors, but also for the acquisition of migratory and invasive phenotype. Indeed, oncogenic activation of SFKs has been demonstrated to play an important role in solid cancers; promoting tumor growth and formation of distant metastases. Several drugs targeting SFKs have been developed and tested in preclinical models and many of them have successfully reached clinical use in hematologic cancers. Although in solid tumors SFKs inhibitors have consistently confirmed their ability in blocking cancer cell progression in several experimental models; their utilization in clinical trials has unveiled unexpected complications against an effective utilization in patients. In this review, we summarize basic molecular mechanisms involving SFKs in cancer spreading and metastasization; and discuss preclinical and clinical data highlighting the main challenges for their future application as therapeutic targets in solid cancer progression
Collapse
|
14
|
Matsuda M, Terai K. Experimental pathology by intravital microscopy and genetically encoded fluorescent biosensors. Pathol Int 2020; 70:379-390. [PMID: 32270554 PMCID: PMC7383902 DOI: 10.1111/pin.12925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 01/03/2023]
Abstract
The invention of two‐photon excitation microscopes widens the potential application of intravital microscopy (IVM) to the broad field of experimental pathology. Moreover, the recent development of fluorescent protein‐based, genetically encoded biosensors provides an ideal tool to visualize the cell function in live animals. We start from a brief review of IVM with two‐photon excitation microscopes and genetically encoded biosensors based on the principle of Förster resonance energy transfer (FRET). Then, we describe how IVM using biosensors has revealed the pathogenesis of several disease models.
Collapse
Affiliation(s)
- Michiyuki Matsuda
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Kenta Terai
- Research Center for Dynamic Living Systems, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Castillo L, Young AIJ, Mawson A, Schafranek P, Steinmann AM, Nessem D, Parkin A, Johns A, Chou A, Law AMK, Lucas MC, Murphy KJ, Deng N, Gallego-Ortega D, Caldon CE, Timpson P, Pajic M, Ormandy CJ, Oakes SR. MCL-1 antagonism enhances the anti-invasive effects of dasatinib in pancreatic adenocarcinoma. Oncogene 2020; 39:1821-1829. [PMID: 31735913 PMCID: PMC7033042 DOI: 10.1038/s41388-019-1091-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 11/23/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest malignancies. It is phenotypically heterogeneous with a highly unstable genome and provides few common therapeutic targets. We found that MCL1, Cofilin1 (CFL1) and SRC mRNA were highly expressed by a wide range of these cancers, suggesting that a strategy of dual MCL-1 and SRC inhibition might be efficacious for many patients. Immunohistochemistry revealed that MCL-1 protein was present at high levels in 94.7% of patients in a cohort of PDACs from Australian Pancreatic Genome Initiative (APGI). High MCL1 and Cofilin1 mRNA expression was also strongly predictive of poor outcome in the TCGA dataset and in the APGI cohort. In culture, MCL-1 antagonism reduced the level of the cytoskeletal remodeling protein Cofilin1 and phosphorylated SRC on the active Y416 residue, suggestive of reduced invasive capacity. The MCL-1 antagonist S63845 synergized with the SRC kinase inhibitor dasatinib to reduce cell viability and invasiveness through 3D-organotypic matrices. In preclinical murine models, this combination reduced primary tumor growth and liver metastasis of pancreatic cancer xenografts. These data suggest that MCL-1 antagonism, while reducing cell viability, may have an additional benefit in increasing the antimetastatic efficacy of dasatinib for the treatment of PDAC.
Collapse
Affiliation(s)
- Lesley Castillo
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Adelaide I J Young
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Amanda Mawson
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Pia Schafranek
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Angela M Steinmann
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Danielle Nessem
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Ashleigh Parkin
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Amber Johns
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia
| | - Angela Chou
- University of Sydney, Camperdown, NSW, 2006, Australia
| | - Andrew M K Law
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Morghan C Lucas
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Kendelle J Murphy
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
| | - Niantao Deng
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia
| | - David Gallego-Ortega
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia
| | - Catherine E Caldon
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia
| | - Paul Timpson
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia
| | - Marina Pajic
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia
| | - Christopher J Ormandy
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia
| | - Samantha R Oakes
- Cancer Research Division, Garvan Institute of Medical Research and the Kinghorn Cancer Centre, 384 Victoria Street, Darlinghurst, NSW, 2010, Australia.
- St. Vincent's Clinical School, UNSW Medicine, 384 Victoria Street, Kensington, NSW, 2052, Australia.
| |
Collapse
|
16
|
Sun J, Russell CC, Scarlett CJ, McCluskey A. Small molecule inhibitors in pancreatic cancer. RSC Med Chem 2020; 11:164-183. [PMID: 33479626 PMCID: PMC7433757 DOI: 10.1039/c9md00447e] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Pancreatic cancer (PC), with a 5 year survival of <7%, is one of the most fatal of all human cancers. The highly aggressive and metastatic character of this disease poses a challenge that current therapies are failing, despite significant efforts, to meet. This review examines the current status of the 35 small molecule inhibitors targeting pancreatic cancer in clinical trials and the >50 currently under investigation. These compounds inhibit biological targets spanning protein kinases, STAT3, BET, HDACs and Bcl-2 family proteins. Unsurprisingly, protein kinase inhibitors are overrepresented. Some trials show promise; a phase I combination trial of vorinostat 11 and capecitabine 17 gave a median overall survival (MoS) of 13 months and a phase II study of pazopanib 15 showed a MoS of 25 months. The current standard of care for metastatic pancreatic ductal adenocarcinoma, fluorouracil/folic acid (5-FU, Adrucil®), and gemcitabine (GEMZAR®) afforded a MoS of 23 and 23.6 months (EPAC-3 study), respectively. In patients who can tolerate the FOLFIRINOX regime, this is becoming the standard of treatment with a MoS of 11.1 months. Clinical study progress has been slow with limited improvement in patient survival relative to gemcitabine 1 monotherapy. A major cause of low PC survival is the late stage of diagnosis, occurring in patients who consider typical early stage warning signs of aches and pains normal. The selection of patients with specific disease phenotypes, the use of improved efficient drug combinations, the identification of biomarkers to specific cancer subtypes and more effective designs of investigation have improved outcomes. To move beyond the current dire condition and paucity of PC treatment options, determination of the best regimes and new treatment options is a challenge that must be met. The reasons for poor PC prognosis have remained largely unchanged for 20 years. This is arguably a consequence of significant changes in the drug discovery landscape, and the increasing pressure on academia to deliver short term 'media' friendly short-term news 'bites'. PC research sits at a pivotal point. Perhaps the greatest challenge is enacting a culture change that recognises that major breakthroughs are a result of blue sky, truly innovative and curiosity driven research.
Collapse
Affiliation(s)
- Jufeng Sun
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
- Medicinal Chemistry , School of Pharmacy , Binzhou Medical University , Yantai , 264003 , China
| | - Cecilia C Russell
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
| | - Christopher J Scarlett
- Applied Sciences , School of Environmental & Life Sciences , The University of Newcastle , Ourimbah NSW 2258 , Australia
| | - Adam McCluskey
- Chemistry , School of Environmental & Life Sciences , The University of Newcastle , Newcastle , Callaghan , NSW 2308 , Australia . ; ; Tel: +61 249216486
| |
Collapse
|
17
|
Danson S, Mulvey MR, Turner L, Horsman J, Escott KJ, Coleman RE, Ahmedzai SH, Bennett MI, Andrew D. An exploratory randomized-controlled trial of the efficacy of the Src-kinase inhibitor saracatinib as a novel analgesic for cancer-induced bone pain. J Bone Oncol 2019; 19:100261. [PMID: 31667062 PMCID: PMC6812043 DOI: 10.1016/j.jbo.2019.100261] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 09/13/2019] [Accepted: 09/17/2019] [Indexed: 02/04/2023] Open
Abstract
Pain is a major symptom of bone metastases from advanced cancer and represents a clinical challenge to treat effectively. Basic neurobiology in preclinical animal models implicates enhanced sensory processing in the central nervous system, acting through N-methyl-D-aspartate (NMDA) glutamate receptors, as an important mechanism underpinning persistent pain. The non-receptor tyrosine kinase Src is thought to act as a hub for regulating NMDA receptor activity and the orally available Src inhibitor saracatinib has shown promise as a potential analgesic in recent animal studies. Here we tested the efficacy of saracatinib as a novel analgesic in an exploratory phase II randomized controlled trial on cancer patients with painful bone metastases. Twelve patients completed the study, with 6 receiving saracatinib 125 mg/day for 28 days and 6 receiving placebo. Pharmacokinetic measurements confirmed appropriate plasma levels of drug in the saracatinib-treated group and Src inhibition was achieved clinically by a significant reduction in the bone resorption biomarker serum cross-linked C-terminal telopeptide of type I collagen. Differences between the saracatinib and placebo groups self-reported pain scores, measured using the short form of the Brief Pain Inventory, were not clinically significant after 4 weeks of treatment. There was also no change in consumption of maintenance analgesia in the saracatinib-treated group and no improvement in Quality-of-Life scores. The data were insufficient to demonstrate saracatinib has efficacy as analgesic, although it may have a role as an anti-bone resorptive agent.
Collapse
Affiliation(s)
- Sarah Danson
- Academic Unit of Clinical Oncology, Sheffield Experimental Cancer Medicine Centre, Weston Park Hospital, University of Sheffield, UK
| | - Matthew R Mulvey
- Academic Unit of Palliative Care, Leeds Institute of Health Sciences, University of Leeds, UK
| | - Lesley Turner
- Academic Unit of Clinical Oncology, Sheffield Experimental Cancer Medicine Centre, Weston Park Hospital, University of Sheffield, UK
| | - Janet Horsman
- Academic Unit of Clinical Oncology, Sheffield Experimental Cancer Medicine Centre, Weston Park Hospital, University of Sheffield, UK
| | - KJane Escott
- Emerging Innovations Unit, BioPharmaceuticals R & D, AstraZeneca, Cambridge, UK
| | - Robert E Coleman
- Academic Unit of Clinical Oncology, Sheffield Experimental Cancer Medicine Centre, Weston Park Hospital, University of Sheffield, UK
| | | | - Michael I Bennett
- Academic Unit of Palliative Care, Leeds Institute of Health Sciences, University of Leeds, UK
| | - David Andrew
- School of Clinical Dentistry, University of Sheffield, UK
| |
Collapse
|
18
|
Parkin A, Man J, Timpson P, Pajic M. Targeting the complexity of Src signalling in the tumour microenvironment of pancreatic cancer: from mechanism to therapy. FEBS J 2019; 286:3510-3539. [PMID: 31330086 PMCID: PMC6771888 DOI: 10.1111/febs.15011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/26/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer, a disease with extremely poor prognosis, has been notoriously resistant to virtually all forms of treatment. The dynamic crosstalk that occurs between tumour cells and the surrounding stroma, frequently mediated by intricate Src/FAK signalling, is increasingly recognised as a key player in pancreatic tumourigenesis, disease progression and therapeutic resistance. These important cues are fundamental for defining the invasive potential of pancreatic tumours, and several components of the Src and downstream effector signalling have been proposed as potent anticancer therapeutic targets. Consequently, numerous agents that block this complex network are being extensively investigated as potential antiinvasive and antimetastatic therapeutic agents for this disease. In this review, we will discuss the latest evidence of Src signalling in PDAC progression, fibrotic response and resistance to therapy. We will examine future opportunities for the development and implementation of more effective combination regimens, targeting key components of the oncogenic Src signalling axis, and in the context of a precision medicine-guided approach.
Collapse
Affiliation(s)
- Ashleigh Parkin
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Jennifer Man
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
| | - Paul Timpson
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| | - Marina Pajic
- The Kinghorn Cancer CentreThe Garvan Institute of Medical ResearchSydneyAustralia
- Faculty of MedicineSt Vincent's Clinical SchoolUniversity of NSWSydneyAustralia
| |
Collapse
|
19
|
Lakkakula BVKS, Farran B, Lakkakula S, Peela S, Yarla NS, Bramhachari PV, Kamal MA, Saddala MS, Nagaraju GP. Small molecule tyrosine kinase inhibitors and pancreatic cancer-Trials and troubles. Semin Cancer Biol 2019; 56:149-167. [PMID: 30314681 DOI: 10.1016/j.semcancer.2018.09.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/18/2018] [Accepted: 09/29/2018] [Indexed: 12/20/2022]
Abstract
Pancreatic cancer (PC) is an aggressive carcinoma and the fourth cause of cancer deaths in Western countries. Although surgery is the most effective therapeutic option for PC, the management of unresectable, locally advanced disease is highly challenging. Our improved understanding of pancreatic tumor biology and associated pathways has led to the development of various treatment modalities that can control the metastatic spread of PC. This review intends to present trials of small molecule tyrosine kinase inhibitors (TKIs) in PC management and the troubles encountered due to inevitable acquired resistance to TKIs.
Collapse
Affiliation(s)
| | - Batoul Farran
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA
| | - Saikrishna Lakkakula
- Department of Zoology, Visvodaya Government Degree College, Venkatagiri, AP-524132, India
| | - Sujatha Peela
- Department of Biotechnology, Dr.B.R.Ambedkar University, Srikakulam, Andhra Pradesh, India
| | - Nagendra Sastry Yarla
- Dr. LV Prasad Diagnostics and Research Laboratory, Khairtabad, Hyderabad, AP- 500004, India
| | | | - Mohammad Amjad Kamal
- King Fahd Medical Research Center, King Abdulaziz University, P. O. Box 80216, Jeddah 21589, Saudi Arabia; Enzymoics, 7 Peterlee Place, Hebersham, NSW 2770, Australia; Novel Global Community Educational Foundation, Australia
| | | | - Ganji Purnachandra Nagaraju
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA-30322, USA.
| |
Collapse
|
20
|
Mettu NB, Niedzwiecki D, Rushing C, Nixon AB, Jia J, Haley S, Honeycutt W, Hurwitz H, Bendell JC, Uronis H. A phase I study of gemcitabine + dasatinib (gd) or gemcitabine + dasatinib + cetuximab (GDC) in refractory solid tumors. Cancer Chemother Pharmacol 2019; 83:1025-1035. [PMID: 30895346 DOI: 10.1007/s00280-019-03805-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/22/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE This study was conducted to define the maximum tolerated dose (MTD), recommended phase two dose (RPTD), and toxicities of gemcitabine + dasatinib (GD) and gemcitabine + dasatinib + cetuximab (GDC) in advanced solid tumor patients. METHODS This study was a standard phase I 3 + 3 dose escalation study evaluating two combination regimens, GD and GDC. Patients with advanced solid tumors were enrolled in cohorts of 3-6 to either GD or GDC. Gemcitabine was dosed at 1000 mg/m2 weekly for 3 of 4 weeks, dasatinib was dosed in mg PO BID, and cetuximab was dosed at 250 mg/m2 weekly after a loading dose of cetuximab of 400 mg/m2. There were two dose levels for dasatinib: (1) gemcitabine + dasatinib 50 mg ± cetuximab, and (2) gemcitabine + dasatinib 70 mg ± cetuximab. Cycle length was 28 days. Standard cycle 1 dose-limiting toxicity (DLT) definitions were used. Eligible patients had advanced solid tumors, adequate organ and marrow function, and no co-morbidities that would increase the risk of toxicity. Serum, plasma, and skin biopsy biomarkers were obtained pre- and on-treatment. RESULTS Twenty-five patients were enrolled, including 21 with pancreatic adenocarcinoma. Three patients received prior gemcitabine. Twenty-one patients were evaluable for toxicity and 16 for response. Four DLTs were observed: Grade (Gr) 3 neutropenia (GDC1, n = 1), Gr 3 ALT (GD2, n = 2), and Gr 5 pneumonitis (GDC2, n = 1). Possible treatment-emergent adverse events (TEAEs) in later cycles included: Gr 3-4 neutropenia (n = 7), Gr 4 colitis (n = 1), Gr 3 bilirubin (n = 2), Gr 3 anemia (n = 2), Gr 3 thrombocytopenia (n = 2), Gr 3 edema/fluid retention (n = 1), and Gr 3 vomiting (n = 3). Six of 16 patients (3 of whom were gemcitabine-refractory) had stable disease (SD) as best response, median duration = 5 months (range 1-7). One gemcitabine-refractory patient had a partial response (PR). Median PFS was 2.9 months (95% CI 2.1, 5.8). Median OS was 5.8 months (95% CI 4.1, 11.8). Dermal wound biopsies demonstrated that dasatinib resulted in a decrease of total and phospho-Src levels, and cetuximab resulted in a decrease of EGFR and ERBB2 levels. CONCLUSIONS The MTD/RPTD of GD is gemcitabine 1000 mg/m2 weekly for 3 of 4 weeks and dasatinib 50 mg PO BID. The clinical activity of GD seen in this study was modest, and does not support its further investigation in pancreatic cancer.
Collapse
Affiliation(s)
- Niharika B Mettu
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA.
| | - Donna Niedzwiecki
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA
| | - Christel Rushing
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA
| | - Andrew B Nixon
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA
| | - Jingquan Jia
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA
| | - Sherri Haley
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA
| | - Wanda Honeycutt
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA
| | | | | | - Hope Uronis
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3505, Durham, NC, 27710, USA
| |
Collapse
|
21
|
Ahn K, O YM, Ji YG, Cho HJ, Lee DH. Synergistic Anti-Cancer Effects of AKT and SRC Inhibition in Human Pancreatic Cancer Cells. Yonsei Med J 2018; 59:727-735. [PMID: 29978609 PMCID: PMC6037593 DOI: 10.3349/ymj.2018.59.6.727] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 05/27/2018] [Accepted: 06/07/2018] [Indexed: 01/01/2023] Open
Abstract
PURPOSE To investigate the effect of combined inhibition of protein kinase B (AKT) and SRC on the growth and metastatic potential of human pancreatic cancer cells. MATERIALS AND METHODS AKT and SRC were inhibited using 10-DEBC and PP2, respectively. The expression of their messenger RNAs were down-regulated by specific small interfering RNA (siRNA). Changes in pancreatic cancer cell growth and metastatic potential were determined using a cell viability assay and a xenotransplant model of pancreatic cancer, as well as cell migration and invasion assays. Signal proteins were analyzed by Western blot. RESULTS The inhibitors 10-DEBC and PP2 suppressed cell proliferation in a dose-dependent fashion in pancreatic cancer cell lines MIA PaCa-2 and PANC-1. The simultaneous inhibition of AKT and SRC at low concentrations resulted in a significant suppression of cell proliferation. Knockdown of AKT2 and SRC using siRNAs also significantly decreased cell proliferation. In a pancreatic cancer model, combined treatment with 10-DEBC and PP2 also significantly suppressed the growth of pancreatic cancer. Application of 10-DEBC with PP2 significantly reduced the metastatic potential of pancreatic cancer cells by inhibiting migration and invasion. The combined inhibition suppressed the phosphorylation of mTOR and ERK in pancreatic cancer cells. CONCLUSION Combined targeting of AKT and SRC resulted in a synergistic efficacy against human pancreatic cancer growth and metastasis.
Collapse
Affiliation(s)
- Kang Ahn
- Department of Physiology, School of Medicine, CHA University, Seongnam, Korea
| | - Young Moon O
- Department of Physiology, School of Medicine, CHA University, Seongnam, Korea
| | - Young Geon Ji
- Department of Preventive Medicine, School of Medicine, CHA University, Seongnam, Korea
| | - Han Jun Cho
- Department of Physiology, School of Medicine, CHA University, Seongnam, Korea
| | - Dong Hyeon Lee
- Department of Physiology, School of Medicine, CHA University, Seongnam, Korea.
| |
Collapse
|
22
|
Young AI, Timpson P, Gallego-Ortega D, Ormandy CJ, Oakes SR. Myeloid cell leukemia 1 (MCL-1), an unexpected modulator of protein kinase signaling during invasion. Cell Adh Migr 2017; 12:513-523. [PMID: 29166822 PMCID: PMC6363037 DOI: 10.1080/19336918.2017.1393591] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Myeloid cell leukemia-1 (MCL-1), closely related to B-cell lymphoma 2 (BCL-2), has a well-established role in cell survival and has emerged as an important target for cancer therapeutics. We have demonstrated that inhibiting MCL-1 is efficacious in suppressing tumour progression in pre-clinical models of breast cancer and revealed that in addition to its role in cell survival, MCL-1 modulated cellular invasion. Utilizing a MCL-1-specific genetic antagonist, we found two possible mechanisms; firstly MCL-1 directly binds to and alters the phosphorylation of the cytoskeletal remodeling protein, Cofilin, a protein important for cytoskeletal remodeling during invasion, and secondly MCL-1 modulates the levels SRC family kinases (SFKs) and their targets. These data provide evidence that MCL-1 activities are not limited to endpoints of extracellular and intracellular signaling culminating in cell survival as previously thought, but can directly modulate the output of SRC family kinases signaling during cellular invasion. Here we review the pleotropic roles of MCL-1 and discuss the implications of this newly discovered effect on protein kinase signaling for the development of cancer therapeutics.
Collapse
Affiliation(s)
- Adelaide Ij Young
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia
| | - Paul Timpson
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia.,b St. Vincent's Clinical School, UNSW Medicine , Victoria Street, Darlinghurst , NSW , Australia
| | - David Gallego-Ortega
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia.,b St. Vincent's Clinical School, UNSW Medicine , Victoria Street, Darlinghurst , NSW , Australia
| | - Christopher J Ormandy
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia.,b St. Vincent's Clinical School, UNSW Medicine , Victoria Street, Darlinghurst , NSW , Australia
| | - Samantha R Oakes
- a Cancer Research Division , Garvan Institute of Medical Research and the Kinghorn Cancer Centre , 384 Victoria Street, Darlinghurst , NSW , Australia.,b St. Vincent's Clinical School, UNSW Medicine , Victoria Street, Darlinghurst , NSW , Australia
| |
Collapse
|
23
|
Giovannetti E, van der Borden CL, Frampton AE, Ali A, Firuzi O, Peters GJ. Never let it go: Stopping key mechanisms underlying metastasis to fight pancreatic cancer. Semin Cancer Biol 2017; 44:43-59. [PMID: 28438662 DOI: 10.1016/j.semcancer.2017.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 04/12/2017] [Accepted: 04/18/2017] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive neoplasm, predicted to become the second leading cause of cancer-related deaths before 2030. This dismal trend is mainly due to lack of effective treatments against its metastatic behavior. Therefore, a better understanding of the key mechanisms underlying metastasis should provide new opportunities for therapeutic purposes. Genomic analyses revealed that aberrations that fuel PDAC tumorigenesis and progression, such as SMAD4 loss, are also implicated in metastasis. Recently, microRNAs have been shown to play a regulatory role in the metastatic behavior of many tumors, including PDAC. In particular, miR-10 and miR-21 have appeared as master regulators of the metastatic program, while members of the miR-200 family are involved in the epithelial-to-mesenchymal switch, favoring cell migration and invasiveness. Several studies have also found a close relationship between cancer stem cells (CSCs) and biological features of metastasis, and the CSC markers ALDH1, ABCG2 and c-Met are expressed at high levels in metastatic PDAC cells. Emerging evidence reveals that exosomes are involved in the modulation of the tumor microenvironment and can initiate PDAC pre-metastatic niche formation in the liver and lungs. In this review, we provide an overview of the role of all these pivotal factors in the metastatic behavior of PDAC, and discuss their potential exploitation in the clinic to improve current therapeutics and identify new drug targets.
Collapse
Affiliation(s)
- E Giovannetti
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Cancer Pharmacology Lab, AIRC Start Up Unit, University of Pisa, Pisa, Italy
| | - C L van der Borden
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - A E Frampton
- HPB Surgical Unit, Dept. of Surgery & Cancer, Imperial College, Hammersmith Hospital Campus, London, UK
| | - A Ali
- Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, KP, Pakistan; Institute of Cancer Sciences, University of Glasgow, UK
| | - O Firuzi
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands; Medicinal and Natural Products Chemistry Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - G J Peters
- Lab Medical Oncology, Dept. Medical Oncology, VU University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Lee SH, Park SW. [Inflammation and Cancer Development in Pancreatic and Biliary Tract Cancer]. THE KOREAN JOURNAL OF GASTROENTEROLOGY 2016; 66:325-39. [PMID: 26691190 DOI: 10.4166/kjg.2015.66.6.325] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Chronic inflammation has been known to be a risk for many kinds of cancers, including pancreatic and biliary tract cancer. Recently, inflammatory process has emerged as a key mediator of cancer development and progression. Many efforts with experimental results have been given to identify the underlying mechanisms that contribute to inflammation-induced tumorigenesis. Diverse inflammatory pathways have been investigated and inhibitors for inflammation-related signaling pathways have been developed for cancer treatment. This review will summarize recent outcomes about this distinctive process in pancreatic and biliary tract cancer. Taking this evidence into consideration, modulation of inflammatory process will provide useful options for pancreatic and biliary tract cancer treatment.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Pancreatobiliary Cancer Center, Yonsei Cancer Hospital, Seoul, Korea
| | - Seung Woo Park
- Department of Internal Medicine, Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.,Pancreatobiliary Cancer Center, Yonsei Cancer Hospital, Seoul, Korea
| |
Collapse
|
25
|
Tzou YM, Bailey SK, Yuan K, Shin R, Zhang W, Chen Y, Singh RK, Shevde LA, Krishna NR. Identification of initial leads directed at the calmodulin-binding region on the Src-SH2 domain that exhibit anti-proliferation activity against pancreatic cancer. Bioorg Med Chem Lett 2016; 26:1237-44. [PMID: 26803204 PMCID: PMC4747798 DOI: 10.1016/j.bmcl.2016.01.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023]
Abstract
Cellular calmodulin binds to the SH2 domain of Src kinase, and upon Fas activation it recruits Src into the death-inducing signaling complex. This results in Src-ERK activation of cell survival pathway through which pancreatic cancer cells survive and proliferate. We had proposed that the inhibition of the interaction of calmodulin with Src-SH2 domain is an attractive strategy to inhibit the proliferation of pancreatic cancer. Thus we have performed screening of compound libraries by a combination of methods and identified some compounds (initial leads) that target the calmodulin-binding region on the SH2 domain and inhibit the proliferation of pancreatic cancer cells in in vitro assays. Most of these compounds also exhibited varying degrees of cytotoxicity when tested against immortalized breast epithelial cell line (MCF10A). These initial leads are likely candidates for development in targeted delivery of compounds to cancer cells without affecting normal cells.
Collapse
Affiliation(s)
- Ywh-Min Tzou
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Sarah K Bailey
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Kaiyu Yuan
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Ronald Shin
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Wei Zhang
- Southern Research, Birmingham, AL 35205, United States
| | - Yabing Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Raj K Singh
- Vivo Biosciences, Inc., 1601 12th Ave South, Birmingham, AL 35205, United States
| | - Lalita A Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - N Rama Krishna
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, United States; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
26
|
Akinleye A, Iragavarapu C, Furqan M, Cang S, Liu D. Novel agents for advanced pancreatic cancer. Oncotarget 2015; 6:39521-37. [PMID: 26369833 PMCID: PMC4741843 DOI: 10.18632/oncotarget.3999] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/20/2015] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer is relatively insensitive to conventional chemotherapy. Therefore, novel agents targeting dysregulated pathways (MAPK/ERK, EGFR, TGF-β, HEDGEHOG, NOTCH, IGF, PARP, PI3K/AKT, RAS, and Src) are being explored in clinical trials as monotherapy or in combination with cytotoxic chemotherapy. This review summarizes the most recent advances with the targeted therapies in the treatment of patients with advanced pancreatic cancer.
Collapse
Affiliation(s)
- Akintunde Akinleye
- Division of Hematology/Oncology, Department of Medicine, New York Medical College, Valhalla, New York, United States
| | - Chaitanya Iragavarapu
- Division of Hematology/Oncology, Department of Medicine, New York Medical College, Valhalla, New York, United States
| | - Muhammad Furqan
- Division of Hematology/Oncology, Department of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Shundong Cang
- Department of Oncology, Henan Province People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Delong Liu
- Department of Oncology, Henan Cancer Hospital and the Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
27
|
Mohammed A, Janakiram NB, Pant S, Rao CV. Molecular Targeted Intervention for Pancreatic Cancer. Cancers (Basel) 2015; 7:1499-542. [PMID: 26266422 PMCID: PMC4586783 DOI: 10.3390/cancers7030850] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 07/24/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PC) remains one of the worst cancers, with almost uniform lethality. PC risk is associated with westernized diet, tobacco, alcohol, obesity, chronic pancreatitis, and family history of pancreatic cancer. New targeted agents and the use of various therapeutic combinations have yet to provide adequate treatments for patients with advanced cancer. To design better preventive and/or treatment strategies against PC, knowledge of PC pathogenesis at the molecular level is vital. With the advent of genetically modified animals, significant advances have been made in understanding the molecular biology and pathogenesis of PC. Currently, several clinical trials and preclinical evaluations are underway to investigate novel agents that target signaling defects in PC. An important consideration in evaluating novel drugs is determining whether an agent can reach the target in concentrations effective to treat the disease. Recently, we have reported evidence for chemoprevention of PC. Here, we provide a comprehensive review of current updates on molecularly targeted interventions, as well as dietary, phytochemical, immunoregulatory, and microenvironment-based approaches for the development of novel therapeutic and preventive regimens. Special attention is given to prevention and treatment in preclinical genetically engineered mouse studies and human clinical studies.
Collapse
Affiliation(s)
- Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Shubham Pant
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| | - Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.
| |
Collapse
|
28
|
Reddy SM, Kopetz S, Morris J, Parikh N, Qiao W, Overman MJ, Fogelman D, Shureiqi I, Jacobs C, Malik Z, Jimenez CA, Wolff RA, Abbruzzese JL, Gallick G, Eng C. Phase II study of saracatinib (AZD0530) in patients with previously treated metastatic colorectal cancer. Invest New Drugs 2015; 33:977-84. [PMID: 26062928 DOI: 10.1007/s10637-015-0257-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/02/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND Src has a critical role in tumor cell migration and invasion. Increased Src activity has been shown to correlate with disease progression and poor prognosis, suggesting Src could serve as a therapeutic target for kinase inhibition. Saracatinib (AZD0530) is a novel selective oral Src kinase inhibitor. METHODS Metastatic colorectal cancer patients who had received one prior treatment and had measurable disease were enrolled in this phase 2 study. Saracatinib was administered at 175 mg by mouth daily for 28 day cycles until dose-limiting toxicity or progression as determined by staging every 2 cycles. The primary endpoint was improvement in 4 month progression-free survival. Design of Thall, Simon, and Estey was used to monitor proportion of patients that were progression free at 4 months. The trial was opened with plan to enroll maximum of 35 patients, with futility assessment every 10 patients. RESULTS A total of 10 patients were enrolled between January and November 2007. Further enrollment was stopped due to futility. Median progression-free survival was 7.9 weeks, with all 10 patients showing disease progression following radiographic imaging. Median overall survival was 13.5 months. All patients were deceased by time of analysis. Observed adverse events were notable for a higher than expected number of patients with grade 3 hypophosphatemia (n = 5). CONCLUSION Saracatinib is a novel oral Src kinase inhibitor that was well tolerated but failed to meet its primary endpoint of improvement in 4 month progression-free survival as a single agent in previously treated metastatic colorectal cancer patients.
Collapse
Affiliation(s)
- S M Reddy
- Hematology-Oncology Fellow, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 463, Houston, TX, 77030, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kim EJ, Semrad TJ, Bold RJ. Phase II clinical trials on investigational drugs for the treatment of pancreatic cancers. Expert Opin Investig Drugs 2015; 24:781-94. [PMID: 25809274 PMCID: PMC4684166 DOI: 10.1517/13543784.2015.1026963] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Despite some recent advances in treatment options, pancreatic cancer remains a devastating disease with poor outcomes. In a trend contrary to most malignancies, both incidence and mortality continue to rise due to pancreatic cancer. The majority of patients present with advanced disease and there are no treatment options for this stage that have demonstrated a median survival > 1 year. As the penultimate step prior to Phase III studies involving hundreds of patients, Phase II clinical trials provide an early opportunity to evaluate the efficacy of new treatments that are desperately needed for this disease. AREAS COVERED This review covers the results of published Phase II clinical trials in advanced pancreatic adenocarcinoma published within the past 5 years. The treatment results are framed in the context of the current standards of care and the historic challenge of predicting Phase III success from Phase II trial results. EXPERT OPINION Promising therapies remain elusive in pancreatic cancer based on recent Phase II clinical trial results. Optimization and standardization of clinical trial design in the Phase II setting, with consistent incorporation of biomarkers, is needed to more accurately identify promising therapies that warrant Phase III evaluation.
Collapse
Affiliation(s)
- Edward J. Kim
- Division of Hematology and Oncology, UC Davis Cancer Center, Sacramento, CA 95817, USA
| | - Thomas J. Semrad
- Division of Hematology and Oncology, UC Davis Cancer Center, Sacramento, CA 95817, USA
| | - Richard J. Bold
- Division of Surgical Oncology, UC Davis Cancer Center, Sacramento, CA 95817, USA
| |
Collapse
|
30
|
Kaufman AC, Salazar SV, Haas LT, Yang J, Kostylev MA, Jeng AT, Robinson SA, Gunther EC, van Dyck CH, Nygaard HB, Strittmatter SM. Fyn inhibition rescues established memory and synapse loss in Alzheimer mice. Ann Neurol 2015; 77:953-71. [PMID: 25707991 PMCID: PMC4447598 DOI: 10.1002/ana.24394] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/18/2015] [Accepted: 02/19/2015] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Currently no effective disease-modifying agents exist for the treatment of Alzheimer disease (AD). The Fyn tyrosine kinase is implicated in AD pathology triggered by amyloid-ß oligomers (Aßo) and propagated by Tau. Thus, Fyn inhibition may prevent or delay disease progression. Here, we sought to repurpose the Src family kinase inhibitor oncology compound, AZD0530, for AD. METHODS The pharmacokinetics and distribution of AZD0530 were evaluated in mice. Inhibition of Aßo signaling to Fyn, Pyk2, and Glu receptors by AZD0530 was tested by brain slice assays. After AZD0530 or vehicle treatment of wild-type and AD transgenic mice, memory was assessed by Morris water maze and novel object recognition. For these cohorts, amyloid precursor protein (APP) metabolism, synaptic markers (SV2 and PSD-95), and targets of Fyn (Pyk2 and Tau) were studied by immunohistochemistry and by immunoblotting. RESULTS AZD0530 potently inhibits Fyn and prevents both Aßo-induced Fyn signaling and downstream phosphorylation of the AD risk gene product Pyk2, and of NR2B Glu receptors in brain slices. After 4 weeks of treatment, AZD0530 dosing of APP/PS1 transgenic mice fully rescues spatial memory deficits and synaptic depletion, without altering APP or Aß metabolism. AZD0530 treatment also reduces microglial activation in APP/PS1 mice, and rescues Tau phosphorylation and deposition abnormalities in APP/PS1/Tau transgenic mice. There is no evidence of AZD0530 chronic toxicity. INTERPRETATION Targeting Fyn can reverse memory deficits found in AD mouse models, and rescue synapse density loss characteristic of the disease. Thus, AZD0530 is a promising candidate to test as a potential therapy for AD.
Collapse
Affiliation(s)
- Adam C. Kaufman
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
| | - Santiago V. Salazar
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
| | - Laura T. Haas
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
| | - Jinhee Yang
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
| | - Mikhail A. Kostylev
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
| | - Amanda T. Jeng
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
| | - Sophie A. Robinson
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
| | - Erik C. Gunther
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | | | - Haakon B. Nygaard
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Stephen M. Strittmatter
- Cellular Neuroscience, Neurodegeneration & Repair, Yale University School of Medicine, New Haven, CT USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
31
|
Che P, Yang Y, Han X, Hu M, Sellers JC, Londono-Joshi AI, Cai GQ, Buchsbaum DJ, Christein JD, Tang Q, Chen D, Li Q, Grizzle WE, Lu YY, Ding Q. S100A4 promotes pancreatic cancer progression through a dual signaling pathway mediated by Src and focal adhesion kinase. Sci Rep 2015; 5:8453. [PMID: 25677816 PMCID: PMC4326725 DOI: 10.1038/srep08453] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 01/15/2015] [Indexed: 12/21/2022] Open
Abstract
S100A4 expression is associated with poor clinical outcomes of patients with pancreatic cancer. The effects of loss or gain of S100A4 were examined in pancreatic cancer cell lines. S100A4 downregulation remarkably reduces cell migration and invasion, inhibits proliferation, and induces apoptosis in pancreatic tumor cells. S100A4 downregulation results in significant cell growth inhibition and apoptosis in response to TGF-β1, supporting a non-canonical role of S100A4 in pancreatic cancer. The role of S100A4 in tumor progression was studied by using an orthotopic human pancreatic cancer xenograft mouse model. Tumor mass is remarkably decreased in animals injected with S100A4-deficient pancreatic tumor cells. P27Kip1 expression and cleaved caspase-3 are increased, while cyclin E expression is decreased, in S100A4-deficient pancreatic tumors in vivo. S100A4-deficient tumors have lower expression of vascular endothelial growth factor, suggesting reduced angiogenesis. Biochemical assays revealed that S100A4 activates Src and focal adhesion kinase (FAK) signaling events, and inhibition of both kinases is required to maximally block the tumorigenic potential of pancreatic cancer cells. These findings support that S100A4 plays an important role in pancreatic cancer progression in vivo and S100A4 promotes tumorigenic phenotypes of pancreatic cancer cells through the Src-FAK mediated dual signaling pathway.
Collapse
Affiliation(s)
- Pulin Che
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Youfeng Yang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Xiaosi Han
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Meng Hu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jeffery C Sellers
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Guo-Qiang Cai
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - John D Christein
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Dongquan Chen
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Qianjun Li
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yin Ying Lu
- Center of Therapeutic Research for Hepatocellular Carcinoma, 302 hospital, Beijing, China
| | - Qiang Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
32
|
Wu W, Wang Y, Xu Y, Liu Y, Wang Y, Zhang H. Dysregulated activation of c-Src in gestational trophoblastic disease contributes to its aggressive progression. Placenta 2014; 35:824-30. [PMID: 25108485 DOI: 10.1016/j.placenta.2014.07.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/13/2014] [Accepted: 07/23/2014] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Gestational trophoblastic disease (GTD) is a heterogeneous group of pregnancy-related disorders. Hydatidiform mole (HM) is the most common type of GTD, whereas gestational choriocarcinoma is the most aggressive. Non-receptor tyrosine kinase c-Src contributes to the transformation to a malignant phenotype in various cancers. However, the role of c-Src in the pathogenesis of GTD remains largely unknown. METHODS The expression level of phosphorylated c-Src was determined by immunohistochemistry and Western blotting assay. JAR and JEG-3 cells were treated with hCG, specific c-Src inhibitor saracatinib and PP2, and PKA specific inhibitor, PKI. Cell growth rate and cell migration/invasion ability was determined by cell proliferation and transwell assays respectively. RESULTS c-Src was highly activated in HM tissues and choriocarcinoma cells (JAR and JEG-3). c-Src was activated by hCG in a time and concentration-dependent manner, which was abrogated by specific c-Src and PKA inhibitors. Inhibition of c-Src activity in JAR and JEG-3 cells by saracatinib leaded to a decrease in the rate of cell growth and cell migration/invasion ability. Furthermore, inhibition of c-Src phosphorylation induced cell cycle arrest and reduced expressions of cyclin A2, cyclin B1, cyclin E1, FOXD3 and NANOG. Moreover, inhibition of c-Src activity resulted in decreased p-FAK(Tyr397) phosphorylation. DISCUSSION AND CONCLUSION Our findings indicate an important role of c-Src in the pathogenesis of GTD, and we propose that c-Src inhibitors are potential adjuvant chemotherapeutic drugs for the treatment of GTD.
Collapse
Affiliation(s)
- W Wu
- Departments of Pathology and Bio-Bank, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Y Wang
- Departments of Pathology and Bio-Bank, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Y Xu
- Departments of Pathology and Bio-Bank, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Y Liu
- Departments of Pathology and Bio-Bank, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Y Wang
- Department of Obstetrics and Gynecology, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - H Zhang
- Departments of Pathology and Bio-Bank, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai 200030, China.
| |
Collapse
|
33
|
Arslan C, Yalcin S. Current and future systemic treatment options in metastatic pancreatic cancer. J Gastrointest Oncol 2014; 5:280-95. [PMID: 25083302 PMCID: PMC4110498 DOI: 10.3978/j.issn.2078-6891.2014.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/12/2014] [Indexed: 12/13/2022] Open
Abstract
Although pancreatic adenocarcinoma is the fourth leading cause of cancer death, only modest improvement has been observed in the past two decades, single agent gemcitabine has been the only standard treatment in patients with advanced disease. Recently newer agents such as nab-paclitaxel, nimotuzumab and regimens such as FOLFIRINOX have been shown to have promising activity being superior to gemcitabine as a single agent. With better understanding of tumour biology coupled with the improvements in targeted and immunotherapies, there is increasing expectation for better response rates and extended survival in pancreatic cancer.
Collapse
|
34
|
Nygaard HB, van Dyck CH, Strittmatter SM. Fyn kinase inhibition as a novel therapy for Alzheimer's disease. ALZHEIMERS RESEARCH & THERAPY 2014; 6:8. [PMID: 24495408 PMCID: PMC3978417 DOI: 10.1186/alzrt238] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disorder, afflicting more than one-third of people over the age of 85. While many therapies for AD are in late-stage clinical testing, rational drug design based on distinct signaling pathways in this disorder is only now emerging. Here we review the putative signaling pathway of amyloid-beta (Aβ), by which the tyrosine kinase Fyn is activated via cell surface binding of Aβ oligomers to cellular prion protein. Several lines of evidence implicate Fyn in the pathogenesis of AD, and its interaction with both Aβ and Tau renders Fyn a unique therapeutic target that addresses both of the major pathologic hallmarks of AD. We are currently enrolling patients in a phase Ib study of saracatinib (AZD0530), a small molecule inhibitor with high potency for Src and Fyn, for the treatment of AD. The results of this trial and a planned phase IIa multisite study will provide important data regarding the potential for this therapeutic strategy in AD.
Collapse
Affiliation(s)
- Haakon B Nygaard
- Department of Neurology, Yale University School of Medicine, PO Box 208018, New Haven, CT 06520, USA ; Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 295 Congress Avenue, BCMM 436, New Haven, CT 06536, USA
| | - Christopher H van Dyck
- Alzheimer's Disease Research Unit, Yale University School of Medicine, 1 Church Street, Suite 600, New Haven, CT 06510, USA ; Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven, CT 06511, USA
| | - Stephen M Strittmatter
- Department of Neurology, Yale University School of Medicine, PO Box 208018, New Haven, CT 06520, USA ; Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, 295 Congress Avenue, BCMM 436, New Haven, CT 06536, USA
| |
Collapse
|
35
|
Mestroni L, Nguyen DT. Inhibition of proto-oncogene c-Src tyrosine kinase: toward a new antiarrhythmic strategy? J Am Coll Cardiol 2014; 63:935-7. [PMID: 24412447 DOI: 10.1016/j.jacc.2013.10.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 10/08/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Luisa Mestroni
- Division of Cardiology, University of Colorado AMC, Aurora, Colorado.
| | - Duy Thai Nguyen
- Division of Cardiology, University of Colorado AMC, Aurora, Colorado
| |
Collapse
|
36
|
Wong MS, Sidik SM, Mahmud R, Stanslas J. Molecular targets in the discovery and development of novel antimetastatic agents: current progress and future prospects. Clin Exp Pharmacol Physiol 2013; 40:307-19. [PMID: 23534409 DOI: 10.1111/1440-1681.12083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 03/18/2013] [Accepted: 03/21/2013] [Indexed: 01/08/2023]
Abstract
Tumour invasion and metastasis have been recognized as major causal factors in the morbidity and mortality among cancer patients. Many advances in the knowledge of cancer metastasis have yielded an impressive array of attractive drug targets, including enzymes, receptors and multiple signalling pathways. The present review summarizes the molecular pathogenesis of metastasis and the identification of novel molecular targets used in the discovery of antimetastatic agents. Several promising targets have been highlighted, including receptor tyrosine kinases, effector molecules involved in angiogenesis, matrix metalloproteinases (MMPs), urokinase plasminogen activator, adhesion molecules and their receptors, signalling pathways (e.g. phosphatidylinositol 3-kinase, phospholipase Cγ1, mitogen-activated protein kinases, c-Src kinase, c-Met kinases and heat shock protein. The discovery and development of potential novel therapeutics for each of the targets are also discussed in this review. Among these, the most promising agents that have shown remarkable clinical outcome are anti-angiogenic agents (e.g. bevacizumab). Newer agents, such as c-Met kinase inhibitors, are still undergoing preclinical studies and are yet to have their clinical efficacy proven. Some therapeutics, such as first-generation MMP inhibitors (MMPIs; e.g. marimastat) and more selective versions of them (e.g. prinomastat, tanomastat), have undergone clinical trials. Unfortunately, these drugs produced serious adverse effects that led to the premature termination of their development. In the future, third-generation MMPIs and inhibitors of signalling pathways and adhesion molecules could form valuable novel classes of drugs in the anticancer armamentarium to combat metastasis.
Collapse
Affiliation(s)
- Mei S Wong
- Pharmacotherapeutics Unit, Department of Medicine, University Putra Malaysia, Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
37
|
Targeting the yin and the yang: combined inhibition of the tyrosine kinase c-Src and the tyrosine phosphatase SHP-2 disrupts pancreatic cancer signaling and biology in vitro and tumor formation in vivo. Pancreas 2013; 42:795-806. [PMID: 23271399 DOI: 10.1097/mpa.0b013e3182793fd7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Although c-Src (Src) has emerged as a potential pancreatic cancer target in preclinical studies, Src inhibitors have not demonstrated a significant therapeutic benefit in clinical trials. The objective of these studies was to examine the effects of combining Src inhibition with inhibition of the protein tyrosine phosphatase SHP-2 in pancreatic cancer cells in vitro and in vivo. METHODS SHP-2 and Src functions were inhibited by siRNA or small molecule inhibitors. The effects of dual Src/SHP-2 functional inhibition were evaluated by Western blot analysis of downstream signaling pathways; cell biology assays to examine caspase activity, viability, adhesion, migration, and invasion in vitro; and an orthotopic nude mouse model to observe pancreatic tumor formation in vivo. RESULTS Dual targeting of Src and SHP-2 induces an additive or supra-additive loss of phosphorylation of Akt and ERK-1/2 and corresponding increases in expression of apoptotic markers, relative to targeting either protein individually. Combinatorial inhibition of Src and SHP-2 significantly reduces viability, adhesion, migration, and invasion of pancreatic cancer cells in vitro and tumor formation in vivo, relative to individual Src/SHP-2 inhibition. CONCLUSIONS These data suggest that the antitumor effects of Src inhibition in pancreatic cancer may be enhanced through simultaneous inhibition of SHP-2.
Collapse
|
38
|
Spijkers-Hagelstein JAP, Mimoso Pinhanços S, Schneider P, Pieters R, Stam RW. Src kinase-induced phosphorylation of annexin A2 mediates glucocorticoid resistance in MLL-rearranged infant acute lymphoblastic leukemia. Leukemia 2012; 27:1063-71. [PMID: 23334362 DOI: 10.1038/leu.2012.372] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
MLL-rearranged infant acute lymphoblastic leukemia (ALL) (<1 year of age) are frequently resistant to glucocorticoids, like prednisone and dexamethasone. As poor glucocorticoid responses are strongly associated with therapy failure, overcoming glucocorticoid resistance may be a crucial step towards improving prognosis. Unfortunately, the mechanisms underlying glucocorticoid resistance in MLL-rearranged ALL largely remain obscure. We here defined a gene signature that accurately discriminates between prednisolone-resistant and prednisolone-sensitive MLL-rearranged infant ALL patient samples, demonstrating that, among other genes, high-level ANXA2 is associated with prednisolone resistance in this type of leukemia. Further investigation demonstrated that the underlying factor of this association was the presence of Src kinase-induced phosphorylation (activation) of annexin A2, a process requiring the adapter protein p11 (encoded by human S100A10). shRNA-mediated knockdown of either ANXA2, FYN, LCK or S100A10, all led to inhibition of annexin A2 phosphorylation and resulted in marked sensitization to prednisolone. Likewise, exposure of prednisolone-resistant MLL-rearranged ALL cells to different Src kinase inhibitors exerting high specificity towards FYN and/or LCK had similar effects. In conclusion, we here present a novel mechanism of prednisolone resistance in MLL-rearranged leukemias, and propose that inhibition of annexin A2 phosphorylation embodies a therapeutic strategy for overcoming resistance to glucocorticoids in this highly aggressive type of leukemia.
Collapse
Affiliation(s)
- J A P Spijkers-Hagelstein
- Department of Pediatric Oncology/Haematology, Erasmus Medical Center/Sophia Children's Hospital, Dr Molewaterplein 50, Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
39
|
Arcaroli J, Quackenbush K, Dasari A, Powell R, McManus M, Tan AC, Foster NR, Picus J, Wright J, Nallapareddy S, Erlichman C, Hidalgo M, Messersmith WA. Biomarker-driven trial in metastatic pancreas cancer: feasibility in a multicenter study of saracatinib, an oral Src inhibitor, in previously treated pancreatic cancer. Cancer Med 2012; 1:207-17. [PMID: 23342270 PMCID: PMC3544442 DOI: 10.1002/cam4.27] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 07/23/2012] [Accepted: 07/24/2012] [Indexed: 12/16/2022] Open
Abstract
Src tyrosine kinases are overexpressed in pancreatic cancers, and the oral Src inhibitor saracatinib has shown antitumor activity in preclinical models of pancreas cancer. We performed a CTEP-sponsored Phase II clinical trial of saracatinib in previously treated pancreas cancer patients, with a primary endpoint of 6-month survival. A Simon MinMax two-stage phase II design was used. Saracatinib (175 mg/day) was administered orally continuously in 28-day cycles. In the unselected portion of the study, 18 patients were evaluable. Only two (11%) patients survived for at least 6 months, and three 6-month survivors were required to move to second stage of study as originally designed. The study was amended as a biomarker-driven trial (leucine rich repeat containing protein 19 [LRRC19] > insulin-like growth factor-binding protein 2 [IGFBP2] "top scoring pairs" polymerase chain reaction [PCR] assay, and PIK3CA mutant) based on preclinical data in a human pancreas tumor explant model. In the biomarker study, archival tumor tissue or fresh tumor biopsies were tested. Biomarker-positive patients were eligible for the study. Only one patient was PIK3CA mutant in a 3' untranslated region (UTR) portion of the gene. This patient was enrolled in the study and failed to meet the 6-month survival endpoint. As the frequency of biomarker-positive patients was very low (<3%), the study was closed. Although we were unable to conclude whether enriching for a subset of second/third line pancreatic cancer patients treated with a Src inhibitor based on a biomarker would improve 6-month survival, we demonstrate that testing pancreatic tumor samples for a biomarker-driven, multicenter study in metastatic pancreas cancer is feasible.
Collapse
Affiliation(s)
- John Arcaroli
- University of Colorado Cancer Center, Denver, Colorado 80045, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hung SW, Mody HR, Govindarajan R. Overcoming nucleoside analog chemoresistance of pancreatic cancer: a therapeutic challenge. Cancer Lett 2012; 320:138-49. [PMID: 22425961 PMCID: PMC3569094 DOI: 10.1016/j.canlet.2012.03.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 03/01/2012] [Accepted: 03/06/2012] [Indexed: 12/17/2022]
Abstract
Clinical refractoriness to nucleoside analogs (e.g., gemcitabine, capecitabine) is a major scientific problem and is one of the main reasons underlying the extremely poor prognostic state of pancreatic cancer. The drugs' effects are suboptimal partly due to cellular mechanisms limiting their transport, activation, and overall efficacy. Nonetheless, novel therapeutic approaches are presently under study to circumvent nucleoside analog resistance in pancreatic cancer. With these new approaches come additional challenges to be addressed. This review describes the determinants of chemoresistance in the gemcitabine cytotoxicity pathways, provides an overview of investigational approaches for overcoming chemoresistance, and discusses new challenges presented. Understanding the future directions of the field may assist in the successful development of novel treatment strategies for enhancing chemotherapeutic efficacy in pancreatic cancer.
Collapse
Affiliation(s)
- Sau Wai Hung
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Hardik R. Mody
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| | - Rajgopal Govindarajan
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
41
|
Cavalloni G, Peraldo-Neia C, Sarotto I, Gammaitoni L, Migliardi G, Soster M, Marchiò S, Aglietta M, Leone F. Antitumor activity of Src inhibitor saracatinib (AZD-0530) in preclinical models of biliary tract carcinomas. Mol Cancer Ther 2012; 11:1528-38. [PMID: 22452946 DOI: 10.1158/1535-7163.mct-11-1020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biliary tract carcinoma (BTC) has a poor prognosis due to limited treatment options. There is, therefore, an urgent need to identify new targets and to design innovative therapeutic approaches. Among potential candidate molecules, we evaluated the nonreceptor tyrosine kinase Src, observing promising antitumor effects of its small-molecule inhibitor saracatinib in BTC preclinical models. The presence of an active Src protein was investigated by immunohistochemistry in 19 surgical samples from patients with BTC. Upon saracatinib treatment, the phosphorylation of Src and of its downstream transducers was evaluated in the BTC cell lines TFK-1, EGI-1, HuH28, and TGBC1-TKB. The effect of saracatinib on proliferation and migration was analyzed in these same cell lines, and its antitumor activity was essayed in EGI-1 mouse xenografts. Saracatinib-modulated transcriptome was profiled in EGI-1 cells and in tumor samples of the xenograft model. Src was activated in about 80% of the human BTC samples. In cultured BTC cell lines, low-dose saracatinib counteracted the activation of Src and of its downstream effectors, increased the fraction of cells in G(0)-G(1) phase, and inhibited cell migration. At high concentrations (median dose from 2.26-6.99 μmol/L), saracatinib was also capable of inhibiting BTC cell proliferation. In vivo, saracatinib treatment resulted in delayed tumor growth, associated with an impaired vascular network. Here, we provide a demonstration that the targeted inhibition of Src kinase by saracatinib is of therapeutic benefit in preclinical models of BTC. We propose our results as a basis for the design of saracatinib-based clinical applications.
Collapse
Affiliation(s)
- Giuliana Cavalloni
- Department of Medical Oncology, University of Turin Medical School, Turin, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
The RAS-RAF-MEK-ERK pathway is deregulated in over 90% of malignant melanomas, and targeting MEK as a central kinase of this pathway is currently tested in clinical trials. However, dose-limiting side effects are observed, and MEK inhibitors that sufficiently reduce ERK activation in patients show a low clinical response. Apart from dose limitations, a reason for the low response to MEK targeting drugs is thought to be the upregulation of counteracting signalling cascades as a direct response to MEK inhibition. Therefore, understanding the biology of melanoma cells and the effects of MEK inhibition on these cells will help to identify new combinatorial approaches that are more potent and allow for lower concentrations of the drug being used. We have discovered that in melanoma cells MEK inhibition by selumetinib (AZD6244, ARRY-142886) or PD184352, while efficiently suppressing proliferation, stimulates increased invasiveness. Inhibition of MEK suppresses actin-cortex contraction and increases integrin-mediated adhesion. Most importantly, and surprisingly, MEK inhibition results in a significant increase in matrix metalloproteases (MMP)-2 and membrane-type 1-MMP expression. All together, MEK inhibition in melanoma cells induces a 'mesenchymal' phenotype that is characterised by protease-driven invasion. This mode of invasion is dependent on integrin-mediated adhesion, and because SRC kinases are the main regulators of this process, the SRC kinase inhibitor, saracatinib (AZD0530), completely abolished the MEK inhibitor-induced invasion. Moreover, the combination of saracatinib and selumetinib effectively suppressed the growth and invasion of melanoma cells in a 3D environment, suggesting that combined inhibition of MEK and SRC is a promising approach to improve the efficacy of targeting the ERK/MAP kinase pathway in melanoma.
Collapse
|
43
|
Puls LN, Eadens M, Messersmith W. Current status of SRC inhibitors in solid tumor malignancies. Oncologist 2011; 16:566-78. [PMID: 21521831 PMCID: PMC3228195 DOI: 10.1634/theoncologist.2010-0408] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 03/28/2011] [Indexed: 01/13/2023] Open
Abstract
SUMMARY Src is believed to play an important role in cancer, and several agents targeting Src are in clinical development. DESIGN We reviewed Src structure and function and preclinical data supporting its role in the development of cancer via a PubMed search. We conducted an extensive review of Src inhibitors by searching abstracts from major oncology meeting databases in the last 3 years and by comprehensively reviewing ongoing clinical trials on ClinicalTrials.gov. RESULTS In this manuscript, we briefly review Src structure and function, mechanisms involving Src that lead to the development of cancer, and Src inhibitors and key preclinical data establishing a rationale for clinical application. We then focus on clinical data supporting their use in solid tumor malignancies, a newer arena than their more well-established hematologic applications. Particularly highlighted are clinical trials investigating new biomarkers as well as ongoing studies assessing Src inhibitor activity in biomarker-selected patient populations. We also review newer investigational Src-targeting agents. CONCLUSIONS Src inhibitors have shown little activity in monotherapy trials in unselected solid tumor patient populations. Combination studies and biomarker-driven clinical trials are under way.
Collapse
Affiliation(s)
- Lauren N. Puls
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, Colorado, USA
| | - Matthew Eadens
- Division of Medical Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Wells Messersmith
- Division of Medical Oncology, University of Colorado Cancer Center, Aurora, Colorado, USA
| |
Collapse
|
44
|
Huang Z, Saluja A, Dudeja V, Vickers S, Buchsbaum D. Molecular targeted approaches for treatment of pancreatic cancer. Curr Pharm Des 2011; 17:2221-38. [PMID: 21777178 PMCID: PMC3422746 DOI: 10.2174/138161211796957427] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 06/20/2011] [Indexed: 02/07/2023]
Abstract
Human pancreatic cancer remains a highly malignant disease with almost similar incidence and mortality despite extensive research. Many targeted therapies are under development. However, clinical investigation showed that single targeted therapies and most combined therapies were not able to improve the prognosis of this disease, even though some of these therapies had excellent anti-tumor effects in pre-clinical models. Cross-talk between cell proliferation signaling pathways may be an important phenomenon in pancreatic cancer, which may result in cancer cell survival even though some pathways are blocked by targeted therapy. Pancreatic cancer may possess different characteristics and targets in different stages of pathogenesis, maintenance and metastasis. Sensitivity to therapy may also vary for cancer cells at different stages. The unique pancreatic cancer structure with abundant stroma creates a tumor microenvironment with hypoxia and low blood perfusion rate, which prevents drug delivery to cancer cells. In this review, the most commonly investigated targeted therapies in pancreatic cancer treatment are discussed. However, how to combine these targeted therapies and/or combine them with chemotherapy to improve the survival rate of pancreatic cancer is still a challenge. Genomic and proteomic studies using pancreatic cancer samples obtained from either biopsy or surgery are recommended to individualize tumor characters and to perform drug sensitivity study in order to design a tailored therapy with minimal side effects. These studies may help to further investigate tumor pathogenesis, maintenance and metastasis to create cellular expression profiles at different stages. Integration of the information obtained needs to be performed from multiple levels and dimensions in order to develop a successful targeted therapy.
Collapse
Affiliation(s)
- Z.Q. Huang
- Department of Radiation Oncology, University of Alabama at Birmingham USA
| | - A.K. Saluja
- Department of Surgery, University of Minnesota, USA
| | - V. Dudeja
- Department of Surgery, University of Minnesota, USA
| | - S.M. Vickers
- Department of Surgery, University of Minnesota, USA
| | - D.J. Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham USA
| |
Collapse
|