1
|
Thomas PA, Kinsey ST. Hypoxia Tolerance of Two Killifish Species. Integr Comp Biol 2024; 64:1115-1130. [PMID: 39238158 PMCID: PMC11518574 DOI: 10.1093/icb/icae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/07/2024] Open
Abstract
Hypoxia tolerance in aquatic ectotherms involves a suite of behavioral and physiological responses at the organismal, tissue, and cellular levels. The current study evaluated two closely related killifish species (Fundulus heteroclitus, Fundulus majalis) to evaluate responses to acute moderate and acute severe hypoxia. Routine metabolic rate and loss of equilibrium were assessed, followed by analysis in skeletal muscle of markers of oxidative damage to proteins (2,4-DNPH), lipids (4-HNE), and DNA (8-OHdG), hypoxia signaling (HIF1α, HIF2α), cellular energy state (p-AMPK: AMPK), and protein degradation (Ubiquitin, LC3B, Calpain 2, Hsp70). Both species had a similar reduction in metabolic rate at low PO2. However, F. heteroclitus was the more hypoxia-tolerant species based on a lower PO2 at which there was loss of equilibrium, perhaps due in part to a lower oxygen demand at all oxygen tensions. Despite the differences in hypoxia tolerance between the species, skeletal muscle molecular markers were largely insensitive to hypoxia, and there were few differences in responses between the species. Thus, the metabolic depression observed at the whole animal level appears to limit perturbations in skeletal muscle in both species during the hypoxia treatments.
Collapse
Affiliation(s)
- Peyton A Thomas
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC 28403, USA
| | - Stephen T Kinsey
- Department of Biology and Marine Biology, University of North Carolina at Wilmington, Wilmington, NC 28403, USA
| |
Collapse
|
2
|
Mena F, Vargas S, Guevara-Mora M, Vargas-Hernández JM, Ruepert C. Biotransformation and oxidative stress responses in fish (Astyanax aeneus) inhabiting a Caribbean estuary contaminated with pesticide residues from agricultural runoff. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21481-21493. [PMID: 36271999 DOI: 10.1007/s11356-022-23673-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The estuarine ecosystem of Madre de Dios Lagoon (MDL), in the Caribbean Coast of Costa Rica, is exposed to contamination with pesticide residues coming from the upstream agricultural areas. Biomarkers can provide a better indication of the fitness of biota in real mixture exposure scenarios than traditional lethal dose toxicity measurements. Here, we measured biomarkers of biotransformation, oxidative stress, and neurotoxicity on Astyanax aeneus, an abundant fish species in MDL. Glutathione S-transferase activity (GST), catalase activity (CAT), lipid peroxidation (LPO), and cholinesterase activity (ChE) were measured in fish collected during seven sampling campaigns, carried out between 2016 and 2018. Pesticide residues were analyzed in surface water samples collected every time fish were sampled. Residues of 25 pesticides, including fungicides, insecticides, and herbicides, were detected. The biomarkers measured in A. aeneus varied along the sampling moments, with biotransformation and oxidative stress signals showing a coupled response throughout the assessment. Furthermore, significant correlations were established between three biomarkers (GST, LPO, and CAT) and individual pesticides, as well as between GST and LPO with groups of pesticides with shared biocide action. Among pesticides, insecticide residues had a major influence on the responses observed in fish. This work demonstrates the chronic exposure to pesticide residues in MDL and how such exposure is related to physiological responses in fish that can affect their health and potentially, the trophic networks. This early warning information should be considered to improve the protection of estuarine ecosystems in the tropics.
Collapse
Affiliation(s)
- Freylan Mena
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, 86-3000, Heredia, Costa Rica.
| | - Seiling Vargas
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, 86-3000, Heredia, Costa Rica
| | - Meyer Guevara-Mora
- Laboratorio de Entomología (LEUNA), Escuela de Ciencias Biológicas, Universidad Nacional, 86-3000, Heredia, Costa Rica
| | - J Mauro Vargas-Hernández
- Laboratorio de Oceanografía Y Manejo Costero (LAOCOS), Departamento de Física, Universidad Nacional, 86-3000, Heredia, Costa Rica
- Servicio Regional de Información Oceanográfica (SERIO), Departamento de Física, Universidad Nacional, 86-3000, Heredia, Costa Rica
| | - Clemens Ruepert
- Instituto Regional de Estudios en Sustancias Tóxicas (IRET), Universidad Nacional, 86-3000, Heredia, Costa Rica
| |
Collapse
|
3
|
L-Lysine Ameliorates Diabetic Nephropathy in Rats with Streptozotocin-Induced Diabetes Mellitus. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4547312. [PMID: 36132073 PMCID: PMC9484891 DOI: 10.1155/2022/4547312] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Introduction Diabetic nephropathy is one of the leading causes of end-stage renal disease worldwide. Uncontrolled hyperglycemia and subsequent production of glycation end-products activate the paths which lead to diabetic nephropathy. The aim of this study was to assess the effects of L-lysine on antioxidant capacity, biochemical factors, kidney function, HSP70 level, and the expression of the TGFβ, VEGF, and RAGE genes in rats with streptozocin-induced diabetes mellitus. Methods Thirty-two male Wistar rats were randomly allocated to four eight-rat groups, namely, a healthy group, a diabetic group treated with vehicle (DM + vehicle), a diabetic group treated with L-lysine (DM + Lys), and a healthy group treated with L-lysine (healthy + Lys). Rats in the DM + Lys and the healthy + Lys groups were treated with L-lysine 0.15%. The levels of fasting blood glucose, insulin, HbA1C, advanced glycation end-products (AGEs), lipid profile, serum creatinine, blood urea nitrogen, glomerular filtration rate, urine microalbumin, oxidative stress parameters, kidney histology and morphology, and TGFβ, VEGF, and RAGE gene expressions were assessed. Findings. An eight-week treatment with L-lysine significantly reduced the levels of fasting blood glucose, AGEs, kidney function parameters, oxidative stress parameters, lipid profile, and the TGFβ, VEGF, and RAGE gene expression and significantly increased the levels of serum insulin and tissue HSP70. Conclusion Treatment with L-lysine seems to slow down the progression of diabetic nephropathy.
Collapse
|
4
|
El-Hak HNG, Ghobashy MA, Mansour FA, El-Shenawy NS, El-Din MIS. Heavy metals and parasitological infection associated with oxidative stress and histopathological alteration in the Clarias gariepinus. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1096-1110. [PMID: 35840811 PMCID: PMC9458584 DOI: 10.1007/s10646-022-02569-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The goal of this study was to assess the harmful effects of heavy metal accumulation on Clarias gariepinus (catfish) in two different polluted areas in the Al Sharkia governorate and assess the impact on oxidative stress and histological changes. The results revealed a highly significant difference in heavy metal levels in the water and inside fish tissues (liver and gonads) between the two sites. The total prevalence of parasitic infection was at the highest percentage in area B, in addition to severe histopathological damage to the liver and the gonads. Findings show that the total prevalence of parasitic infection is associated with uptake of metals, depleted antioxidant activity, and incidence of lipid peroxidation in tissue.
Collapse
Affiliation(s)
- Heba N Gad El-Hak
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
| | - Mahi A Ghobashy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Farida A Mansour
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Marwa I Saad El-Din
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| |
Collapse
|
5
|
Ritchie DJ, Friesen CR. Invited review: Thermal effects on oxidative stress in vertebrate ectotherms. Comp Biochem Physiol A Mol Integr Physiol 2021; 263:111082. [PMID: 34571153 DOI: 10.1016/j.cbpa.2021.111082] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 10/20/2022]
Abstract
Human-induced climate change is occurring rapidly. Ectothermic organisms are particularly vulnerable to these temperature changes due to their reliance on environmental temperature. The extent of ectothermic thermal adaptation and plasticity in the literature is well documented; however, the role of oxidative stress in these processes needs more attention. Oxidative stress occurs when reactive oxygen species, generated mainly through aerobic respiration, overwhelm antioxidant defences and damage crucial biomolecules. The effects of oxidative damage include the alteration of life-history traits and reductions in whole-organism fitness. Here we review the literature addressing experimental temperature effects on oxidative stress in vertebrate ectotherms. Acute and acclimation temperature treatments produce distinctly different results and highlight the role of phylogeny and thermal adaptation in shaping oxidative stress responses. Acute treatments on organisms adapted to stable environments generally produced significant oxidative stress responses, whilst organisms adapted to variable conditions exhibited capacity to cope with temperature changes and mitigate oxidative stress. In acclimation treatments, the temperature treatments higher than optimal temperatures tended to produce significantly less oxidative stress than lower temperatures in reptiles, whilst in some eurythermal fish species, no oxidative stress response was observed. These results highlight the importance of phylogeny and adaptation to past environmental conditions for temperature-dependent oxidative stress responses. We conclude with recommendations on experimental procedures to investigate these phenomena with reference to thermal plasticity, adaptation and biogeographic variation that provide the most significant benefits to adaptable populations. These results have potential conservation ramifications as they may shed light on the physiological effects of temperature alterations in some vertebrate ectotherms.
Collapse
Affiliation(s)
- Daniel J Ritchie
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, 2522 Wollongong, New South Wales, Australia
| | - Christopher R Friesen
- School of Earth, Atmospheric and Life Sciences, The University of Wollongong, 2522 Wollongong, New South Wales, Australia; School of Life and Environmental Sciences, University of Sydney, Heydon-Laurence Bldg A08, Science Road, Sydney, NSW 2006, Australia.
| |
Collapse
|
6
|
Islam MJ, Kunzmann A, Thiele R, Slater MJ. Effects of extreme ambient temperature in European seabass, Dicentrarchus labrax acclimated at different salinities: Growth performance, metabolic and molecular stress responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139371. [PMID: 32473428 DOI: 10.1016/j.scitotenv.2020.139371] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/01/2020] [Accepted: 05/10/2020] [Indexed: 05/22/2023]
Abstract
Extreme weather events are becoming more intense and frequent as a result of climate change. The modulation of hemato-physiological potential as a compensatory response to extreme warm events combined with different salinities is poorly understood. This study aimed to assess the hemato-physiological and molecular response of European seabass, Dicentrarchus labrax exposed to extreme warm temperature (33 °C) after prior acclimatization at 32 psu, 12 psu, 6 psu, and 2 psu water. Fish were acclimated to 32 psu, 12 psu, 6 psu, and 2 psu followed by 10 days extreme warm (33 °C) exposure. Along with growth performance and survival, hemato-physiological response and molecular response of fish were recorded. Fish held at 32 psu and 2 psu exhibited significantly lower growth performance and survival than those at 12 psu and 6 psu (p < 0.05). Red blood cells (RBC), hematocrit, and hemoglobin content were significantly decreased, while white blood cells (WBC), erythrocytic cellular abnormalities (ECA) and erythrocytic nuclear abnormalities (ENA) were found to increase significantly in 32 psu and 2 psu fish (p < 0.05). Plasma lactate was found to increase significantly in 32 psu fish on day 10 (p < 0.05). Activities of glutathione peroxidase (GPx), glutathione reductase (GR), superoxide dismutase (SOD), catalase (CAT), and TNF-α expression increased significantly in 32 psu and 2 psu fish (p < 0.05). Most of the repeated measured parameters indicated limited acclimation capacity during the extreme warm exposure at all four salinity groups. However, overall results indicate that European seabass acclimatized at 12 psu and 6 psu salinities, can cope better during extreme warm exposure (33 °C).
Collapse
Affiliation(s)
- Md Jakiul Islam
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany; Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany.
| | - Andreas Kunzmann
- Leibniz Centre for Tropical Marine Research (ZMT), 28359 Bremen, Germany
| | - Rajko Thiele
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| | - Matthew James Slater
- Alfred-Wegener-Institute, Helmholtz-Center for Polar and Marine Research, 27570 Bremerhaven, Germany
| |
Collapse
|
7
|
Madeira D, Araújo JE, Madeira C, Mendonça V, Vitorino R, Vinagre C, Diniz MS. Seasonal proteome variation in intertidal shrimps under a natural setting: Connecting molecular networks with environmental fluctuations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 703:134957. [PMID: 31767328 DOI: 10.1016/j.scitotenv.2019.134957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/10/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The ability of intertidal organisms to maintain their performance via molecular and physiological adjustments under low tide, seasonal fluctuations and extreme events ultimately determines population viability. Analyzing this capacity in the wild is extremely relevant since intertidal communities are under increased climate variability owing to global changes. We addressed the seasonal proteome signatures of a key intertidal species, the shrimp Palaemon elegans, in a natural setting. Shrimps were collected during spring and summer seasons at low tides and were euthanized in situ. Environmental variability was also assessed using hand-held devices and data loggers. Muscle samples were taken for 2D gel electrophoresis and protein identification through mass spectrometry. Proteome data revealed that 55 proteins (10.6% of the proteome) significantly changed between spring and summer collected shrimps, 24 of which were identified. These proteins were mostly involved in cytoskeleton remodelling, energy metabolism and transcription regulation. Overall, shrimps modulate gene expression leading to metabolic and structural adjustments related to seasonal differences in the wild (i.e. abiotic variation and possibly intrinsic cycles of reproduction and growth). This potentially promotes performance and fitness as suggested by the higher condition index in summer-collected shrimps. However, inter-individual variation (% coefficient of variation) in protein levels was quite low (min-max ranges were 0.6-8.3% in spring and 1.2-4.8% in summer), possibly suggesting reduced genetic diversity or physiological canalization. Protein plasticity is relevant to cope with present and upcoming environmental variation related to anthropogenic forcing (e.g. global change, pollution) but low inter-individual variation may limit evolutionary potential of shrimp populations.
Collapse
Affiliation(s)
- D Madeira
- Research Unit on Applied Molecular Biosciences (UCIBIO-REQUIMTE), Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Centre for Environmental and Marine Studies (CESAM), ECOMARE & Department of Biology, University of Aveiro, Estrada do Porto de Pesca, 3830-565 Gafanha da Nazaré, Portugal.
| | - J E Araújo
- Research Unit on Applied Molecular Biosciences (UCIBIO-REQUIMTE), Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - C Madeira
- Research Unit on Applied Molecular Biosciences (UCIBIO-REQUIMTE), Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal; Marine and Environmental Sciences Centre (MARE), Department of Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - V Mendonça
- Marine and Environmental Sciences Centre (MARE), Department of Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - R Vitorino
- Institute for Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; Cardiovascular Research Centre (UnIC), Department of Cardiothoracic Surgery and Physiology, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - C Vinagre
- Marine and Environmental Sciences Centre (MARE), Department of Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - M S Diniz
- Research Unit on Applied Molecular Biosciences (UCIBIO-REQUIMTE), Department of Chemistry, Faculty of Sciences and Technology, NOVA University of Lisbon, 2829-516 Caparica, Portugal.
| |
Collapse
|
8
|
Madeira D, Mendonça V, Madeira C, Gaiteiro C, Vinagre C, Diniz MS. Molecular assessment of wild populations in the marine realm: Importance of taxonomic, seasonal and habitat patterns in environmental monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:250-263. [PMID: 30447573 DOI: 10.1016/j.scitotenv.2018.11.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/01/2018] [Accepted: 11/05/2018] [Indexed: 06/09/2023]
Abstract
Scientists are currently faced with the challenge of assessing the effects of anthropogenic stressors on aquatic ecosystems. Cellular stress response (CSR) biomarkers are ubiquitous and phylogenetically conserved among metazoans and have been successfully applied in environmental monitoring but they can also vary according to natural biotic and abiotic factors. The reported variability may thus limit the wide application of biomarkers in monitoring, imposing the need to identify variability levels in the field. Our aim was to carry out a comprehensive in situ assessment of the CSR (heat shock protein 70 kDa, ubiquitin, antioxidant enzymes) and oxidative damage (lipid peroxidation) in wild populations across marine taxa by collecting fish, crustaceans, mollusks and cnidarians during two different seasons (spring and summer) and two habitat types (coast and estuary). CSR end-point patterns were different between taxa with mollusks having higher biomarker levels, followed by the cnidarians, while fish and crustaceans showed lower biomarker levels. The PCA showed clear clusters related to mobility/sessile traits with sessile organisms showing greater levels (>2-fold) of CSR proteins and oxidative damage. Mean intraspecific variability in the CSR measured by the coefficient of variation (% CV) (including data from all seasons and sites) was elevated (35-94%). Overall, there was a seasonal differentiation in biomarker patterns across taxonomic groups, especially evident in fish and cnidarians. A differentiation in biomarker patterns between habitat types was also observed and associated with phenotypic plasticity or local adaptation. Overall, specimens collected in the estuary had lower biomarker levels when compared to specimens collected in the coast. This work highlights the importance of assessing baseline biomarker levels across taxa, seasons and habitats prior to applying biomarker analyses in environmental monitoring. Selecting bioindicator species, defining sampling strategies, and identifying confounding factors are crucial preliminary steps that ensure the success of biomarkers as powerful tools in biomonitoring.
Collapse
Affiliation(s)
- Diana Madeira
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; Departamento de Biologia & CESAM & ECOMARE, Universidade de Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Vanessa Mendonça
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Carolina Madeira
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal; MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Cristiana Gaiteiro
- Experimental Pathology and Therapeutics Group, Portuguese Institute of Oncology of Porto (CI-IPOP), 4200-072 Porto, Portugal
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mário S Diniz
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Quinta da Torre, 2829-516 Caparica, Portugal.
| |
Collapse
|
9
|
Madeira D, Vinagre C, Mendonça V, Diniz MS. Seasonal changes in stress biomarkers of an exotic coastal species - Chaetopleura angulata (Polyplacophora) - Implications for biomonitoring. MARINE POLLUTION BULLETIN 2017; 120:401-408. [PMID: 28502455 DOI: 10.1016/j.marpolbul.2017.05.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
Knowledge on baseline values of stress biomarkers in natural conditions is urgent due to the need of reference values for monitoring purposes. Here we assessed the cellular stress response of the chiton Chaetopleura angulata in situ. Biomarkers commonly used in environmental monitoring (heat shock protein 70kDa, total ubiquitin, catalase, glutathione-S-transferase, superoxide-dismutase, lipid peroxidation) were analyzed in the digestive system, gills and muscle of C. angulata, under spring and summer conditions in order to assess seasonal tissue-specific responses. Season had an effect on all targeted organs, especially affecting the digestive system which displayed clear seasonal clusters. The respective Integrated Biomarker Response (IBR) showed a 7.2-fold seasonal difference. Muscle and gills showed similar IBRs between seasons making them appropriate organs to monitor chemical pollution as they were less responsive to seasonal variation. The most stable biomarkers in these organs were ubiquitin and superoxide-dismutase thus being reliable for monitoring purposes.
Collapse
Affiliation(s)
- Diana Madeira
- UCIBIO - Requimte, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal; Department of Biology & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Catarina Vinagre
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal.
| | - Vanessa Mendonça
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande 1749-016, Lisboa, Portugal.
| | - Mário Sousa Diniz
- UCIBIO - Requimte, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
10
|
A protocol for identifying suitable biomarkers to assess fish health: A systematic review. PLoS One 2017; 12:e0174762. [PMID: 28403149 PMCID: PMC5389625 DOI: 10.1371/journal.pone.0174762] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Accepted: 03/15/2017] [Indexed: 12/25/2022] Open
Abstract
Background Biomarkers have been used extensively to provide the connection between external levels of contaminant exposure, internal levels of tissue contamination, and early adverse effects in organisms. Objectives To present a three-step protocol for identifying suitable biomarkers to assess fish health in coastal and marine ecosystems, using Gladstone Harbour (Australia) as a case study. Methods Prior to applying our protocol, clear working definitions for biomarkers were developed to ensure consistency with the global literature on fish health assessment. First, contaminants of concern were identified based on the presence of point and diffuse sources of pollution and available monitoring data for the ecosystem of interest. Second, suitable fish species were identified using fisheries dependent and independent data, and prioritised based on potential pathways of exposure to the contaminants of concern. Finally, a systematic and critical literature review was conducted on the use of biomarkers to assess the health of fish exposed to the contaminants of concern. Results/Discussion We present clear working definitions for bioaccumulation markers, biomarkers of exposure, biomarkers of effect and biomarkers of susceptibility. Based on emission and concentration information, seven metals were identified as contaminants of concern for Gladstone Harbour. Twenty out of 232 fish species were abundant enough to be potentially suitable for biomarker studies; five of these were prioritised based on potential pathways of exposure and susceptibility to metals. The literature search on biomarkers yielded 5,035 articles, of which 151met the inclusion criteria. Based on our review, the most suitable biomarkers include bioaccumulation markers, biomarkers of exposure (CYP1A, EROD, SOD, LPOX, HSP, MT, DNA strand breaks, micronuclei, apoptosis), and biomarkers of effect (histopathology, TAG:ST). Conclusion Our protocol outlines a clear pathway to identify suitable biomarkers to assess fish health in coastal and marine ecosystems, which can be applied to biomarker studies in aquatic ecosystems around the world.
Collapse
|
11
|
Vinagre C, Madeira D, Mendonça V, Dias M, Roma J, Diniz MS. Effect of increasing temperature in the differential activity of oxidative stress biomarkers in various tissues of the Rock goby, Gobius paganellus. MARINE ENVIRONMENTAL RESEARCH 2014; 97:10-14. [PMID: 24534436 DOI: 10.1016/j.marenvres.2014.01.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Revised: 01/17/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
Oxidative stress biomarkers have been widely used in the development of ecological indices and in the assessment of exposure of aquatic organisms to contaminants from agricultural, industrial and urban pollution. However, temperature is known to also have a significant effect on oxidative stress biomarkers. This way, temperature is a confounding factor that may result in difficulties in the interpretation of oxidative stress biomarkers response patterns. Since climate change is expected to result in more frequent and intense heat wave events it is pertinent to investigate the effect of increasing temperature in the oxidative stress response of common aquatic organisms. It is also important to assess the differential response of different body tissues, given that they are differently exposed to temperature depending on their location and physiological function. This study investigates the effect of increasing temperature (20 °C-34 °C) in the response of multiple biomarkers of oxidative stress: lipid peroxidation, glutathione-S-transferase, superoxide dismutase and catalase activities, in the muscle, liver and gills of a common coastal fish, the Rock goby, Gobius paganellus. The response of the oxidative stress biomarkers analysed were always higher in the gills than in the other tissues. Muscle generally presented the lower levels of any of the biomarkers tested when compared to other tissues. Nevertheless, muscle tissue always responded significantly to temperature, as did the liver, while the gills were unresponsive in terms of lipid peroxidation and glutathione-S-transferase. Unresponsive tissues to temperature may be particularly interesting as indicators of pollution, given that temperature will not be a confounding variable in their oxidative stress response.
Collapse
Affiliation(s)
- Catarina Vinagre
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Diana Madeira
- Requimte, Departamento de Química, Centro De Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Vanessa Mendonça
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marta Dias
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Joana Roma
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mário S Diniz
- Requimte, Departamento de Química, Centro De Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
12
|
Vinagre C, Madeira D, Mendonça V, Dias M, Roma J, Diniz MS. Effect of temperature in multiple biomarkers of oxidative stress in coastal shrimp. J Therm Biol 2014; 41:38-42. [PMID: 24679970 DOI: 10.1016/j.jtherbio.2014.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 01/22/2014] [Accepted: 02/03/2014] [Indexed: 10/25/2022]
Abstract
Various studies in captivity and in the wild have pointed to the effect of season, and temperature in particular, in the levels of the oxidative stress biomarkers currently used for environmental quality assessment. However, knowledge on how temperature affects the oxidative stress response is unavailable for most species. This study investigated the effect of increasing temperature on lipid peroxidation, catalase activity, superoxide dismutase and glutathione-S-transferase in the shrimps, Palaemon elegans and Palaemon serratus. It was concluded that increasing temperatures significantly affect all the biomarkers tested in both species, with the exception of superoxide dismutase in P. serratus which was not affected by temperature. The oxidative stress response was more intense in P. elegans, than in P. serratus, producing higher peaks of all biomarkers at temperatures between 22°C and 26°C, followed by low levels at higher temperatures. It was concluded that monitoring of ecosystems using oxidative stress biomarkers should take into account the species and thermal history of the organisms. Sampling should be avoided during heat waves and immediately after heat waves.
Collapse
Affiliation(s)
- Catarina Vinagre
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
| | - Diana Madeira
- Requimte, Departamento de Química, Centro De Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Vanessa Mendonça
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Marta Dias
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Joma Roma
- Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Mário S Diniz
- Requimte, Departamento de Química, Centro De Química Fina e Biotecnologia, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
13
|
Wu X, Xie C, Yin Y, Li F, Li T, Huang R, Ruan Z, Deng Z. Effect of L-arginine on HSP70 expression in liver in weanling piglets. BMC Vet Res 2013; 9:63. [PMID: 23557067 PMCID: PMC3623773 DOI: 10.1186/1746-6148-9-63] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 03/27/2013] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND This study was conducted to evaluate the effects of L-arginine (Arg) on photomicrographs and HSP70 expression in the liver of weanling piglets. Twelve healthy Landrace × Yorkshire piglets that had been weaned at 21 d (average body weight 5.56 ± 0.51 kg) were randomly divided into a control group and an Arg group (6 g/kg feed). At age 28 d, all of the piglets were slaughtered to obtain liver samples to determine HSP70 expression by real-time PCR, western blot and immunohistochemistry. RESULTS The results showed that, compared to control piglets, treatment with Arg decreased inflammatory reactions caused by weaning. The immunohistochemical localization of HSP70 in liver revealed strong expression in the Arg group. Arg increased HSP70 mRNA and HSP70 expression in the liver (P < 0.05). CONCLUSIONS These findings suggest that dietary supplementation with Arg could maintain liver health by inducing HSP70 expression in weanling piglets.
Collapse
Affiliation(s)
- Xin Wu
- Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center of Healthy Livestock, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Vergauwen L, Hagenaars A, Blust R, Knapen D. Temperature dependence of long-term cadmium toxicity in the zebrafish is not explained by liver oxidative stress: evidence from transcript expression to physiology. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:52-62. [PMID: 23143039 DOI: 10.1016/j.aquatox.2012.10.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/02/2012] [Accepted: 10/07/2012] [Indexed: 06/01/2023]
Abstract
Standard ecotoxicity tests are performed at species' specific standard temperatures, but temperature is known to affect chemical toxicity. A temperature increase has been shown to increase cadmium toxicity in several aquatic species but information in fish is scarce. Based on literature we hypothesize that with increasing temperature, cadmium accumulation and oxidative stress increase, resulting in increased toxicity. In this study zebrafish acclimated to 12, 18, 26 (standard temperature) or 34°C for one month, were exposed to 5 μM cadmium for 4 or 28 days at the respective acclimation temperature. Cadmium toxicity (mortality) increased with increasing temperature. PCA showed that the high mortality at 34°C was closely correlated to an increasing tissue cadmium accumulation with increasing temperature, but not to liver oxidative damage under the form of protein carbonyl content or lipid peroxidation (measured as malondialdehyde levels) or liver antioxidative potential. Instead, acclimation to 12°C induced the highest oxidative damage to liver proteins and lipids, and transcript levels of glucose-6P-dehydrogenase, 6P-gluconate-dehydrogenase and glutathione peroxidase were particularly good markers of cold-induced oxidative stress. At this low temperature there was no interaction with cadmium exposure and there was no sign of cadmium sensitivity. Contrastingly, the combined effect of high temperature and cadmium exposure on mortality proved synergistic. Therefore we conclude that interactions between temperature and cadmium toxicity increased with increasing temperature and that this probably played part in increasing cadmium sensitivity. Increased cadmium compartmentalization and protein carbonyl content in liver of zebrafish acclimated to the standard temperature of 26°C probably played part in increased sensitivity towards the same cadmium body burden compared to lower temperatures. On the one hand we recognize and this study even confirms the importance of applying standard temperatures in standard ecotoxicity tests to ensure inter-study comparability. On the other hand temperatures in the field may deviate from standard temperatures and accounting for deviating temperatures, which can alter chemical sensitivity, in regulation can improve environmental protection.
Collapse
Affiliation(s)
- Lucia Vergauwen
- Systemic Physiological and Ecotoxicological Research, Department of Biology, University of Antwerp, Belgium.
| | | | | | | |
Collapse
|
15
|
Padmini E, Vijaya Geetha B. Mitochondrial HSP70 cognate-mediated differential expression of JNK1/2 in the pollution stressed grey mullets, Mugil cephalus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1257-1271. [PMID: 22371095 DOI: 10.1007/s10695-012-9614-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 02/06/2012] [Indexed: 05/31/2023]
Abstract
Cells have evolved different networks of cellular stress responses to adapt during environmental changes and survive combating wide variety of stress. Mitochondrial heat shock protein 70 (mtHSP70) are essential for maintaining cellular homeostasis. c-Jun-N terminal kinase (JNK), a subfamily of MAPK, plays a key role in the transmission of extracellular signal for survival and death. In the present investigation, the differential expression of phosphorylated JNK1/2 with corresponding increases in heat shock transcription factor-1 (HSF-1) under high levels of B-cell lymphoma 2 (Bcl-2), HSP70 transcripts (twofold) and mtHSP70 has been correlated with fish survival in polluted Ennore estuary. This study suggests that in Ennore sample, the amplification in HSP70 transcripts along with corresponding mtHSP70 overexpression might be due to activation of JNK1/2 and HSF-1. This would influence the expression of Bcl-2 protein involved in mitochondrial survival under pollution-stressed condition.
Collapse
Affiliation(s)
- E Padmini
- Research Department of Biochemistry, Bharathi Women's College, Chennai, 600108, TN, India.
| | | |
Collapse
|
16
|
Oliva M, José Vicente J, Gravato C, Guilhermino L, Dolores Galindo-Riaño M. Oxidative stress biomarkers in Senegal sole, Solea senegalensis, to assess the impact of heavy metal pollution in a Huelva estuary (SW Spain): seasonal and spatial variation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 75:151-62. [PMID: 21937114 DOI: 10.1016/j.ecoenv.2011.08.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Revised: 08/07/2011] [Accepted: 08/15/2011] [Indexed: 05/25/2023]
Abstract
The response of wild fish to heavy metals was studied in sole (Solea senegalensis) collected in 2004, 2005 and 2006 at three sampling sites from Huelva estuary (SW Spain), in the vicinity of a petrochemical and mining industry. Heavy metals As, Cd, Cu, Fe, Pb and Zn were analyzed in samples collected from sediment, water and tissue (liver) to examine their bioconcentration and effects in fish such as lipid peroxidation (LPO), catalase (CAT; EC 1.11.1.6), glutathione peroxidase (GPx; EC 1.8.1.7), glutathione S-transferase (GST; EC 2.5.1.18) and glutathione reductase (GR; EC 1.11.1.6) were also analyzed in the fish liver. The results showed different effects in sole from diverse locations with varying degrees of pollution. Significant differences in LPO, CAT and GR activities between control fish and fish from sampling sites were observed as well as seasonal differences for biomarkers. Significant correlations were established between some biomarkers and heavy metals concentrations in liver, sediment and water. This study indicates the usefulness of integrating a set of biomarkers to assess the effects of pollutants in aquatic environments under complex mix of pollutants and chronic pollution situation.
Collapse
Affiliation(s)
- Milagrosa Oliva
- Biology Department, University of Cadiz, Puerto Real, Spain.
| | | | | | | | | |
Collapse
|
17
|
Liu D, Chen Z, Zhou X. Detection of heat shock proteins 70 in the gill, liver, and cardiac muscle of Carassius auratus with confocal microscopy. Microsc Res Tech 2011; 75:531-6. [PMID: 22021177 DOI: 10.1002/jemt.21088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Revised: 04/04/2011] [Indexed: 11/11/2022]
Abstract
Heat shock proteins 70 (Hsp70) are the most extensively studied heat shock proteins for the cellular abundance and cytoprotective effects. Hsp70 induction and subsequent quantification has been used as a sensitive system for aquatic toxicity risk assessment. In this study, the confocal microscopy was used to localize Hsp70 in Carassius auratus (C. auratus) with immunohistochemical technology. There are different zooms to select to analyze the object at the same field of vision with one objective lens with confocal microscopy. It need not change objective lens to observe the details of tissues. In this study, the tissue slices of C. auratus were observed with the 20-fold objective lens. Furthermore, the zooms of 1, 2, and 3 were used to acquire the distribution of Hsp70 in the tissue slices of C. auratus, and the clearer images of Hsp70 in the tissues were acquired. The results indicated that Hsp70 were present in the gill, liver, and cardiac muscle of C. auratus, and a method was established to detect Hsp70 in the tissues of C. auratus with confocal microscopy.
Collapse
Affiliation(s)
- Dongwu Liu
- School of Life Sciences, Shandong University of Technology, 255049, Zibo, China.
| | | | | |
Collapse
|
18
|
Padmini E. Physiological adaptations of stressed fish to polluted environments: role of heat shock proteins. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 206:1-27. [PMID: 20652666 DOI: 10.1007/978-1-4419-6260-7_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Fish are subjected to a wide variety of environmental stressors. Stressors affect fish at all life stages and the stress-specific responses that occur at the biochemical and physiological levels affect the overall health and longevity of such animals. In this review, the organ-specific alterations in fish that inhabit polluted environments are addressed in detail. Fish,like other vertebrates, have evolved strategies to counteract stress-mediated effects. Among the key strategies that fish have developed is the induction of HSPs. The primary functions of HSPs are to promote the proper folding or refolding of proteins, to prevent potentially damaging interactions with proteins, and aiding in the disassembly of formations of protein aggregates. Stress, a state of unbalanced tissue oxidation, causes a general disturbance in the cellular antioxidant and redox balance and evokes HSP70 overexpression. Distinct families of HSPs have diverse physiological functions, and their induction, which is regulated at the transcriptional level, is mediated by the activation of heat shock factors. Interestingly, HSPs also interact with a wide variety of signaling molecules that modulate stress-mediated apoptotic effects. Hence, HSP induction is of major importance for maintenance of cell homeostasis. HSP-mediated adaptation processes are regarded as a fundamental protective mechanism that decreases cellular sensitivity to damaging events. Thus, the adaptive expression of HSPs is a protective response that helps combat stress-induced conformational damage to proteins. Additional research is needed to gain further information on the functional significance and role of individual HSPs and to enhance the understanding of the molecular mechanisms by which they act. In addition, field studies are needed to allow comprehensive evaluation of the potential use of HSPs as biomarkers for environmental monitoring. Furthermore, the expression of HSPs in fish fluctuates in response to seasonal variation. Because HSPs serves as a tool for assessing the stressed state of individuals and/or populations, the impact of seasonal influences on constitutive and inducible factors of these proteins should also be elucidated. Such research will lead to a fundamental improvement in the understanding of the functional role of HSPs in response to natural environmental changes and may allow correlation of the action of HSPs at the molecular level with the whole organismal stress response, which, so far, remains unexplained.
Collapse
Affiliation(s)
- Ekambaram Padmini
- Department of Biochemistry, Bharathi Women's College, Chennai, 600 108, TN, India.
| |
Collapse
|