1
|
Johnson AL, Khela HS, Korleski J, Sall S, Li Y, Zhou W, Smith-Connor K, Laterra J, Lopez-Bertoni H. Regulatory T Cell Mimicry by a Subset of Mesenchymal GBM Stem Cells Suppresses CD4 and CD8 Cells. Cells 2025; 14:592. [PMID: 40277917 PMCID: PMC12026101 DOI: 10.3390/cells14080592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 04/02/2025] [Accepted: 04/08/2025] [Indexed: 04/26/2025] Open
Abstract
Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are poorly defined. In this study, our multifaceted approach combining bioinformatics analyses of clinical and experimental datasets, single-cell sequencing, and the molecular and pharmacologic manipulation of patient-derived cells identified GSCs expressing immunosuppressive effectors mimicking regulatory T cells (Tregs). We showed that this immunosuppressive Treg-like (ITL) GSC state is specific to the mesenchymal GSC subset and is associated with and driven specifically by TGFβ type II receptor (TGFBR2) in contrast to TGFBR1. Transgenic TGFBR2 expression in patient-derived GBM neurospheres promoted a mesenchymal transition and induced a six-gene ITL signature consisting of CD274 (PD-L1), NT5E (CD73), ENTPD1 (CD39), LGALS1 (galectin-1), PDCD1LG2 (PD-L2), and TGFB1. This TGFBR2-driven ITL signature was identified in clinical GBM specimens, patient-derived GSCs, and systemic mesenchymal malignancies. TGFBR2high GSCs inhibited CD4+ and CD8+ T cell viability and their capacity to kill GBM cells, effects reversed by pharmacologic and shRNA-based TGFBR2 inhibition. Collectively, our data identify an immunosuppressive GSC state that is TGFBR2-dependent and susceptible to TGFBR2-targeted therapeutics.
Collapse
Affiliation(s)
- Amanda L. Johnson
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Harmon S. Khela
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
| | - Jack Korleski
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
- Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sophie Sall
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
| | - Yunqing Li
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Weiqiang Zhou
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Karen Smith-Connor
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
| | - John Laterra
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| | - Hernando Lopez-Bertoni
- Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, MD 21205, USA (S.S.); (Y.L.); (K.S.-C.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Xiao Z, Puré E. The fibroinflammatory response in cancer. Nat Rev Cancer 2025:10.1038/s41568-025-00798-8. [PMID: 40097577 DOI: 10.1038/s41568-025-00798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/06/2025] [Indexed: 03/19/2025]
Abstract
Fibroinflammation refers to the highly integrated fibrogenic and inflammatory responses mediated by the concerted function of fibroblasts and innate immune cells in response to tissue perturbation. This process underlies the desmoplastic remodelling of the tumour microenvironment and thus plays an important role in tumour initiation, growth and metastasis. More specifically, fibroinflammation alters the biochemical and biomechanical signalling in malignant cells to promote their proliferation and survival and further supports an immunosuppressive microenvironment by polarizing the immune status of tumours. Additionally, the presence of fibroinflammation is often associated with therapeutic resistance. As such, there is increasing interest in targeting this process to normalize the tumour microenvironment and thus enhance the treatment of solid tumours. Herein, we review advances made in unravelling the complexity of cancer-associated fibroinflammation that can inform the rational design of therapies targeting this.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Pinto-Fraga J, García-Chico C, Lista S, Lacal PM, Carpenzano G, Salvati M, Santos-Lozano A, Graziani G, Ceci C. Protein kinase inhibitors as targeted therapy for glioblastoma: a meta-analysis of randomized controlled clinical trials. Pharmacol Res 2025; 212:107528. [PMID: 39637954 DOI: 10.1016/j.phrs.2024.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain tumor. The standard treatment for newly diagnosed GBM includes surgical resection, when feasible, followed by radiotherapy and temozolomide-based chemotherapy. Upon disease progression, the anti-vascular endothelial growth factor-A (VEGF-A) monoclonal antibody bevacizumab, can be considered. Given the limited efficacy of pharmacological treatments, particularly for the recurrent disease, several molecularly targeted interventions have been explored, such as small-molecule protein kinase inhibitors (PKIs), inhibiting tyrosine kinase growth factor receptors and downstream signaling pathways involved in GBM angiogenesis and infiltrative behavior. This meta-analysis, based on searches in PubMed and Web Of Science, evaluated 12 randomized controlled trials (RCTs) examining PKIs in patients with newly diagnosed or recurrent GBM. Pooled analysis of shared clinical outcomes - progression-free survival (PFS) and overall survival (OS) - revealed a lack of significant improvements with the use of PKIs. In newly diagnosed GBM, no significant differences were observed in median [-1.02 months, 95 % confidence interval (CI), -2.37-0.32, p = 0.14] and pooled [hazard ratio (HR) = 1.13, 95 % CI, 0.95-1.35, p = 0.17) OS, or in median (0.34 months, 95 % CI, -0.9-1.58, p = 0.60) and pooled (HR = 0.98, 95 % CI, 0.76-1.27, p = 0.89) PFS, when comparing PKI addition to standard chemo-radiotherapy versus chemo-radiotherapy alone. In recurrent GBM, three different analyses were conducted: PKI versus other treatments, PKI combined with other treatments versus those treatments alone, PKI versus PKI combined with other treatments. Also, across these analyses, no significant clinical benefits were found. For instance, when comparing PKI treatment with other treatments, median OS and PFS showed no significant difference (-0.78 months, 95 % CI, -2.12-0.55, p = 0.25; -0.23 months, 95 % CI, -0.79-0.34, p = 0.43, respectively), and similar non-significant results were observed in the pooled analyses (OS: HR = 0.89, 95 % CI, 0.59-1.32, p = 0.55; PFS: HR = 0.83, 95 % CI, 0.63-1.11, p = 0.21). Despite these overall negative findings, some data indicate improved clinical outcomes in a subset of GBM patients treated with certain PKIs (i.e., regorafenib) and encourage further research to identify PKIs with better blood-brain barrier penetration and lower risk for resistance development.
Collapse
Affiliation(s)
- José Pinto-Fraga
- i+HeALTH Strategic Research Group, Miguel de Cervantes European University, Valladolid 47012, Spain
| | - Celia García-Chico
- i+HeALTH Strategic Research Group, Miguel de Cervantes European University, Valladolid 47012, Spain
| | - Simone Lista
- i+HeALTH Strategic Research Group, Miguel de Cervantes European University, Valladolid 47012, Spain
| | | | - Giuseppe Carpenzano
- Department of Neurosurgery, Policlinico Tor Vergata, University of Rome Tor Vergata. Rome 00133, Italy
| | - Maurizio Salvati
- Department of Neurosurgery, Policlinico Tor Vergata, University of Rome Tor Vergata. Rome 00133, Italy
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Miguel de Cervantes European University, Valladolid 47012, Spain; Research Institute of the Hospital 12 de Octubre ('Imas12' [PaHerg Group]), Madrid 28041, Spain
| | - Grazia Graziani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy.
| | - Claudia Ceci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| |
Collapse
|
4
|
Johnson AL, Khela HS, Korleski J, Sall S, Li Y, Zhou W, Smith-Connor K, Lopez-Bertoni H, Laterra J. TGFBR2 High mesenchymal glioma stem cells phenocopy regulatory T cells to suppress CD4+ and CD8+ T cell function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631757. [PMID: 39829747 PMCID: PMC11741370 DOI: 10.1101/2025.01.07.631757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Attempts to activate an anti-tumor immune response in glioblastoma (GBM) have been met with many challenges due to its inherently immunosuppressive tumor microenvironment. The degree and mechanisms by which molecularly and phenotypically diverse tumor-propagating glioma stem cells (GSCs) contribute to this state are poorly defined. In this study, our multifaceted approach combining bioinformatics analyses of clinical and experimental datasets, single-cell sequencing, and molecular and pharmacologic manipulation of patient-derived cells identified GSCs expressing immunosuppressive effectors mimicking regulatory T cells (Tregs). We show that this I mmunosuppressive T reg- L ike (ITL) GSC state is specific to the mesenchymal GSC subset and is associated with and driven specifically by TGF-β type II receptor (TGFBR2) in contrast to TGFBR1. Transgenic TGFBR2 expression in patient-derived GBM neurospheres promoted a mesenchymal transition and induced a 6-gene ITL signature consisting of CD274 (PD-L1), NT5E (CD73), ENTPD1 (CD39), LGALS1 (galectin-1), PDCD1LG2 (PD-L2), and TGFB1. This TGFBR2-driven ITL signature was identified in clinical GBM specimens, patient-derived GSCs and systemic mesenchymal malignancies. TGFBR2 High GSCs inhibited CD4+ and CD8+ T cell viability and their capacity to kill GBM cells, effects reversed by pharmacologic and shRNA-based TGFBR2 inhibition. Collectively, our data identify an immunosuppressive GSC state that is TGFBR2-dependent and susceptible to TGFBR2-targeted therapeutics.
Collapse
|
5
|
Barakat R, Chatterjee J, Mu R, Qi X, Gu X, Smirnov I, Cobb O, Gao K, Barnes A, Kipnis J, Gutmann DH. Human single cell RNA-sequencing reveals a targetable CD8 + exhausted T cell population that maintains mouse low-grade glioma growth. Nat Commun 2024; 15:10312. [PMID: 39609412 PMCID: PMC11605098 DOI: 10.1038/s41467-024-54569-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/14/2024] [Indexed: 11/30/2024] Open
Abstract
In solid cancers, T cells typically function as cytotoxic effectors to limit tumor growth, prompting therapies that capitalize upon this antineoplastic property (immune checkpoint inhibition; ICI). Unfortunately, ICI treatments have been largely ineffective for high-grade brain tumors (gliomas; HGGs). Leveraging several single-cell RNA sequencing datasets, we report greater CD8+ exhausted T cells in human pediatric low-grade gliomas (LGGs) relative to adult and pediatric HGGs. Using several preclinical mouse LGG models (Nf1-OPG mice), we show that these PD1+/TIGIT+ CD8+ exhausted T cells are restricted to the tumor tissue, where they express paracrine factors necessary for OPG growth. Importantly, ICI treatments with α-PD1 and α-TIGIT antibodies attenuate Nf1-OPG tumor proliferation through suppression of two cytokine (Ccl4 and TGFβ)-mediated mechanisms, rather than by T cell-mediated cytotoxicity, as well as suppress monocyte-controlled T cell chemotaxis. Collectively, these findings establish a previously unrecognized function for CD8+ exhausted T cells as specialized regulators of LGG maintenance.
Collapse
Affiliation(s)
- Rasha Barakat
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jit Chatterjee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rui Mu
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xuanhe Qi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xingxing Gu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Igor Smirnov
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Olivia Cobb
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Karen Gao
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Angelica Barnes
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David H Gutmann
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
6
|
Franco MS, Raulefs S, Schilling D, Combs SE, Schmid TE. Impact of Radiation on Invasion and Migration of Glioma In Vitro and In Vivo. Cancers (Basel) 2024; 16:3900. [PMID: 39682088 DOI: 10.3390/cancers16233900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma (GBM) constitutes the most common primary brain tumor and it remains incurable despite therapeutic advances. The high infiltration/invasion potential of GBM cells is considered to be one of the reasons for the inevitable recurrence of the disease. Radiotherapy (RT) is part of the standard care for patients with GBM, and its benefits on overall survival are extensively reported. However, numerous preclinical studies show that X-ray irradiation can enhance the motility of GBM cells. In the present review, we bring together state-of-the-art research on the impact of radiation on GBM cell motility. The mechanisms through which irradiation impacts the brain tumor microenvironment and the tumor cells themselves, leading to more aggressive/invasive tumors, are described. Finally, we summarize potential pharmacological strategies to overcome this problem. Clinical data validating the occurrence of these processes are urgently needed as they could be of great value for patient outcomes. With this comprehensive review, we expect to highlight the need for methods which allow for monitoring the post-irradiation invasive behavior of GBM in patients.
Collapse
Affiliation(s)
- Marina Santiago Franco
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Susanne Raulefs
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Daniela Schilling
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Stephanie E Combs
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Thomas E Schmid
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| |
Collapse
|
7
|
Hou AJ, Shih RM, Uy BR, Shafer A, Chang ZL, Comin-Anduix B, Guemes M, Galic Z, Phyu S, Okada H, Grausam KB, Breunig JJ, Brown CE, Nathanson DA, Prins RM, Chen YY. IL-13Rα2/TGF-β bispecific CAR-T cells counter TGF-β-mediated immune suppression and potentiate anti-tumor responses in glioblastoma. Neuro Oncol 2024; 26:1850-1866. [PMID: 38982561 PMCID: PMC11449012 DOI: 10.1093/neuonc/noae126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapies targeting glioblastoma (GBM)-associated antigens such as interleukin-13 receptor subunit alpha-2 (IL-13Rα2) have achieved limited clinical efficacy to date, in part due to an immunosuppressive tumor microenvironment (TME) characterized by inhibitory molecules such as transforming growth factor-beta (TGF-β). The aim of this study was to engineer more potent GBM-targeting CAR-T cells by countering TGF-β-mediated immune suppression in the TME. METHODS We engineered a single-chain, bispecific CAR targeting IL-13Rα2 and TGF-β, which programs tumor-specific T cells to convert TGF-β from an immunosuppressant to an immunostimulant. Bispecific IL-13Rα2/TGF-β CAR-T cells were evaluated for efficacy and safety against both patient-derived GBM xenografts and syngeneic models of murine glioma. RESULTS Treatment with IL-13Rα2/TGF-β CAR-T cells leads to greater T-cell infiltration and reduced suppressive myeloid cell presence in the tumor-bearing brain compared to treatment with conventional IL-13Rα2 CAR-T cells, resulting in improved survival in both patient-derived GBM xenografts and syngeneic models of murine glioma. CONCLUSIONS Our findings demonstrate that by reprogramming tumor-specific T-cell responses to TGF-β, bispecific IL-13Rα2/TGF-β CAR-T cells resist and remodel the immunosuppressive TME to drive potent anti-tumor responses in GBM.
Collapse
Affiliation(s)
- Andrew J Hou
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
| | - Ryan M Shih
- Department of Molecular Biology, University of California, Los Angeles, California, USA
| | - Benjamin R Uy
- Department of Neurosurgery, University of California, Los Angeles, California, USA
| | - Amanda Shafer
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - ZeNan L Chang
- Department of Molecular Biology, University of California, Los Angeles, California, USA
| | - Begonya Comin-Anduix
- Department of Surgery, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
| | - Miriam Guemes
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, California, USA
| | - Zoran Galic
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Department of Medicine, Division of Hematology/Oncology, University of California, Los Angeles, California, USA
| | - Su Phyu
- Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Hideho Okada
- Department of Neurosurgery, University of California, San Francisco, California, USA
- Parker Institute for Cancer Immunotherapy Center at UCSF, San Francisco, California, USA
| | - Katie B Grausam
- Board of Governor’s Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joshua J Breunig
- Board of Governor’s Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christine E Brown
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute, Duarte, California, USA
| | - David A Nathanson
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Robert M Prins
- Department of Neurosurgery, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California, USA
| | - Yvonne Y Chen
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, California, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, California, USA
- Parker Institute for Cancer Immunotherapy Center at UCLA, Los Angeles, California, USA
| |
Collapse
|
8
|
Li N, Rodriguez JL, Yin Y, Logun MT, Zhang L, Yu S, Hicks KA, Zhang JV, Zhang L, Xie C, Wang J, Wang T, Xu J, Fraietta JA, Binder ZA, Lin Z, O'Rourke DM. Armored bicistronic CAR T cells with dominant-negative TGF-β receptor II to overcome resistance in glioblastoma. Mol Ther 2024; 32:3522-3538. [PMID: 39086131 PMCID: PMC11489531 DOI: 10.1016/j.ymthe.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/01/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells have shown significant efficacy in hematological diseases. However, CAR T therapy has demonstrated limited efficacy in solid tumors, including glioblastoma (GBM). One of the most important reasons is the immunosuppressive tumor microenvironment (TME), which promotes tumor growth and suppresses immune cells used to eliminate tumor cells. The human transforming growth factor β (TGF-β) plays a crucial role in forming the suppressive GBM TME and driving the suppression of the anti-GBM response. To mitigate TGF-β-mediated suppressive activity, we combined a dominant-negative TGF-β receptor II (dnTGFβRII) with our previous bicistronic CART-EGFR-IL13Rα2 construct, currently being evaluated in a clinical trial, to generate CART-EGFR-IL13Rα2-dnTGFβRII, a tri-modular construct we are developing for clinical application. We hypothesized that this approach would more effectively subvert resistance mechanisms observed with GBM. Our data suggest that CART-EGFR-IL13Rα2-dnTGFβRII significantly augments T cell proliferation, enhances functional responses, and improves the fitness of bystander cells, particularly by decreasing the TGF-β concentration in a TGF-β-rich TME. In addition, in vivo studies validate the safety and efficacy of the dnTGFβRII cooperating with CARs in targeting and eradicating GBM in an NSG mouse model.
Collapse
Affiliation(s)
- Nannan Li
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jesse L Rodriguez
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Yibo Yin
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China; Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Meghan T Logun
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Logan Zhang
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Shengkun Yu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing 211800, China
| | - Kelly A Hicks
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jiasi Vicky Zhang
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Laura Zhang
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Chuncheng Xie
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jiabin Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Tianyu Wang
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Jiayi Xu
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zev A Binder
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Zhiguo Lin
- Department of Neurosurgery, First Affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Donald M O'Rourke
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Department of Neurosurgery, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Saqib M, Zahoor A, Rahib A, Shamim A, Mumtaz H. Clinical and translational advances in primary brain tumor therapy with a focus on glioblastoma-A comprehensive review of the literature. World Neurosurg X 2024; 24:100399. [PMID: 39386927 PMCID: PMC11462364 DOI: 10.1016/j.wnsx.2024.100399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/20/2024] [Indexed: 10/12/2024] Open
Abstract
This comprehensive review paper examines the most updated state of research on glioblastoma, an aggressive brain tumor with limited treatment options. By analyzing 76 recent studies, from translational and basic sciences, to clinical trials, we highlight various aspects of glioblastoma and shed light on potential therapeutic strategies. The interplay between tumor cells, neural progenitor cells, and the tumor microenvironment is explored. Targeting the PI3K-Akt-mTOR pathway through extracellular-vesicle (EV)-mediated signaling emerges as a potential therapeutic strategy. Personalized modeling approaches utilizing patient-specific MRI data offer promise for optimizing treatment strategies. The response of glioblastoma stem cells (GSCs) to different treatment modalities is examined, emphasizing the need to inhibit the transformation of proneural (PN) GSCs into resistant mesenchymal (MES) GSCs. Metabolic therapy and combination therapies show potential in reversing treatment resistance and inhibiting both PN and MES GSCs. Immunotherapy, targeted approaches, and molecular dynamics in gliomas are discussed, providing insights into early-stage diagnosis and treatment. Additionally, the potential use of Zika virus as an oncolytic agent is explored. Analysis of phase 0 to 3 clinical trials reveal promising outcomes for various experimental treatments, highlighting the importance of combination therapies, predictive signatures, and patient selection strategies. Specific compounds demonstrate potential therapeutic benefits and tolerability. Phase 3 trials indicate the efficacy of DCVax-L in improving survival rates and depatux-m in prolonging progression-free survival. These findings emphasize the importance of personalized treatment approaches and continued exploration of targeted therapies, immunotherapies, and tumor biology understanding in shaping the future of glioblastoma treatment.
Collapse
Affiliation(s)
| | | | - Ahmed Rahib
- Nowshera Medical College, Nowshera, Pakistan
| | - Amna Shamim
- King Edward Medical University, Lahore, Pakistan
| | | |
Collapse
|
10
|
Wen J, Liu D, Zhu H, Shu K. Microenvironmental regulation of tumor-associated neutrophils in malignant glioma: from mechanism to therapy. J Neuroinflammation 2024; 21:226. [PMID: 39285276 PMCID: PMC11406851 DOI: 10.1186/s12974-024-03222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Glioma is the most common primary intracranial tumor in adults, with high incidence, recurrence, and mortality rates. Tumor-associated neutrophils (TANs) are essential components of the tumor microenvironment (TME) in glioma and play a crucial role in glioma cell proliferation, invasion and proneural-mesenchymal transition. Besides the interactions between TANs and tumor cells, the multi-dimensional crosstalk between TANs and other components within TME have been reported to participate in glioma progression. More importantly, several therapies targeting TANs have been developed and relevant preclinical and clinical studies have been conducted in cancer therapy. In this review, we introduce the origin of TANs and the functions of TANs in malignant behaviors of glioma, highlighting the microenvironmental regulation of TANs. Moreover, we focus on summarizing the TANs-targeted methods in cancer therapy, aiming to provide insights into the mechanisms and therapeutic opportunities of TANs in the malignant glioma microenvironment.
Collapse
Affiliation(s)
- Jiayi Wen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
11
|
Khodr V, Clauzier L, Machillot P, Sales A, Migliorini E, Picart C. Development of an automated high-content immunofluorescence assay of pSmads quantification: Proof-of-concept with drugs inhibiting the BMP/TGF-β pathways. Biotechnol J 2024; 19:e2400007. [PMID: 39295554 DOI: 10.1002/biot.202400007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 09/21/2024]
Abstract
INTRODUCTION Bone morphogenetic proteins (BMPs) and transforming growth factors (TGF-β) are members of the TGF-β superfamily, known for their roles in several physiological and pathological processes. These factors are known to bind in vivo to BMP and TGF-β receptors, respectively, which induces the phosphorylation of Smad (pSmad) transcription factors. This pathway is generally studied with Western blot and luciferase bioluminescence assay, which presents some limitations. PURPOSE In this work, we developed and optimized a high-throughput assay to study pSmad pathways using immunofluorescence (IF) as an alternative to Western blot. We aimed to overcome the technical challenges usually faced in the classical IF assay in image acquisition, analysis, and quantification. METHODS We used C2C12 cells as a cellular model. The cells were stimulated with BMP-2 and TGF-β1 that were delivered either in solution (soluble) or via a biomaterial presenting the growth factor (GF), that is in a "matrix-bound" manner. Image acquisition parameters, analysis methods, and quantification of pSmads using IF were optimized for cells cultured on two types of supports: on bare glass and on a biomimetic coating made by self-assembly of the biopolymers hyaluronic acid and poly(l-lysine), which was crosslinked and then loaded with the GFs. RESULTS We performed high-content kinetic studies of pSmad expression for cells cultured in 96-well microplates in response to soluble and matrix-bound BMP-2 and TGF-β1. The detection limit of the IF-based assay was found to be similar to Western blot. Additionally, we provide a proof-of-concept for drug testing using inhibitors of BMP and TGF-β receptors, under conditions where specific signaling pathways are engaged via the ligand/receptor interactions. Altogether, our findings offer perspectives for future mechanistic studies on cell signaling and for studies at the single cell level using imaging methods.
Collapse
Affiliation(s)
- Valia Khodr
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR, Grenoble, France
| | - Laura Clauzier
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
| | - Paul Machillot
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
| | - Adrià Sales
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
| | - Elisa Migliorini
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
| | - Catherine Picart
- Université Grenoble Alpes, INSERM, CEA, U1292 Biosanté, CNRS EMR BRM, Grenoble cedex, France
- CNRS, Grenoble Institute of Technology, LMGP, UMR, Grenoble, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
12
|
Chen YC, Lee YL, Lee CA, Lin TY, Hwu EET, Cheng PC. Development of a Lipid-encapsulated TGFβRI-siRNA Drug for Liver Fibrosis Induced by Schistosoma mansoni. PLoS Negl Trop Dis 2024; 18:e0012502. [PMID: 39264964 PMCID: PMC11421824 DOI: 10.1371/journal.pntd.0012502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/24/2024] [Accepted: 09/02/2024] [Indexed: 09/14/2024] Open
Abstract
Schistosoma mansoni infection leads to chronic schistosomiasis and severe hepatic fibrosis. We designed a liver-targeted lipid nanoparticle (LNP) carrying siRNA against type I TGF-β receptor (TGFβRI) mRNA to treat schistosomiasis-induced liver fibrosis in BALB/c mice. Knockdown of TGFβRI by LNP-siTGFβRI reduced LX-2 cell activation in vitro and alleviated liver fibrosis in S. mansoni-infected mice. αSMA and Col1a1 fibrotic markers in the liver tissues of infected mice were significantly suppressed in the treatment groups. In the serum of the LNP-siTGFβRI-treated groups, cytokines IFNγ, IL-1α, IL-6, IL-12, RANTES (CCL5), and TNFα increased, while GM-CSF, IL-2, IL-4, IL-10, IL-13, and KC (CXCL1) decreased compared to the control. Cell proportions were significantly altered in S. mansoni-infected mice, with increased CD56d NK cells and decreased CD19+ B cells and CD4+ T cells compared to naïve mice. Following LNP-siTGFβRI treatment, CD56d NK cells were downregulated, while B and memory Th cell populations were upregulated. The density of fibrotic regions significantly decreased with LNP-siTGFβRI treatment in a dose-dependent manner, and no systemic toxicity was observed in the major organs. This targeted siRNA delivery strategy effectively reduced granulomatous lesions in schistosomiasis-induced liver fibrosis without detectable side effects.
Collapse
Affiliation(s)
- Ying-Chou Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Drug Metabolism & Pharmacokinetics Department, Institute for Drug Evaluation Platform, Development Center for Biotechnology, Taipei, Taiwan
| | - Yueh-Lun Lee
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, Taiwan
| | - Ching-An Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Yuan Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Edwin En-Te Hwu
- The Danish National Research Foundation and Villum Foundation’s Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark
| | - Po-Ching Cheng
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Center for International Tropical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
13
|
Zelisko N, Lesyk R, Stoika R. Structure, unique biological properties, and mechanisms of action of transforming growth factor β. Bioorg Chem 2024; 150:107611. [PMID: 38964148 DOI: 10.1016/j.bioorg.2024.107611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/06/2024]
Abstract
Transforming growth factor β (TGF-β) is a ubiquitous molecule that is extremely conserved structurally and plays a systemic role in human organism. TGF-β is a homodimeric molecule consisting of two subunits joined through a disulphide bond. In mammals, three genes code for TGF-β1, TGF-β2, and TGF-β3 isoforms of this cytokine with a dominating expression of TGF-β1. Virtually, all normal cells contain TGF-β and its specific receptors. Considering the exceptional role of fine balance played by the TGF-β in anumber of physiological and pathological processes in human body, this cytokine may be proposed for use in medicine as an immunosuppressant in transplantology, wound healing and bone repair. TGFb itself is an important target in oncology. Strategies for blocking members of TGF-β signaling pathway as therapeutic targets have been considered. In this review, signalling mechanisms of TGF-β1 action are addressed, and their role in physiology and pathology with main focus on carcinogenesis are described.
Collapse
Affiliation(s)
- Nataliya Zelisko
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, 79010 Lviv, Ukraine.
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation and Apoptosis, Institute of Cell Biology of National Academy of Sciences of Ukraine, Drahomanov 14/16, 79005 Lviv, Ukraine
| |
Collapse
|
14
|
Luo W, Zhang T. The new era of pancreatic cancer treatment: Application of nanotechnology breaking through bottlenecks. Cancer Lett 2024; 594:216979. [PMID: 38795762 DOI: 10.1016/j.canlet.2024.216979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
Since the advent of nanomedicine, physicians have harnessed these approaches for the prophylaxis, detection, and therapy of life-threatening diseases, particularly cancer. Nanoparticles have demonstrated notable efficacy in cancer therapy, showcasing the primary application of nanotechnology in targeted drug delivery. Pancreatic cancer stands out as the most lethal solid tumour in humans. The low survival rate is attributed to its highly aggressive nature, intrinsic resistance to chemotherapeutics, and the lack of successful therapies, compounded by delayed diagnosis due to nonspecific symptoms and the absence of rapid diagnostic strategies. Despite these challenges, nanotechnology-based carrier methods have been successfully employed in imaging and therapy approaches. Overcoming drug resistance in pancreatic cancer necessitates a comprehensive understanding of the microenvironment associated with the disease, paving the way for innovative nanocarriers. Hindered chemotherapy infiltration, attributed to inadequate vascularization and a dense tumour stroma, is a major hurdle that nanotechnology addresses. Intelligent delivery techniques, based on the Enhanced Permeability and Retention effect, form the basis of recently developed anticancer nanocarriers. These advancements aim to enhance drug accumulation in tumour locations, offering a potential solution to the treatment-resistant nature of cancer. Addressing the challenges in pancreatic cancer treatment demands innovative therapies, and the emergence of active nanocarriers presents a promising avenue for enhancing outcomes. This review specifically delves into the latest advancements in nanotechnology for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
15
|
Tataranu LG, Turliuc S, Rizea RE, Dricu A, Alexandru O, Staicu GA, Kamel A. A Synopsis of Biomarkers in Glioblastoma: Past and Present. Curr Issues Mol Biol 2024; 46:6903-6939. [PMID: 39057054 PMCID: PMC11275428 DOI: 10.3390/cimb46070412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Accounting for 48% of malignant brain tumors in adults, glioblastoma has been of great interest in the last decades, especially in the biomolecular and neurosurgical fields, due to its incurable nature and notable neurological morbidity. The major advancements in neurosurgical technologies have positively influenced the extent of safe tumoral resection, while the latest progress in the biomolecular field of GBM has uncovered new potential therapeutical targets. Although GBM currently has no curative therapy, recent progress has been made in the management of this disease, both from surgical and molecular perspectives. The main current therapeutic approach is multimodal and consists of neurosurgical intervention, radiotherapy, and chemotherapy, mostly with temozolomide. Although most patients will develop treatment resistance and tumor recurrence after surgical removal, biomolecular advancements regarding GBM have contributed to a better understanding of this pathology and its therapeutic management. Over the past few decades, specific biomarkers have been discovered that have helped predict prognosis and treatment responses and contributed to improvements in survival rates.
Collapse
Affiliation(s)
- Ligia Gabriela Tataranu
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Serban Turliuc
- Medical Department, University of Medicine and Pharmacy “G. T. Popa”, 700115 Iasi, Romania;
| | - Radu Eugen Rizea
- Neurosurgical Department, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania;
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Oana Alexandru
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Georgiana-Adeline Staicu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy, 200349 Craiova, Romania (O.A.); (G.-A.S.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| |
Collapse
|
16
|
Szalanczy AM, Sherrill C, Fanning KM, Hart B, Caudell D, Davis AW, Whitfield J, Kavanagh K. A Novel TGFβ Receptor Inhibitor, IPW-5371, Prevents Diet-induced Hepatic Steatosis and Insulin Resistance in Irradiated Mice. Radiat Res 2024; 202:1-10. [PMID: 38772553 DOI: 10.1667/rade-23-00202.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 05/10/2024] [Indexed: 05/23/2024]
Abstract
As the number of cancer survivors increases and the risk of accidental radiation exposure rises, there is a pressing need to characterize the delayed effects of radiation exposure and develop medical countermeasures. Radiation has been shown to damage adipose progenitor cells and increase liver fibrosis, such that it predisposes patients to developing metabolic-associated fatty liver disease (MAFLD) and insulin resistance. The risk of developing these conditions is compounded by the global rise of diets rich in carbohydrates and fats. Radiation persistently increases the signaling cascade of transforming growth factor β (TGFβ), leading to heightened fibrosis as characteristic of the delayed effects of radiation exposure. We investigate here a potential radiation medical countermeasure, IPW-5371, a small molecule inhibitor of TGFβRI kinase (ALK5). We found that mice exposed to sub-lethal whole-body irradiation and chronic Western diet consumption but treated with IPW-5371 had a similar body weight, food consumption, and fat mass compared to control mice exposed to radiation. The IPW-5371 treated mice maintained lower fibrosis and fat accumulation in the liver, were more responsive to insulin and had lower circulating triglycerides and better muscle endurance. Future studies are needed to verify the improvement by IPW-5371 on the structure and function of other metabolically active tissues such as adipose and skeletal muscle, but these data demonstrate that IPW-5371 protects liver and whole-body health in rodents exposed to radiation and a Western diet, and there may be promise in using IPW-5371 to prevent the development of MAFLD.
Collapse
Affiliation(s)
- Alexandria M Szalanczy
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Chrissy Sherrill
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Katherine M Fanning
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Barry Hart
- Innovation Pathways, Palo Alto, California
| | - David Caudell
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ashley W Davis
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jordyn Whitfield
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Kylie Kavanagh
- Department of Pathology, Wake Forest School of Medicine, Winston-Salem, North Carolina
- College of Health and Medicine, University o f Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
17
|
de Haan LR, van Golen RF, Heger M. Molecular Pathways Governing the Termination of Liver Regeneration. Pharmacol Rev 2024; 76:500-558. [PMID: 38697856 DOI: 10.1124/pharmrev.123.000955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 05/05/2024] Open
Abstract
The liver has the unique capacity to regenerate, and up to 70% of the liver can be removed without detrimental consequences to the organism. Liver regeneration is a complex process involving multiple signaling networks and organs. Liver regeneration proceeds through three phases: the initiation phase, the growth phase, and the termination phase. Termination of liver regeneration occurs when the liver reaches a liver-to-body weight that is required for homeostasis, the so-called "hepatostat." The initiation and growth phases have been the subject of many studies. The molecular pathways that govern the termination phase, however, remain to be fully elucidated. This review summarizes the pathways and molecules that signal the cessation of liver regrowth after partial hepatectomy and answers the question, "What factors drive the hepatostat?" SIGNIFICANCE STATEMENT: Unraveling the pathways underlying the cessation of liver regeneration enables the identification of druggable targets that will allow us to gain pharmacological control over liver regeneration. For these purposes, it would be useful to understand why the regenerative capacity of the liver is hampered under certain pathological circumstances so as to artificially modulate the regenerative processes (e.g., by blocking the cessation pathways) to improve clinical outcomes and safeguard the patient's life.
Collapse
Affiliation(s)
- Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Rowan F van Golen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, China (L.R.d.H., M.H.); Department of Internal Medicine, Noordwest Ziekenhuisgroep, Alkmaar, The Netherlands (L.R.d.H.); Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands (R.F.v.G.); Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands (M.H.); and Membrane Biochemistry and Biophysics, Department of Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands (M.H.)
| |
Collapse
|
18
|
Danielpour D. Advances and Challenges in Targeting TGF-β Isoforms for Therapeutic Intervention of Cancer: A Mechanism-Based Perspective. Pharmaceuticals (Basel) 2024; 17:533. [PMID: 38675493 PMCID: PMC11054419 DOI: 10.3390/ph17040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
The TGF-β family is a group of 25 kDa secretory cytokines, in mammals consisting of three dimeric isoforms (TGF-βs 1, 2, and 3), each encoded on a separate gene with unique regulatory elements. Each isoform plays unique, diverse, and pivotal roles in cell growth, survival, immune response, and differentiation. However, many researchers in the TGF-β field often mistakenly assume a uniform functionality among all three isoforms. Although TGF-βs are essential for normal development and many cellular and physiological processes, their dysregulated expression contributes significantly to various diseases. Notably, they drive conditions like fibrosis and tumor metastasis/progression. To counter these pathologies, extensive efforts have been directed towards targeting TGF-βs, resulting in the development of a range of TGF-β inhibitors. Despite some clinical success, these agents have yet to reach their full potential in the treatment of cancers. A significant challenge rests in effectively targeting TGF-βs' pathological functions while preserving their physiological roles. Many existing approaches collectively target all three isoforms, failing to target just the specific deregulated ones. Additionally, most strategies tackle the entire TGF-β signaling pathway instead of focusing on disease-specific components or preferentially targeting tumors. This review gives a unique historical overview of the TGF-β field often missed in other reviews and provides a current landscape of TGF-β research, emphasizing isoform-specific functions and disease implications. The review then delves into ongoing therapeutic strategies in cancer, stressing the need for more tools that target specific isoforms and disease-related pathway components, advocating mechanism-based and refined approaches to enhance the effectiveness of TGF-β-targeted cancer therapies.
Collapse
Affiliation(s)
- David Danielpour
- Case Comprehensive Cancer Center Research Laboratories, The Division of General Medical Sciences-Oncology, Case Western Reserve University, Cleveland, OH 44106, USA; ; Tel.: +1-216-368-5670; Fax: +1-216-368-8919
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Institute of Urology, University Hospitals, Cleveland, OH 44106, USA
| |
Collapse
|
19
|
Deng Z, Fan T, Xiao C, Tian H, Zheng Y, Li C, He J. TGF-β signaling in health, disease, and therapeutics. Signal Transduct Target Ther 2024; 9:61. [PMID: 38514615 PMCID: PMC10958066 DOI: 10.1038/s41392-024-01764-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/31/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024] Open
Abstract
Transforming growth factor (TGF)-β is a multifunctional cytokine expressed by almost every tissue and cell type. The signal transduction of TGF-β can stimulate diverse cellular responses and is particularly critical to embryonic development, wound healing, tissue homeostasis, and immune homeostasis in health. The dysfunction of TGF-β can play key roles in many diseases, and numerous targeted therapies have been developed to rectify its pathogenic activity. In the past decades, a large number of studies on TGF-β signaling have been carried out, covering a broad spectrum of topics in health, disease, and therapeutics. Thus, a comprehensive overview of TGF-β signaling is required for a general picture of the studies in this field. In this review, we retrace the research history of TGF-β and introduce the molecular mechanisms regarding its biosynthesis, activation, and signal transduction. We also provide deep insights into the functions of TGF-β signaling in physiological conditions as well as in pathological processes. TGF-β-targeting therapies which have brought fresh hope to the treatment of relevant diseases are highlighted. Through the summary of previous knowledge and recent updates, this review aims to provide a systematic understanding of TGF-β signaling and to attract more attention and interest to this research area.
Collapse
Affiliation(s)
- Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
20
|
Ding Y, Zhou G, Hu W. Epigenetic regulation of TGF-β pathway and its role in radiation response. Int J Radiat Biol 2024; 100:834-848. [PMID: 38506660 DOI: 10.1080/09553002.2024.2327395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/27/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Transforming growth factor (TGF-β) plays a dual role in tumor progression as well as a pivotal role in radiation response. TGF-β-related epigenetic regulations, including DNA methylation, histone modifications (including methylation, acetylation, phosphorylation, ubiquitination), chromatin remodeling and non-coding RNA regulation, have been found to affect the occurrence and development of tumors as well as their radiation response in multiple dimensions. Due to the significance of radiotherapy in tumor treatment and the essential roles of TGF-β signaling in radiation response, it is important to better understand the role of epigenetic regulation mechanisms mediated by TGF-β signaling pathways in radiation-induced targeted and non-targeted effects. CONCLUSIONS By revealing the epigenetic mechanism related to TGF-β-mediated radiation response, summarizing the existing relevant adjuvant strategies for radiotherapy based on TGF-β signaling, and discovering potential therapeutic targets, we hope to provide a new perspective for improving clinical treatment.
Collapse
Affiliation(s)
- Yunan Ding
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Guangming Zhou
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Wentao Hu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
21
|
Zhao S, Li Y, Xu J, Shen L. APOBEC3C is a novel target for the immune treatment of lower-grade gliomas. Neurol Res 2024; 46:227-242. [PMID: 38007705 DOI: 10.1080/01616412.2023.2287340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) type 3C (A3C) has been identified as a cancer molecular biomarker in the past decade. However, the practical role of A3C in lower-grade gliomas (LGGs) in improving the clinical outcome remains unclear. This study aims to discuss the function of A3C in immunotherapy in LGGs. METHODS The RNA-Sequencing (RNA-seq) and corresponding clinical data were extracted from UCSC Xena and the results were verified in the Chinese Glioma Genome Atlas (CGGA). Weighted gene co-expression network analysis (WGCNA) was used for screening A3C-related genes. Comprehensive bioinformation analyses were performed and multiple levels of expression, survival rate, and biological functions were assessed to explore the functions of A3C. RESULTS A3C expression was significantly higher in LGGs than in normal tissues but lower than in glioblastoma (GBM), indicating its role as an independent prognosis predictor for LGGs. Twenty-eight A3C-related genes were found with WGCNA for unsupervised clustering analysis and three modification patterns with different outcomes and immune cell infiltration were identified. A3C and the A3C score were also correlated with immune cell infiltration and the expression of immune checkpoints. In addition, the A3C score was correlated with increased sensitivity to chemotherapy. Single-cell RNA (scRNA) analysis indicated that A3C most probably expresses on immune cells, such as T cells, B cells and macrophage. CONCLUSIONS A3C is an immune-related prognostic biomarker in LGGs. Developing drugs to block A3C could enhance the efficiency of immunotherapy and improve disease survival.Abbreviation: A3C: Apolipoprotein B mRNA editing catalytic polypeptide-like (APOBEC) type 3C; LGGs: lower-grade gliomas; CGGA: Chinese Glioma Genome Atlas; WGCNA: Weighted gene co-expression network analysis; scRNA: Single-cell RNA; HGG: higher-grade glioma; OS: overall survival; TME: tumor microenvironment; KM: Kaplan-Meier; PFI: progression-free interval; IDH: isocitrate dehydrogenase; ROC: receiver operating characteristic; GS: gene significance; MM: module membership; TIMER: Tumor IMmune Estimation Resource; GSVA: gene set variation analysis; ssGSEA: single-sample gene-set enrichment analysis; PCA: principal component analysis; AUC: area under ROC curve; HAVCR2: hepatitis A virus cellular receptor 2; PDCD1: programmed cell death 1; PDCD1LG2: PDCD1 ligand 2; PTPRC: protein tyrosine phosphatase receptor type C; ACC: Adrenocortical carcinoma; BLCA: Bladder Urothelial Carcinoma;BRCA: Breast invasive carcinoma; CESC: Cervical squamous cell carcinoma and endocervical adenocarcinoma; CHOLCholangiocarcinoma; COADColon adenocarcinoma; DLBC: Lymphoid Neoplasm Diffuse Large B-cell Lymphoma; ESCA: Esophageal carcinoma; GBM: Glioblastoma multiforme; HNSC: Head and Neck squamous cell carcinoma; KICH: Kidney Chromophobe; KIRC: Kidney renal clear cell carcinoma; KIRP: Kidney renal papillary cell carcinoma; LAML: Acute Myeloid Leukemia; LGG: Brain Lower Grade Glioma; LIHC: Liver hepatocellular carcinoma; LUAD: Lung adenocarcinoma; LUSC: Lung squamous cell carcinoma; MESO: Mesothelioma; OV: Ovarian serous cystadenocarcinoma; PAAD: Pancreatic adenocarcinoma; PCPG: Pheochromocytoma and Paraganglioma; PRAD: Prostate adenocarcinoma; READ: Rectum adenocarcinoma; SARC: Sarcoma; SKCM: Skin Cutaneous Melanoma; STAD: Stomach adenocarcinoma; TGCT: Testicular Germ Cell Tumors; THCA: Thyroid carcinoma; THYM: Thymoma; UCEC: Uterine Corpus Endometrial Carcinoma; UCS: Uterine Carcinosarcoma; UVM: Uveal Melanoma.
Collapse
Affiliation(s)
- Shufa Zhao
- Department of Neurosurgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Yuntao Li
- Department of Neurosurgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Jie Xu
- Department of Neurosurgery, Huzhou Cent Hospital, Affiliated Cent Hospital Huzhou University, Huzhou, Zhejiang, China
| | - Liang Shen
- Department of Neurosurgery, The affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
22
|
Wang F, Fu K, Wang Y, Pan C, Wang X, Liu Z, Yang C, Zheng Y, Li X, Lu Y, To KKW, Xia C, Zhang J, Shi Z, Hu Z, Huang M, Fu L. Small-molecule agents for cancer immunotherapy. Acta Pharm Sin B 2024; 14:905-952. [PMID: 38486980 PMCID: PMC10935485 DOI: 10.1016/j.apsb.2023.12.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 03/17/2024] Open
Abstract
Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.
Collapse
Affiliation(s)
- Fang Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Kai Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Yujue Wang
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Can Pan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xueping Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Zeyu Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Chuan Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiaopeng Li
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu Lu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Kenneth Kin Wah To
- School of Pharmacy, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chenglai Xia
- Affiliated Foshan Maternity and Child Healthcare Hospital, Southern Medical University, Foshan 528000, China
| | - Jianye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Zhi Shi
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zeping Hu
- School of Pharmaceutical Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing 100084, China
| | - Min Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Liwu Fu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Esophageal Cancer Institute, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
23
|
Lai Y, Lu X, Liao Y, Ouyang P, Wang H, Zhang X, Huang G, Qi S, Li Y. Crosstalk between glioblastoma and tumor microenvironment drives proneural-mesenchymal transition through ligand-receptor interactions. Genes Dis 2024; 11:874-889. [PMID: 37692522 PMCID: PMC10491977 DOI: 10.1016/j.gendis.2023.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Glioblastoma (GBM) is the most common intrinsic and aggressive primary brain tumor in adults, with a median survival of approximately 15 months. GBM heterogeneity is considered responsible for the treatment resistance and unfavorable prognosis. Proneural-mesenchymal transition (PMT) represents GBM malignant progression and recurrence, which might be a breakthrough to understand GBM heterogeneity and overcome treatment resistance. PMT is a complicated process influenced by crosstalk between GBM and tumor microenvironment, depending on intricate ligand-receptor interactions. In this review, we summarize the autocrine and paracrine pathways in the GBM microenvironment and related ligand-receptor interactions inducing PMT. We also discuss the current therapies targeting the PMT-related autocrine and paracrine pathways. Together, this review offers a comprehensive understanding of the failure of GBM-targeted therapy and ideas for future tendencies of GBM treatment.
Collapse
Affiliation(s)
- Yancheng Lai
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaole Lu
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yankai Liao
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Ouyang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hai Wang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xian Zhang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guanglong Huang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yaomin Li
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
24
|
Kim J, Bose D, Araínga M, Haque MR, Fennessey CM, Caddell RA, Thomas Y, Ferrell DE, Ali S, Grody E, Goyal Y, Cicala C, Arthos J, Keele BF, Vaccari M, Lorenzo-Redondo R, Hope TJ, Villinger F, Martinelli E. TGF-β blockade drives a transitional effector phenotype in T cells reversing SIV latency and decreasing SIV reservoirs in vivo. Nat Commun 2024; 15:1348. [PMID: 38355731 PMCID: PMC10867093 DOI: 10.1038/s41467-024-45555-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
HIV-1 persistence during ART is due to the establishment of long-lived viral reservoirs in resting immune cells. Using an NHP model of barcoded SIVmac239 intravenous infection and therapeutic dosing of anti-TGFBR1 inhibitor galunisertib (LY2157299), we confirm the latency reversal properties of in vivo TGF-β blockade, decrease viral reservoirs and stimulate immune responses. Treatment of eight female, SIV-infected macaques on ART with four 2-weeks cycles of galunisertib leads to viral reactivation as indicated by plasma viral load and immunoPET/CT with a 64Cu-DOTA-F(ab')2-p7D3-probe. Post-galunisertib, lymph nodes, gut and PBMC exhibit lower cell-associated (CA-)SIV DNA and lower intact pro-virus (PBMC). Galunisertib does not lead to systemic increase in inflammatory cytokines. High-dimensional cytometry, bulk, and single-cell (sc)RNAseq reveal a galunisertib-driven shift toward an effector phenotype in T and NK cells characterized by a progressive downregulation in TCF1. In summary, we demonstrate that galunisertib, a clinical stage TGF-β inhibitor, reverses SIV latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing immune responses in vivo in absence of toxicity.
Collapse
Affiliation(s)
- Jinhee Kim
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Deepanwita Bose
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Mariluz Araínga
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Muhammad R Haque
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rachel A Caddell
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
| | - Yanique Thomas
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Douglas E Ferrell
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Syed Ali
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Emanuelle Grody
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
| | - Yogesh Goyal
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Synthetic Biology, Northwestern University, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Claudia Cicala
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Monica Vaccari
- Division of Immunology, Tulane National Primate Research Center, Covington, LA, USA
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL, USA
| | - Thomas J Hope
- Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Francois Villinger
- New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA, USA
| | - Elena Martinelli
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
25
|
Kosianova А, Pak O, Bryukhovetskiy I. Regulation of cancer stem cells and immunotherapy of glioblastoma (Review). Biomed Rep 2024; 20:24. [PMID: 38170016 PMCID: PMC10758921 DOI: 10.3892/br.2023.1712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024] Open
Abstract
Glioblastoma (GB) is one of the most adverse diagnoses in oncology. Complex current treatment results in a median survival of 15 months. Resistance to treatment is associated with the presence of cancer stem cells (CSCs). The present review aimed to analyze the mechanisms of CSC plasticity, showing the particular role of β-catenin in regulating vital functions of CSCs, and to describe the molecular mechanisms of Wnt-independent increase of β-catenin levels, which is influenced by the local microenvironment of CSCs. The present review also analyzed the reasons for the low effectiveness of using medication in the regulation of CSCs, and proposed the development of immunotherapy scenarios with tumor cell vaccines, containing heterogenous cancer cells able of producing a multidirectional antineoplastic immune response. Additionally, the possibility of managing lymphopenia by transplanting hematopoietic stem cells from a healthy sibling and using clofazimine or other repurposed drugs that reduce β-catenin concentration in CSCs was discussed in the present study.
Collapse
Affiliation(s)
- Аleksandra Kosianova
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| | - Oleg Pak
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| | - Igor Bryukhovetskiy
- Medical Center, School of Medicine and Life Science, Far Eastern Federal University, Vladivostok 690091, Russian Federation
| |
Collapse
|
26
|
Golán-Cancela I, Caja L. The TGF-β Family in Glioblastoma. Int J Mol Sci 2024; 25:1067. [PMID: 38256140 PMCID: PMC10816220 DOI: 10.3390/ijms25021067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Members of the transforming growth factor β (TGF-β) family have been implicated in the biology of several cancers. In this review, we focus on the role of TGFβ and bone morphogenetic protein (BMP) signaling in glioblastoma. Glioblastoma (GBM) is the most common malignant brain tumor in adults; it presents at a median age of 64 years, but can occur at any age, including childhood. Unfortunately, there is no cure, and even patients undergoing current treatments (surgical resection, radiotherapy, and chemotherapy) have a median survival of 15 months. There is a great need to identify new therapeutic targets to improve the treatment of GBM patients. TGF-βs signaling promotes tumorigenesis in glioblastoma, while BMPs suppress tumorigenic potential by inducing tumor cell differentiation. In this review, we discuss the actions of TGF-βs and BMPs on cancer cells as well as in the tumor microenvironment, and their use in potential therapeutic intervention.
Collapse
Affiliation(s)
| | - Laia Caja
- Department of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, SE-75123 Uppsala, Sweden;
| |
Collapse
|
27
|
Kime J, Bose D, Arainga M, Haque MR, Fennessey CM, Caddell RA, Thomas Y, Ferrell DE, Ali S, Grody E, Goyal Y, Cicala C, Arthos J, Keele BF, Vaccari M, Lorenzo-Redondo R, Hope TJ, Villinger FJ, Marinelli E. TGF-β blockade drives a transitional effector phenotype in T cells reversing SIV latency and decreasing SIV reservoirs in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.05.556422. [PMID: 38014094 PMCID: PMC10680555 DOI: 10.1101/2023.09.05.556422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
HIV-1 persistence during ART is due to the establishment of long-lived viral reservoirs in resting immune cells. Using an NHP model of barcoded SIVmac239 intravenous infection and therapeutic dosing of the anti-TGFBR1 inhibitor galunisertib (LY2157299), we confirmed the latency reversal properties of in vivo TGF-β blockade, decreased viral reservoirs and stimulated immune responses. Eight SIV-infected macaques on suppressive ART were treated with 4 2-week cycles of galunisertib. ART was discontinued 3 weeks after the last dose, and macaques euthanized 6 weeks after ART-interruption(ATI). One macaque did not rebound, while the remaining rebounded between week 2 and 6 post-ATI. Galunisertib led to viral reactivation as indicated by plasma viral load and immunoPET/CT with the 64Cu-DOTA-F(ab')2-p7D3-probe. Half to 1 Log decrease in cell-associated (CA-)SIV DNA was detected in lymph nodes, gut and PBMC, while intact pro-virus in PBMC decreased by 3-fold. No systemic increase in inflammatory cytokines was observed. High-dimensions cytometry, bulk and single-cell RNAseq revealed a shift toward an effector phenotype in T and NK cells. In summary, we demonstrated that galunisertib, a clinical stage TGFβ inhibitor, reverses SIV latency and decreases SIV reservoirs by driving T cells toward an effector phenotype, enhancing immune responses in vivo in absence of toxicity.
Collapse
|
28
|
Kuburich NA, Sabapathy T, Demestichas BR, Maddela JJ, den Hollander P, Mani SA. Proactive and reactive roles of TGF-β in cancer. Semin Cancer Biol 2023; 95:120-139. [PMID: 37572731 PMCID: PMC10530624 DOI: 10.1016/j.semcancer.2023.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/04/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Cancer cells adapt to varying stress conditions to survive through plasticity. Stem cells exhibit a high degree of plasticity, allowing them to generate more stem cells or differentiate them into specialized cell types to contribute to tissue development, growth, and repair. Cancer cells can also exhibit plasticity and acquire properties that enhance their survival. TGF-β is an unrivaled growth factor exploited by cancer cells to gain plasticity. TGF-β-mediated signaling enables carcinoma cells to alter their epithelial and mesenchymal properties through epithelial-mesenchymal plasticity (EMP). However, TGF-β is a multifunctional cytokine; thus, the signaling by TGF-β can be detrimental or beneficial to cancer cells depending on the cellular context. Those cells that overcome the anti-tumor effect of TGF-β can induce epithelial-mesenchymal transition (EMT) to gain EMP benefits. EMP allows cancer cells to alter their cell properties and the tumor immune microenvironment (TIME), facilitating their survival. Due to the significant roles of TGF-β and EMP in carcinoma progression, it is essential to understand how TGF-β enables EMP and how cancer cells exploit this plasticity. This understanding will guide the development of effective TGF-β-targeting therapies that eliminate cancer cell plasticity.
Collapse
Affiliation(s)
- Nick A Kuburich
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Thiru Sabapathy
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Breanna R Demestichas
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Joanna Joyce Maddela
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Sendurai A Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA; Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
29
|
Wu S, Luwor RB, Zhu HJ. Dynamics of transforming growth factor β signaling and therapeutic efficacy. Growth Factors 2023; 41:82-100. [PMID: 37229558 DOI: 10.1080/08977194.2023.2215335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/14/2023] [Indexed: 05/27/2023]
Abstract
Transforming growth factor β (TGFβ) is a multifunctional cytokine, and its signalling responses are exerted via integrated intracellular pathways and complex regulatory mechanisms. Due to its high potency, TGFβ signalling is tightly controlled under normal circumstances, while its dysregulation in cancer favours metastasis. The recognised potential of TGFβ as a therapeutic target led to emerging development of anti-TGFβ reagents with preclinical success, yet these therapeutics failed to recapitulate their efficacy in experimental settings. In this review, possible reasons for this inconsistency are discussed, addressing the knowledge gap between theoretical and actual behaviours of TGFβ signalling. Previous studies on oncogenic cells have demonstrated the spatiotemporal heterogeneity of TGFβ signalling intensity. Under feedback mechanisms and exosomal ligand recycling, cancer cells may achieve cyclic TGFβ signalling to facilitate dissemination and colonisation. This challenges the current presumption of persistently high TGFβ signalling in cancer, pointing to a new direction of research on TGFβ-targeted therapeutics.
Collapse
Affiliation(s)
- Siqi Wu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Rodney Brian Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Health, Innovation and Transformation Centre, Federation University, Ballarat, Australia
| | - Hong-Jian Zhu
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
30
|
Alsajjan R, Mason WP. Bispecific T-Cell Engagers and Chimeric Antigen Receptor T-Cell Therapies in Glioblastoma: An Update. Curr Oncol 2023; 30:8501-8549. [PMID: 37754534 PMCID: PMC10529026 DOI: 10.3390/curroncol30090619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/28/2023] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in adults. The prognosis is extremely poor even with standard treatment of maximal safe resection, radiotherapy, and chemotherapy. Recurrence is inevitable within months, and treatment options are very limited. Chimeric antigen receptor T-cell therapy (CART) and bispecific T-cell engagers (TCEs) are two emerging immunotherapies that can redirect T-cells for tumor-specific killing and have shown remarkable success in hematological malignancies and been under extensive study for application in glioblastoma. While there have been multiple clinical trials showing preliminary evidence of safety and efficacy for CART, bispecific TCEs are still in the early stages of clinical testing, with preclinical studies showing very promising results. However, there are multiple shared challenges that need to be addressed in the future, including the route of delivery, antigen escape, the immunosuppressive tumor microenvironment, and toxicity resulting from the limited choice of tumor-specific antigens. Efforts are underway to optimize the design of both these treatments and find the ideal combination therapy to overcome these challenges. In this review, we describe the work that has been performed as well as novel approaches in glioblastoma and in other solid tumors that may be applicable in the future.
Collapse
Affiliation(s)
- Roa Alsajjan
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
- Division of Neurology, Department of Medicine, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Warren P. Mason
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
31
|
Sooreshjani M, Tripathi S, Dussold C, Najem H, de Groot J, Lukas RV, Heimberger AB. The Use of Targeted Cytokines as Cancer Therapeutics in Glioblastoma. Cancers (Basel) 2023; 15:3739. [PMID: 37509400 PMCID: PMC10378451 DOI: 10.3390/cancers15143739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Cytokines play an important role in regulating the immune response. Although there is great interest in exploiting cytokines for cancer immunotherapy, their clinical potential is limited by their pleiotropic properties and instability. A variety of cancer cell-intrinsic and extrinsic characteristics pose a barrier to effective treatments including cytokines. Recent studies using gene and cell therapy offer new opportunities for targeting cytokines or their receptors, demonstrating that they are actionable targets. Current efforts such as virotherapy, systemic cytokine therapy, and cellular and gene therapy have provided novel strategies that incorporate cytokines as potential therapeutic strategies for glioblastoma. Ongoing research on characterizing the tumor microenvironment will be informative for prioritization and combinatorial strategies of cytokines for future clinical trials. Unique therapeutic opportunities exist at the convergence of cytokines that play a dual role in tumorigenesis and immune modulation. Here, we discuss the underlying strategies in pre- and clinical trials aiming to enhance treatment outcomes in glioblastoma patients.
Collapse
Affiliation(s)
- Moloud Sooreshjani
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Shashwat Tripathi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Corey Dussold
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Hinda Najem
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - John de Groot
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Rimas V. Lukas
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Neurosurgery, Northwestern University, Chicago, IL60611, USA
- Simpson Querrey Biomedical Research Center, 303 E. Superior Street, 6-516, Chicago, IL 60611, USA
| |
Collapse
|
32
|
Muzyka L, Goff NK, Choudhary N, Koltz MT. Systematic Review of Molecular Targeted Therapies for Adult-Type Diffuse Glioma: An Analysis of Clinical and Laboratory Studies. Int J Mol Sci 2023; 24:10456. [PMID: 37445633 DOI: 10.3390/ijms241310456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/05/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Gliomas are the most common brain tumor in adults, and molecularly targeted therapies to treat gliomas are becoming a frequent topic of investigation. The current state of molecular targeted therapy research for adult-type diffuse gliomas has yet to be characterized, particularly following the 2021 WHO guideline changes for classifying gliomas using molecular subtypes. This systematic review sought to characterize the current state of molecular target therapy research for adult-type diffuse glioma to better inform scientific progress and guide next steps in this field of study. A systematic review was conducted in accordance with PRISMA guidelines. Studies meeting inclusion criteria were queried for study design, subject (patients, human cell lines, mice, etc.), type of tumor studied, molecular target, respective molecular pathway, and details pertaining to the molecular targeted therapy-namely the modality, dose, and duration of treatment. A total of 350 studies met the inclusion criteria. A total of 52 of these were clinical studies, 190 were laboratory studies investigating existing molecular therapies, and 108 were laboratory studies investigating new molecular targets. Further, a total of 119 ongoing clinical trials are also underway, per a detailed query on clinicaltrials.gov. GBM was the predominant tumor studied in both ongoing and published clinical studies as well as in laboratory analyses. A few studies mentioned IDH-mutant astrocytomas or oligodendrogliomas. The most common molecular targets in published clinical studies and clinical trials were protein kinase pathways, followed by microenvironmental targets, immunotherapy, and cell cycle/apoptosis pathways. The most common molecular targets in laboratory studies were also protein kinase pathways; however, cell cycle/apoptosis pathways were the next most frequent target, followed by microenvironmental targets, then immunotherapy pathways, with the wnt/β-catenin pathway arising in the cohort of novel targets. In this systematic review, we examined the current evidence on molecular targeted therapy for adult-type diffuse glioma and discussed its implications for clinical practice and future research. Ultimately, published research falls broadly into three categories-clinical studies, laboratory testing of existing therapies, and laboratory identification of novel targets-and heavily centers on GBM rather than IDH-mutant astrocytoma or oligodendroglioma. Ongoing clinical trials are numerous in this area of research as well and follow a similar pattern in tumor type and targeted pathways as published clinical studies. The most common molecular targets in all study types were protein kinase pathways. Microenvironmental targets were more numerous in clinical studies, whereas cell cycle/apoptosis were more numerous in laboratory studies. Immunotherapy pathways are on the rise in all study types, and the wnt/β-catenin pathway is increasingly identified as a novel target.
Collapse
Affiliation(s)
- Logan Muzyka
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nicolas K Goff
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Nikita Choudhary
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| | - Michael T Koltz
- Department of Neurosurgery, Dell Medical School, The University of Texas at Austin, 1501 Red River Street, Austin, TX 78712, USA
| |
Collapse
|
33
|
Rusak A, Buzalewicz I, Mrozowska M, Wiatrak B, Haczkiewicz-Leśniak K, Olbromski M, Kmiecik A, Krzyżak E, Pietrowska A, Moskal J, Podhorska-Okołów M, Podbielska H, Dzięgiel P. Multimodal study of CHI3L1 inhibition and its effect on angiogenesis, migration, immune response and refractive index of cellular structures in glioblastoma. Biomed Pharmacother 2023; 161:114520. [PMID: 36921538 DOI: 10.1016/j.biopha.2023.114520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023] Open
Abstract
Glioblastoma is one of the most aggressive tumours with a poor response to treatment and a poor prognosis for patients. One of the proteins expressed in glioblastoma tissue is CHI3L1 (YKL-40), which is upregulated and known for its angiogenesis-supporting and pro-tumour immunomodulatory effects in a variety of cancers. In this paper we present the anti-angiogenic, anti-migratory and immunomodulatory effects of the compound G721-0282, an inhibitor of CHI3L1. The inhibitor-induced changes were investigated using conventional techniques as well as the novel label-free digital holographic tomography (DHT), a quantitative phase imaging technique that allows the reconstruction of the refractive index (RI), which is used as an image contrast for 3D visualisation of living cells. DHT allowed digital staining of individual cells and intercellular structures based only on their specific RI. Quantitative spatially resolved analysis of the RI data shows that the concentration of G721-0282 leads to significant changes in the density of cells and their intracellular structures (in particular the cytoplasm and nucleus), in the volume of lipid droplets and in protein concentrations. Studies in the U-87 MG glioblastoma cell line, THP-1 monocytes differentiated into macrophages, human microvascular endothelial cells (HMEC-1) and in the spheroid model of glioblastoma composed of U-87 MG, HMEC-1 and macrophages suggest that inhibition of CHI3L1 may have potential in the antitumour treatment of glioblastoma. In this paper, we also propose a spheroid model for in vitro studies that mimics this type of tumour.
Collapse
Affiliation(s)
- Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Igor Buzalewicz
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze S. Wyspianskiego St., 50-370 Wroclaw, Poland.
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, J. Mikulicza-Radeckiego 2 Street, 50-345 Wroclaw, Poland.
| | - Katarzyna Haczkiewicz-Leśniak
- Department of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St, 50-368 Wroclaw, Poland.
| | - Mateusz Olbromski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Alicja Kmiecik
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland.
| | - Edward Krzyżak
- Department of Basic Chemical Sciences, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., 50-556 Wroclaw, Poland.
| | - Aleksandra Pietrowska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze S. Wyspianskiego St., 50-370 Wroclaw, Poland.
| | - Jakub Moskal
- Department of Neurosurgery, Poznan University of Medical Sciences, S. Przybyszewskiego 49 St., 60-355 Poznan, Poland.
| | - Marzenna Podhorska-Okołów
- Department of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St, 50-368 Wroclaw, Poland.
| | - Halina Podbielska
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 27 Wybrzeze S. Wyspianskiego St., 50-370 Wroclaw, Poland.
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., 50-368 Wroclaw, Poland; Department of Physiotherapy, University School of Physical Education, I. Paderewskiego 35 Al., 51-612 Wroclaw, Poland.
| |
Collapse
|
34
|
Silginer M, Papa E, Szabó E, Vasella F, Pruschy M, Stroh C, Roth P, Weiss T, Weller M. Immunological and tumor-intrinsic mechanisms mediate the synergistic growth suppression of experimental glioblastoma by radiotherapy and MET inhibition. Acta Neuropathol Commun 2023; 11:41. [PMID: 36915128 PMCID: PMC10009975 DOI: 10.1186/s40478-023-01527-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/05/2023] [Indexed: 03/14/2023] Open
Abstract
The hepatocyte growth factor (HGF)/MET signaling pathway has been proposed to be involved in the resistance to radiotherapy of glioblastoma via proinvasive and DNA damage response pathways.Here we assessed the role of the MET pathway in the response to radiotherapy in vitro and in vivo in syngeneic mouse glioma models. We find that the murine glioma cell lines GL-261, SMA-497, SMA-540 and SMA-560 express HGF and its receptor MET and respond to exogenous HGF with MET phosphorylation. Glioma cell viability or proliferation are unaffected by genetic or pharmacological MET inhibition using tepotinib or CRISPR/Cas9-engineered Met gene knockout and MET inhibition fails to sensitize glioma cells to irradiation in vitro. In contrast, the combination of tepotinib with radiotherapy prolongs survival of orthotopic SMA-560 or GL-261 glioma-bearing mice compared with radiotherapy or tepotinib treatment alone. Synergy is lost when such experiments are conducted in immunodeficient Rag1-/- mice, and, importantly, also when Met gene expression is disrupted in the tumor cells. Combination therapy suppresses a set of pro-inflammatory mediators including matrix metalloproteases that are upregulated by radiotherapy alone and that have been linked to poor outcome in glioblastoma. Several of these mediators are positively regulated by transforming growth factor (TGF)-β, and pSMAD2 levels as a surrogate marker of TGF-β pathway activity are suppressed by combination treatment. We conclude that synergistic suppression of experimental syngeneic glioma growth by irradiation and MET inhibition requires MET expression in the tumor as well as an intact immune system. Clinical evaluation of this combined strategy in newly diagnosed glioblastoma is warranted.
Collapse
Affiliation(s)
- Manuela Silginer
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
| | - Eleanna Papa
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Emese Szabó
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Flavio Vasella
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Martin Pruschy
- Laboratory for Molecular Radiobiology, Department of Radiation Oncology, University Hospital and University of Zurich, Zurich, Switzerland
| | | | - Patrick Roth
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.,Laboratory of Molecular Neuro-Oncology, Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Tobias Weiss
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Michael Weller
- Laboratory of Molecular Neuro-Oncology, Department of Neurology, University Hospital of Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.,Laboratory of Molecular Neuro-Oncology, Department of Neurology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
35
|
Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, Wang W, Chen ZS, Han CH. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther 2023; 8:113. [PMID: 36906600 PMCID: PMC10008648 DOI: 10.1038/s41392-023-01383-x] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jia-Xin Qin
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Medical College, Southeast University, Nanjing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China. .,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
36
|
Burciaga-Flores M, Márquez-Aguirre AL, Dueñas S, Gasperin-Bulbarela J, Licea-Navarro AF, Camacho-Villegas TA. First pan-specific vNAR against human TGF-β as a potential therapeutic application: in silico modeling assessment. Sci Rep 2023; 13:3596. [PMID: 36869086 PMCID: PMC9982792 DOI: 10.1038/s41598-023-30623-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Immunotherapies based on antibody fragments have been developed and applied to human diseases, describing novel antibody formats. The vNAR domains have a potential therapeutic use related to their unique properties. This work used a non-immunized Heterodontus francisci shark library to obtain a vNAR with recognition of TGF-β isoforms. The isolated vNAR T1 selected by phage display demonstrated binding of the vNAR T1 to TGF-β isoforms (-β1, -β2, -β3) by direct ELISA assay. These results are supported by using for the first time the Single-Cycle kinetics (SCK) method for Surface plasmon resonance (SPR) analysis for a vNAR. Also, the vNAR T1 shows an equilibrium dissociation constant (KD) of 9.61 × 10-8 M against rhTGF-β1. Furthermore, the molecular docking analysis revealed that the vNAR T1 interacts with amino acid residues of TGF-β1, which are essential for interaction with type I and II TGF-β receptors. The vNAR T1 is the first pan-specific shark domain reported against the three hTGF-β isoforms and a potential alternative to overcome the challenges related to the modulation of TGF-β levels implicated in several human diseases such as fibrosis, cancer, and COVID-19.
Collapse
Affiliation(s)
- Mirna Burciaga-Flores
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, México
| | - Ana Laura Márquez-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, México
| | - Salvador Dueñas
- División de Biología Experimental y Aplicada, Centro de Investigación y Educación Superior de Ensenada (CICESE), Ensenada, B.C, México
| | - Jahaziel Gasperin-Bulbarela
- División de Biología Experimental y Aplicada, Centro de Investigación y Educación Superior de Ensenada (CICESE), Ensenada, B.C, México
| | - Alexei F Licea-Navarro
- División de Biología Experimental y Aplicada, Centro de Investigación y Educación Superior de Ensenada (CICESE), Ensenada, B.C, México.
| | - Tanya A Camacho-Villegas
- CONACYT - Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara, Jalisco, México.
| |
Collapse
|
37
|
Vasquez RD, Aventurado CA, Castillo AL. Syringin as TGF-βR1, HER2, EGFR, FGFR4 Kinase, and MMP-2
Inhibitor and Potential Cytotoxic Agent against ER+ Breast Cancer Cells. CURRENT ENZYME INHIBITION 2023; 19:55-64. [DOI: 10.2174/1573408019666221107145705] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/27/2022] [Accepted: 09/14/2022] [Indexed: 01/03/2025]
Abstract
Background:
Breast cancer is currently the most diagnosed cancer worldwide. Neoplastic
cells and components of the tumor microenvironment trigger enzymes and receptors to facilitate
cancer advancement. Syringin, a natural phenylpropanoid glycoside, has been reported to
possess anti-cancer activity and affinity with numerous druggable targets of breast carcinoma.
Objectives:
This work aims to evaluate the effects of syringin on the growth of breast cancer cells
(MCF-7) and normal dermal fibroblast cells (HDFn) and its ability to inhibit the protein targets of
breast cancer.
Methods:
Syringin was investigated on cell lines in vitro via MTT assay. Using non-cell-based activity
assay kits, its influence on the activity of transforming growth factor-beta receptor type 1
(TGF-βR1), human epidermal growth factor receptor (HER2), epidermal growth factor receptor
(EGFR), fibroblast growth factor receptor 4 (FGFR4), and matrix metalloproteinase-2 (MMP-2)
was evaluated.
Results:
Syringin exhibited significant cytotoxicity against MCF-7 cells (IC50: 32.11 μM for 24
hours and 21.35 μM for 48 hours) and was non-toxic on healthy HDFn cells (IC50: >100 μM for 24
and 48 hours). It significantly suppressed the activity of cancer and angiogenesis regulating enzymes
in vitro with commendable IC50 values on TGF-βR1 kinase (IC50: 6.48 μM), HER2 kinase
(IC50: 7.18 μM), EGFR kinase (IC50: 12.38 μM), FGFR4 kinase (IC50: 16.03 μM), and MMP-2
(IC50: 16.07 μM).
Conclusion:
Findings showed the selective toxicity of syringin on breast cancer cells and its potential
against pro-angiogenic enzymes. These discoveries strongly indicate the significance and
therapeutic potential of syringin in targeted cancer therapy.
Collapse
Affiliation(s)
- Ross D. Vasquez
- The Graduate School, University of Santo Tomas, Manila, 1015, Philippines
- Faculty of Pharmacy, University of
Santo Tomas, Manila, 1015, Philippines
- Research Center for the Natural and Applied Sciences, University of
Santo Tomas, Manila 1015, Philippines
| | | | - Agnes L. Castillo
- The Graduate School, University of Santo Tomas, Manila, 1015, Philippines
- Faculty of Pharmacy, University of
Santo Tomas, Manila, 1015, Philippines
- Research Center for the Natural and Applied Sciences, University of
Santo Tomas, Manila 1015, Philippines
| |
Collapse
|
38
|
Rahavi H, Alizadeh-Navaei R, Tehrani M. Efficacy of therapies targeting TGF-β in solid tumors: a systematic review and meta-analysis of clinical trials. Immunotherapy 2023; 15:283-292. [PMID: 36789642 DOI: 10.2217/imt-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Aims: A comprehensive meta-analysis was conducted to explore the efficacy of TGF-β blockade therapies in solid tumors. Patients & methods: Results of overall survival (OS), progression-free survival (PFS), time to progression (TTP) and overall response rate (ORR) with their 95% CI were calculated. Also, subgroup analyses were conducted according to the categories of TGF-β blocker alone or combined with chemotherapy or radiotherapy. Results: Overall OS, PFS, TTP and ORR were 10.5 months (95% CI: 7.76-13.25), 2.54 months (95% CI: 1.66-3.43), 4.69 months (95% CI: 3.18-6.21) and 0.83% (95% CI: 0.82-0.85), respectively. Conclusion: Collectively, TGF-β blockade combined with chemotherapy or radiotherapy showed more favorable clinical outcomes than monotherapy using TGF-β blockade.
Collapse
Affiliation(s)
- Hossein Rahavi
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, 48471-91971, Iran
| | - Reza Alizadeh-Navaei
- Gastrointestinal Cancer Research Center, Non-communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, 48471-91971, Iran
| | - Mohsen Tehrani
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, 48471-91971, Iran.,Molecular & Cell Biology Research Center (MCBRC), Mazandaran University of Medical Sciences, Sari, 48471-91971, Iran
| |
Collapse
|
39
|
Ma Y, Wang Y, Nie C, Lin Y. The efficacy of targeted therapy combined with radiotherapy and temozolomide-based chemotherapy in the treatment of glioma: A systemic review and meta-analysis of phase II/III randomized controlled trials. Front Oncol 2023; 13:1082539. [PMID: 36776303 PMCID: PMC9909217 DOI: 10.3389/fonc.2023.1082539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Background Glioma is the most common intracranial tumor, accounting for about half of the primary intracranial tumors, with the characteristics of hidden onset and high mortality. Even after surgery, radiotherapy and chemotherapy, the prognosis of glioma is not ideal. Targeted therapy has developed rapidly in the treatment of other malignant tumors, which is also an important direction in the research and development of new therapies for glioma. So far, targeting combined with radiotherapy and chemotherapy have been used as the treatment of glioma in many clinical trials, but the role of targeted combined radiotherapy and chemotherapy in the treatment of glioma is still controversial. The purpose of this study was to evaluate the efficacy of targeted therapy combined with radiotherapy and temozolomide (TMZ)-based chemotherapy in the treatment of glioma. Methods Phase II or phase III clinical trials involving targeted therapy combined with radiotherapy and chemotherapy and temozolomide-based radiotherapy and chemotherapy for gliomas were searched using PubMed, Embase and Web of Science databases, and a comprehensive meta-analysis was conducted. The primary outcome was overall survival time (OS) and progression-free survival time (PFS), and the secondary outcome was adverse reaction. The time-to-event data is summarized as hazard ratio (HR), and the binary results are summarized as odds ratio (OR). Two researchers conducted literature screening, data extraction and quality evaluation according to inclusion and exclusion criteria. Stata16.0 software was used for analysis, random effect model was used for data merging, and forest map was used for display. Results A total of 11 eligible literatures and 12 prospective randomized controlled clinical trials of 1284 cases were included in the meta-analysis. The results showed that compared with radiotherapy and chemotherapy alone, targeted drugs combined with temozolomide-based radiotherapy and chemotherapy could significantly improve OS in phase II trial, but there was no improvement in Phase III trial, and PFS of newly diagnosed glioma patients was improved (HR=0.82(0.71-0.94) 95%CI, p =0.005). The PFS of the third phase of the experiment also improved. Compared with radiotherapy and chemotherapy alone, there was no statistically significant increase in adverse events in targeted combined radiotherapy and chemotherapy group. Systematic review registration https://www.crd.york.ac.uk/prospero, identifier CRD42022326012.
Collapse
Affiliation(s)
- Yifan Ma
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yue Wang
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chen Nie
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China,*Correspondence: Chen Nie, ; Yongzhong Lin,
| | - Yongzhong Lin
- Department of Neurology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China,*Correspondence: Chen Nie, ; Yongzhong Lin,
| |
Collapse
|
40
|
Sounbuli K, Mironova N, Alekseeva L. Diverse Neutrophil Functions in Cancer and Promising Neutrophil-Based Cancer Therapies. Int J Mol Sci 2022; 23:ijms232415827. [PMID: 36555469 PMCID: PMC9779721 DOI: 10.3390/ijms232415827] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils represent the most abundant cell type of leukocytes in the human blood and have been considered a vital player in the innate immune system and the first line of defense against invading pathogens. Recently, several studies showed that neutrophils play an active role in the immune response during cancer development. They exhibited both pro-oncogenic and anti-tumor activities under the influence of various mediators in the tumor microenvironment. Neutrophils can be divided into several subpopulations, thus contradicting the traditional concept of neutrophils as a homogeneous population with a specific function in the innate immunity and opening new horizons for cancer therapy. Despite the promising achievements in this field, a full understanding of tumor-neutrophil interplay is currently lacking. In this review, we try to summarize the current view on neutrophil heterogeneity in cancer, discuss the different communication pathways between tumors and neutrophils, and focus on the implementation of these new findings to develop promising neutrophil-based cancer therapies.
Collapse
Affiliation(s)
- Khetam Sounbuli
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Nadezhda Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
- Correspondence: ; Tel.: +7-383-363-51-61
| | - Ludmila Alekseeva
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentiev Ave., 8, Novosibirsk 630090, Russia
| |
Collapse
|
41
|
Pre-Existing and Acquired Resistance to PARP Inhibitor-Induced Synthetic Lethality. Cancers (Basel) 2022; 14:cancers14235795. [PMID: 36497275 PMCID: PMC9741207 DOI: 10.3390/cancers14235795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
The advanced development of synthetic lethality has opened the doors for specific anti-cancer medications of personalized medicine and efficient therapies against cancers. One of the most popular approaches being investigated is targeting DNA repair pathways as the implementation of the PARP inhibitor (PARPi) into individual or combinational therapeutic schemes. Such treatment has been effectively employed against homologous recombination-defective solid tumors as well as hematopoietic malignancies. However, the resistance to PARPi has been observed in both preclinical research and clinical treatment. Therefore, elucidating the mechanisms responsible for the resistance to PARPi is pivotal for the further success of this intervention. Apart from mechanisms of acquired resistance, the bone marrow microenvironment provides a pre-existing mechanism to induce the inefficiency of PARPi in leukemic cells. Here, we describe the pre-existing and acquired mechanisms of the resistance to PARPi-induced synthetic lethality. We also discuss the potential rationales for developing effective therapies to prevent/repress the PARPi resistance in cancer cells.
Collapse
|
42
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 42.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
43
|
Faisal SM, Comba A, Varela ML, Argento AE, Brumley E, Abel C, Castro MG, Lowenstein PR. The complex interactions between the cellular and non-cellular components of the brain tumor microenvironmental landscape and their therapeutic implications. Front Oncol 2022; 12:1005069. [PMID: 36276147 PMCID: PMC9583158 DOI: 10.3389/fonc.2022.1005069] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/20/2022] [Indexed: 11/26/2022] Open
Abstract
Glioblastoma (GBM), an aggressive high-grade glial tumor, is resistant to therapy and has a poor prognosis due to its universal recurrence rate. GBM cells interact with the non-cellular components in the tumor microenvironment (TME), facilitating their rapid growth, evolution, and invasion into the normal brain. Herein we discuss the complexity of the interactions between the cellular and non-cellular components of the TME and advances in the field as a whole. While the stroma of non-central nervous system (CNS) tissues is abundant in fibrillary collagens, laminins, and fibronectin, the normal brain extracellular matrix (ECM) predominantly includes proteoglycans, glycoproteins, and glycosaminoglycans, with fibrillary components typically found only in association with the vasculature. However, recent studies have found that in GBMs, the microenvironment evolves into a more complex array of components, with upregulated collagen gene expression and aligned fibrillary ECM networks. The interactions of glioma cells with the ECM and the degradation of matrix barriers are crucial for both single-cell and collective invasion into neighboring brain tissue. ECM-regulated mechanisms also contribute to immune exclusion, resulting in a major challenge to immunotherapy delivery and efficacy. Glioma cells chemically and physically control the function of their environment, co-opting complex signaling networks for their own benefit, resulting in radio- and chemo-resistance, tumor recurrence, and cancer progression. Targeting these interactions is an attractive strategy for overcoming therapy resistance, and we will discuss recent advances in preclinical studies, current clinical trials, and potential future clinical applications. In this review, we also provide a comprehensive discussion of the complexities of the interconnected cellular and non-cellular components of the microenvironmental landscape of brain tumors to guide the development of safe and effective therapeutic strategies against brain cancer.
Collapse
Affiliation(s)
- Syed M. Faisal
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Andrea Comba
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria L. Varela
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Anna E. Argento
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Emily Brumley
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Clifford Abel
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Maria G. Castro
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Pedro R. Lowenstein
- Dept. of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, United States
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, United States
- Dept. of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Pedro R. Lowenstein,
| |
Collapse
|
44
|
Synthetic TGF-β Signaling Agonist-Treated Dendritic Cells Induce Tolerogenicity and Antirheumatic Effects. Curr Issues Mol Biol 2022; 44:3809-3821. [PMID: 36135173 PMCID: PMC9498161 DOI: 10.3390/cimb44090261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
The newly synthesized compound TGF-β signaling agonist (T74) is a small molecule associated with the TGF-β receptor signaling pathway. Tolerogenic dendritic cells (tDCs) have been used to examine immunosuppressive and anti-inflammatory effects in multiple autoimmune disease models. The aim of this study was to investigate whether treatment of DCs with T74 has an antirheumatic effect in a mouse model of collagen-induced arthritis (CIA). Bone marrow-derived cells were obtained from DBA/1J mice and differentiated into DCs. T74-treated DCs (T74-DCs) were generated by treating bone marrow-derived DCs with LPS, type II collagen, and T74. T74-DCs expressed lower levels of surface molecules and inflammatory cytokines associated with antigen presentation and T cell stimulation. The ability of T74-DCs to differentiate effector T cells was lower than that of T74-untreated DCs (NT-DCs), but T74-DCs increased the regulatory T (Treg) cell differentiation in vitro. DBA/1J mice received two subcutaneous (s.c.) injections of type II collagen to establish CIA. Mice then received two s.c. injections of T74-DCs or NT-DCs. Joint inflammation was ameliorated in the paws of T74-DC-treated mice. Additionally, Treg populations in T74-DC-treated mice were higher than in NT-DC-treated or PBS-treated CIA mice. Taken together, these results demonstrate that T74 induces tolerance in DCs, and that T74-mediated DCs exert antirheumatic effects via induction of Tregs.
Collapse
|
45
|
Zhu Z, Fang C, Xu H, Yuan L, Du Y, Ni Y, Xu Y, Shao A, Zhang A, Lou M. Anoikis resistance in diffuse glioma: The potential therapeutic targets in the future. Front Oncol 2022; 12:976557. [PMID: 36046036 PMCID: PMC9423707 DOI: 10.3389/fonc.2022.976557] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/25/2022] [Indexed: 11/28/2022] Open
Abstract
Glioma is the most common malignant intracranial tumor and exhibits diffuse metastasis and a high recurrence rate. The invasive property of glioma results from cell detachment. Anoikis is a special form of apoptosis that is activated upon cell detachment. Resistance to anoikis has proven to be a protumor factor. Therefore, it is suggested that anoikis resistance commonly occurs in glioma and promotes diffuse invasion. Several factors, such as integrin, E-cadherin, EGFR, IGFR, Trk, TGF-β, the Hippo pathway, NF-κB, eEF-2 kinase, MOB2, hypoxia, acidosis, ROS, Hsp and protective autophagy, have been shown to induce anoikis resistance in glioma. In our present review, we aim to summarize the underlying mechanism of resistance and the therapeutic potential of these molecules.
Collapse
Affiliation(s)
- Zhengyang Zhu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yichao Du
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunjia Ni
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Anwen Shao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Anke Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Neurosurgery, Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Current Opportunities for Targeting Dysregulated Neurodevelopmental Signaling Pathways in Glioblastoma. Cells 2022; 11:cells11162530. [PMID: 36010607 PMCID: PMC9406959 DOI: 10.3390/cells11162530] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most common and highly lethal type of brain tumor, with poor survival despite advances in understanding its complexity. After current standard therapeutic treatment, including tumor resection, radiotherapy and concomitant chemotherapy with temozolomide, the median overall survival of patients with this type of tumor is less than 15 months. Thus, there is an urgent need for new insights into GBM molecular characteristics and progress in targeted therapy in order to improve clinical outcomes. The literature data revealed that a number of different signaling pathways are dysregulated in GBM. In this review, we intended to summarize and discuss current literature data and therapeutic modalities focused on targeting dysregulated signaling pathways in GBM. A better understanding of opportunities for targeting signaling pathways that influences malignant behavior of GBM cells might open the way for the development of novel GBM-targeted therapies.
Collapse
|
47
|
Hadizadeh M, AminJafari A, Parvizpour S, Ghasemi S. Novel targets to overcome antiangiogenesis therapy resistance in glioblastoma multiforme: Systems biology approach and suggestion of therapy by galunisertib. Cell Biol Int 2022; 46:1649-1660. [PMID: 35842773 DOI: 10.1002/cbin.11859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 06/11/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Glioblastoma multiforme (GBM) is a tumor with high microvessel density. Antiangiogenesis therapy (AAT) resistance occurs due to the complex mechanisms involved in angiogenesis, with increased chances of recurrence. The vascular endothelial growth factor (VEGF) pathway is the main pathway of angiogenesis, and anti-VEGF drugs have been ineffective in controlling it. New oncogenes in the VEGF signaling pathway may be new candidates for angiogenesis targeting. Oncogene candidates were chosen using gene expression profiles and databases. Then oncogenes were subjected to gene set enrichment analysis (GSEA) and survival analysis (SA). Molecular docking was conducted to evaluate the interaction of the oncogenes with galunisertib. NRAS, AKT1, and HSPB1 were the most effective oncogenes upregulating genes that play a role in GBM expression in the VEGF signaling pathway. The VEGF and MAPK signaling pathways were found to be effective using GSEA and Kyoto Encyclopedia Gene and Genome pathway analysis. Survival analyses revealed that patients with high HSPB1 expression had poorer overall survival rates than those with low HSPB1 expression. Galunisertib exhibits intermolecular interactions with 6DV5, 5UHV, and 3O96 (binding energy -8.0, -8.6, and -10.3 kcal/mol, respectively). The current AAT should be restrategized to suppress the numerous angiogenic elements to manage angiogenesis and combat AAT resistance in GBM. In silico analysis indicated that NRAS, AKT1, and HSPB1 genes can be the main oncogenes in the VEGF signaling pathway and galunisertib strongly interacts with these genes. Consequently, the use of galunisertib to overcome AAT in GBM in combination therapy can be assessed.
Collapse
Affiliation(s)
- Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Akram AminJafari
- Cellular and Molecular Research Center, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sepideh Parvizpour
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Ghasemi
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
48
|
Galunisertib attenuates progression of trauma-induced heterotopic ossification via blockage of Smad2/3 signaling in mice. Eur J Pharmacol 2022; 928:175109. [PMID: 35738451 DOI: 10.1016/j.ejphar.2022.175109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/22/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022]
Abstract
Heterotopic ossification (HO) is the formation of bony tissues in the extraskeletal system. To date, no effective therapy has been developed for the treatment of HO, although increasing evidences have shown that inhibition of TGF-β signaling has potential as a new therapeutic approach for attenuating HO progression. Results from previous clinical trials have demonstrated that patients with malignant tumors exhibit excellent tolerability to Galunisertib, a TGF-β receptor I kinase inhibitor. However, its therapeutic potential in preventing HO and inhibitory effect on osteogenesis remain unclear. In this study, we demonstrated that intragastrical administration of Galunisertib, at a concentration as low as 10 mg/kg, was not only fairly effective in preventing HO development in a dose-dependent manner, but also generated a non-toxic response in a novel Achilles tendon puncture-induced traumatic HO model in mice. Moreover, Galunisertib treatment in the early phases of HO development, including the inflammatory and chondrogenic period, resulted in better therapeutic effects instead of eliminating already formed bony tissues. Mechanistically, Galunisertib suppressed the osteogenic differentiation capacity of tendon-derived stem cells (TDSCs) by interfering with the Smad2/3 signaling pathway, blocking the phosphorylation of Smad2/3 translocated from cytoplasm into the nucleus to regulate the expression of both osteogenesis-related transcription factors and related proteins. Results from in vivo experiments further validated Galunisertib's effect on HO attenuation, by intercepting the TGF-β/Smad2/3 signaling pathway. In conclusion, our findings demonstrated Galunisertib's potential as a prophylactic drug for the treatment of traumatic HO or other related diseases triggered by over-expressed TGF-β.
Collapse
|
49
|
Peng D, Fu M, Wang M, Wei Y, Wei X. Targeting TGF-β signal transduction for fibrosis and cancer therapy. Mol Cancer 2022; 21:104. [PMID: 35461253 PMCID: PMC9033932 DOI: 10.1186/s12943-022-01569-x] [Citation(s) in RCA: 485] [Impact Index Per Article: 161.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
Transforming growth factor β (TGF-β) has long been identified with its intensive involvement in early embryonic development and organogenesis, immune supervision, tissue repair, and adult homeostasis. The role of TGF-β in fibrosis and cancer is complex and sometimes even contradictory, exhibiting either inhibitory or promoting effects depending on the stage of the disease. Under pathological conditions, overexpressed TGF-β causes epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) deposition, cancer-associated fibroblast (CAF) formation, which leads to fibrotic disease, and cancer. Given the critical role of TGF-β and its downstream molecules in the progression of fibrosis and cancers, therapeutics targeting TGF-β signaling appears to be a promising strategy. However, due to potential systemic cytotoxicity, the development of TGF-β therapeutics has lagged. In this review, we summarized the biological process of TGF-β, with its dual role in fibrosis and tumorigenesis, and the clinical application of TGF-β-targeting therapies.
Collapse
|
50
|
Tewari D, Priya A, Bishayee A, Bishayee A. Targeting transforming growth factor-β signalling for cancer prevention and intervention: Recent advances in developing small molecules of natural origin. Clin Transl Med 2022; 12:e795. [PMID: 35384373 PMCID: PMC8982327 DOI: 10.1002/ctm2.795] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 03/12/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cancer is the world's second leading cause of death, but a significant advancement in cancer treatment has been achieved within the last few decades. However, major adverse effects and drug resistance associated with standard chemotherapy have led towards targeted treatment options. OBJECTIVES Transforming growth factor-β (TGF-β) signaling plays a key role in cell proliferation, differentiation, morphogenesis, regeneration, and tissue homeostasis. The prime objective of this review is to decipher the role of TGF-β in oncogenesis and to evaluate the potential of various natural and synthetic agents to target this dysregulated pathway to confer cancer preventive and anticancer therapeutic effects. METHODS Various authentic and scholarly databases were explored to search and obtain primary literature for this study. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria was followed for the review. RESULTS Here we provide a comprehensive and critical review of recent advances on our understanding of the effect of various bioactive natural molecules on the TGF-β signaling pathway to evaluate their full potential for cancer prevention and therapy. CONCLUSION Based on emerging evidence as presented in this work, TGF-β-targeting bioactive compounds from natural sources can serve as potential therapeutic agents for prevention and treatment of various human malignancies.
Collapse
Affiliation(s)
- Devesh Tewari
- Department of PharmacognosySchool of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anu Priya
- Department of PharmacologySchool of Pharmaceutical SciencesLovely Professional UniversityPhagwaraPunjabIndia
| | | | - Anupam Bishayee
- College of Osteopathic MedicineLake Erie College of Osteopathic MedicineBradentonFloridaUSA
| |
Collapse
|