1
|
Hosseininejad-Chafi M, Eftekhari Z, Oghalaie A, Behdani M, Sotoudeh N, Kazemi-Lomedasht F. Nanobodies as innovative immune checkpoint modulators: advancing cancer immunotherapy. Med Oncol 2024; 42:36. [PMID: 39719469 DOI: 10.1007/s12032-024-02588-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
The immune system relies on a delicate balance between attacking harmful pathogens and preserving the body's own tissues, a balance maintained by immune checkpoints. These checkpoints play a critical role in preventing autoimmune diseases by restraining excessive immune responses while allowing the immune system to recognize and destroy abnormal cells, such as tumors. In recent years, immune checkpoint inhibitors (ICIs) have become central to cancer therapy, enabling the immune system to target and eliminate cancer cells that evade detection. Traditional antibodies, such as IgGs, have been widely used in immune therapies but are limited by their size and complexity. Nanobodies (Nbs), derived from camelid heavy-chain-only antibodies, offer a promising alternative. These small, stable antibody fragments retain the antigen-binding specificity of traditional antibodies but have enhanced solubility and the ability to target otherwise inaccessible epitopes. This review explores the use of Nbs as ICIs, emphasizing their potential in cancer immunotherapy and other immune-related treatments. Their unique structural properties and small size make Nbs highly effective tools for modulating immune responses, representing a novel approach in the evolving landscape of checkpoint inhibitor therapies.
Collapse
Affiliation(s)
- Mohammad Hosseininejad-Chafi
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Zohre Eftekhari
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Akbar Oghalaie
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Mahdi Behdani
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Nazli Sotoudeh
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Kazemi-Lomedasht
- Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
2
|
Hasan S, Awasthi P, Malik S, Dwivedi M. Immunotherapeutic strategies to induce inflection in the immune response: therapy for cancer and COVID-19. Biotechnol Genet Eng Rev 2024; 40:3571-3610. [PMID: 36411974 DOI: 10.1080/02648725.2022.2147661] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022]
Abstract
Cancer has agonized the human race for millions of years. The present decade witnesses biological therapeutics to combat cancer effectively. Cancer Immunotherapy involves the use of therapeutics for manipulation of the immune system by immune agents like cytokines, vaccines, and transfection agents. Recently, this therapeutic approach has got vast attention due to the current pandemic COVID-19 and has been very effective. Concerning cancer, immunotherapy is based on the activation of the host's antitumor response by enhancing effector cell number and the production of soluble mediators, thereby reducing the host's suppressor mechanisms by induction of a tumour killing environment and by modulating immune checkpoints. In the present era, immunotherapies have gained traction and momentum as a pedestal of cancer treatment, improving the prognosis of many patients with a wide variety of haematological and solid malignancies. Food supplements, natural immunomodulatory drugs, and phytochemicals, with recent developments, have shown positive trends in cancer treatment by improving the immune system. The current review presents the systematic studies on major immunotherapeutics and their development for the effective treatment of cancers as well as in COVID-19. The focus of the review is to highlight comparative analytics of existing and novel immunotherapies in cancers, concerning immunomodulatory drugs and natural immunosuppressants, including immunotherapy in COVID-19 patients.
Collapse
Affiliation(s)
- Saba Hasan
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Prankur Awasthi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University, Ranchi, Jharkhand, India
| | - Manish Dwivedi
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow, India
| |
Collapse
|
3
|
Yao Z, Zeng Y, Liu C, Jin H, Wang H, Zhang Y, Ding C, Chen G, Wu D. Focusing on CD8 + T-cell phenotypes: improving solid tumor therapy. J Exp Clin Cancer Res 2024; 43:266. [PMID: 39342365 PMCID: PMC11437975 DOI: 10.1186/s13046-024-03195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.
Collapse
Affiliation(s)
- Zhouchi Yao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yayun Zeng
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huimin Jin
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Wang
- Department of Scientific Research, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Zhang
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
4
|
Toledo B, Deiana C, Scianò F, Brandi G, Marchal JA, Perán M, Giovannetti E. Treatment resistance in pancreatic and biliary tract cancer: molecular and clinical pharmacology perspectives. Expert Rev Clin Pharmacol 2024; 17:323-347. [PMID: 38413373 DOI: 10.1080/17512433.2024.2319340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024]
Abstract
INTRODUCTION Treatment resistance poses a significant obstacle in oncology, especially in biliary tract cancer (BTC) and pancreatic cancer (PC). Current therapeutic options include chemotherapy, targeted therapy, and immunotherapy. Resistance to these treatments may arise due to diverse molecular mechanisms, such as genetic and epigenetic modifications, altered drug metabolism and efflux, and changes in the tumor microenvironment. Identifying and overcoming these mechanisms is a major focus of research: strategies being explored include combination therapies, modulation of the tumor microenvironment, and personalized approaches. AREAS COVERED We provide a current overview and discussion of the most relevant mechanisms of resistance to chemotherapy, target therapy, and immunotherapy in both BTC and PC. Furthermore, we compare the different strategies that are being implemented to overcome these obstacles. EXPERT OPINION So far there is no unified theory on drug resistance and progress is limited. To overcome this issue, individualized patient approaches, possibly through liquid biopsies or single-cell transcriptome studies, are suggested, along with the potential use of artificial intelligence, to guide effective treatment strategies. Furthermore, we provide insights into what we consider the most promising areas of research, and we speculate on the future of managing treatment resistance to improve patient outcomes.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Fabio Scianò
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Lumobiotics GmbH, Karlsruhe, Germany
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Juan Antonio Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Instituto de Investigación Sanitaria ibs. GRANADA, Hospitales Universitarios de Granada-Universidad de Granada, Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Jaén, Spain
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
- Excellence Research Unit "Modeling Nature" (MNat), University of Granada, Granada, Spain
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per la Scienza, Pisa, Italy
- Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC) Start-Up Unit, Fondazione Pisana per la Scienza, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Lu C, Tan Y. Promising immunotherapy targets: TIM3, LAG3, and TIGIT joined the party. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200773. [PMID: 38596295 PMCID: PMC10905042 DOI: 10.1016/j.omton.2024.200773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Immune checkpoint inhibitors (ICIs) have shown great promise as immunotherapy for restoring T cell function and reactivating anti-tumor immunity. The US Food and Drug Administration (FDA) approved the first immune checkpoint inhibitor, ipilimumab, in 2011 for advanced melanoma patients, leading to significant improvements in survival rates. Subsequently, other immune checkpoint-targeting antibodies were tested. Currently, seven ICIs, namely ipilimumab (anti-cytotoxic T lymphocyte-associated protein 4 [CTLA4]), pembrolizumab, nivolumab (anti-programmed cell death protein 1 [PD-1]), atezolizumab, avelumab, durvalumab, and cemiplimab (anti-PD-L1), have been approved for various cancer types. However, the efficacy of antibodies targeting CTLA4 or PD-1/programmed death-ligand 1 (PD-L1) remains suboptimal. Consequently, ongoing studies are evaluating the next generation of ICIs, such as lymphocyte activation gene-3 (LAG3), T cell immunoglobulin and mucin-domain containing 3 (TIM3), and T cell immunoglobulin and ITIM domain (TIGIT). Our review provides a summary of clinical trials evaluating these novel immune checkpoints in cancer treatment.
Collapse
Affiliation(s)
- Chenyu Lu
- Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong SAR, China
| | - Yuanyan Tan
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Shenzhen University, Shenzhen 518061, Guangdong, China
| |
Collapse
|
6
|
Wang J, Wang S, Zhang Y, Zhang W. Bibliometric analysis of evolutionary trajectory and prospective directions of LAG-3 in cancer. Front Immunol 2024; 15:1329775. [PMID: 38390331 PMCID: PMC10881671 DOI: 10.3389/fimmu.2024.1329775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Objectives Perform a bibliometric analysis on the role of LAG-3 in the domain of cancer, elucidate the prevailing areas of research, and visually depict the evolutionary trajectory and prospective directions of LAG-3 research over the past twenty-three decades. Materials and methods Between 2000 and 2023, a comprehensive review of scholarly articles pertaining to LAG-3 research in the context of cancer was carried out using the Web of Science Core Collection (WoSCC) database. Bibliometric analysis can be conducted by taking advantage of VOSviewer (version 1.6.16) and CiteSpace (version 6.2.R4). Create a network diagram to visually represent various authors, countries, and organizations while assessing the publishing years, journals, references, and keywords. Results In conclusion, 1841 records were identified and published in 587 publications. These records were authored by 12,849 individuals affiliated with 2491 institutes across 74 countries. There has been a substantial surge in publications subsequent to 2013. The USA, China, and Germany gave the majority of records, amounting to 69.69%. American institutions actively engage in collaboration with institutions located in other countries. Triebel, F., Vignali, Dario A. A., Workman, Creg J. Drake, Charles G., and Elkord, Eyad are highly regarded authors in their respective fields. However, it is worth noting that Triebel exhibits limited collaboration with other writers. The examination of the role of LAG-3 in cancer and its potential for use in clinical settings is a discernible trend, as seen by keyword analysis. Conclusion The scientific interest in and attention towards LAG-3 has experienced a significant rise since 2013. The United States is leading the way, with China following closely behind. Promoting collaboration among writers, nations, and institutions with varied backgrounds is imperative. The discipline of immunotherapy is currently seeing ongoing progress. A thorough investigation of the distinctive cis ligand TCR-CD3 complex of LAG-3 and its signal transduction mechanism is necessary. Additionally, it is worthwhile to explore novel combinations of LAG-3 therapy.
Collapse
Affiliation(s)
| | | | | | - Wei Zhang
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
7
|
Dabiri R, Rashid MU, Khan OS, Jehanzeb S, Alomari M, Zafar H, Zahid E, Rahman AU, Karam A, Ahmad S. Immune modulators for pancreatic ductal adenocarcinoma therapy. IMMUNE LANDSCAPE OF PANCREATIC CANCER DEVELOPMENT AND DRUG RESISTANCE 2024:103-129. [DOI: 10.1016/b978-0-443-23523-8.00021-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Mahadevia H, Uson Junior PLS, Wang J, Borad M, Babiker H. An overview of up-and-coming immune checkpoint inhibitors for pancreatic cancer. Expert Opin Pharmacother 2024; 25:79-90. [PMID: 38193476 DOI: 10.1080/14656566.2024.2304125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) targeting programmed cell death protein-1 (PD-1/PD-L1) pathway as well as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have demonstrated substantial potential in several malignancies. Pancreatic adenocarcinoma (PC) still carries a high mortality despite tremendous advances in the anti-cancer arsenal. AREAS COVERED In this review, we discuss completed and ongoing studies on various ICIs in PC. ICIs have not yielded significant benefits as monotherapy. However, the combination with currently utilized therapies as well as with several other newer forms of therapy has delineated encouraging results. Larger trials are currently underway to definitively characterize the utility of ICIs in the treatment algorithm of PC. ICIs are approved for cancers with mismatch repair deficiency (dMMR) or microsatellite instability-high tumors (MSI-H) as a tumor-agnostic treatment strategy usually referred to as hot tumors. EXPERT OPINION Studies evaluating different drugs to transform the tumor microenvironment (TME) from 'cold' to 'hot' have not shown promise in PC. There still needs to be more prospective trials evaluating the efficacy of the combination of ICIs with different therapeutic modalities in PC that can augment the immunogenic potential of those 'cold' tumors. Exploratory biomarker analysis may help us identify those subsets of PC patients who may particularly benefit from ICIs.
Collapse
Affiliation(s)
- Himil Mahadevia
- Department of Internal Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Pedro Luiz Serrano Uson Junior
- Department of Internal Medicine, Division of Hematology-Oncology, Hospital Israelita Albert Einstein, Sao Paulo, SP, Brazil
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Jing Wang
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| | - Mitesh Borad
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Hani Babiker
- Department of Internal Medicine, Division of Hematology-Oncology, Mayo Clinic Florida, Jacksonville, FL, USA
| |
Collapse
|
9
|
Ghani H, Khan S, Jamgochian M, Richards B, DeCecco E, Fliorent R, Cheendalla N, Khatri K, Rao B. Cutaneous adverse effects associated with LAG-3 inhibitor use in cancer treatment: A systematic review. SKIN HEALTH AND DISEASE 2023; 3:e296. [PMID: 38047262 PMCID: PMC10690694 DOI: 10.1002/ski2.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 12/05/2023]
Abstract
Immunotherapy has become a mainstay of treatment for many cancers. Multiple immune checkpoint inhibitors have been used to treat malignancies, including anti-programed death-1 (PD1) and anti-cytotoxic T-lymphocyte-associated protein (anti-CTLA4). However, a significant percentage of patients develop resistance to these immunotherapy drugs. Therefore, novel strategies were developed to target other aspects of the immune response. Lymphocyte activation gene-3 (LAG-3) is a cell-surface molecule found on natural killer cells and activated T-cells which negatively regulates T-cell proliferation and function. LAG-3 inhibitors interact with LAG-3 ligands on the surface of T-cells to block T-regulatory (Treg) cell activity, suppress cytokine secretion and restore dysfunctional effector T-cells which subsequently attack and destroy cancer cells. This review reports the dermatologic side effects associated with LAG-3 inhibitors used in the treatment of melanomas. Using PRISMA 2022 guidelines, a comprehensive literature review of PubMed, Google Scholar, Embase, Cochrane, and Web of Science databases was conducted. Three studies were identified that demonstrated that the use of LAG-3 inhibitors, whether as a single agent or in combination with other immune checkpoint inhibitors, resulted in stomatitis, pruritus, rash, dry skin, erythema, and vitiligo. Further research is warranted to assess the cutaneous adverse events observed with LAG-3 inhibitors in treating melanoma and to identify populations most vulnerable to such side effects.
Collapse
Affiliation(s)
- Hira Ghani
- Nassau University Medical CenterEast MeadowNew YorkUSA
| | - Samavia Khan
- Center for DermatologyRutgers Robert Wood Johnson Medical SchoolSomersetNew JerseyUSA
| | - Marielle Jamgochian
- Center for DermatologyRutgers Robert Wood Johnson Medical SchoolSomersetNew JerseyUSA
| | - Beth Richards
- Cooper Medical School of Rowan UniversityCamdenNew JerseyUSA
| | - Erica DeCecco
- Cooper Medical School of Rowan UniversityCamdenNew JerseyUSA
| | - Rebecca Fliorent
- Rowan‐Virtua School of Osteopathic MedicineStratfordNew JerseyUSA
| | | | - Khalil Khatri
- Skin and Laser Surgery Center of New EnglandNashuaNew HampshireUSA
| | - Babar Rao
- Center for DermatologyRutgers Robert Wood Johnson Medical SchoolSomersetNew JerseyUSA
- Department of DermatologyWeill Cornell MedicineNew YorkNew YorkUSA
| |
Collapse
|
10
|
Tran LC, Özdemir BC, Berger MD. The Role of Immune Checkpoint Inhibitors in Metastatic Pancreatic Cancer: Current State and Outlook. Pharmaceuticals (Basel) 2023; 16:1411. [PMID: 37895882 PMCID: PMC10609661 DOI: 10.3390/ph16101411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest tumors, characterized by its aggressive tumor biology and poor prognosis. While immune checkpoint inhibitors (ICIs) play a major part in the treatment algorithm of various solid tumors, there is still no evidence of clinical benefit from ICI in patients with metastatic PDAC (mPDAC). This might be due to several reasons, such as the inherent low immunogenicity of pancreatic cancer, the dense stroma-rich tumor microenvironment that precludes an efficient migration of antitumoral effector T cells to the cancer cells, and the increased proportion of immunosuppressive immune cells, such as regulatory T cells (Tregs), cancer-associated fibroblasts (CAFs), and myeloid-derived suppressor cells (MDSCs), facilitating tumor growth and invasion. In this review, we provide an overview of the current state of ICIs in mPDAC, report on the biological rationale to implement ICIs into the treatment strategy of pancreatic cancer, and discuss preclinical studies and clinical trials in this field. Additionally, we shed light on the challenges of implementing ICIs into the treatment strategy of PDAC and discuss potential future directions.
Collapse
Affiliation(s)
| | | | - Martin D. Berger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| |
Collapse
|
11
|
Herpels M, Ishihara J, Sadanandam A. The clinical terrain of immunotherapies in heterogeneous pancreatic cancer: unravelling challenges and opportunities. J Pathol 2023; 260:533-550. [PMID: 37550956 DOI: 10.1002/path.6171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 08/09/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common and aggressive type of pancreatic cancer and has abysmal survival rates. In the past two decades, immunotherapeutic agents with success in other cancer types have gradually been trialled against PDACs at different stages of cancer progression, either as a monotherapy or in combination with chemotherapy. Unfortunately, to this day, chemotherapy still prolongs the survival rates the most and is prescribed in clinics despite the severe side effects in other cancer types. The low success rates of immunotherapy against PDAC have been attributed most frequently to its complex and multi-faceted tumour microenvironment (TME) and low mutational burden. In this review, we give a comprehensive overview of the immunotherapies tested in PDAC clinical trials thus far, their limitations, and potential explanations for their failure. We also discuss the existing classification of heterogenous PDACs into cancer, cancer-associated fibroblast, and immune subtypes and their potential opportunity in patient selection as a form of personalisation of PDAC immunotherapy. © 2023 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Melanie Herpels
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Department of Bioengineering, Imperial College London, London, UK
| | - Jun Ishihara
- Department of Bioengineering, Imperial College London, London, UK
| | - Anguraj Sadanandam
- Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Centre for Global Oncology, Division of Molecular Pathology, Institute of Cancer Research, London, UK
- Centre for Translational Immunotherapy, Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| |
Collapse
|
12
|
Ibrahim R, Saleh K, Chahine C, Khoury R, Khalife N, Cesne AL. LAG-3 Inhibitors: Novel Immune Checkpoint Inhibitors Changing the Landscape of Immunotherapy. Biomedicines 2023; 11:1878. [PMID: 37509517 PMCID: PMC10377063 DOI: 10.3390/biomedicines11071878] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
One of the most important steps forward in the management of cancer was the discovery of immunotherapy. It has become an essential pillar in the treatment paradigm of cancer patients. Unfortunately, despite the various options presented with immune checkpoint inhibitors (ICIs), the benefit is still limited to select patients and the vast majority of these patients gain either minimal benefit or eventually progress, leaving an unmet need for the development of novel therapeutic agents and strategies. Lymphocyte activation gene-3 (LAG-3), an immune checkpoint receptor protein, is a molecule found on the surface of activated T-cells. It plays a major role in negatively regulating T-cell function thereby providing tumors with an immune escape in the tumor microenvironment (TME). Given its importance in regulating the immune system, LAG-3 has been considered as a promising target in oncology and precision medicine. To date, two LAG-3-directed agents (eftilagimod alpha and relatlimab) have been approved in combination with programmed death-1 (PD-1) inhibitors in the setting of advanced solid tumors. In this review, we discuss the structure of LAG-3, its mechanism of action, and its interaction with its ligands. We also shed light on the emerging treatments targeting LAG-3 for the treatment of solid tumors.
Collapse
Affiliation(s)
- Rebecca Ibrahim
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Khalil Saleh
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Claude Chahine
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Rita Khoury
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Nadine Khalife
- Department of head and neck Oncology, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| | - Axel Le Cesne
- International Department, Gustave Roussy Cancer Campus, 94800 Villejuif, France
| |
Collapse
|
13
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Biswas A, Ganesan R, Renu K, Dey A, Vellingiri B, El Allali A, Alsamman AM, Zayed H, George Priya Doss C. Evolving strategies and application of proteins and peptide therapeutics in cancer treatment. Biomed Pharmacother 2023; 163:114832. [PMID: 37150032 DOI: 10.1016/j.biopha.2023.114832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/18/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023] Open
Abstract
Several proteins and peptides have therapeutic potential and can be used for cancer therapy. By binding to cell surface receptors and other indicators uniquely linked with or overexpressed on tumors compared to healthy tissue, protein biologics enhance the active targeting of cancer cells, as opposed to the passive targeting of cells by conventional small-molecule chemotherapeutics. This study focuses on peptide medications that exist to slow or stop tumor growth and the spread of cancer, demonstrating the therapeutic potential of peptides in cancer treatment. As an alternative to standard chemotherapy, peptides that selectively kill cancer cells while sparing healthy tissue are developing. A mountain of clinical evidence supports the efficacy of peptide-based cancer vaccines. Since a single treatment technique may not be sufficient to produce favourable results in the fight against cancer, combination therapy is emerging as an effective option to generate synergistic benefits. One example of this new area is the use of anticancer peptides in combination with nonpeptidic cytotoxic drugs or the combination of immunotherapy with conventional therapies like radiation and chemotherapy. This review focuses on the different natural and synthetic peptides obtained and researched. Discoveries, manufacture, and modifications of peptide drugs, as well as their contemporary applications, are summarized in this review. We also discuss the benefits and difficulties of potential advances in therapeutic peptides.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Antara Biswas
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, South Korea
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077 Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda 151401, Punjab, India
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco.
| | - Alsamman M Alsamman
- Department of Genome Mapping, Molecular Genetics, and Genome Mapping Laboratory, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Hatem Zayed
- Department of Biomedical Sciences College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - C George Priya Doss
- Department of Integrative Biology, School of BioSciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| |
Collapse
|
14
|
Perez-Santos M, Anaya-Ruiz M, Villafaña-Diaz L, Sánchez Esgua G. Approaches for development of LAG-3 inhibitors and the promise they hold as anticancer agents. Expert Opin Drug Discov 2022; 17:1341-1355. [PMID: 36399656 DOI: 10.1080/17460441.2022.2148652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
INTRODUCTION LAG-3 is considered to be the third point of immunological control in relation to clinical trials that address cancer treatment, only behind PD-1 and CTLA-4, due to its role as a suppressor of the immune response and enhancer of differentiation of Treg cells. AREAS COVERED The authors focus on emphasizing the strategy of development of LAG-3 inhibitors to develop anticancer therapeutics, especially from the perspective of designing new monoclonal and bispecific antibodies against LAG-3. This article also covers details of patents and clinical trials of LAG-3 inhibitors reported in the literature. In addition, we highlight as future research challenges the design and development of peptides and small molecules as inhibitors of LAG-3 function. EXPERT OPINION Three approaches have been used for the development of LAG-3 inhibitors, and they include inhibitory LAG-3 binding peptides and antagonist monoclonal and multispecific antibodies. These approaches include more than 100 clinical trials of 21 molecules that bind to LAG-3 and block its binding to MHC II. However, these approaches do not cover the design and development of peptides and small molecules that could inhibit the function of LAG-3, for which it is necessary to develop new alternatives that cover this gap.
Collapse
Affiliation(s)
- Martin Perez-Santos
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla CP, México
| | - Maricruz Anaya-Ruiz
- Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla CP, México
| | - Luis Villafaña-Diaz
- Centro de Investigación en Inteligencia de Negocios, Universidad Popular Autónoma del Estado de Puebla, Puebla, México
| | - Gabriela Sánchez Esgua
- Dirección de Innovación y Transferencia de Conocimiento, Benemérita Universidad Autónoma de Puebla, Puebla CP, México
| |
Collapse
|
15
|
Gao Z, Zhang Q, Zhang X, Song Y. Advance of T regulatory cells in tumor microenvironment remodeling and immunotherapy in pancreatic cancer. EUR J INFLAMM 2022; 20. [DOI: 10.1177/1721727x221092900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is highly aggressive, deadly, and is rarely diagnosed early. Regulatory T cells (Treg) are a multifunctional class of immunosuppressive T cells that help maintain immunologic homeostasis and participate in autoimmune diseases, transplants, and tumors. This cell type mediates immune homeostasis, tolerance, and surveillance and is associated with poor outcomes in PDAC. Tregs remodel the tumor immune microenvironment, mediate tumor immune escape, and promote tumor invasion and metastasis. A promising area of research involves regulating Tregs to reduce their infiltration into tumor tissues. However, the complexity of the immune microenvironment has limited the efficacy of immunotherapy in PDAC. Treg modulation combined with other treatments is emerging. This review summarizes the mechanisms of Tregs activity in tumor immune microenvironments in PDAC and the latest developments in immunotherapy and clinical trials.
Collapse
Affiliation(s)
- Zetian Gao
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Qiubo Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Xie Zhang
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yufei Song
- The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
16
|
Kuzevanova A, Apanovich N, Mansorunov D, Korotaeva A, Karpukhin A. The Features of Checkpoint Receptor—Ligand Interaction in Cancer and the Therapeutic Effectiveness of Their Inhibition. Biomedicines 2022; 10:biomedicines10092081. [PMID: 36140182 PMCID: PMC9495440 DOI: 10.3390/biomedicines10092081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 12/12/2022] Open
Abstract
To date, certain problems have been identified in cancer immunotherapy using the inhibition of immune checkpoints (ICs). Despite the excellent effect of cancer therapy in some cases when blocking the PD-L1 (programmed death-ligand 1) ligand and the immune cell receptors PD-1 (programmed cell death protein 1) and CTLA4 (cytotoxic T-lymphocyte-associated protein 4) with antibodies, the proportion of patients responding to such therapy is still far from desirable. This situation has stimulated the exploration of additional receptors and ligands as targets for immunotherapy. In our article, based on the analysis of the available data, the TIM-3 (T-cell immunoglobulin and mucin domain-3), LAG-3 (lymphocyte-activation gene 3), TIGIT (T-cell immunoreceptor with Ig and immunoreceptor tyrosine-based inhibitory motif (ITIM) domains), VISTA (V-domain Ig suppressor of T-cell activation), and BTLA (B- and T-lymphocyte attenuator) receptors and their ligands are comprehensively considered. Data on the relationship between receptor expression and the clinical characteristics of tumors are presented and are analyzed together with the results of preclinical and clinical studies on the therapeutic efficacy of their blocking. Such a comprehensive analysis makes it possible to assess the prospects of receptors of this series as targets for anticancer therapy. The expression of the LAG-3 receptor shows the most unambiguous relationship with the clinical characteristics of cancer. Its inhibition is the most effective of the analyzed series in terms of the antitumor response. The expression of TIGIT and BTLA correlates well with clinical characteristics and demonstrates antitumor efficacy in preclinical and clinical studies, which indicates their high promise as targets for anticancer therapy. At the same time, the relationship of VISTA and TIM-3 expression with the clinical characteristics of the tumor is contradictory, and the results on the antitumor effectiveness of their inhibition are inconsistent.
Collapse
|
17
|
Chocarro L, Blanco E, Arasanz H, Fernández-Rubio L, Bocanegra A, Echaide M, Garnica M, Ramos P, Fernández-Hinojal G, Vera R, Kochan G, Escors D. Clinical landscape of LAG-3-targeted therapy. IMMUNO-ONCOLOGY TECHNOLOGY 2022; 14:100079. [PMID: 35755891 PMCID: PMC9216443 DOI: 10.1016/j.iotech.2022.100079] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Lymphocyte-activated gene 3 (LAG-3) is a cell surface inhibitory receptor and a key regulator of immune homeostasis with multiple biological activities related to T-cell functions. LAG-3 is considered a next-generation immune checkpoint of clinical importance, right next to programmed cell death protein 1 (PD-1) and cytotoxic T-cell lymphocyte antigen-4 (CTLA-4). Indeed, it is the third inhibitory receptor to be exploited in human anticancer immunotherapies. Several LAG-3-antagonistic immunotherapies are being evaluated at various stages of preclinical and clinical development. In addition, combination therapies blocking LAG-3 together with other immune checkpoints are also being evaluated at preclinical and clinical levels. Indeed, the co-blockade of LAG-3 with PD-1 is demonstrating encouraging results. A new generation of bispecific PD-1/LAG-3-blocking agents have also shown strong capacities to specifically target PD-1+ LAG-3+ highly dysfunctional T cells and enhance their proliferation and effector activities. Here we identify and classify preclinical and clinical trials conducted involving LAG-3 as a target through an extensive bibliographic research. The current understanding of LAG-3 clinical applications is summarized, and most of the publically available data up to date regarding LAG-3-targeted therapy preclinical and clinical research and development are reviewed and discussed.
Collapse
Affiliation(s)
- L. Chocarro
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - E. Blanco
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra, Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - H. Arasanz
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - L. Fernández-Rubio
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - A. Bocanegra
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - M. Echaide
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - M. Garnica
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - P. Ramos
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - G. Fernández-Hinojal
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
- Medical Oncology Department, Hospital Clínico San Carlos, Madrid, Spain
| | - R. Vera
- Medical Oncology Unit, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - G. Kochan
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - D. Escors
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Universidad Pública de Navarra (UPNA), Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
18
|
Cai X, Zhan H, Ye Y, Yang J, Zhang M, Li J, Zhuang Y. Current Progress and Future Perspectives of Immune Checkpoint in Cancer and Infectious Diseases. Front Genet 2021; 12:785153. [PMID: 34917131 PMCID: PMC8670224 DOI: 10.3389/fgene.2021.785153] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/03/2021] [Indexed: 12/11/2022] Open
Abstract
The inhibitory regulators, known as immune checkpoints, prevent overreaction of the immune system, avoid normal tissue damage, and maintain immune homeostasis during the antimicrobial or antiviral immune response. Unfortunately, cancer cells can mimic the ligands of immune checkpoints to evade immune surveillance. Application of immune checkpoint blockade can help dampen the ligands expressed on cancer cells, reverse the exhaustion status of effector T cells, and reinvigorate the antitumor function. Here, we briefly introduce the structure, expression, signaling pathway, and targeted drugs of several inhibitory immune checkpoints (PD-1/PD-L1, CTLA-4, TIM-3, LAG-3, VISTA, and IDO1). And we summarize the application of immune checkpoint inhibitors in tumors, such as single agent and combination therapy and adverse reactions. At the same time, we further discussed the correlation between immune checkpoints and microorganisms and the role of immune checkpoints in microbial-infection diseases. This review focused on the current knowledge about the role of the immune checkpoints will help in applying immune checkpoints for clinical therapy of cancer and other diseases.
Collapse
Affiliation(s)
- Xin Cai
- Heilongjiang Administration of Traditional Chinese Medicine, Harbin, China
| | - Huajie Zhan
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Yuguang Ye
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jinjin Yang
- Department of Pathology, Harbin Medical University, Harbin, China
| | - Minghui Zhang
- Department of Oncology, Chifeng City Hospital, Chifeng, China
- *Correspondence: Yuan Zhuang, ; Jing Li, ; Minghui Zhang,
| | - Jing Li
- Department of Pathology and Electron Microscopy Center, Harbin Medical University, Harbin, China
- *Correspondence: Yuan Zhuang, ; Jing Li, ; Minghui Zhang,
| | - Yuan Zhuang
- Department of Pathology, Harbin Medical University, Harbin, China
- *Correspondence: Yuan Zhuang, ; Jing Li, ; Minghui Zhang,
| |
Collapse
|
19
|
Huppert LA, Mariotti V, Chien AJ, Soliman HH. Emerging immunotherapeutic strategies for the treatment of breast cancer. Breast Cancer Res Treat 2021; 191:243-255. [PMID: 34716870 DOI: 10.1007/s10549-021-06406-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Immunotherapy has resulted in unprecedented gains in long-term outcomes for many cancer types and has revolutionized the treatment landscape of solid tumor oncology. Checkpoint inhibition in combination with chemotherapy has proven to be effective for the treatment of a subset of advanced triple-negative breast cancer in the first-line setting. This initial success is likely just the tip of the iceberg as there is much that remains unknown about how to best harness the immune system as a therapeutic strategy in all breast cancer subtypes. Therefore, numerous ongoing studies are currently underway to evaluate the safety and efficacy of immunotherapy in breast cancer. In this review, we will discuss emerging immunotherapeutic strategies for breast cancer treatment including the following: (1) Intratumoral therapies, (2) Anti-tumor vaccines, (3) B-specific T-cell engagers, and (4) Chimeric antigen receptor T-cell therapy, and (5) Emerging systemic immunotherapy strategies. For each topic, we will review the existing preclinical and clinical literature, discuss ongoing clinical trials, and highlight future directions in the field.
Collapse
Affiliation(s)
- Laura A Huppert
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - A Jo Chien
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Hatem H Soliman
- Department of Breast Oncology, H Lee Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, USA.
| |
Collapse
|
20
|
Pancreatic Cancer and Immunotherapy: A Clinical Overview. Cancers (Basel) 2021; 13:cancers13164138. [PMID: 34439292 PMCID: PMC8393975 DOI: 10.3390/cancers13164138] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with high mortality. The vast majority of patients present with unresectable, advanced stage disease, for whom standard of care chemo(radio)therapy may improve survival by several months. Immunotherapy has led to a fundamental shift in the treatment of several advanced cancers. However, its efficacy in PDAC in terms of clinical benefit is limited, possibly owing to the immunosuppressive, inaccessible tumor microenvironment. Still, various immunotherapies have demonstrated the capacity to initiate local and systemic immune responses, suggesting an immune potentiating effect. In this review, we address PDAC's immunosuppressive tumor microenvironment and immune evasion methods and discuss a wide range of immunotherapies, including immunomodulators (i.e., immune checkpoint inhibitors, immune stimulatory agonists, cytokines and adjuvants), oncolytic viruses, adoptive cell therapies (i.e., T cells and natural killer cells) and cancer vaccines. We provide a general introduction to their working mechanism as well as evidence of their clinical efficacy and immune potentiating abilities in PDAC. The key to successful implementation of immunotherapy in this disease may rely on exploitation of synergistic effects between treatment combinations. Accordingly, future treatment approaches should aim to incorporate diverse and novel immunotherapeutic strategies coupled with cytotoxic drugs and/or local ablative treatment, targeting a wide array of tumor-induced immune escape mechanisms.
Collapse
|
21
|
Sancho-Araiz A, Mangas-Sanjuan V, Trocóniz IF. The Role of Mathematical Models in Immuno-Oncology: Challenges and Future Perspectives. Pharmaceutics 2021; 13:pharmaceutics13071016. [PMID: 34371708 PMCID: PMC8309057 DOI: 10.3390/pharmaceutics13071016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Immuno-oncology (IO) focuses on the ability of the immune system to detect and eliminate cancer cells. Since the approval of the first immune checkpoint inhibitor, immunotherapies have become a major player in oncology treatment and, in 2021, represented the highest number of approved drugs in the field. In spite of this, there is still a fraction of patients that do not respond to these therapies and develop resistance mechanisms. In this sense, mathematical models offer an opportunity to identify predictive biomarkers, optimal dosing schedules and rational combinations to maximize clinical response. This work aims to outline the main therapeutic targets in IO and to provide a description of the different mathematical approaches (top-down, middle-out, and bottom-up) integrating the cancer immunity cycle with immunotherapeutic agents in clinical scenarios. Among the different strategies, middle-out models, which combine both theoretical and evidence-based description of tumor growth and immunological cell-type dynamics, represent an optimal framework to evaluate new IO strategies.
Collapse
Affiliation(s)
- Aymara Sancho-Araiz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain; (A.S.-A.); (I.F.T.)
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
| | - Victor Mangas-Sanjuan
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100 Valencia, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development, 46100 Valencia, Spain
- Correspondence: ; Tel.: +34-96354-3351
| | - Iñaki F. Trocóniz
- Department of Pharmaceutical Technology and Chemistry, School of Pharmacy and Nutrition, University of Navarra, 31009 Pamplona, Spain; (A.S.-A.); (I.F.T.)
- Navarra Institute for Health Research (IdiSNA), 31009 Pamplona, Spain
| |
Collapse
|
22
|
Russell BL, Sooklal SA, Malindisa ST, Daka LJ, Ntwasa M. The Tumor Microenvironment Factors That Promote Resistance to Immune Checkpoint Blockade Therapy. Front Oncol 2021; 11:641428. [PMID: 34268109 PMCID: PMC8276693 DOI: 10.3389/fonc.2021.641428] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/16/2021] [Indexed: 12/13/2022] Open
Abstract
Through genetic and epigenetic alterations, cancer cells present the immune system with a diversity of antigens or neoantigens, which the organism must distinguish from self. The immune system responds to neoantigens by activating naïve T cells, which mount an anticancer cytotoxic response. T cell activation begins when the T cell receptor (TCR) interacts with the antigen, which is displayed by the major histocompatibility complex (MHC) on antigen-presenting cells (APCs). Subsequently, accessory stimulatory or inhibitory molecules transduce a secondary signal in concert with the TCR/antigen mediated stimulus. These molecules serve to modulate the activation signal's strength at the immune synapse. Therefore, the activation signal's optimum amplitude is maintained by a balance between the costimulatory and inhibitory signals. This system comprises the so-called immune checkpoints such as the programmed cell death (PD-1) and Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and is crucial for the maintenance of self-tolerance. Cancers often evade the intrinsic anti-tumor activity present in normal physiology primarily by the downregulation of T cell activation. The blockade of the immune checkpoint inhibitors using specific monoclonal antibodies has emerged as a potentially powerful anticancer therapy strategy. Several drugs have been approved mainly for solid tumors. However, it has emerged that there are innate and acquired mechanisms by which resistance is developed against these therapies. Some of these are tumor-intrinsic mechanisms, while others are tumor-extrinsic whereby the microenvironment may have innate or acquired resistance to checkpoint inhibitors. This review article will examine mechanisms by which resistance is mounted against immune checkpoint inhibitors focussing on anti-CTL4-A and anti-PD-1/PD-Ll since drugs targeting these checkpoints are the most developed.
Collapse
Affiliation(s)
- Bonnie L. Russell
- Department of Life & Consumer Sciences, University of South Africa, Johannesburg, South Africa
- Innovation Hub, Buboo (Pty) Ltd, Pretoria, South Africa
| | - Selisha A. Sooklal
- Department of Life & Consumer Sciences, University of South Africa, Johannesburg, South Africa
| | - Sibusiso T. Malindisa
- Department of Life & Consumer Sciences, University of South Africa, Johannesburg, South Africa
| | | | - Monde Ntwasa
- Department of Life & Consumer Sciences, University of South Africa, Johannesburg, South Africa
| |
Collapse
|
23
|
Wolfson B, Franks SE, Hodge JW. Stay on Target: Reengaging Cancer Vaccines in Combination Immunotherapy. Vaccines (Basel) 2021; 9:vaccines9050509. [PMID: 34063388 PMCID: PMC8156017 DOI: 10.3390/vaccines9050509] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Effective treatment of established tumors requires rational multicombination immunotherapy strategies designed to target all functions of the patient immune system and tumor immune microenvironment. While these combinations build on the foundation of successful immune checkpoint blockade antibodies, it is increasingly apparent that successful immunotherapy will also require a cancer vaccine backbone to engage the immune system, thereby ensuring that additional immuno-oncology agents will engage a tumor-specific immune response. This review summarizes ongoing clinical trials built upon the backbone of cancer vaccines and focusing on those clinical trials that utilize multicombination (3+) immuno-oncology agents. We examine combining cancer vaccines with multiple checkpoint blockade antibodies, novel multifunctional molecules, adoptive cell therapy and immune system agonists. These combinations and those yet to enter the clinic represent the future of cancer immunotherapy. With a cancer vaccine backbone, we are confident that current and coming generations of rationally designed multicombination immunotherapy can result in effective therapy of established tumors.
Collapse
|
24
|
Javadrashid D, Baghbanzadeh A, Derakhshani A, Leone P, Silvestris N, Racanelli V, Solimando AG, Baradaran B. Pancreatic Cancer Signaling Pathways, Genetic Alterations, and Tumor Microenvironment: The Barriers Affecting the Method of Treatment. Biomedicines 2021; 9:373. [PMID: 33918146 PMCID: PMC8067185 DOI: 10.3390/biomedicines9040373] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/21/2021] [Accepted: 03/30/2021] [Indexed: 02/06/2023] Open
Abstract
Genetic alterations, especially the K-Ras mutation, carry the heaviest burden in the progression of pancreatic precursor lesions into pancreatic ductal adenocarcinoma (PDAC). The tumor microenvironment is one of the challenges that hinder the therapeutic approaches from functioning sufficiently and leads to the immune evasion of pancreatic malignant cells. Mastering the mechanisms of these two hallmarks of PDAC can help us in dealing with the obstacles in the way of treatment. In this review, we have analyzed the signaling pathways involved in PDAC development and the immune system's role in pancreatic cancer and immune checkpoint inhibition as next-generation therapeutic strategy. The direct targeting of the involved signaling molecules and the immune checkpoint molecules, along with a combination with conventional therapies, have reached the most promising results in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Darya Javadrashid
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (D.J.); (A.B.); (A.D.)
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (D.J.); (A.B.); (A.D.)
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (D.J.); (A.B.); (A.D.)
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Patrizia Leone
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy; (P.L.); (V.R.)
| | - Nicola Silvestris
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy
| | - Vito Racanelli
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy; (P.L.); (V.R.)
| | - Antonio Giovanni Solimando
- IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Guido Baccelli Unit of Internal Medicine, Department of Biomedical Sciences and Human Oncology, School of Medicine, Aldo Moro University of Bari, 70124 Bari, Italy; (P.L.); (V.R.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran; (D.J.); (A.B.); (A.D.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
| |
Collapse
|
25
|
Rohatgi A, Kirkwood JM. Beyond PD-1: The Next Frontier for Immunotherapy in Melanoma. Front Oncol 2021; 11:640314. [PMID: 33732652 PMCID: PMC7958874 DOI: 10.3389/fonc.2021.640314] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
The advent of first and second-generation immune checkpoint blockade (ICI) has resulted in improved survival of patients with metastatic melanoma over the past decade. However, the majority of patients ultimately progress despite these treatments, which has served as an impetus to consider a range of subsequent therapies. Many of the next generation of immunotherapeutic agents focus on modifying the immune system to overcome resistance to checkpoint blockade. ICI resistance can be understood as primary, or acquired-where the latter is the most common scenario. While there are several postulated mechanisms by which resistance, particularly acquired resistance, occurs, the predominant escape mechanisms include T cell exhaustion, upregulation of alternative inhibitory checkpoint receptors, and alteration of the tumor microenvironment (TME) into a more suppressive, anti-inflammatory state. Therapeutic agents in development are designed to work by combating one or more of these resistance mechanisms. These strategies face the added challenge of minimizing immune-related toxicities, while improving antitumor efficacy. This review focuses upon the following categories of novel therapeutics: 1) alternative inhibitory receptor pathways; 2) damage- or pathogen-associated molecular patterns (DAMPs/PAMPs); and 3) immune cell signaling mediators. We present the current state of these therapies, including preclinical and clinical data available for these targets under development.
Collapse
Affiliation(s)
| | - John M. Kirkwood
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
26
|
Smith PL, Yogaratnam Y, Samad M, Kasow S, Dalgleish AG. Effect of Gemcitabine based chemotherapy on the immunogenicity of pancreatic tumour cells and T-cells. Clin Transl Oncol 2021; 23:110-121. [PMID: 32661823 PMCID: PMC7820186 DOI: 10.1007/s12094-020-02429-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/12/2020] [Indexed: 12/22/2022]
Abstract
PURPOSE Chemotherapy for advanced pancreatic cancer has limited efficacy due to the difficultly of treating established tumours and the evolution of tumour resistance. Chemotherapies for pancreatic cancer are typically studied for their cytotoxic properties rather than for their ability to increase the immunogenicity of pancreatic tumour cells. In this study Gemcitabine in combination with immune modulatory chemotherapies Oxaliplatin, zoledronic acid and pomalidomide was studied to determine how combination therapy alters the immunogenicity of pancreatic tumour cell lines and subsequent T-cell responses. METHODS Pancreatic tumour cell lines were stimulated with the chemotherapeutic agents and markers of immune recognition were assessed. The effect of chemotherapeutic agents on DC function was measured using uptake of CFSE-stained PANC-1 cells, changes in markers of maturation and their ability to activate CD8+ T-cells. The effect of chemotherapeutic agents on T-cell priming prior to activation using anti-CD3 and anti-CD28 antibodies was determined by measuring IFN-γ expression and Annexin V staining using flow cytometry. RESULTS These agents demonstrate both additive and inhibitory properties on a range of markers of immunogenicity. Gemcitabine was notable for its ability to induce the upregulation of human leukocyte antigen and checkpoints on pancreatic tumour cell lines whilst inhibiting T-cell activation. Pomalidomide demonstrated immune modulatory properties on dendritic cells and T-cells, even in the presence of gemcitabine. DISCUSSION These data highlight the complex interactions of different agents in the modulation of tumour immunogenicity and immune cell activation and emphasise the complexity in rationally designing chemo immunogenic combinations for use with immunotherapy.
Collapse
Affiliation(s)
- P L Smith
- ST Georges University of London, 1 Cranmer Terrace, London, SW17 0RE, UK.
| | - Y Yogaratnam
- ST Georges University of London, 1 Cranmer Terrace, London, SW17 0RE, UK
| | - M Samad
- ST Georges University of London, 1 Cranmer Terrace, London, SW17 0RE, UK
| | - S Kasow
- ST Georges University of London, 1 Cranmer Terrace, London, SW17 0RE, UK
| | - A G Dalgleish
- ST Georges University of London, 1 Cranmer Terrace, London, SW17 0RE, UK
| |
Collapse
|
27
|
Lecocq Q, Keyaerts M, Devoogdt N, Breckpot K. The Next-Generation Immune Checkpoint LAG-3 and Its Therapeutic Potential in Oncology: Third Time's a Charm. Int J Mol Sci 2020; 22:ijms22010075. [PMID: 33374804 PMCID: PMC7795594 DOI: 10.3390/ijms22010075] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
The blockade of immune checkpoints (ICPs), such as cytotoxic T lymphocyte associated protein-4 (CTLA-4) and programmed death-1 (PD-1) and its ligand (PD-L1), has propelled the field of immuno-oncology into its current era. Drugs targeting these ICPs have improved clinical outcome in a number of patients with solid and hematological cancers. Nonetheless, some patients have no benefit from these ICP-blocking therapies. This observation has instigated research into alternative pathways that are responsible for the escape of cancer cells from anti-cancer immune responses. From this research, a number of molecules have emerged as promising therapeutic targets, including lymphocyte activating gene-3 (LAG-3), a next-generation ICP. We will review the current knowledge on the biological activity of LAG-3 and linked herewith its expression on activated immune cells. Moreover, we will discuss the prognostic value of LAG-3 and how LAG-3 expression in tumors can be monitored, which is an aspect that is of utmost importance, as the blockade of LAG-3 is actively pursued in clinical trials.
Collapse
Affiliation(s)
- Quentin Lecocq
- Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
| | - Marleen Keyaerts
- Nuclear Medicine Department, UZ Brussel, Laarbeeklaan 101, B-1090 Brussels, Belgium;
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
| | - Nick Devoogdt
- In Vivo Cellular and Molecular Imaging Laboratory (ICMI), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
| | - Karine Breckpot
- Laboratory for Molecular and Cellular Therapy (LMCT), Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Correspondence:
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Immunotherapy has shown an unprecedented response in treatment of tumors. However, challenges such as lack of cytotoxic lymphocytes to mount an immune response or development of resistance to therapy can limit efficacy. Here, we discuss alternative checkpoints that can be targeted to improve cytotoxic lymphocyte function while harnessing other components of the immune system. RECENT FINDINGS Blockade of alternative checkpoints has improved anti-tumor immunity in mouse models and is being tested clinically with encouraging findings. In addition to modulating T cell function directly, alternative checkpoints can also regulate activity of myeloid cells and regulatory T cells to affect anti-tumor response. Combination of immune checkpoint inhibitors can improve treatment of tumors by activating multiple arms of the immune system.
Collapse
Affiliation(s)
- Ayush Pant
- Department of Neurosurgery, Neurosurgery Oncology, Radiation Oncology, Otolaryngology, and Institute of NanoBiotechnology, Brain Tumor Immunotherapy Program, Metastatic Brain Tumor Center, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 123, Baltimore, MD, 21287, USA
| | - Ravi Medikonda
- Department of Neurosurgery, Neurosurgery Oncology, Radiation Oncology, Otolaryngology, and Institute of NanoBiotechnology, Brain Tumor Immunotherapy Program, Metastatic Brain Tumor Center, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 123, Baltimore, MD, 21287, USA
| | - Michael Lim
- Department of Neurosurgery, Neurosurgery Oncology, Radiation Oncology, Otolaryngology, and Institute of NanoBiotechnology, Brain Tumor Immunotherapy Program, Metastatic Brain Tumor Center, The Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Phipps 123, Baltimore, MD, 21287, USA.
| |
Collapse
|
29
|
Maruhashi T, Sugiura D, Okazaki IM, Okazaki T. LAG-3: from molecular functions to clinical applications. J Immunother Cancer 2020; 8:jitc-2020-001014. [PMID: 32929051 PMCID: PMC7488795 DOI: 10.1136/jitc-2020-001014] [Citation(s) in RCA: 286] [Impact Index Per Article: 57.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2020] [Indexed: 12/14/2022] Open
Abstract
To prevent the destruction of tissues owing to excessive and/or inappropriate immune responses, immune cells are under strict check by various regulatory mechanisms at multiple points. Inhibitory coreceptors, including programmed cell death 1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4), serve as critical checkpoints in restricting immune responses against self-tissues and tumor cells. Immune checkpoint inhibitors that block PD-1 and CTLA-4 pathways significantly improved the outcomes of patients with diverse cancer types and have revolutionized cancer treatment. However, response rates to such therapies are rather limited, and immune-related adverse events are also observed in a substantial patient population, leading to the urgent need for novel therapeutics with higher efficacy and lower toxicity. In addition to PD-1 and CTLA-4, a variety of stimulatory and inhibitory coreceptors are involved in the regulation of T cell activation. Such coreceptors are listed as potential drug targets, and the competition to develop novel immunotherapies targeting these coreceptors has been very fierce. Among such coreceptors, lymphocyte activation gene-3 (LAG-3) is expected as the foremost target next to PD-1 in the development of cancer therapy, and multiple clinical trials testing the efficacy of LAG-3-targeted therapy are underway. LAG-3 is a type I transmembrane protein with structural similarities to CD4. Accumulating evidence indicates that LAG-3 is an inhibitory coreceptor and plays pivotal roles in autoimmunity, tumor immunity, and anti-infection immunity. In this review, we summarize the current understanding of LAG-3, ranging from its discovery to clinical application.
Collapse
Affiliation(s)
- Takumi Maruhashi
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Daisuke Sugiura
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Il-Mi Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Taku Okazaki
- Laboratory of Molecular Immunology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
30
|
Saka D, Gökalp M, Piyade B, Cevik NC, Arik Sever E, Unutmaz D, Ceyhan GO, Demir IE, Asimgil H. Mechanisms of T-Cell Exhaustion in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12082274. [PMID: 32823814 PMCID: PMC7464444 DOI: 10.3390/cancers12082274] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
T-cell exhaustion is a phenomenon that represents the dysfunctional state of T cells in chronic infections and cancer and is closely associated with poor prognosis in many cancers. The endogenous T-cell immunity and genetically edited cell therapies (CAR-T) failed to prevent tumor immune evasion. The effector T-cell activity is perturbed by an imbalance between inhibitory and stimulatory signals causing a reprogramming in metabolism and the high levels of multiple inhibitory receptors like programmed cell death protein-1 (PD-1), cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and Lymphocyte-activation gene 3 (Lag-3). Despite the efforts to neutralize inhibitory receptors by a single agent or combinatorial immune checkpoint inhibitors to boost effector function, PDAC remains unresponsive to these therapies, suggesting that multiple molecular mechanisms play a role in stimulating the exhaustion state of tumor-infiltrating T cells. Recent studies utilizing transcriptomics, mass cytometry, and epigenomics revealed a critical role of Thymocyte selection-associated high mobility group box protein (TOX) genes and TOX-associated pathways, driving T-cell exhaustion in chronic infection and cancer. Here, we will review recently defined molecular, genetic, and cellular factors that drive T-cell exhaustion in PDAC. We will also discuss the effects of available immune checkpoint inhibitors and the latest clinical trials targeting various molecular factors mediating T-cell exhaustion in PDAC.
Collapse
Affiliation(s)
- Didem Saka
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Muazzez Gökalp
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Betül Piyade
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Nedim Can Cevik
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Elif Arik Sever
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
| | - Derya Unutmaz
- Jackson Laboratory of Genomic Medicine, Farmington, CT 06032, USA;
| | - Güralp O. Ceyhan
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Correspondence: (G.O.C.); (I.E.D.); Tel.: +90-5320514424 (G.O.C.); +49-8941405868 (I.E.D.)
| | - Ihsan Ekin Demir
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
- Correspondence: (G.O.C.); (I.E.D.); Tel.: +90-5320514424 (G.O.C.); +49-8941405868 (I.E.D.)
| | - Hande Asimgil
- Department of General Surgery, HPB-Unit, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34684, Turkey; (D.S.); (M.G.); (B.P.); (N.C.C.); (E.A.S.); (H.A.)
- Department of Surgery, Klinikum Rechts der Isar, Technical University of Munich, 81675 Munich, Germany
| |
Collapse
|
31
|
D'Arrigo P, Tufano M, Rea A, Vigorito V, Novizio N, Russo S, Romano MF, Romano S. Manipulation of the Immune System for Cancer Defeat: A Focus on the T Cell Inhibitory Checkpoint Molecules. Curr Med Chem 2020; 27:2402-2448. [PMID: 30398102 DOI: 10.2174/0929867325666181106114421] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/15/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022]
Abstract
The immune system actively counteracts the tumorigenesis process; a breakout of the immune system function, or its ability to recognize transformed cells, can favor cancer development. Cancer becomes able to escape from immune system control by using multiple mechanisms, which are only in part known at a cellular and molecular level. Among these mechanisms, in the last decade, the role played by the so-called "inhibitory immune checkpoints" is emerging as pivotal in preventing the tumor attack by the immune system. Physiologically, the inhibitory immune checkpoints work to maintain the self-tolerance and attenuate the tissue injury caused by pathogenic infections. Cancer cell exploits such immune-inhibitory molecules to contrast the immune intervention and induce tumor tolerance. Molecular agents that target these checkpoints represent the new frontier for cancer treatment. Despite the heterogeneity and multiplicity of molecular alterations among the tumors, the immune checkpoint targeted therapy has been shown to be helpful in selected and even histologically different types of cancer, and are currently being adopted against an increasing variety of tumors. The most frequently used is the moAb-based immunotherapy that targets the Programmed Cell Death 1 protein (PD-1), the PD-1 Ligand (PD-L1) or the cytotoxic T lymphocyte antigen-4 (CTLA4). However, new therapeutic approaches are currently in development, along with the discovery of new immune checkpoints exploited by the cancer cell. This article aims to review the inhibitory checkpoints, which are known up to now, along with the mechanisms of cancer immunoediting. An outline of the immune checkpoint targeting approaches, also including combined immunotherapies and the existing trials, is also provided. Notwithstanding the great efforts devoted by researchers in the field of biomarkers of response, to date, no validated FDA-approved immunological biomarkers exist for cancer patients. We highlight relevant studies on predictive biomarkers and attempt to discuss the challenges in this field, due to the complex and largely unknown dynamic mechanisms that drive the tumor immune tolerance.
Collapse
Affiliation(s)
- Paolo D'Arrigo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Martina Tufano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Anna Rea
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Vincenza Vigorito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Nunzia Novizio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Salvatore Russo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
32
|
Nsingwane Z, Candy G, Devar J, Omoshoro-Jones J, Smith M, Nweke E. Immunotherapeutic strategies in pancreatic ductal adenocarcinoma (PDAC): current perspectives and future prospects. Mol Biol Rep 2020; 47:6269-6280. [PMID: 32661873 DOI: 10.1007/s11033-020-05648-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/08/2020] [Indexed: 01/08/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest human malignancies with a dismal prognosis. During PDAC progression, the immune response is affected as cancer cells evade detection and elimination. Recently, there have been advances in the treatment of PDAC using immunotherapy, although a lot more work is yet to be done. In this review, we discuss these advances, challenges and potentials. We focus on existing and potential immune targets for PDAC, drugs used to target them, and some clinical trials conducted so far with them. Finally, novel targets in the tumour microenvironment such as stromal cells and other potential future areas to explore including bacterial therapy and the use of neoantigens in immunotherapy are highlighted.
Collapse
Affiliation(s)
- Zanele Nsingwane
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa.
| | - Geoffrey Candy
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - John Devar
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Jones Omoshoro-Jones
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Martin Smith
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| | - Ekene Nweke
- Department of Surgery, Faculty of Health Sciences, University of Witwatersrand, 7 York Road, Parktown, Johannesburg, 2193, South Africa
| |
Collapse
|
33
|
Abdkarimi S, Razi Soofiyani S, Elham G, Mashhadi Abdolahi H, Safarzadeh E, Baradaran B. Targeting immune checkpoints: Building better therapeutic puzzle in pancreatic cancer combination therapy. Eur J Cancer Care (Engl) 2020; 29:e13268. [PMID: 32459388 DOI: 10.1111/ecc.13268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/30/2020] [Accepted: 04/30/2020] [Indexed: 12/24/2022]
Abstract
Pancreatic cancer is related to a very weak diagnosis; the close parallel between disease incidence and mortality rates from pancreatic cancer reflects the fatal nature of this disease. Although early detection procedures are growing, they are not applicable yet for pancreatic cancer. The majority of cancer patients suffer from advanced disease, in which surgery has no potential effect. Based on the growing evidence, it is predicated that cancer immunotherapy alone or in combination will probably be an essential section of different cancer treatment methods. There are different kinds of immune processes, including various antitumour and tumour-promoting leukocytes. Moreover, tumour cells utilise numerous approaches to overwhelm the immune response. Use of antibody in the therapeutic protocols is proving significant success and is probably a key element of cancer treatment. This method is directed against numerous negative immunologic regulators and immune checkpoints. In the present review, the clinical outlines of immune checkpoint inhibition are discussed in pancreatic cancer.
Collapse
Affiliation(s)
- Sina Abdkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Goli Elham
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Mashhadi Abdolahi
- Tabriz Health Services Management Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Safarzadeh
- Department of Immunology and Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
34
|
Cebada J, Flores A, Bandala C, Lizaliturri-Flores I, Villa-Ruano N, Perez-Santos M. Bispecific anti-PD-1/LAG-3 antibodies for treatment of advanced or metastatic solid tumors: a patent evaluation of US2018326054. Expert Opin Ther Pat 2020; 30:487-494. [PMID: 32397849 DOI: 10.1080/13543776.2020.1767071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Due to the primary role of PD-1 and LAG-3 in regulating the immune response in tumors, there is a need to develop therapies focused on the inhibition of PD-1 and LAG-3 in order to improve the immune response in patients with cancer. The authors of US2018326054 patent propose a method to eradicate cancer by using bispecific anti-PD-1/LAG-3 antibodies. AREAS COVERED The US2018326054 patent describes anti-PD-1/LAG3 antibodies, pharmaceutical composition that contains it, and their application for cancer treatment, particularly pancreatic carcinoma. Proof concept and preclinical results show anti-PD-1/LAG-3 bispecific antibodies bind and are internalized by CD4 + T cells thereby increasing their effector functions (release of Granzyme B and INF-γ) in the presence of tumor cells, and completely suppress tumors in a murine model. EXPERT OPINION Anti-PD-1/LAG-3 bispecific antibodies of the US2018326054 patent are new in a general concept, but treatment data is only shown for pancreatic carcinoma. The results to be obtained in future clinical trials of safety and efficacy could conclude whether these bispecific anti-PD-1/LAG-3 antibodies will be useful in a cancer treatment scheme.
Collapse
Affiliation(s)
- Jorge Cebada
- Facultad De Medicina, Benemérita Universidad Autónoma De Puebla , Puebla, Puebla, Mexico
| | - Amira Flores
- Instituto De Fisiología, Benemerita Universidad Autónoma De Puebla , Puebla, Puebla, Mexico
| | - Cindy Bandala
- Departamento De Neurociencias, Instituto Nacional De Rehabilitación , Ciudad De México, Mexico.,Escuela Superior De Medicina, Instituto Politécnico Naciona , Ciudad De México, Mexico
| | - Ian Lizaliturri-Flores
- Lab De Modelado Molecular Y Diseño De Fármacos. Escuela Superior De Medicina, Instituto Politécnico Nacional , Ciudad De México, Mexico
| | - Nemesio Villa-Ruano
- Dirección De Innovación Y Transferencia De Conocimiento, Benemérita Universidad Autónoma De Puebla , Puebla, Mexico
| | - Martin Perez-Santos
- Dirección De Innovación Y Transferencia De Conocimiento, Benemérita Universidad Autónoma De Puebla , Puebla, Mexico
| |
Collapse
|
35
|
Shen S, Chen L, Liu J, Yang L, Zhang M, Wang L, Zhang R, Uemura Y, Wu Q, Yu X, Liu T. Current state and future of co-inhibitory immune checkpoints for the treatment of glioblastoma. Cancer Biol Med 2020; 17:555-568. [PMID: 32944390 PMCID: PMC7476097 DOI: 10.20892/j.issn.2095-3941.2020.0027] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/20/2020] [Indexed: 12/14/2022] Open
Abstract
In the interaction between a tumor and the immune system, immune checkpoints play an important role, and in tumor immune escape, co-inhibitory immune checkpoints are important. Immune checkpoint inhibitors (ICIs) can enhance the immune system’s killing effect on tumors. To date, impressive progress has been made in a variety of tumor treatments; PD1/PDL1 and CTLA4 inhibitors have been approved for clinical use in some tumors. However, glioblastoma (GBM) still lacks an effective treatment. Recently, a phase III clinical trial using nivolumab to treat recurrent GBM showed no significant improvement in overall survival compared to bevacizumab. Therefore, the use of immune checkpoints in the treatment of GBM still faces many challenges. First, to clarify the mechanism of action, how different immune checkpoints play roles in tumor escape needs to be determined; which biomarkers predict a benefit from ICIs treatment and the therapeutic implications for GBM based on experiences in other tumors also need to be determined. Second, to optimize combination therapies, how different types of immune checkpoints are selected for combined application and whether combinations with targeted agents or other immunotherapies exhibit increased efficacy need to be addressed. All of these concerns require extensive basic research and clinical trials. In this study, we reviewed existing knowledge with respect to the issues mentioned above and the progress made in treatments, summarized the state of ICIs in preclinical studies and clinical trials involving GBM, and speculated on the therapeutic prospects of ICIs in the treatment of GBM.
Collapse
Affiliation(s)
- Shaoping Shen
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Ling Chen
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Jialin Liu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Lin Yang
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Mengna Zhang
- Pediatric Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Lingxiong Wang
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Rong Zhang
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan
| | - Yasushi Uemura
- Division of Cancer Immunotherapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Kashiwa 277-8577, Japan
| | - Qiyan Wu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, Beijing 100853, China
| | - Tianyi Liu
- Key Laboratory of Cancer Center, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
36
|
Qin S, Xu L, Yi M, Yu S, Wu K, Luo S. Novel immune checkpoint targets: moving beyond PD-1 and CTLA-4. Mol Cancer 2019; 18:155. [PMID: 31690319 PMCID: PMC6833286 DOI: 10.1186/s12943-019-1091-2] [Citation(s) in RCA: 802] [Impact Index Per Article: 133.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 10/18/2019] [Indexed: 02/10/2023] Open
Abstract
The emergence of immune checkpoint inhibitors (ICIs), mainly including anti-programmed cell death protein 1/programmed cell death ligand 1 (PD-1/PD-L1) and anti-cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) monoclonal antibodies (mAbs), has shaped therapeutic landscape of some type of cancers. Despite some ICIs have manifested compelling clinical effectiveness in certain tumor types, the majority of patients still showed de novo or adaptive resistance. At present, the overall efficiency of immune checkpoint therapy remains unsatisfactory. Exploring additional immune checkpoint molecules is a hot research topic. Recent studies have identified several new immune checkpoint targets, like lymphocyte activation gene-3 (LAG-3), T cell immunoglobulin and mucin-domain containing-3 (TIM-3), T cell immunoglobulin and ITIM domain (TIGIT), V-domain Ig suppressor of T cell activation (VISTA), and so on. The investigations about these molecules have generated promising results in preclinical studies and/or clinical trials. In this review, we discussed the structure and expression of these newly-characterized immune checkpoints molecules, presented the current progress and understanding of them. Moreover, we summarized the clinical data pertinent to these recent immune checkpoint molecules as well as their application prospects.
Collapse
Affiliation(s)
- Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Linping Xu
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Ming Yi
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| | - Suxia Luo
- Department of Medical Oncology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
37
|
Abstract
Immunomodulatory antibodies that directly trigger and reawaken suppressed T-cell effector function are termed 'checkpoint inhibitors'. CTLA-4 and PD-1/PD-L1 molecules are the most studied inhibitory immune check points against cancer and because of this therapeutic property have entered the clinic for treating a variety of tumor types. The results so far demonstrate a positive impact on cancer remission. Preclinical studies have demonstrated that targeting a number of other T-cell surface molecules including both positive and negative immune regulators, also possesses strong antitumor activity. Some of these molecules have already entered clinical trials. In this report, we briefly highlight the status of these immune checkpoint inhibitors and discuss their side effects and future directions for their use.
Collapse
Affiliation(s)
- Dass S Vinay
- Section of Clinical Immunology, Allergy & Rheumatology, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Byoung S Kwon
- Section of Clinical Immunology, Allergy & Rheumatology, School of Medicine, Tulane University, New Orleans, LA 70112, USA.,Eutilex Institute for Biomedical Research, Suite #1401 Daeryung Technotown 17, Gasan digital 1-ro 25, Geumcheon-gu, Seoul Korea
| |
Collapse
|
38
|
Xie X, Ma L, Zhou Y, Shen W, Xu D, Dou J, Shen B, Zhou C. Polysaccharide enhanced NK cell cytotoxicity against pancreatic cancer via TLR4/MAPKs/NF-κB pathway in vitro/vivo. Carbohydr Polym 2019; 225:115223. [PMID: 31521276 DOI: 10.1016/j.carbpol.2019.115223] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/14/2022]
Abstract
A polysaccharide isolated from Strongylocentrotus nudus eggs (SEP) reportedly displays immune activity in vivo. Here, its effect and underlying mechanism in the treatment of pancreatic cancer were investigated. SEP obviously inhibited pancreatic cancer growth by activating NK cells in vitro/vivo via TLR4/MAPKs/NF-κB signaling pathway, The tumor inhibitory rate achieved to 44.5% and 50.8% at a dose of 40 mg/kg in Bxpc-3 and SW1990 nude mice, respectively. Moreover, SEP obviously augmented the Gemcitabine (GEM) antitumor effect by upregulating NKG2D, which improved the sensitivity of NK cells targeting to its ligand MICA; meanwhile, the antitumor inhibitory rate was 68.6% in BxPC-3 tumor-bearing mice. Moreover, SEP reversed GEM-induced apoptosis and atrophy in both spleen and bone marrow via suppressing ROS secretion in vivo. These results suggested that pancreatic cancer was effectively inhibited by SEP-enhanced NK cytotoxicity mediated primarily through TLR4/MAPKs/NF-κB signaling pathway, representing a potential immunotherapy candidate for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Xin Xie
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, PR China
| | - Lingman Ma
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, PR China
| | - Yiran Zhou
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai, 200025, PR China
| | - Wen Shen
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, PR China
| | - Duiyue Xu
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, PR China
| | - Jie Dou
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, PR China
| | - Baiyong Shen
- Department of General Surgery, Rui Jin Hospital, Research Institute of Pancreatic Diseases, School of Medicine, Shanghai JiaoTong University, Shanghai, 200025, PR China.
| | - Changlin Zhou
- School of Life Science and Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing, Jiangsu, 210009, PR China.
| |
Collapse
|
39
|
Solinas C, Migliori E, De Silva P, Willard-Gallo K. LAG3: The Biological Processes That Motivate Targeting This Immune Checkpoint Molecule in Human Cancer. Cancers (Basel) 2019; 11:E1213. [PMID: 31434339 PMCID: PMC6721578 DOI: 10.3390/cancers11081213] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/12/2019] [Accepted: 08/14/2019] [Indexed: 12/20/2022] Open
Abstract
The programmed cell death 1 (PD-1) pathway is an important regulator of immune responses in peripheral tissues, including abnormal situations such as the tumor microenvironment. This pathway is currently the principal target for immunotherapeutic compounds designed to block immune checkpoint pathways, with these drugs improving clinical outcomes in a number of solid and hematological tumors. Medical oncology is experiencing an immune revolution that has scientists and clinicians looking at alternative, non-redundant inhibitory pathways also involved in regulating immune responses in cancer. A variety of targets have emerged for combinatorial approaches in immune checkpoint blockade. The main purpose of this narrative review is to summarize the biological role of lymphocyte activation gene 3 (LAG3), an emerging targetable inhibitory immune checkpoint molecule. We briefly discuss its role in infection, autoimmune disease and cancer, with a more detailed analysis of current data on LAG3 expression in breast cancer. Current clinical trials testing soluble LAG3 immunoglobulin and LAG3 antagonists are also presented in this work.
Collapse
Affiliation(s)
- Cinzia Solinas
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Azienda Unità Sanitaria Locale Valle d'Aosta, Regional Hospital of Aosta, 11100 Aosta, Italy
| | - Edoardo Migliori
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
- Columbia University Medical Center, Columbia Center for Translational Immunology, NY 10032, USA
| | - Pushpamali De Silva
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium
| | - Karen Willard-Gallo
- Molecular Immunology Unit, Institut Jules Bordet, Université Libre de Bruxelles, 1000 Brussels, Belgium.
| |
Collapse
|
40
|
Tundo GR, Sbardella D, Lacal PM, Graziani G, Marini S. On the Horizon: Targeting Next-Generation Immune Checkpoints for Cancer Treatment. Chemotherapy 2019; 64:62-80. [PMID: 31387102 DOI: 10.1159/000500902] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/11/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Immune checkpoints are critical regulatory pathways of the immune system which finely tune the response to biological threats. Among them, the CD-28/CTLA-4 and PD-1/PD-L1 axes play a key role in tumour immune escape and are well-established targets of cancer immunotherapy. SUMMARY The clinical experience accumulated to date provides unequivocal evidence that anti-CTLA-4, PD-1, or PD-L1 monoclonal antibodies, used as monotherapy or in combination regimes, are effective in a variety of advanced/metastatic types of cancer, with improved clinical outcomes compared to conventional chemotherapy. However, the therapeutic success is currently restricted to a limited subset of patients and reliable predictive biomarkers are still lacking. Key Message: The identification and characterization of additional co-inhibitory pathways as novel pharmacological targets to improve the clinical response in refractory patients has led to the development of different immune checkpoint inhibitors, the activities of which are currently under investigation. In this review, we discuss recent literature data concerning the mechanisms of action of next-generation monoclonal antibodies targeting LAG-3, TIM-3, and TIGIT co-inhibitory molecules that are being explored in clinical trials, as single agents or in combination with other immune-stimulating agents.
Collapse
Affiliation(s)
- Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy,
| | - Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Pedro M Lacal
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Marini
- Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata, IDI-IRCCS, Rome, Italy
| |
Collapse
|
41
|
Henriksen A, Dyhl-Polk A, Chen I, Nielsen D. Checkpoint inhibitors in pancreatic cancer. Cancer Treat Rev 2019; 78:17-30. [DOI: 10.1016/j.ctrv.2019.06.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 12/18/2022]
|
42
|
Perez-Santos M, Anaya-Ruiz M, Cebada J, Bandala C, Landeta G, Martínez-Morales P, Villa-Ruano N. LAG-3 antagonists by cancer treatment: a patent review. Expert Opin Ther Pat 2019; 29:643-651. [DOI: 10.1080/13543776.2019.1642873] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Martin Perez-Santos
- Oficina de Comercialización de Tecnología, Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Maricruz Anaya-Ruiz
- Laboratorio de Biología Celular, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Metepec, Puebla, Mexico
| | - Jorge Cebada
- Facultad de Medicina, Benémerita Universidad Autónoma de Puebla, Puebla, México
| | - Cindy Bandala
- Departamento de Neuurociencias, Instituto Nacional de Rehabilitación, Ciudad de México, Mexico
| | - Gerardo Landeta
- Coordinación de Investigación Aplicada, Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| | - Patricia Martínez-Morales
- CONACYT-Instituto Mexicano del Seguro Social - Laboratorio de Biología Molecular, Centro de Investigación Biomédica de Oriente, Metepec, Puebla, Mexico
| | - Nemesio Villa-Ruano
- CONACYT-Coordinación de Investigación Aplicada, Centro Universitario de Vinculación y Transferencia de Tecnología, Benemérita Universidad Autónoma de Puebla, Puebla, México
| |
Collapse
|
43
|
Puhr HC, Ilhan-Mutlu A. New emerging targets in cancer immunotherapy: the role of LAG3. ESMO Open 2019; 4:e000482. [PMID: 31231559 PMCID: PMC6555869 DOI: 10.1136/esmoopen-2018-000482] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 12/23/2018] [Accepted: 12/26/2018] [Indexed: 12/23/2022] Open
Abstract
The success of immunotherapy in many disease entities is limited to a specific subpopulation of patients. To overcome this problem, dual blockade treatments mainly against cytotoxic T-lymphocyte-associated protein 4 (CTLA4) and programmed cell death receptor (ligand) 1 (PD-(L)1) axis were developed. However, due to high toxicity rates and treatment resistance, alternative pathways and novel strategies were desperately needed. Lymphocyte-associated gene 3 (LAG3) represents an inhibitory receptor, which is mainly found on activated immune cells and involved in the exhaustion of T cells in malignant diseases. Its co-expression with other inhibitory receptors, particularly with PD-1 leads to an extensive research on the blockade of LAG3 and PD-1 in preclinical settings. Interestingly, several in-vivo approaches demonstrated a highly significant clinical benefit under dual blockade, whereas the efficacy was very low in case of single agent targeting. Moreover, human tumour tissues showed co-expression of LAG3 and PD-1 in infiltrated lymphocytes, which again generated a rationale for blocking these both molecules in clinical settings. The ongoing clinical studies mainly use dual blockage of LAG3/PD-1, which demonstrated promising survival benefits and long duration of response rates. The following review focuses on the biological background and rationale of combining LAG3 with other agents and serves as an update on the state of clinical research on LAG3 targeting.
Collapse
|
44
|
Abstract
The introduction of immune checkpoint inhibitors have greatly improved clinical outcomes in several cancer types, revolutionizing the management of a wide variety of tumors endowed with poor prognosis. Despite its success, high grade immune related adverse events were observed in patients treated with checkpoint inhibitors. While cardiotoxicity was largely underestimated in initial studies, numerous reports of fulminant myocarditis and fatal heart failure (HF) have been recently described. In this review we discuss possible mechanisms involved in cardiac toxicity triggered by inhibition of cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed cell death 1 (PD-1) pathway, the most prominent checkpoint inhibitors available in the clinic. Major cardiovascular events associated with checkpoint inhibitors adds another layer of complexity in cancer therapy and urges for an interdisciplinary approach between oncologists, cardiologists, and immunologist.
Collapse
Affiliation(s)
- Murilo Delgobo
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany.,Comprehensive Heart Failure Center, University of Würzburg, Würzburg, Germany
| |
Collapse
|
45
|
Luther C, Swami U, Zhang J, Milhem M, Zakharia Y. Advanced stage melanoma therapies: Detailing the present and exploring the future. Crit Rev Oncol Hematol 2018; 133:99-111. [PMID: 30661664 DOI: 10.1016/j.critrevonc.2018.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 08/07/2018] [Accepted: 11/07/2018] [Indexed: 12/21/2022] Open
Abstract
Metastatic melanoma therapies have proliferated over the last ten years. Prior to this, decades passed with only very few drugs available to offer our patients, and even then, those few drugs had minimal survival benefits. Many treatment options emerged over the last ten years with diverse mechanisms of action. Further, combination regimens have demonstrated superiority over monotherapy, especially for targeted agents. Each therapeutic combination possesses different advantages and side effect profiles. In this review, we outline the United States Food and Drug Administration-approved melanoma treatment agents and therapies currently in clinical development, focusing on combination approaches.
Collapse
Affiliation(s)
- Chelsea Luther
- Department of Dermatology, Henry Ford Hospital, Detroit, MI, United States
| | - Umang Swami
- Department of Internal Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Jun Zhang
- Department of Internal Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Mohammed Milhem
- Department of Internal Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Yousef Zakharia
- Department of Internal Medicine, Division of Hematology, Oncology and Blood and Marrow Transplantation, University of Iowa Hospitals and Clinics, Iowa City, IA, United States.
| |
Collapse
|
46
|
Grywalska E, Pasiarski M, Góźdź S, Roliński J. Immune-checkpoint inhibitors for combating T-cell dysfunction in cancer. Onco Targets Ther 2018; 11:6505-6524. [PMID: 30323625 PMCID: PMC6177399 DOI: 10.2147/ott.s150817] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Under normal conditions, the immune system responds effectively to both external and internal threats without damaging healthy tissues. Cells undergoing a neoplastic transformation are one such threat. An efficient activation of T cells is enabled by T-cell receptor (TCR) interactions with antigen-presenting class I and class II molecules of the major histocompatibility complex (MHC), co-stimulatory molecules, and cytokines. After threatening stimuli are removed from the body, the host's immune response ceases, which prevents tissue damage or chronic inflammation. The recognition of foreign antigens is highly selective, which requires multistep regulation to avoid reactions against the antigens of healthy cells. This multistep regulation includes central and peripheral tolerance toward the body's own antigens. Here, we discuss T-cell dysfunction, which leads to poor effector function against foreign antigens, including cancer. We describe selected cellular receptors implicated in T-cell dysfunction and discuss how immune-checkpoint inhibitors can help overcome T-cell dysfunction in cancer treatment.
Collapse
Affiliation(s)
- Ewelina Grywalska
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland,
| | - Marcin Pasiarski
- Department of Hematology, Holy Cross Oncology Center of Kielce, Kielce, Poland.,Faculty of Health Sciences, Jan Kochanowski University, Kielce, Poland
| | - Stanisław Góźdź
- Faculty of Health Sciences, Jan Kochanowski University, Kielce, Poland.,Department of Oncology, Holy Cross Oncology Center of Kielce, Kielce, Poland
| | - Jacek Roliński
- Department of Clinical Immunology and Immunotherapy, Medical University of Lublin, Lublin, Poland,
| |
Collapse
|
47
|
Finetti F, Baldari CT. The immunological synapse as a pharmacological target. Pharmacol Res 2018; 134:118-133. [PMID: 29898412 DOI: 10.1016/j.phrs.2018.06.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/25/2018] [Accepted: 06/07/2018] [Indexed: 12/29/2022]
Abstract
The development of T cell mediated immunity relies on the assembly of a highly specialized interface between T cell and antigen presenting cell (APC), known as the immunological synapse (IS). IS assembly is triggered when the T cell receptor (TCR) binds to specific peptide antigen presented in association to the major histocompatibility complex (MHC) by the APC, and is followed by the spatiotemporal dynamic redistribution of TCR, integrins, co-stimulatory receptors and signaling molecules, allowing for the fine-tuning and integration of the signals that lead to T cell activation. The knowledge acquired to date about the mechanisms of IS assembly underscores this structure as a robust pharmacological target. The activity of molecules involved in IS assembly and function can be targeted by specific compounds to modulate the immune response in a number of disorders, including cancers and autoimmune diseases, or in transplanted patients. Here, we will review the state-of-the art of the current therapies which exploit the IS to modulate the immune response.
Collapse
Affiliation(s)
- Francesca Finetti
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy.
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, via A. Moro 2, Siena, 53100, Italy
| |
Collapse
|
48
|
Marin-Acevedo JA, Dholaria B, Soyano AE, Knutson KL, Chumsri S, Lou Y. Next generation of immune checkpoint therapy in cancer: new developments and challenges. J Hematol Oncol 2018; 11:39. [PMID: 29544515 PMCID: PMC5856308 DOI: 10.1186/s13045-018-0582-8] [Citation(s) in RCA: 570] [Impact Index Per Article: 81.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/01/2018] [Indexed: 02/07/2023] Open
Abstract
Immune checkpoints consist of inhibitory and stimulatory pathways that maintain self-tolerance and assist with immune response. In cancer, immune checkpoint pathways are often activated to inhibit the nascent anti-tumor immune response. Immune checkpoint therapies act by blocking or stimulating these pathways and enhance the body's immunological activity against tumors. Cytotoxic T lymphocyte-associated molecule-4 (CTLA-4), programmed cell death receptor-1 (PD-1), and programmed cell death ligand-1(PD-L1) are the most widely studied and recognized inhibitory checkpoint pathways. Drugs blocking these pathways are currently utilized for a wide variety of malignancies and have demonstrated durable clinical activities in a subset of cancer patients. This approach is rapidly extending beyond CTLA-4 and PD-1/PD-L1. New inhibitory pathways are under investigation, and drugs blocking LAG-3, TIM-3, TIGIT, VISTA, or B7/H3 are being investigated. Furthermore, agonists of stimulatory checkpoint pathways such as OX40, ICOS, GITR, 4-1BB, CD40, or molecules targeting tumor microenvironment components like IDO or TLR are under investigation. In this article, we have provided a comprehensive review of immune checkpoint pathways involved in cancer immunotherapy, and discuss their mechanisms and the therapeutic interventions currently under investigation in phase I/II clinical trials. We also reviewed the limitations, toxicities, and challenges and outline the possible future research directions.
Collapse
Affiliation(s)
| | - Bhagirathbhai Dholaria
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
- Present Address: Department of Blood and Marrow Transplantation and Cellular Immunotherapy, Moffitt Cancer Center, Tampa, FL, USA
| | - Aixa E Soyano
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Saranya Chumsri
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Yanyan Lou
- Division of Hematology and Oncology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
49
|
Immunotherapies: Exploiting the Immune System for Cancer Treatment. J Immunol Res 2018; 2018:9585614. [PMID: 29725606 PMCID: PMC5872614 DOI: 10.1155/2018/9585614] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 12/31/2022] Open
Abstract
Cancer is a condition that has plagued humanity for thousands of years, with the first depictions dating back to ancient Egyptian times. However, not until recent decades have biological therapeutics been developed and refined enough to safely and effectively combat cancer. Three unique immunotherapies have gained traction in recent decades: adoptive T cell transfer, checkpoint inhibitors, and bivalent antibodies. Each has led to clinically approved therapies, as well as to therapies in preclinical and ongoing clinical trials. In this review, we outline the method by which these 3 immunotherapies function as well as any major immunotherapeutic drugs developed for treating a variety of cancers.
Collapse
|
50
|
Niyongere S, Saltos A, Gray JE. Immunotherapy combination strategies (non-chemotherapy) in non-small cell lung cancer. J Thorac Dis 2018; 10:S433-S450. [PMID: 29593889 DOI: 10.21037/jtd.2017.12.120] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Immune checkpoint inhibitors enhance the activation and antitumor activity of the immune system, resulting in durable response rates in a select group of patients. Cytotoxic T lymphocyte antigen 4 (CTLA4) inhibitors target the inhibitory interaction between CTLA4 and CD80 or CD86. Programmed death 1 (PD1) inhibitors target the interaction between PD1 receptors on T-cells and PD-ligand 1 (PD-L1) and PD-ligand 2, blocking the inhibitory signaling and resulting in activation of T-cell effector function. These therapeutic drugs were originally evaluated in patients with metastatic melanoma before expansion to all tumor types, including non-small cell lung cancer (NSCLC) with promising results. The PD1 inhibitors such as pembrolizumab have now received FDA approval in the first-line setting for patients with positive PD-L1 expression tumor types; however, only a portion of patients have shown objective and sustainable responses. To expand the number of patients with observed response to immunotherapeutic agents including patients with negative PD-L1 expression tumors, clinical trials are ongoing to assess the safety and efficacy of combination immune checkpoint inhibitors and combination immune checkpoint inhibitors with targeted therapy. Immune checkpoint inhibitors have been found to be a promising therapeutic drug class with sustainable response rates and a tolerable safety profile, and efforts continue to improve these drugs in patients with NSCLC.
Collapse
Affiliation(s)
- Sandrine Niyongere
- Moffitt Cancer Center, Tampa, FL; University of South Florida, Tampa, FL, USA
| | - Andreas Saltos
- Moffitt Cancer Center, Tampa, FL; University of South Florida, Tampa, FL, USA
| | - Jhanelle E Gray
- Department of Thoracic Oncology, Moffitt Cancer Center, Tampa, FL, USA
| |
Collapse
|