1
|
Aydin S, Melek M, Gökrem L. A Safe and Efficient Brain-Computer Interface Using Moving Object Trajectories and LED-Controlled Activation. MICROMACHINES 2025; 16:340. [PMID: 40141951 PMCID: PMC11946446 DOI: 10.3390/mi16030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025]
Abstract
Nowadays, brain-computer interface (BCI) systems are frequently used to connect individuals who have lost their mobility with the outside world. These BCI systems enable individuals to control external devices using brain signals. However, these systems have certain disadvantages for users. This paper proposes a novel approach to minimize the disadvantages of visual stimuli on the eye health of system users in BCI systems employing visual evoked potential (VEP) and P300 methods. The approach employs moving objects with different trajectories instead of visual stimuli. It uses a light-emitting diode (LED) with a frequency of 7 Hz as a condition for the BCI system to be active. The LED is assigned to the system to prevent it from being triggered by any involuntary or independent eye movements of the user. Thus, the system user will be able to use a safe BCI system with a single visual stimulus that blinks on the side without needing to focus on any visual stimulus through moving balls. Data were recorded in two phases: when the LED was on and when the LED was off. The recorded data were processed using a Butterworth filter and the power spectral density (PSD) method. In the first classification phase, which was performed for the system to detect the LED in the background, the highest accuracy rate of 99.57% was achieved with the random forest (RF) classification algorithm. In the second classification phase, which involves classifying moving objects within the proposed approach, the highest accuracy rate of 97.89% and an information transfer rate (ITR) value of 36.75 (bits/min) were achieved using the RF classifier.
Collapse
Affiliation(s)
- Sefa Aydin
- Department of Electronics and Automation, Gumushane University, 29100 Gumushane, Turkey;
| | - Mesut Melek
- Department of Electronics and Automation, Gumushane University, 29100 Gumushane, Turkey;
| | - Levent Gökrem
- Department of Electrical and Electronics Engineering, Tokat Gaziosmanpasa University, 60600 Tokat, Turkey;
| |
Collapse
|
2
|
Singh S, Rawat N, Kaushik A, Chauhan M, Devi PP, Sabu B, Kumar N, Rajagopal R. Houseflies (Musca domestica) as vectors of multidrug-resistant, ESBL-producing Escherichia coli in broiler poultry farms of North India: implications for antibiotic resistance transmission. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:3664-3678. [PMID: 39820970 DOI: 10.1007/s11356-025-35921-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/07/2025] [Indexed: 01/19/2025]
Abstract
The transmission of antibiotic resistance (AR) from farm animals to healthy human communities, beyond the food chain, is often facilitated by biological vectors, notably houseflies (Musca domestica). This study aimed to evaluate the role of M. domestica collected from commercial broiler chicken farms as a carrier of multidrug-resistant (MDR), extended-spectrum β-lactamase (ESBL)-producing Escherichia coli. E. coli were isolated separately from the housefly's external surface (ES) and internal homogenate (IH) to determine the primary AR transmission route within houseflies. Remarkably, 68.6% houseflies harboured E. coli. Isolated E. coli were evaluated for susceptibility to clinically relevant antibiotics and screened for the presence of 22 plasmid-borne AR genes (ARGs) using PCR. Results revealed significant resistance to key antibiotics, with > 70% of isolates resistant to ampicillin and > 50% resistant to tetracycline and nalidixic acid in both ES- and IH-derived E. coli. Notably, a significant prevalence of resistance was observed to third-generation cephalosporins. Additionally, > 80% of E. coli isolates were MDR. A statistically significant difference (unpaired t-test, p < 0.05) was observed in the presence of ESBL-producing E. coli between the houseflies' ES (28.14%) and IH (38.14%). ARGs such as, ampC, tetA, qnrS, strA, strB, and sul3 were frequently detected in both ES- and IH-derived E. coli isolates. Among the ESBL-producing genes, blaCTX-M was the most abundant. Pearson's correlation analysis predicted the ARGs responsible for phenotypic resistance to specific antibiotics. Farm-derived flies harboured a significantly higher number of MDR E. coli (unpaired t-test, p < 0.05) than the ones isolated from flies housing a distant non-farm environment. Conclusively, this study illustrates the role of houseflies as vectors for AR transmission from AR hotspots to human communities.
Collapse
Affiliation(s)
- Shreyata Singh
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Nitish Rawat
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Anjali Kaushik
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Department of Zoology, Deen Dayal Upadhyay College, University of Delhi, New Delhi, 110078, India
| | - Mehul Chauhan
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Pukhrambam Pushpa Devi
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
- Department of Zoology, Kirori Mal College, University of Delhi, New Delhi, 110007, India
| | - Benoy Sabu
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India
| | - Narendra Kumar
- Department of Zoology, Shaheed Mangal Pandey Government Girls Post Graduate College, Meerut, Uttar Pradesh, 250002, India
| | - Raman Rajagopal
- Gut Biology Laboratory, Room No. 117, Department of Zoology, University of Delhi, New Delhi, 110007, India.
| |
Collapse
|
3
|
Duran-Bedolla J, Téllez-Sosa J, Bocanegra-Ibarias P, Schilmann A, Bravo-Romero S, Reyna-Flores F, Villa-Reyes T, Barrios-Camacho H. Citrobacter spp. and Enterobacter spp. as reservoirs of carbapenemase blaNDM and blaKPC resistance genes in hospital wastewater. Appl Environ Microbiol 2024; 90:e0116524. [PMID: 39012101 PMCID: PMC11337798 DOI: 10.1128/aem.01165-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 06/20/2024] [Indexed: 07/17/2024] Open
Abstract
Antibiotic resistance has emerged as a global threat to public health, generating a growing interest in investigating the presence of antibiotic-resistant bacteria in environments influenced by anthropogenic activities. Wastewater treatment plants in hospital serve as significant reservoirs of antimicrobial-resistant bacteria, where a favorable environment is established, promoting the proliferation and transfer of resistance genes among different bacterial species. In our study, we isolated a total of 243 strains from 5 hospital wastewater sites in Mexico, belonging to 21 distinct Gram-negative bacterial species. The presence of β-lactamase was detected in 46.9% (114/243) of the isolates, which belonging to the Enterobacteriaceae family. We identified a total of 169 β-lactamase genes; blaTEM in 33.1%, blaCTX-M in 25.4%, blaKPC in 25.4%, blaNDM 8.8%, blaSHV in 5.3%, and blaOXA-48 in 1.1% distributed in 12 different bacteria species. Among the 114 of the isolates, 50.8% were found to harbor at least one carbapenemase and were discharged into the environment. The carbapenemase blaKPC was found in six Citrobacter spp. and E. coli, while blaNDM was detected in two distinct Enterobacter spp. and E. coli. Notably, blaNDM-1 was identified in a 110 Kb IncFII conjugative plasmid in E. cloacae, E. xiangfangensis, and E. coli within the same hospital wastewater. In conclusion, hospital wastewater showed the presence of Enterobacteriaceae carrying a high frequency of carbapenemase blaKPC and blaNDM. We propose that hospital wastewater serves as reservoirs for resistance mechanism within bacterial communities and creates an optimal environment for the exchange of this resistance mechanism among different bacterial strains. IMPORTANCE The significance of this study lies in its findings regarding the prevalence and diversity of antibiotic-resistant bacteria and genes identified in hospital wastewater in Mexico. The research underscores the urgent need for enhanced surveillance and prevention strategies to tackle the escalating challenge of antibiotic resistance, particularly evident through the elevated frequencies of carbapenemase genes such as blaKPC and blaNDM within the Enterobacteriaceae family. Moreover, the identification of these resistance genes on conjugative plasmids highlights the potential for widespread transmission via horizontal gene transfer. Understanding the mechanisms of antibiotic resistance in hospital wastewater is crucial for developing targeted interventions aimed at reducing transmission, thereby safeguarding public health and preserving the efficacy of antimicrobial therapies.
Collapse
Affiliation(s)
- Josefina Duran-Bedolla
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Juan Téllez-Sosa
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Paola Bocanegra-Ibarias
- Facultad de Medicina, Hospital Universitario "Dr. José Eleuterio González", Departamento de Enfermedades Infecciosas, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Astrid Schilmann
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación en Salud Poblacional, Cuernavaca, Morelos, Mexico
| | - Sugey Bravo-Romero
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Fernando Reyna-Flores
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| | - Tania Villa-Reyes
- Coordinación Nacional de la Red Hospitalaria de Vigilancia Epidemiológica, Dirección General de Epidemiología, Ciudad de México, Mexico
| | - Humberto Barrios-Camacho
- Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Cuernavaca, Morelos, Mexico
| |
Collapse
|
4
|
Keenum I, Calarco J, Majeed H, Hager-Soto EE, Bott C, Garner E, Harwood VJ, Pruden A. To what extent do water reuse treatments reduce antibiotic resistance indicators? A comparison of two full-scale systems. WATER RESEARCH 2024; 254:121425. [PMID: 38492480 DOI: 10.1016/j.watres.2024.121425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/03/2024] [Accepted: 03/04/2024] [Indexed: 03/18/2024]
Abstract
Water reuse is an essential strategy for reducing water demand from conventional sources, alleviating water stress, and promoting sustainability, but understanding the effectiveness of associated treatment processes as barriers to the spread of antibiotic resistance is an important consideration to protecting human health. We comprehensively evaluated the reduction of antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB) in two field-operational water reuse systems with distinct treatment trains, one producing water for indirect potable reuse (ozone/biologically-active carbon/granular activated carbon) and the other for non-potable reuse (denitrification-filtration/chlorination) using metagenomic sequencing and culture. Relative abundances of total ARGs/clinically-relevant ARGs and cultured ARB were reduced by several logs during primary and secondary stages of wastewater treatment, but to a lesser extent during the tertiary water reuse treatments. In particular, ozonation tended to enrich multi-drug ARGs. The effect of chlorination was facility-dependent, increasing the relative abundance of ARGs when following biologically-active carbon filters, but generally providing a benefit in reduced bacterial numbers and ecological and human health resistome risk scores. Relative abundances of total ARGs and resistome risk scores were lowest in aquifer samples, although resistant Escherichia coli and Klebsiella pneumoniae were occasionally detected in the monitoring well 3-days downgradient from injection, but not 6-months downgradient. Resistant E. coli and Pseudomonas aeruginosa were occasionally detected in the nonpotable reuse distribution system, along with increased levels of multidrug, sulfonamide, phenicol, and aminoglycoside ARGs. This study illuminates specific vulnerabilities of water reuse systems to persistence, selection, and growth of ARGs and ARB and emphasizes the role of multiple treatment barriers, including aquifers and distribution systems.
Collapse
Affiliation(s)
- Ishi Keenum
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA; Present address: Department of Civil, Environmental, and Geospatial Engineering, Michigan Tech, Houghton, MI, USA
| | - Jeanette Calarco
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Haniyyah Majeed
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - E Eldridge Hager-Soto
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Charles Bott
- Hampton Roads Sanitation District, Virginia Beach, VA, USA
| | - Emily Garner
- Wadsworth Department of Civil and Environmental Engineering, West Virginia University, Morgantown, WV, USA
| | - Valerie J Harwood
- Department of Integrative Biology, University of South Florida, Tampa, FL, USA
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
5
|
Shi X, Shen Z, Shao B, Shen J, Wu Y, Wang S. Antibiotic resistance genes profile in the surface sediments of typical aquaculture areas across 15 major lakes in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123709. [PMID: 38447655 DOI: 10.1016/j.envpol.2024.123709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
Aquatic farming is considered as a major source of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) for the natural environment of the lakes. ARB and ARGs in the natural environment have increased quickly because of the human activities. Here, we have profiled the diversity and abundance of ARGs in sediments from the typical aquaculture areas around 15 major lakes in China using PCR and qPCR, and further assessed the risk factor shaping the occurrence and distribution of ARGs. And class 1, 2 and 3 integrons were initially detected by PCR with specific primers. ARGs were widely distributed in the lakes: Weishan Lake and Poyang Lake showed high diversity of ARGs, followed by Dongting Lake, Chao Lake and Tai Lake. Generally, the ARGs in the Middle-Lower Yangtze Plain were more abundant than those in the Qinghai-Tibet Plateau. Tetracycline resistance genes (tet(C), tet(A) & tet(M)) were prominent in sediments, and the next was AmpC β-lactamase gene group BIL/LAT/CMY, and the last was the genes resistance to aminoglycoside (strA-strB). Partial least squares path modeling analysis (PLS-PMA) revealed that livestock had a significant direct effect on the distribution of ARGs in lakes, and population might indirectly influence the profiles of ARGs by affecting the scale of livestock and aquaculture. The detectable rate of class 1, 2 and 3 integrons were 80%, 100% and 46.67%, respectively. The prevalence of integrons might play a key role in promoting more frequent horizontal gene transfer (HGT) events, resulting in the environmental mobilization and dissemination of ARGs between bacteria.
Collapse
Affiliation(s)
- Xiaomin Shi
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Zhangqi Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Bing Shao
- Beijing Centers for Disease Control and Preventative Medical Research, Beijing, 100013, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongning Wu
- Research Unit of Food Safety (2019RU014), Chinese Academy of Medical Sciences, NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, 100021, China
| | - Shaolin Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
6
|
Zhang Y, Qin K, Liu C. Low-density polyethylene enhances the disturbance of microbiome and antibiotic resistance genes transfer in soil-earthworm system induced by pyraclostrobin. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133459. [PMID: 38219581 DOI: 10.1016/j.jhazmat.2024.133459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/16/2024]
Abstract
Non-antibiotic chemicals in farmlands, including microplastics (MPs) and pesticides, have the potential to influence the soil microbiome and the dissemination of antibiotic resistance genes (ARGs). Despite this, there is limited understanding of the combined effects of MPs and pesticides on microbial communities and ARGs transmission in soil ecosystems. In this study, we observed that low-density polyethylene (LDPE) microplastic enhance the accumulation of pyraclostrobin in earthworms, resulting in reduced weight and causing severe oxidative damage. Analysis of 16 S rRNA amplification revealed that exposure to pyraclostrobin and/or LDPE disrupts the microbial community structure at the phylum and genus levels, leading to reduced alpha diversity in both the soil and earthworm gut. Furthermore, co-exposure to LDPE and pyraclostrobin increased the relative abundance of ARGs in the soil and earthworm gut by 2.15 and 1.34 times, respectively, compared to exposure to pyraclostrobin alone. It correlated well with the increasing relative abundance of genera carrying ARGs. Our findings contribute novel insights into the impact of co-exposure to MPs and pesticides on soil and earthworm microbiomes, highlighting their role in promoting the transfer of ARGs. This knowledge is crucial for managing the risk associated with the dissemination of ARGs in soil ecosystems.
Collapse
Affiliation(s)
- Yirong Zhang
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Kaikai Qin
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China
| | - Chenglan Liu
- National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou 510642, China.
| |
Collapse
|
7
|
Bhat BA, Mir RA, Qadri H, Dhiman R, Almilaibary A, Alkhanani M, Mir MA. Integrons in the development of antimicrobial resistance: critical review and perspectives. Front Microbiol 2023; 14:1231938. [PMID: 37720149 PMCID: PMC10500605 DOI: 10.3389/fmicb.2023.1231938] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/14/2023] [Indexed: 09/19/2023] Open
Abstract
Antibiotic resistance development and pathogen cross-dissemination are both considered essential risks to human health on a worldwide scale. Antimicrobial resistance genes (AMRs) are acquired, expressed, disseminated, and traded mainly through integrons, the key players capable of transferring genes from bacterial chromosomes to plasmids and their integration by integrase to the target pathogenic host. Moreover, integrons play a central role in disseminating and assembling genes connected with antibiotic resistance in pathogenic and commensal bacterial species. They exhibit a large and concealed diversity in the natural environment, raising concerns about their potential for comprehensive application in bacterial adaptation. They should be viewed as a dangerous pool of resistance determinants from the "One Health approach." Among the three documented classes of integrons reported viz., class-1, 2, and 3, class 1 has been found frequently associated with AMRs in humans and is a critical genetic element to serve as a target for therapeutics to AMRs through gene silencing or combinatorial therapies. The direct method of screening gene cassettes linked to pathogenesis and resistance harbored by integrons is a novel way to assess human health. In the last decade, they have witnessed surveying the integron-associated gene cassettes associated with increased drug tolerance and rising pathogenicity of human pathogenic microbes. Consequently, we aimed to unravel the structure and functions of integrons and their integration mechanism by understanding horizontal gene transfer from one trophic group to another. Many updates for the gene cassettes harbored by integrons related to resistance and pathogenicity are extensively explored. Additionally, an updated account of the assessment of AMRs and prevailing antibiotic resistance by integrons in humans is grossly detailed-lastly, the estimation of AMR dissemination by employing integrons as potential biomarkers are also highlighted. The current review on integrons will pave the way to clinical understanding for devising a roadmap solution to AMR and pathogenicity. Graphical AbstractThe graphical abstract displays how integron-aided AMRs to humans: Transposons capture integron gene cassettes to yield high mobility integrons that target res sites of plasmids. These plasmids, in turn, promote the mobility of acquired integrons into diverse bacterial species. The acquisitions of resistant genes are transferred to humans through horizontal gene transfer.
Collapse
Affiliation(s)
- Basharat Ahmad Bhat
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | - Hafsa Qadri
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| | - Rohan Dhiman
- Department of Life Sciences, National Institute of Technology (NIT), Rourkela, Odisha, India
| | - Abdullah Almilaibary
- Department of Family and Community Medicine, Faculty of Medicine, Al Baha University, Al Bahah, Saudi Arabia
| | - Mustfa Alkhanani
- Department of Biology, College of Science, Hafr Al Batin University of Hafr Al-Batin, Hafar Al Batin, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bio-Resources, School of Biological Sciences, University of Kashmir, Srinagar, India
| |
Collapse
|
8
|
Bai Y, Ruan X, Li R, Zhang Y, Wang Z. Metagenomics-based antibiotic resistance genes diversity and prevalence risk revealed by pathogenic bacterial host in Taihu Lake, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:2531-2543. [PMID: 34292452 DOI: 10.1007/s10653-021-01021-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
In recent decades, antibiotics and antibiotic resistance genes (ARGs) have been regarded as emerging pollutants. In Taihu Lake, as a typical representative of freshwater system in China, the ARGs occurrence and abundance was of great importance for ecological risk control and public health protection. In this research, high-throughput sequencing and metagenomics technique were used to investigate the seasonal ARGs profile in overlying water and sediment at typical area of Taihu Lake. Besides, taxonomy pattern of ARGs host bacteria and potential pathogens were identified. The results showed that 33 ARG subtypes and 11 ARG types were detected in research area, among which bacitracin, multidrug and sulfonamides resistance gene were with the highest abundance. The relative abundance of ARGs in overlying water and sediment ranged from 1.68 to 661.05 ppm and from 1.93 to 49.47 ppm, respectively. ARG host (18 bacteria genus) were identified and annotated, among which Clostridium botulinum, Pseudomonas aeruginosa and Klebsiella pneumonia were pathogenic bacteria. The pathogens were mostly detected at Xukou Bay in spring and fall, which might be caused by the inlet water from aquaculture area of Yangcheng Lake. Pseudomonas was the most abundant ARGs host (ant2ib, baca, bl2d_oxa2,mexb, mexf, mexw and oprn), which may facilitate the propagation of ARGs in freshwater system.
Collapse
Affiliation(s)
- Ying Bai
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, 223# Guangzhou Road, Nanjing, 210029, China
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, School of Environment, Nanjing University, Nanjing, China
| | - Xiaohong Ruan
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, School of Environment, Nanjing University, Nanjing, China
| | - Rongfu Li
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, School of Environment, Nanjing University, Nanjing, China
| | - Yaping Zhang
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, School of Environment, Nanjing University, Nanjing, China
| | - Zongzhi Wang
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, 223# Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
9
|
Zhao Z, Li C, Jiang L, Wu D, Shi H, Xiao G, Guan Y, Kang X. Occurrence and distribution of antibiotic resistant bacteria and genes in the Fuhe urban river and its driving mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153950. [PMID: 35189229 DOI: 10.1016/j.scitotenv.2022.153950] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/13/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Antibiotic resistance genes (ARGs) in urban rivers can affect human health via the food chain and human pathogenic bacteria diffusion. Sediment can be a sink for ARGs, causing second sources of ARG contamination through diffusion. Therefore, we evaluated the effects of total petroleum hydrocarbons (TPHs) and phytoplankton on the distribution of the ARGs in the sediment and water of Fuhe river in Baoding city, China. The ARGs and human pathogenic bacteria in urban river were analyzed, and the phytoplankton and bacterial abundance, TPH, and physicochemical parameters ranked using the partial least squares path modelling (PLS-PM) and aggregated boosted tree (ABT) analysis. The main ARGs in Fuhe river sediment were sulfonamide and tetracycline resistance genes, with sul2 exhibiting the highest level. The main human pathogenic bacteria in the pathogens pool were Clostridium, Bacillus and Burkholderiaceae, with Clostridium demonstrating a positive correlation with SulAfolP01. The PLS-PM analysis confirmed that, among the multiple drivers, water physicochemical factors, TPH, phytoplankton, and heavy metals positively and directly affected the ARG profiles in sediment while sediment heavy metals and bacterial communities did the similar effect. These factors (nutrient factors, heavy metals, and TPH) in water and sediment posed the opposite total effect on ARGs in the sediment, suggesting medium factors should have a conclusive effect on the distribution of ARGs in the sediment. The ABT analysis showed that dissolved oxygen (DO), total nitrogen (TN) and Chlorophyta were the most important factors affecting the ARGs distribution in the water, while TN affected the distribution of the genes in the sediment.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China; Hebei Key Laboratory of Wetland Ecology and Conservation, China.
| | - Chunchen Li
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Liangying Jiang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Dayong Wu
- Hebei Key Laboratory of Wetland Ecology and Conservation, China
| | - Huijuan Shi
- Museum, Hebei University, Baoding, Hebei, China.
| | - Guohua Xiao
- Hebei Key Laboratory of Marine Biological Resources and Environment, Hebei Ocean and Fisheries Science Reseach Institute, Qinhuangdao, Hebei, China
| | - Yueqiang Guan
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| | - Xianjiang Kang
- College of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, Hebei, China
| |
Collapse
|
10
|
Zhao X, Li W, Hou S, Wang Y, Wang S, Gao J, Zhang R, Jiang S, Zhu Y. Epidemiological investigation on drug resistance of Salmonella isolates from duck breeding farms in Shandong Province and surrounding areas, China. Poult Sci 2022; 101:101961. [PMID: 35687959 PMCID: PMC9190056 DOI: 10.1016/j.psj.2022.101961] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Xinyuan Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Wei Li
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Shaopeng Hou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Yanjun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Shuyang Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Jing Gao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Ruihua Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Shijin Jiang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China
| | - Yanli Zhu
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 201718, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Taian 201718, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Taian 271018, China.
| |
Collapse
|
11
|
Chen X, Yang Y, Ke Y, Chen C, Xie S. A comprehensive review on biodegradation of tetracyclines: Current research progress and prospect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152852. [PMID: 34995606 DOI: 10.1016/j.scitotenv.2021.152852] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/24/2021] [Accepted: 12/29/2021] [Indexed: 05/12/2023]
Abstract
The release of tetracyclines (TCs) in the environment is of significant concern because the residual antibiotics may promote resistance in pathogenic microorganisms, and the transfer of antibiotic resistance genes poses a potential threat to ecosystems. Microbial biodegradation plays an important role in removing TCs in both natural and artificial systems. After long-term acclimation, microorganisms that can tolerate and degrade TCs are retained to achieve efficient removal of TCs under the optimum conditions (e.g. optimal operational parameters and moderate concentrations of TCs). To date, cultivation-based techniques have been used to isolate bacteria or fungi with potential degradation ability. Moreover, the biodegradation mechanism of TCs can be unveiled with the development of chemical analysis (e.g. UPLC-Q-TOF mass spectrometer) and molecular biology techniques (e.g. 16S rRNA gene sequencing, multi-omics sequencing, and whole genome sequencing). In this review, we made an overview of the biodegradation of TCs in different systems, refined functional microbial communities and pure isolates relevant to TCs biodegradation, and summarized the biodegradation products, pathways, and degradation genes of TCs. In addition, ecological risks of TCs biodegradation were considered from the perspectives of metabolic products toxicity and resistance genes. Overall, this article aimed to outline the research progress of TCs biodegradation and propose future research prospects.
Collapse
Affiliation(s)
- Xiuli Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuyin Yang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| | - Yanchu Ke
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Chao Chen
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Chen P, Guo X, Li S, Li F. A review of the bioelectrochemical system as an emerging versatile technology for reduction of antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2021; 156:106689. [PMID: 34175779 DOI: 10.1016/j.envint.2021.106689] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/31/2021] [Accepted: 06/02/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic contamination and the resulting resistance genes have attracted worldwide attention because of the extensive overuse and abuse of antibiotics, which seriously affects the environment as well as human health. Bioelectrochemical system (BES), a potential avenue to be explored, can alleviate antibiotic pollution and reduce antibiotic resistance genes (ARGs). This review mainly focuses on analyzing the possible reasons for the good performance of ARG reduction by BESs and potential ways to improve its performance on the basis of revealing the generation and transmission of ARGs in BES. This system reduces ARGs through two pathways: (1) the contribution of BES to the low selection pressure of ARGs caused by the efficient removal of antibiotics, and (2) inhibition of ARG transmission caused by low sludge yield. To promote the reduction of ARGs, incorporating additives, improving the removal rate of antibiotics by adjusting the environmental conditions, and controlling the microbial community in BES are proposed. Furthermore, this review also provides an overview of bioelectrochemical coupling systems including the BES coupled with the Fenton system, BES coupled with constructed wetland, and BES coupled with photocatalysis, which demonstrates that this method is applicable in different situations and conditions and provides inspiration to improve these systems to control ARGs. Finally, the challenges and outlooks are addressed, which is constructive for the development of technologies for antibiotic and ARG contamination remediation and blocking risk migration.
Collapse
Affiliation(s)
- Ping Chen
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China
| | - Xiaoyan Guo
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China
| | - Shengnan Li
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province 150090, China
| | - Fengxiang Li
- Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300350, China.
| |
Collapse
|
13
|
Hu Y, Jin L, Zhao Y, Jiang L, Yao S, Zhou W, Lin K, Cui C. Annual trends and health risks of antibiotics and antibiotic resistance genes in a drinking water source in East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148152. [PMID: 34118673 DOI: 10.1016/j.scitotenv.2021.148152] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 05/17/2023]
Abstract
The extensive pollution of antibiotics and antibiotic resistance genes (ARGs) in drinking water has aroused worldwide concern. Successive monitoring of these pollutants has noteworthy significance for drinking water safety. Accordingly, this study conducted successive monitoring of antibiotics and ARGs from 2015 to 2017 in a drinking water source in East China. The total antibiotic concentration ranged from 19.68 ng/L to 497.00 ng/L, and decreased slightly from 2015 to 2017. Eighteen out of forty-one ARG subtypes showing resistance to six antibiotic classes and one class I integrase gene intI1, were detected in the drinking water source at concentrations ranging from 6.5 × 104 copies/mL to 1.6 × 106 copies/mL. Importantly, the total ARG concentration increased on an annual basis from 2015 to 2017 with an average annual increment of 0.25 orders of magnitude, which was mainly attributed to the increase in specific ARG subtypes, such as sul1, sul2, sul3, tetA, qnrB, and ermB. Most ARGs was positively correlated with the intI1 genes (r = 0.47-0.55, P < 0.01). Furthermore, the variation of antibiotics and ARGs appeared to be related to the water indices, particularly of the values of COD, BOD5, NO2-N (P < 0.05). This study provides basic data on antibiotic and ARG pollution in the studied drinking water source. Importantly, the findings expound that although the residual antibiotics in this drinking water source decreased slightly from 2015 to 2017, while its biological effect, the antibiotic resistance, increased annually, which give a warning of the antibiotic resistance pollution in the drinking water source.
Collapse
Affiliation(s)
- Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science & Technology, Shanghai 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science & Technology, Shanghai 200237, China
| | - Lei Jin
- National Engineering Research Center of Urban Water Resources, Shanghai 200082, China
| | - Yi Zhao
- Pudong New Area Hydrology and Water Sources Administration Shanghai, Shanghai 200000, China
| | - Lei Jiang
- National Engineering Research Center of Urban Water Resources, Shanghai 200082, China
| | - Shijie Yao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science & Technology, Shanghai 200237, China
| | - Wang Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science & Technology, Shanghai 200237, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science & Technology, Shanghai 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Environmental Protection Key Laboratory on Environmental Standard and Risk Management of Chemical Pollutants, East China University of Science & Technology, Shanghai 200237, China; National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science & Technology, Shanghai 200237, China.
| |
Collapse
|
14
|
Liu S, Wang P, Wang X, Chen J. Ecological insights into the elevational biogeography of antibiotic resistance genes in a pristine river: Metagenomic analysis along the Yarlung Tsangpo River on the Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117101. [PMID: 33971467 DOI: 10.1016/j.envpol.2021.117101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/22/2021] [Accepted: 04/05/2021] [Indexed: 05/20/2023]
Abstract
Presently, the prevalence of antibiotic resistance genes (ARGs) is regarded as an emerging environmental issue, and many studies have illuminated biogeographical patterns of the antibiotic resistome. However, few studies have investigated elevational biogeography and associated assembly mechanisms of ARGs in natural river systems. Accordingly, in the present study, we used metagenomics approaches to analyze the biogeographical pattern of ARGs along the pristine Yarlung Tsangpo River on the Tibetan Plateau. Our study retrieved the baseline profiles of ARGs in the pristine river and showed that the ARGs were dominated by bacA, which was resistant to bacitracin and represented more than 91% of total ARGs. The diversity and abundance of ARGs in the pristine river were lower than those in the human-impacted area, suggesting that the antibiotic resistome evolved and was promoted in a human-impacted environment. Furthermore, an elevational distance-decay relationship of ARGs was observed along the pristine Yarlung Tsangpo River, which provided strong evidence of ARG dissimilarity under the elevational variation. Elevational gradients could lead to changes in environmental variables and spatial factors, and consequently alter ARG composition. Elevational gradients could influence the assembly processes of ARGs. The deterministic and stochastic assembly processes both played critical roles and equally participated in shaping ARG composition at the watershed scale along the Yarlung Tsangpo River, and with increasing elevational variation along the river, the ecological processes of ARG assembly shifted from deterministic to stochastic. Moreover, abundant and rare ARGs were tentatively separated to investigate the difference and similarity in their distributions. Although abundant and rare ARGs presented similar distance-decay relationships, rare ARGs were more diverse and vulnerable to the dispersal process and mutation. Overall, our study provides valuable ecological insights to profile the large-scale elevational patterns of ARGs in a pristine river system, thereby providing important information for public health and environmental management.
Collapse
Affiliation(s)
- Sheng Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
15
|
Ford T, Cherr G, Gu JD. Shu-Pei Cheng: A life-long pursuit for Environmental Science and Pollution Control. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1284-1286. [PMID: 34145497 DOI: 10.1007/s10646-021-02438-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Tim Ford
- Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA, 01854, USA.
| | - Gary Cherr
- Bodega Marine Laboratory, Coastal & Marine Sciences Institute, Departments of Environmental Toxicology and Nutrition, University of California, 2099 Westshore Road, Bodega Bay, P.O. Box 247, Davis, CA, 94923, USA.
| | - Ji-Dong Gu
- Environmental Science and Engineering Group, Guangdong Technion-Israel Institute of Technology, 241 Daxue Road, Shantou, Guangdong, 515063, The People's Republic of China.
| |
Collapse
|
16
|
Ginn O, Berendes D, Wood A, Bivins A, Rocha-Melogno L, Deshusses MA, Tripathi SN, Bergin MH, Brown J. Open Waste Canals as Potential Sources of Antimicrobial Resistance Genes in Aerosols in Urban Kanpur, India. Am J Trop Med Hyg 2021; 104:1761-1767. [PMID: 33684068 PMCID: PMC8103454 DOI: 10.4269/ajtmh.20-1222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/05/2021] [Indexed: 11/07/2022] Open
Abstract
Understanding the movement of antimicrobial resistance genes (ARGs) in the environment is critical to managing their spread. To assess potential ARG transport through the air via urban bioaerosols in cities with poor sanitation, we quantified ARGs and a mobile integron (MI) in ambient air over periods spanning rainy and dry seasons in Kanpur, India (n = 53), where open wastewater canals (OWCs) are prevalent. Gene targets represented major antibiotic groups-tetracyclines (tetA), fluoroquinolines (qnrB), and beta-lactams (blaTEM)-and a class 1 mobile integron (intI1). Over half of air samples located near, and up to 1 km from OWCs with fecal contamination (n = 45) in Kanpur had detectable targets above the experimentally determined limits of detection (LOD): most commonly intI1 and tetA (56% and 51% of samples, respectively), followed by blaTEM (8.9%) and qnrB (0%). ARG and MI densities in these positive air samples ranged from 6.9 × 101 to 5.2 × 103 gene copies/m3 air. Most (7/8) control samples collected 1 km away from OWCs were negative for any targets. In comparing experimental samples with control samples, we found that intI1 and tetA densities in air are significantly higher (P = 0.04 and P = 0.01, respectively, alpha = 0.05) near laboratory-confirmed fecal contaminated waters than at the control site. These data suggest increased densities of ARGs and MIs in bioaerosols in urban environments with inadequate sanitation. In such settings, aerosols may play a role in the spread of AR.
Collapse
Affiliation(s)
- Olivia Ginn
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - David Berendes
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Anna Wood
- Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, Notre Dame, Indiana
| | - Aaron Bivins
- Department of Civil and Environmental Engineering, Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Lucas Rocha-Melogno
- Department of Civil and Environmental Engineering, Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Marc A. Deshusses
- Department of Civil and Environmental Engineering, Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Sachchida N. Tripathi
- Department of Civil Engineering, Centre for Environmental Science and Engineering, Indian Institute of Technology, Kanpur, India
| | - Michael H. Bergin
- Department of Civil and Environmental Engineering, Duke Global Health Institute, Duke University, Durham, North Carolina
| | - Joe Brown
- Deparment of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina,Address correspondence to Joe Brown, Department of Environmental Sciences and Engineering, University of North Carolina, 135 Dauer Dr., Chapel Hill, NC 27599. E-mail:
| |
Collapse
|
17
|
Ginn O, Nichols D, Rocha-Melogno L, Bivins A, Berendes D, Soria F, Andrade M, Deshusses MA, Bergin M, Brown J. Antimicrobial resistance genes are enriched in aerosols near impacted urban surface waters in La Paz, Bolivia. ENVIRONMENTAL RESEARCH 2021; 194:110730. [PMID: 33444611 PMCID: PMC10906805 DOI: 10.1016/j.envres.2021.110730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Antibiotic resistance poses a major global health threat. Understanding emergence and dissemination of antibiotic resistance in environmental media is critical to the design of control strategies. Because antibiotic resistance genes (ARGs) may be aerosolized from contaminated point sources and disseminated more widely in localized environments, we assessed ARGs in aerosols in urban La Paz, Bolivia, where wastewater flows in engineered surface water channels through the densely populated urban core. We quantified key ARGs and a mobile integron (MI) via ddPCR and E. coli spp. as a fecal indicator by culture over two years during both the rainy and dry seasons in sites near wastewater flows. ARG targets represented major antibiotic groups-tetracyclines (tetA), fluoroquinolines (qnrB), and beta-lactams (blaTEM)-and an MI (intI1) represented the potential for mobility of genetic material. Most air samples (82%) had detectable targets above the experimentally determined LOD: most commonly blaTEM and intI1 (68% and 47% respectively) followed by tetA and qnrB (17% and 11% respectively). ARG and MI densities in positive air samples ranged from 1.3 × 101 to 6.6 × 104 gene copies/m3 air. Additionally, we detected culturable E. coli in the air (52% of samples <1 km from impacted surface waters) with an average density of 11 CFU/m3 in positive samples. We observed decreasing density of blaTEM with increasing distance up to 150 m from impacted surface waters. To our knowledge this is the first study conducting absolute quantification and a spatial analysis of ARGs and MIs in ambient urban air of a city with contaminated surface waters. Environments in close proximity to urban wastewater flows in this setting may experience locally elevated concentrations of ARGs, a possible concern for the emergence and dissemination of antimicrobial resistance in cities with poor sanitation.
Collapse
Affiliation(s)
- Olivia Ginn
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States.
| | - Dennis Nichols
- Rollins School of Public Health, Emory University, Atlanta, GA, United States.
| | - Lucas Rocha-Melogno
- Department of Civil and Environmental Engineering, And Duke Global Health Institute, Duke University, Durham, NC, 27708, United States.
| | - Aaron Bivins
- Department of Civil and Environmental Engineering and Earth Science, University of Notre Dame, Notre Dame, IN, 46656, United States.
| | - David Berendes
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Diseases, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Freddy Soria
- Centro de Investigación en Agua, Energía y Sostenibilidad, Universidad Católica Boliviana "San Pablo", La Paz, Bolivia.
| | - Marcos Andrade
- Laboratory for Atmospheric Physics, Institute for Physics Research, Universidad Mayor de San Andres, La Paz, Bolivia; Department of Atmospheric and Oceanic Sciences, University of Maryland, College Park, MD, USA.
| | - Marc A Deshusses
- Department of Civil and Environmental Engineering, And Duke Global Health Institute, Duke University, Durham, NC, 27708, United States.
| | - Mike Bergin
- Department of Civil and Environmental Engineering, And Duke Global Health Institute, Duke University, Durham, NC, 27708, United States.
| | - Joe Brown
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, United States; Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
18
|
Wang Z, Chen Q, Zhang J, Guan T, Chen Y, Shi W. Critical roles of cyanobacteria as reservoir and source for antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2020; 144:106034. [PMID: 32777621 DOI: 10.1016/j.envint.2020.106034] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
The widespread occurrence of antibiotic resistance genes (ARGs) throughout aquatic environments has raised global concerns for public health, but understanding of the emergence and propagation of ARGs in diverse environmental media remains limited. This study investigated the occurrence and spatio-temporal patterns of six classes of ARGs in cyanobacteria isolated from Taihu Lake. Tetracycline and sulfonamide resistance genes were identified as dominant ARGs. The abundance of ARGs in cyanobacteria was significantly higher in the bloom period than in the non-bloom period. The contribution and persistence of ARGs were higher in extracellular DNA (eDNA) than in intracellular DNA (iDNA) from cyanobacteria. Cyanobacteria-associated eDNA carrying ARGs was more stable at lower temperature. The relative abundances of ARGs in Microcystis and Synechococcus, the dominant genera of cyanobacterial blooms in Taihu Lake, were significantly higher than those in other cyanobacterial strains. The conjugative transfer efficiency for bacterial assimilation of ARGs in cyanobacteria was facilitated by increasing temperature and cyanobacterial cell concentration. Our results demonstrated that cyanobacteria could act as a significant reservoir and source for the acquisition and dissemination of ARGs in aquatic environments, hence the definition of negative ecological effects of cyanobacterial blooms was expanded.
Collapse
Affiliation(s)
- Zhiyuan Wang
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Qiuwen Chen
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China.
| | - Jianyun Zhang
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Tiesheng Guan
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Yuchen Chen
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| | - Wenqing Shi
- State Key Laboratory of Hydrology-Water Resources & Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210098, China; Center for Eco-Environment Research, Nanjing Hydraulic Research Institute, Nanjing 210098, China
| |
Collapse
|
19
|
Huyan J, Tian Z, Zhang Y, Zhang H, Shi Y, Gillings MR, Yang M. Dynamics of class 1 integrons in aerobic biofilm reactors spiked with antibiotics. ENVIRONMENT INTERNATIONAL 2020; 140:105816. [PMID: 32474215 DOI: 10.1016/j.envint.2020.105816] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Class 1 integrons are strongly associated with the dissemination of antibiotic resistance in bacteria. However, little is known about whether the presence of antibiotics affects the abundance of integrons and antibiotic resistance genes during biological wastewater treatment. To explore the roles of class 1 integrons in spreading antibiotic resistance genes in environmental compartments, the dynamics of integrons were followed in biofilm reactors treating synthetic wastewater respectively spiked with streptomycin (STM) and oxytetracycline (OTC). The relative abundance of the integron-integrase gene (intI1) increased 12 or 29-fold respectively when treated with STM or OTC, under incrementally increasing dosage regimes from 0 to 50 mg L-1. Significant increases in intI1 abundance initially occurred at an antibiotic dose of 0.1 mg L-1. At the beginning of the experiment, 51% to 64% of integrons carried no gene cassettes. In STM and OTC spiked systems, there was a significant increase in the proportion of integrons that contained resistance gene cassettes, particularly at intermediate and higher antibiotic concentrations. Gene cassettes encoding resistance to aminoglycosides, trimethoprim, beta-lactam, erythromycin, and quaternary ammonium compounds were all detected in the treated systems. Three tetracycline resistance genes (tetA, tetC, tetG) were significantly correlated with the abundance of intI1 (p < 0.01), despite no tet resistance being present as a gene cassette. Genome sequencing of isolates showed synteny between the tet resistance genes and intI1, mediated through linkage to transposable elements including Tn3, IS26 and ISCR3. Class 1 integrons appeared to be under positive selection in the presence of antibiotics, and might have actively acquired new gene cassettes during the experiment.
Collapse
Affiliation(s)
- Jiaoqi Huyan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China.
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanhong Shi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Michael R Gillings
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China.
| |
Collapse
|
20
|
Liang X, Guan F, Chen B, Luo P, Guo C, Wu G, Ye Y, Zhou Q, Fang H. Spatial and seasonal variations of antibiotic resistance genes and antibiotics in the surface waters of Poyang Lake in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 196:110543. [PMID: 32278139 DOI: 10.1016/j.ecoenv.2020.110543] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic resistance genes (ARGs) and antibiotics in the aquatic environment raise health concerns particularly on the dispersal and persistence of antibiotic resistance. Large lakes, which serve as catch basins of anthropogenic inputs provide an ideal environment for understanding the occurrence and accumulation of ARGs and antibiotics in freshwater environments. Here, the largest freshwater lake in China, Poyang Lake, located in the developing district of Yangtze valley was used to study the characterization of the spatial and seasonal variation of both ARGs and antibiotics. Results showed that twelve tested ARGs (sul1, sul2, sul3, tetA, tetB, tetC, tetH, tetW, tetO, tetM, qnrS, and qnrB) were detected in the surface waters of Poyang Lake, with a detection frequency ranging from 19.2% to 100%, and sul2 and tetA genes were identified as potential indicators of ARG pollution in this region. Among the 11 analyzed antibiotics, sulfonamides were the predominant antibiotics with a contribution of more than 50% to the total concentrations of tested antibiotics. The total concentrations of both ARGs and antibiotics were higher in the dry season than those in the wet season. Furthermore, ARGs and antibiotics in the surface waters also varied with sampling locations, being consistently at riverine tributaries. Positive correlations were also observed between the concentrations of ARGs and antibiotics, as well as the integron gene (intI1), indicating that antibiotics and intI1 may be playing important roles in the occurrence and dispersal of ARGs in the surface waters. Lastly, our results suggest that intensive anthropogenic activities related to antibiotic usage have substantially contributed to the occurrence and persistence of ARGs and antibiotics in Poyang Lake.
Collapse
Affiliation(s)
- Ximei Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Fangling Guan
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Baowei Chen
- Southern Marine Science and Engineering Guangdong Laboratory, School of Marine Sciences, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Pinyi Luo
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Chengfei Guo
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Guoqiang Wu
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yu Ye
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Qiubai Zhou
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Hansun Fang
- Key Laboratory of Poyang Lake Basin Agricultural Resource and Ecology of Jiangxi Province, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
21
|
Zhang Y, Zhao F, Wang F, Zhang Y, Shi Q, Han X, Geng H. Molecular characteristics of leonardite humic acid and the effect of its fractionations on sulfamethoxazole photodegradation. CHEMOSPHERE 2020; 246:125642. [PMID: 31901530 DOI: 10.1016/j.chemosphere.2019.125642] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/04/2019] [Accepted: 12/11/2019] [Indexed: 05/11/2023]
Abstract
The widespread occurrence of synthetic antibiotic sulfamethoxazole (SMX)- poses a potential risk to aquatic ecosystems where dissolved organic matter (DOM) may affect its photolysis. In this study, the elimination of SMX by solar photolysis was investigated in the presence of leonardite humic acid (LHA) and its fractions. Fourier transform ion cyclotron resonance mass (FT-ICR-MS) spectra showed that LHA has high aromaticity. van Krevelen diagrams demonstrated highly unsaturated and phenolic compounds. The photolytic degradation of SMX was impeded by all DOM, mainly due to the competition of photons and scavenging or quenching of reactive oxygen species (ROS). The evaluation of isolated fractions of LHA suggested that fractions with MW < 3500, 14000-25,000 and > 100,000 had the greatest negative effects on sulfamethoxazole photodegradation; their inhibitory activities could reach up to 56.2%, 52.9% and 50.5%, respectively. The characterization of DOM at the molecular level will provide further insights into the assessment of photolysis for antibiotic elimination in natural waters where DOM exists ubiquitously.
Collapse
Affiliation(s)
- Yiyue Zhang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, China
| | - Furong Zhao
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, China; Xi'an Respro Applied Materials Technology Co., Ltd, 12003 Haixing City Square, 710075, Xi'an, Shaanxi, China
| | - Fei Wang
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, China.
| | - Yahe Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 18 Fuxue Road, 102249, Beijing, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, 18 Fuxue Road, 102249, Beijing, China
| | - Xiaomin Han
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, China
| | - Huanhuan Geng
- School of Energy & Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, 100083, Beijing, China
| |
Collapse
|
22
|
Wu DL, Zhang M, He LX, Zou HY, Liu YS, Li BB, Yang YY, Liu C, He LY, Ying GG. Contamination profile of antibiotic resistance genes in ground water in comparison with surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:136975. [PMID: 32018106 DOI: 10.1016/j.scitotenv.2020.136975] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 05/21/2023]
Abstract
Dissemination of antibiotic resistance genes (ARGs) in the water environment has become an increasing concern. There have been many reports on ARGs in surface water, but little is known about ARGs in groundwater. In this study, we investigated the profiles and abundance of ARGs in groundwater in comparison with those in surface water of Maozhou River using high-throughput quantitative PCR (HT-qPCR). Totally 127 ARGs and 10 MGEs were detected by HT-qPCR, and among them the sulfonamides, multidrug and aminoglycosides resistance genes were the dominant ARG types. According to the results of HT-qPCR, 18 frequently detected ARGs conferring resistance to 6 classes of antibiotics and 3 MGEs were further quantified by qPCR in the wet season and dry season. The absolute abundance ranged from 1.23 × 105 to 8.89 × 106 copies/mL in wet season and from 8.50 × 102 to 2.65 × 106 copies/mL in the dry season, with sul1 and sul2 being the most abundant ARGs. The absolute abundance of ARGs and MGEs has no significant difference between the wet season and dry season while the diversity of ARGs in the dry season was higher than that in the wet season (p < 0.05). Totally 141 and 150 ARGs were detected in the water and sediments of Maozhou River, respectively. A total of 116 ARGs were shared among the groundwater, river water, and sediment, which accounted for 67.1% of all detected genes. Redundancy analysis further demonstrated that the environmental factors contributed 70.7% of the total ARG variations. The findings of large shared ARGs, abundant Total Coliforms and large wastewater burden in the groundwater provide a clear evidence that anthropogenic activities had a significant impact on groundwater.
Collapse
Affiliation(s)
- Dai-Ling Wu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Hai-Yan Zou
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Bei-Bei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yuan-Yuan Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chongxuan Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
23
|
Shen X, Jin G, Zhao Y, Shao X. Prevalence and distribution analysis of antibiotic resistance genes in a large-scale aquaculture environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134626. [PMID: 31812375 DOI: 10.1016/j.scitotenv.2019.134626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Revised: 09/22/2019] [Accepted: 09/22/2019] [Indexed: 06/10/2023]
Abstract
This study examined the profiles of antibiotic resistance genes (ARGs) in water and sediments from one large-scale freshwater pond farming system. A qPCR array was used to quantify ARGs (16S, Tetx, Tetw, TetG, Intll, and Sull) and microbial community structure was analyzed by 16S rRNA gene sequencing. A large number of ARGs (2 8 8) were detected. The ARG richness of the sediments was significantly higher than that of water and an average of 15 more genes were detected (p < 0.01). Sediment samples showed significantly higher taxonomic diversity and higher abundance of Gammaproteobacteria, Betaproteobacteria, and Flavobacteria. A significant correlation was observed between antibiotic resistance genes and breeding periods. The taxonomic diversity of the samples in ponds was significantly higher than that in ditch samples (p < 0.05), suggesting that pond farming systems could act as a local reservoir to spread ARGs into aquatic environments of rural communities.
Collapse
Affiliation(s)
- Xiaoxiao Shen
- College of Agricultural Engineering, HoHai University, Nanjing, 210098, PR China
| | - Guangqiu Jin
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing, 210098, PR China
| | - Yongjun Zhao
- College of Biological Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, PR China.
| | - Xiaohou Shao
- College of Agricultural Engineering, HoHai University, Nanjing, 210098, PR China.
| |
Collapse
|
24
|
Paulus GK, Hornstra LM, Medema G. International tempo-spatial study of antibiotic resistance genes across the Rhine river using newly developed multiplex qPCR assays. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135733. [PMID: 31818563 DOI: 10.1016/j.scitotenv.2019.135733] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/09/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to capture and explain changes in antibiotic resistance gene (ARG) presence and concentration internationally across the Rhine river. Intl1 concentrations and national antibiotic usage were investigated as proxies to predict anthropogenic ARG pollution. Newly-developed multiplex qPCR assays were employed to investigate ARG profiles across 8 locations (L1-L8) in three countries (Switzerland, Germany, the Netherlands) and to detect potential regional causes for variation. Two of these locations were further monitored, over the duration of one month. A total of 13 ARGs, Intl1 and 16S rRNA were quantified. ARG presence and concentrations initially increased from L1(Diepoldsau) to L3(Darmstadt). A continuous increase could not be observed at subsequent locations, with the large river volume likely being a major contributing factor for stability. ARG presence and concentrations fluctuated widely across different locations. L2(Basel) and L3 were the two most polluted locations, coinciding with these locations being well-developed pharmaceutical production locations. We draw attention to the characteristic, clearly distinct ARG profiles, with gene presence being consistent and gene concentrations varying significantly less over time than across different locations. Five genes were Rhine-typical (ermB, ermF, Intl1, sul1 and tetM). Intl1 and sul1 were the genes with highest and second-highest concentration, respectively. Aph(III)a and blaOXA were permanently introduced downstream of L1, indicating no source of these genes prior to L1. We highlight that correlations between Intl1 and ARG concentrations (R2 = 0.72) were driven by correlations to sul1 and disappeared when excluding sul1 from the analysis (R2 = 0.05). Intl1 therefore seems to be a good proxy for sul1 concentrations but not necessarily for overall (anthropogenic) ARG pollution. Aminoglycoside usage per country correlated with concentrations of aph(III)a and several unrelated antibiotic resistance genes (blaOXA,ermB, ermF and tetM). This correlation can be explained by co-resistance caused by mobile genetic elements (MGEs), such as Tn1545.
Collapse
Affiliation(s)
- Gabriela K Paulus
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Delft University of Technology, Faculty of Civil Engineering & Geosciences, Department of Water Management, Stevinweg 1, 2628CN Delft, The Netherlands.
| | - Luc M Hornstra
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands
| | - Gertjan Medema
- KWR Watercycle Research Institute, Groningenhaven 7, 3433PE Nieuwegein, the Netherlands; Delft University of Technology, Faculty of Civil Engineering & Geosciences, Department of Water Management, Stevinweg 1, 2628CN Delft, The Netherlands
| |
Collapse
|
25
|
Su Z, Li A, Chen J, Huang B, Mu Q, Chen L, Wen D. Wastewater discharge drives ARGs spread in the coastal area: A case study in Hangzhou Bay, China. MARINE POLLUTION BULLETIN 2020; 151:110856. [PMID: 32056638 DOI: 10.1016/j.marpolbul.2019.110856] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/16/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
The distribution of 14 ARGs, intI1, and 16S rDNA were analysed in 4 wastewater treatment plants (WWTPs), 2 effluent receiving areas (ERAs), and Hangzhou Bay (HZB). The results showed that each integrated WWTP (IWWTP) received higher abundance of ARGs than pharmaceutical WWTPs (PWWTPs), and IWWTPs removed ARGs more efficiently than PWWTPs. The WWTP effluents greatly contributed to the ARGs pollution in the water environments of the ERAs and HZB, and the total abundance of the ARGs displayed a distance decay pattern. In coastal sediments, more ARGs were accumulated in remote sites. The correlation analysis showed that the occurrence of ARGs was more related to 16S rDNA and intI1 in the WWTPs. Three macrolides resistance genes (ermB, mphA, and vatB) had strong correlations with 16S rDNA and intI1 in all the sample groups. Our study clearly reveals the link between land WWTPs discharge and emerging pollution of ARGs in coastal environments.
Collapse
Affiliation(s)
- Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Aolin Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiayu Chen
- School of Environmental and Geography Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Bei Huang
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan 316021, China
| | - Qinglin Mu
- Zhejiang Provincial Zhoushan Marine Ecological Environmental Monitoring Station, Zhoushan 316021, China
| | - Lyujun Chen
- School of Environment, Tsinghua University, Beijing 100084, China; Zhejiang Provincial Key Laboratory of Water Science and Technology, Department of Environmental Technology and Ecology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing 314050, Zhejiang, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
26
|
Hiller CX, Hübner U, Fajnorova S, Schwartz T, Drewes JE. Antibiotic microbial resistance (AMR) removal efficiencies by conventional and advanced wastewater treatment processes: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:596-608. [PMID: 31195321 DOI: 10.1016/j.scitotenv.2019.05.315] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/27/2023]
Abstract
The World Health Organization (WHO) has identified the spread of antibiotic resistance as one of the major risks to global public health. An important transfer route into the aquatic environment is the urban water cycle. In this paper the occurrence and transport of antibiotic microbial resistance in the urban water cycle are critically reviewed. The presence of antibiotic resistance in low impacted surface water is being discussed to determine background antibiotic resistance levels, which might serve as a reference for treatment targets in the absence of health-based threshold levels. Different biological, physical and disinfection/oxidation processes employed in wastewater treatment and their efficacy regarding their removal of antibiotic resistant bacteria and antibiotic resistance geness (ARGs) were evaluated. A more efficient removal of antibiotic microbial resistance abundances from wastewater effluents can be achieved by advanced treatment processes, including membrane filtration, ozonation, UV-irradiation or chlorination, to levels typically observed in urban surface water or low impacted surface water.
Collapse
Affiliation(s)
- C X Hiller
- Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - U Hübner
- Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany
| | - S Fajnorova
- Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany; Department of Water Technology and Environmental Engineering, University of Chemistry and Technology, Prague, Technická 5, 166 28 Praha, Czech Republic
| | - T Schwartz
- Karlsruhe Institute of Technology (KIT) - Campus North, Institute of Functional Interfaces (IFG), Microbiology at Natural and Technical Interfaces Department, 76021 Karlsruhe, Germany
| | - J E Drewes
- Urban Water Systems Engineering, Technical University of Munich, Am Coulombwall 3, 85748 Garching, Germany.
| |
Collapse
|
27
|
Li S, Zhang R, Hu J, Shi W, Kuang Y, Guo X, Sun W. Occurrence and removal of antibiotics and antibiotic resistance genes in natural and constructed riverine wetlands in Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:546-553. [PMID: 30763835 DOI: 10.1016/j.scitotenv.2019.02.043] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/23/2019] [Accepted: 02/02/2019] [Indexed: 05/21/2023]
Abstract
Simultaneous elimination of antibiotics and antibiotic resistance genes (ARGs) is rarely investigated in full-scale riverine wetlands. Here, we compared the occurrence, abundance, and removal of 60 antibiotics and 27 ARGs in natural (Yeya Lake (YL)) and constructed (Bai River (BR)) riverine wetlands in Beijing, China. The concentrations of antibiotics in YL wetland were ND-51.9 ng/L in water and ND-37.9 ng/g in sediments. Significantly higher concentrations were found in BR wetland (ND-546 ng/L in water and ND-118 ng/g in sediments), which locates at the downstream of a reclaimed water treatment plant. The abundances of ARGs in YL and BR wetlands were up to 5.33 × 105 and 8.41 × 105 copies/mL in water, and 1.60 × 107 and 4.67 × 108 copies/g in sediments, respectively. These results suggest that wastewater greatly contributes to the elevated abundance of antibiotics and ARGs in both water and sediments. Compared to summer, higher levels of antibiotics in water were found in winter due to the higher usage, slower attenuation and the limited dilution. But higher abundances of ARGs were found in summer than in winter, in accordance with the favored microbial growth at higher temperature as denoted by copies of 16S rRNA. Compared to BR wetland, YL wetland achieved better removal of antibiotics and ΣARGs, with average removal efficiencies of 70.0% and 87.5%. Antibiotics, ARGs and environmental factors showed strong correlations in water samples from YL wetland. However, in BR wetland that receives urban wastewater effluents, no correlation between antibiotics and ARGs was found although the distribution of antibiotics was affected by aquatic environmental factors. These results indicate that subinhibitory concentrations of antibiotics may stimulate the prevalence of ARGs in natural wetlands.
Collapse
Affiliation(s)
- Si Li
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; Xiamen Urban Water Environmental Eco-Planning, Remediation Engineering Research Center, Xiamen 361021, China
| | - Ruijie Zhang
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Jingrun Hu
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Wanzi Shi
- Shenzhen Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yuzhu Kuang
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Xiaoyu Guo
- College of Resources Environment and Tourism, Capital Normal University, Beijing 100048, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China.
| |
Collapse
|
28
|
Wan K, Zhang M, Ye C, Lin W, Guo L, Chen S, Yu X. Organic carbon: An overlooked factor that determines the antibiotic resistome in drinking water sand filter biofilm. ENVIRONMENT INTERNATIONAL 2019; 125:117-124. [PMID: 30711652 DOI: 10.1016/j.envint.2019.01.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/17/2019] [Accepted: 01/17/2019] [Indexed: 06/09/2023]
Abstract
Biofilter, an essential water treatment process, is reported to be the harbor of bacterial antibiotic resistance genes (ARGs). Due to the oligotrophic characteristic of source water, filter biofilm is largely influenced by the concentration of organic carbon. The objective of this study was to investigate the effect of organic carbon concentration on shaping bacterial antibiotic resistome in filter biofilm. Our study was based on pilot-scale sand filters, and we investigated the antibiotic resistome using high-throughput qPCR. A total of 180 resistance genes from eight categories of antibiotics were detected in 15 biofilm samples of three sand filters. The results indicated that higher concentration of influent organic carbon led to lower diversity of bacterial community and richness of antibiotic resistance genes (ARGs) in biofilm. We discovered a negative correlation (p ≤ 0.01) between the richness of ARGs and the corresponding TOC level. Moreover, the absolute abundance of ARGs was positively correlated (p ≤ 0.05) with the abundance of 16S rRNA gene and was determined by the organic carbon concentration. Sand filters with gradient influent organic carbon concentration led to the formation of different antibiotic resistomes and canonical correspondence analysis (CCA) indicated that difference in bacterial community composition was likely the main reason behind this difference. We also observed a similar trend in the relative abundance of ARGs, which increased with the depth of sand filters. However, this trend was more pronounced in filters with low organic carbon concentrations. Overall, this study revealed that the organic carbon concentration determined the absolute abundance of ARGs and also shaped the diversity and relative abundance of ARGs in drinking water sand filters. These results may provide new insights into the mechanism of persistent bacterial antibiotic resistance in drinking water treatment.
Collapse
Affiliation(s)
- Kun Wan
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Menglu Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chengsong Ye
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Wenfang Lin
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China
| | - Lizheng Guo
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Sheng Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xin Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China.
| |
Collapse
|
29
|
Stange C, Yin D, Xu T, Guo X, Schäfer C, Tiehm A. Distribution of clinically relevant antibiotic resistance genes in Lake Tai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 655:337-346. [PMID: 30471602 DOI: 10.1016/j.scitotenv.2018.11.211] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/14/2018] [Accepted: 11/14/2018] [Indexed: 06/09/2023]
Abstract
Lake Tai is China's third largest freshwater lake and an important water resource for agriculture, industrial sectors, and as drinking water for several large cities. In this study, the occurrence of five antibiotic resistance genes (sul1, blaTEM, blaNDM-1, blaCTX-M-32, mcr-1) was investigated in water and sediment samples collected from Lake Tai. Antibiotic resistances are currently increasing, posing a significant threat to public health. The sulfonamide resistance gene sul1 was highly abundant in all analyzed water and sediment samples. In addition, the two β-lactamase genes blaTEMand blaNDM-1 - encoding clinically relevant antibiotic resistances - were detected in 67.1 and 7.3% of the water samples and in 70.7 and 15.4% of the sediment samples. The third β-lactamase gene, blaCTX-M-32, was only detected in water samples (13.4%), while the colistin resistance gene mcr-1 was not detected in any of the samples. No significant variations between different sampling sites or time points could be observed. The investigation of drinking water treatment at Lake Tai, using lake water as influent, showed a significant reduction of the antibiotic resistance genes through the treatment process. Microbial source tracking showed only low fecal contamination by humans, ruminants, and pigs, indicating the relevance of other sources such as fish farms. Overall, our results provide important insights into the occurrence and abundance of antibiotic resistance genes in the Lake Tai water system and their elimination via drinking water treatment.
Collapse
Affiliation(s)
- C Stange
- DVGW-Technologiezentrum Wasser (TZW), Department of Microbiology and Molecular Biology, Karlsruher Straße 84, Karlsruhe, Germany
| | - D Yin
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Sipping Road, Shanghai, People's Republic of China
| | - T Xu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Sipping Road, Shanghai, People's Republic of China
| | - X Guo
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, 1239 Sipping Road, Shanghai, People's Republic of China
| | - C Schäfer
- DVGW-Technologiezentrum Wasser (TZW), Department of Microbiology and Molecular Biology, Karlsruher Straße 84, Karlsruhe, Germany
| | - A Tiehm
- DVGW-Technologiezentrum Wasser (TZW), Department of Microbiology and Molecular Biology, Karlsruher Straße 84, Karlsruhe, Germany.
| |
Collapse
|
30
|
Chen J, Yang Y, Liu Y, Tang M, Wang R, Tian Y, Jia C. Bacterial community shift and antibiotics resistant genes analysis in response to biodegradation of oxytetracycline in dual graphene modified bioelectrode microbial fuel cell. BIORESOURCE TECHNOLOGY 2019; 276:236-243. [PMID: 30640017 DOI: 10.1016/j.biortech.2019.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
This study explored the biodegradation mechanisms of oxytetracycline (OTC/O) and electrochemical characteristics from the perspective of bacterial community shift and OTC resistance genes in dual graphene modified bioelectrode microbial fuel cell (O-D-GM-BE MFC). In phylum level, Proteobacteria was accounted to 95.04% in O-GM-BA, Proteobacteria and Bacteroidetes were accounted to 59.13% and 20.52% in O-GM-BC, which were beneficial for extracellular electron transport (EET) process and OTC biodegradation. In genus level, the most dominant bacteria in O-GM-BA were Salmonella and Trabulsiella, accounting up to 83.04%, moreover, representative exoelectrogens (Geobacter) were enriched, which contributed to OTC biodegradation and electrochemical performances; abundant degrading bacteria (Moheibacter, Comamonas, Pseudomonas, Dechloromonas, Nitrospira, Methylomicrobium, Pseudorhodoferax, Thiobacillus, Mycobacterium) were enriched in O-GM-BC, which contributed to the maximum removal efficiency of OTC; coding resistance genes of efflux pump, ribosome protective protein and modifying or passivating were all found in O-GM-BE, and this explained the OTC removal mechanisms from gene level.
Collapse
Affiliation(s)
- Junfeng Chen
- Department of Environmental Science, School of Life Sciences, Qufu Normal University, Qufu 273165, PR China.
| | - Yuewei Yang
- Department of Environmental Science, School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yanyan Liu
- Department of Environmental Science, School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Meizhen Tang
- Department of Environmental Science, School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Renjun Wang
- Department of Environmental Science, School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Yuping Tian
- Department of Environmental Science, School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| | - Chuanxing Jia
- Department of Environmental Science, School of Life Sciences, Qufu Normal University, Qufu 273165, PR China
| |
Collapse
|
31
|
Bai Y, Xu R, Wang QP, Zhang YR, Yang ZH. Sludge anaerobic digestion with high concentrations of tetracyclines and sulfonamides: Dynamics of microbial communities and change of antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2019; 276:51-59. [PMID: 30611086 DOI: 10.1016/j.biortech.2018.12.066] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 06/09/2023]
Abstract
This study established two mesophilic anaerobic digesters to ascertain the microbial dynamics and variation characteristics of antibiotic resistance genes (ARGs) during sludge anaerobic digestion (AD) with high concentration of antibiotics. System parameters, microbial community, ARGs (tetA, tetM, tetW, sulI, sulII) and integrase gene of class 1 (intI1) were analyzed. General performance of AD showed methane production was inhibited by 17.1% under the pressure of antibiotics. Microbial 16S rRNA high-throughput sequencing results showed the richness of microbial community decreased, but a higher diversity was found with antibiotics added. Furthermore, microbial community structure at genus level was significantly changed. Real-time quantitative PCR of several target genes demonstrated that the adjunction of high concentration of antibiotics exerted a significant induction influence on ARGs, however, the abundance of intI1 decreased observably. Correlation analysis showed intI1 only played a small role in ARGs' transfer during AD, change of potential hosts was the key factor instead.
Collapse
Affiliation(s)
- Yang Bai
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Rui Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Qing-Peng Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yan-Ru Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhao-Hui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
32
|
Ohore OE, Addo FG, Zhang S, Han N, Anim-Larbi K. Distribution and relationship between antimicrobial resistance genes and heavy metals in surface sediments of Taihu Lake, China. J Environ Sci (China) 2019; 77:323-335. [PMID: 30573097 DOI: 10.1016/j.jes.2018.09.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 09/10/2018] [Accepted: 09/11/2018] [Indexed: 05/17/2023]
Abstract
Heavy metals, pharmaceuticals, and other wastes released into the environment can significantly influence environmental antibiotic resistance. We investigated the occurrence of 22 antimicrobial resistance genes (ARGs) and 10 heavy metal concentrations, and the relationship between ARGs and heavy metals in surface sediment from seven sites of Lake Taihu. The results showed significant correlations (p < 0.05) between sediment ARG levels, especially for tetracycline and sulfonamides (e.g., tet(A), tet(D), tet(E), tet(O), sul1, sul2 and int-1) and specific heavy metals (Fe, Mn, Cr, Cu, Zn, among others) in the Lake. In the surface sediments, heavy metals showed an interaction with resistance genes, but the strength of interaction was diminished with increasing depth. For most of the heavy metals, the concentration of elements in the top sediments was higher than that in other depths. Tetracycline resistance genes (tet(A), tet(B), tet(D), tet(E) and tet(O), β-lactam resistance genes (SHV, TEM, CTX, OXA and OXY) and sulfonamide resistance genes (sulA, sul1, sul2, sul3 and int-1) were detected. They showed a trend which inferred a statistically significant increase followed by decreases in the relative abundance of these ARGs (normalized to 16S rRNA genes) with increasing depth. This study revealed that tet(A), tet(O), TEM, OXY, int-1, sul1 and sul3 were widespread in surface sediments with high abundance, indicating that these genes deserve more attention in future work.
Collapse
Affiliation(s)
- Okugbe E Ohore
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China..
| | - Felix Gyawu Addo
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China..
| | - Nini Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Kwaku Anim-Larbi
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
33
|
Ben Y, Fu C, Hu M, Liu L, Wong MH, Zheng C. Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: A review. ENVIRONMENTAL RESEARCH 2019; 169:483-493. [PMID: 30530088 DOI: 10.1016/j.envres.2018.11.040] [Citation(s) in RCA: 577] [Impact Index Per Article: 96.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/11/2018] [Accepted: 11/24/2018] [Indexed: 05/28/2023]
Abstract
The extensive use of antibiotics leading to the rapid spread of antibiotic resistance poses high health risks to humans, but to date there is still lack of a quantitative model to properly assess the risks. Concerns over the health risk of antibiotic residues in the environment are mainly (1) the potential hazard of ingested antibiotic residues in the environment altering the human microbiome and promoting emergence and selection for bacteria resistance inhabiting the human body, and (2) the potential hazard of creating a selection pressure on environmental microbiome and leading to reservoirs of antibiotic resistance in the environment. We provide a holistic view of health risk assessment of antibiotic resistance associated with antibiotic residues in the environment in contrast with that of the antibiotic resistant bacteria and discuss the main knowledge gaps and the future research that should be prioritized to achieve the quantitative risk assessment. We examined and summarized the available data and information on the four core elements of antibiotic resistance associated with antibiotic residues in the environment: hazard identification, exposure assessment, dose-response assessment, and risk characterization. The data required to characterize the risks of antibiotic residues in the environment is severely limited. The main future research needs have been identified to enable better assessments of antibiotic resistance associated with antibiotic residues in the environment: (1) establishment of a standardized monitoring guide of antibiotic residues and antibiotic resistance in the environment, (2) derivation of the relationship between antibiotic levels and pathogenic antibiotic-resistance development in different settings, and (3) establishment of the dose-response relationship between pathogenic antibiotic resistant bacteria and various infection diseases. After identification of key risk determinant parameters, we propose a conceptual framework of human health risk assessments of antibiotic residues in the environment. CAPSULE: A holistic view of human health risk assessment of antibiotic residues in the environment was provided.
Collapse
Affiliation(s)
- Yujie Ben
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Caixia Fu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Min Hu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Lei Liu
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Ming Hung Wong
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Chunmiao Zheng
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
34
|
Hu Y, Jiang L, Zhang T, Jin L, Han Q, Zhang D, Lin K, Cui C. Occurrence and removal of sulfonamide antibiotics and antibiotic resistance genes in conventional and advanced drinking water treatment processes. JOURNAL OF HAZARDOUS MATERIALS 2018; 360:364-372. [PMID: 30130695 DOI: 10.1016/j.jhazmat.2018.08.012] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/25/2018] [Accepted: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Sulfonamides (SAs) and sul antibiotic resistance genes (ARGs) have been extensively detected in drinking water sources and warrant further studies on the removal of them in different drinking water treatment processes (DWTPs). The prevalence of 13 SAs, sul1, sul2 and class I integrase gene intI1 in conventional and advanced processes was investigated using HPLC-MS/MS and real-time quantitative PCR (qPCR), respectively. The most abundant SA was sulfamethoxazole, with the maximum concentration of 67.27 ng/L. High concentration of sulfamethoxazole was also measured in finished water in both conventional (22.05 ng/L) and advanced (11.24 ng/L) processes. Overall, the removal efficiency of advanced process for each SA was higher than that of conventional process, except for sulfameter. The absolute concentrations of sul1, sul2 and intI1 in raw water ranged from 1.8 × 103 to 2.4 × 105 gene abundance/mL. After treatment, the residual sul ARGs and intI1 in finished water still remained at 102 - 104 gene abundance/mL. Conventional treatment units, including flocculation/sedimentation/sand filtration, played a more important role in removing sul1, sul2 and intI1 than oxidation (chlorination or ozonation) and granular activated carbon filtration treatments. Based on this work, more investigations are needed to help improve the removal of both antibiotics and ARGs in DWTPs.
Collapse
Affiliation(s)
- Yaru Hu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Jiang
- National Engineering Research Center of Urban Water Resources, Shanghai, 200082, China
| | - Tianyang Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Lei Jin
- National Engineering Research Center of Urban Water Resources, Shanghai, 200082, China
| | - Qi Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Dong Zhang
- National Engineering Research Center of Urban Water Resources, Shanghai, 200082, China
| | - Kuangfei Lin
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Changzheng Cui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
35
|
Li L, Guo C, Fan S, Lv J, Zhang Y, Xu Y, Xu J. Dynamic transport of antibiotics and antibiotic resistance genes under different treatment processes in a typical pharmaceutical wastewater treatment plant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30191-30198. [PMID: 30155629 DOI: 10.1007/s11356-018-2913-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The propagation of antibiotic resistance is a challenge for human health worldwide, which has drawn much attention on the reduction of the resistance genes. To understand their occurrence during different treatment processes, in this study, four classes of antibiotics (tetracyclines, sulfonamides, quinolones, and macrolides), eight antibiotic resistance genes (ARGs) (tetB, tetW, sul1, sul2, gyrA, qepA, ermB, and ermF), and two mobile elements (int1 and int2) were investigated in a typical pharmaceutical plant. The total concentrations of antibiotics were detected in the range of 2.6 × 102 to 2.5 × 103 ng/L in the treatment processes, and the high abundance of ARGs was detected in the biological treatment unit. The dynamic trend analysis showed that antibiotics were partially removed in the anaerobic/aerobic processes, where ARGs were proliferated. The abundance of tetB and gyrA genes was positively correlated with pH and EC (p < 0.05), and the tetW, sul1 and sul2 genes were significantly correlated with TOC, TN, and DO (p < 0.05), indicating the influence of physicochemical properties of the solution on the levels of ARG subtypes. The phylogenetic analysis showed that the tetW clones had high homology with some pathogenic microorganisms, such as Klebsiella pneumonia and Neisseria meningitides, which would threaten human health. Results indicated that the horizontal transfer acted as a major driver in the ARGs evolution.
Collapse
Affiliation(s)
- Linxuan Li
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Changsheng Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Shisuo Fan
- School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jiapei Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yan Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- Agro-Environmental Protection Institute, Ministry of Agriculture, Tianjin, 300091, China.
| | - Jian Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
36
|
Stedtfeld RD, Guo X, Stedtfeld TM, Sheng H, Williams MR, Hauschild K, Gunturu S, Tift L, Wang F, Howe A, Chai B, Yin D, Cole JR, Tiedje JM, Hashsham SA. Primer set 2.0 for highly parallel qPCR array targeting antibiotic resistance genes and mobile genetic elements. FEMS Microbiol Ecol 2018; 94:5057470. [PMID: 30052926 PMCID: PMC7250373 DOI: 10.1093/femsec/fiy130] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/28/2018] [Indexed: 01/22/2023] Open
Abstract
The high-throughput antibiotic resistance gene (ARG) qPCR array, initially published in 2012, is increasingly used to quantify resistance and mobile determinants in environmental matrices. Continued utility of the array; however, necessitates improvements such as removing or redesigning questionable primer sets, updating targeted genes and coverage of available sequences. Towards this goal, a new primer design tool (EcoFunPrimer) was used to aid in identification of conserved regions of diverse genes. The total number of assays used for diverse genes was reduced from 91 old primer sets to 52 new primer sets, with only a 10% loss in sequence coverage. While the old and new array both contain 384 primer sets, a reduction in old primer sets permitted 147 additional ARGs and mobile genetic elements to be targeted. Results of validating the updated array with a mock community of strains resulted in over 98% of tested instances incurring true positive/negative calls. Common queries related to sensitivity, quantification and conventional data analysis (e.g. Ct cutoff value, and estimated genomic copies without standard curves) were also explored. A combined list of new and previously used primer sets is provided with a recommended set based on redesign of primer sets and results of validation.
Collapse
Affiliation(s)
- Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Xueping Guo
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Tiffany M Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Hongjie Sheng
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Maggie R Williams
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | - Kristin Hauschild
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Santosh Gunturu
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Leo Tift
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Fang Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, Iowa 50010, USA
| | - Benli Chai
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Daqiang Yin
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - James R Cole
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA
| | - James M Tiedje
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan 48824, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA
| |
Collapse
|
37
|
Zhao W, Wang B, Yu G. Antibiotic resistance genes in China: occurrence, risk, and correlation among different parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:21467-21482. [PMID: 29948704 DOI: 10.1007/s11356-018-2507-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 06/04/2018] [Indexed: 06/08/2023]
Abstract
Antibiotic resistance has become a widely concerned issue due to the huge risk on the ecological environment and human health. China has the highest production and consumption of antibiotics than other countries. Thus, antibiotic resistance genes (ARGs) have been detected in various environmental settings (e.g., surface water, wastewater, sediment) in China. The occurrence of ARGs in these matrixes was summarized and discussed in this review. Sulfonamide resistance genes and tetracycline resistance genes were the most frequently detected ARGs in China. According to the abundance of these two classes of ARGs in the natural environment, sulfonamide resistance genes seem to be more stable than tetracycline resistance genes. Furthermore, the relationships between ARGs and antibiotics, antibiotic resistance bacteria (ARB), heavy metals, and environmental parameters (e.g., pH, organics) were also investigated. Specifically, relative abundance of total ARGs was found to correlate well with concentration of total antibiotics in aqueous phase but not in the solid phase (soil, sediment, sludge, and manure). As for relationship between ARGs and ARB, metals, and environmental parameters in different media, due to complex and variable environment, some exhibit positive correlation, some negative, while others no correlation at all. Three potential risks are discussed in the text: transmission to human, synergistic effect of different ARGs, and variability of ARGs. However, due to the complexity of the environment, more work is needed to establish a quantitative approach of ARG risk assessment, which can provide a theoretical support for the management of antibiotics and the protection of human health.
Collapse
Affiliation(s)
- Wenxing Zhao
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
| | - Bin Wang
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China.
| | - Gang Yu
- Beijing Key Laboratory of Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China.
| |
Collapse
|
38
|
Yang Y, Song W, Lin H, Wang W, Du L, Xing W. Antibiotics and antibiotic resistance genes in global lakes: A review and meta-analysis. ENVIRONMENT INTERNATIONAL 2018; 116:60-73. [PMID: 29653401 DOI: 10.1016/j.envint.2018.04.011] [Citation(s) in RCA: 392] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 05/17/2023]
Abstract
Lakes are an important source of freshwater, containing nearly 90% of the liquid surface fresh water worldwide. Long retention times in lakes mean pollutants from discharges slowly circulate around the lakes and may lead to high ecological risk for ecosystem and human health. In recent decades, antibiotics and antibiotic resistance genes (ARGs) have been regarded as emerging pollutants. The occurrence and distribution of antibiotics and ARGs in global freshwater lakes are summarized to show the pollution level of antibiotics and ARGs and to identify some of the potential risks to ecosystem and human health. Fifty-seven antibiotics were reported at least once in the studied lakes. Our meta-analysis shows that sulfamethoxazole, sulfamerazine, sulfameter, tetracycline, oxytetracycline, erythromycin, and roxithromycin were found at high concentrations in both lake water and lake sediment. There is no significant difference in the concentration of sulfonamides in lake water from China and that from other countries worldwide; however, there was a significant difference in quinolones. Erythromycin had the lowest predicted hazardous concentration for 5% of the species (HC5) and the highest ecological risk in lakes. There was no significant difference in the concentration of sulfonamide resistance genes (sul1 and sul2) in lake water and river water. There is surprisingly limited research on the role of aquatic biota in propagation of ARGs in freshwater lakes. As an environment that is susceptible to cumulative build-up of pollutants, lakes provide an important environment to study the fate of antibiotics and transport of ARGs with a broad range of niches including bacterial community, aquatic plants and animals.
Collapse
Affiliation(s)
- Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, UK.
| | - Wenjuan Song
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Hui Lin
- Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weibo Wang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Linna Du
- Department of Agriculture and Biotechnology, Wenzhou Vocational College of Science and Technology, Wenzhou 325006, China
| | - Wei Xing
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
39
|
Zhang F, Zhao X, Li Q, Liu J, Ding J, Wu H, Zhao Z, Ba Y, Cheng X, Cui L, Li H, Zhu J. Bacterial community structure and abundances of antibiotic resistance genes in heavy metals contaminated agricultural soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:9547-9555. [PMID: 29357075 DOI: 10.1007/s11356-018-1251-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
Soil contamination with heavy metals is a worldwide problem especially in China. The interrelation of soil bacterial community structure, antibiotic resistance genes, and heavy metal contamination in soil is still unclear. Here, seven agricultural areas (G1-G7) with heavy metal contamination were sampled with different distances (741 to 2556 m) to the factory. Denaturing gradient gel electrophoresis (DGGE) and Shannon index were used to analyze bacterial community diversity. Real-time fluorescence quantitative PCR was used to detect the relative abundance of ARGs sul1, sul2, tetA, tetM, tetW, one mobile genetic elements (MGE) inti1. Results showed that all samples were polluted by Cadmium (Cd), and some of them were polluted by lead (Pb), mercury (Hg), arsenic (As), copper (Cu), and zinc (Zn). DGGE showed that the most abundant bacterial species were found in G7 with the lightest heavy metal contamination. The results of the principal component analysis and clustering analysis both showed that G7 could not be classified with other samples. The relative abundance of sul1 was correlated with Cu, Zn concentration. Gene sul2 are positively related with total phosphorus, and tetM was associated with organic matter. Total gene abundances and relative abundance of inti1 both correlated with organic matter. Redundancy analysis showed that Zn and sul2 were significantly related with bacterial community structure. Together, our results indicate a complex linkage between soil heavy metal concentration, bacterial community composition, and some global disseminated ARG abundance.
Collapse
Affiliation(s)
- Fengli Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoxue Zhao
- Jiyuan City Key Laboratory of Heavy-Metal Monitoring and Pollution Control, Jiyuan, 459000, China
| | - Qingbo Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jia Liu
- Department of Leukemia, Henan Cancer Hospital, Zhengzhou, 450003, China
| | - Jizhe Ding
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huiying Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongsheng Zhao
- Jiyuan City Key Laboratory of Heavy-Metal Monitoring and Pollution Control, Jiyuan, 459000, China
| | - Yue Ba
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xuemin Cheng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Liuxin Cui
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongping Li
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingyuan Zhu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
40
|
Giebułtowicz J, Tyski S, Wolinowska R, Grzybowska W, Zaręba T, Drobniewska A, Wroczyński P, Nałęcz-Jawecki G. Occurrence of antimicrobial agents, drug-resistant bacteria, and genes in the sewage-impacted Vistula River (Poland). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:5788-5807. [PMID: 29235021 DOI: 10.1007/s11356-017-0861-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Antimicrobial agents (antimicrobials) are a group of therapeutic and hygienic agents that either kill microorganisms or inhibit their growth. Their occurrence in surface water may reveal harmful effects on aquatic biota and challenge microbial populations. Recently, there is a growing concern over the contamination of surface water with both antimicrobial agents and multidrug-resistant bacteria. The aim of the study was the determination of the presence of selected antimicrobials at specific locations of the Vistula River (Poland), as well as in tap water samples originating from the Warsaw region. Analysis was performed using the liquid chromatography-electrospray ionization-tandem mass spectrometry method. In addition, the occurrence of drug-resistant bacteria and resistance genes was determined using standard procedures. This 2-year study is the first investigation of the simultaneous presence of antimicrobial agents, drug-resistant bacteria, and genes in Polish surface water. In Poland, relatively high concentrations of macrolides are observed in both surface and tap water. Simultaneous to the high macrolide levels in the environment, the presence of the erm B gene, coding the resistance to macrolides, lincosamides, and streptogramin, was detected in almost all sampling sites. Another ubiquitous gene was int1, an element of the 5'-conserved segment of class 1 integrons that encode site-specific integrase. Also, resistant isolates of Enterococcus faecium and Enterococcus faecalis and Gram-negative bacteria were recovered. Multidrug-resistant bacteria isolates of Gram-negative and Enterococcus were also detected. The results show that wastewater treatment plants (WWTP) are the main source of most antimicrobials, resistant bacteria, and genes in the aquatic environment, probably due to partial purification during wastewater treatment processes.
Collapse
Affiliation(s)
- Joanna Giebułtowicz
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02097, Warsaw, Poland.
| | - Stefan Tyski
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02097, Warsaw, Poland
- Department of Antibiotics and Microbiology, National Medicines Institute, 30/34 Chelmska Street, 00725, Warsaw, Poland
| | - Renata Wolinowska
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02097, Warsaw, Poland
| | - Wanda Grzybowska
- Department of Antibiotics and Microbiology, National Medicines Institute, 30/34 Chelmska Street, 00725, Warsaw, Poland
| | - Tomasz Zaręba
- Department of Antibiotics and Microbiology, National Medicines Institute, 30/34 Chelmska Street, 00725, Warsaw, Poland
| | - Agata Drobniewska
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02097, Warsaw, Poland
| | - Piotr Wroczyński
- Department of Bioanalysis and Drugs Analysis, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02097, Warsaw, Poland
| | - Grzegorz Nałęcz-Jawecki
- Department of Environmental Health Sciences, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02097, Warsaw, Poland
| |
Collapse
|
41
|
Qiao M, Ying GG, Singer AC, Zhu YG. Review of antibiotic resistance in China and its environment. ENVIRONMENT INTERNATIONAL 2018; 110:160-172. [PMID: 29107352 DOI: 10.1016/j.envint.2017.10.016] [Citation(s) in RCA: 895] [Impact Index Per Article: 127.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/21/2017] [Accepted: 10/21/2017] [Indexed: 05/21/2023]
Abstract
Antibiotic resistance is a global health crisis linked to increased, and often unrestricted, antibiotic use in humans and animals. As one of the world's largest producers and consumers of antibiotics, China is witness to some of the most acute symptoms of this crisis. Antibiotics and antibiotic resistance genes (ARGs) are widely distributed in surface water, sewage treatment plant effluent, soils and animal wastes. The emergence and increased prevalence of ARGs in the clinic/hospitals, especially carbapenem-resistant gram negative bacteria, has raised the concern of public health officials. It is important to understand the current state of antibiotic use in China and its relationship to ARG prevalence and diversity in the environment. Here we review these relationships and their relevance to antimicrobial resistance (AMR) trends witnessed in the clinical setting. This review highlights the issues of enrichment and dissemination of ARGs in the environment, and also future needs in mitigating the spread of antibiotic resistance in the environment, particularly under the 'planetary health' perspective, i.e., the systems that sustain or threaten human health.
Collapse
Affiliation(s)
- Min Qiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Andrew C Singer
- NERC Centre for Ecology & Hydrology, Wallingford OX10 8BB, United Kingdom
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
42
|
Gao H, Zhang L, Lu Z, He C, Li Q, Na G. Complex migration of antibiotic resistance in natural aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:1-9. [PMID: 28986079 DOI: 10.1016/j.envpol.2017.08.078] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/16/2017] [Accepted: 08/20/2017] [Indexed: 05/23/2023]
Abstract
Antibiotic resistance is a worsening global concern, and the environmental behaviors and migration patterns of antibiotic resistance genes (ARGs) have attracted considerable interest. Understanding the long-range transport of ARG pollution is crucial. In this study, we characterized the dynamics of ARG changes after their release into aquatic environments and demonstrated the importance of traditional chemical contaminants in the transmission mechanisms of ARGs. We hypothesized that the main route of ARG proliferation switches from active transmission to passive transmission. This antibiotic-dominated switch is motivated and affected by non-corresponding contaminants. The effect of anthropogenic activities gradually weakens from inland aquatic environments to ocean environments; however, the effect of changes in environmental conditions is enhanced along this gradient. The insights discussed in this study will help to improve the understanding of the distribution and migration of ARG pollution in various aquatic environments, and provide a modern perspective to reveal the effect of corresponding contaminants and non-corresponding contaminants in the process of antibiotic resistance proliferation.
Collapse
Affiliation(s)
- Hui Gao
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, China
| | - Linxiao Zhang
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zihao Lu
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, China
| | - Chunming He
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, China; School of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qianwei Li
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, China; School of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Guangshui Na
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, China.
| |
Collapse
|
43
|
Lamba M, Ahammad SZ. Sewage treatment effluents in Delhi: A key contributor of β-lactam resistant bacteria and genes to the environment. CHEMOSPHERE 2017; 188:249-256. [PMID: 28886559 DOI: 10.1016/j.chemosphere.2017.08.133] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/09/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
Rapid emergence of antibiotic resistance (AR) in developing countries is posing a greater health risk and increasing the global disease burden. Lack of access to safe drinking water, poor sanitation and inadequate sewage treatment facilities in these countries are fueling the problem associated with emergence of AR. Rapid proliferation of AR mediated by treated and untreated discharges from sewage treatment plants (STPs) is a prime public health concern. This study aims to understand the occurrence, fate, and routes of proliferation of carbapenem (KPC) and extended spectrum β-lactam (ESBL) resistant bacteria, and selected resistant genes in the samples collected from different unit operations in 12 STPs in New Delhi over two seasons. Strong correlation observed between faecal coliform levels and KPC (R = 0.95, p = 0.005, n = 60) and ESBL (R = 0.94, p = 0.004, n = 60) resistant bacteria levels indicates possible association of resistant bacteria with faecal matter. Different unit operations in STPs proved inefficient in treating resistant bacteria and genes present in the wastewater. However, inclusion of tertiary treatment (chlorination) unit and anaerobic digester in the present STPs resulted in better removal of AR. Significant correlations between antibiotic resistant genes (ARGs) and integron levels indicates a potential for higher rate of AR proliferation in the environment. Microbial culturing indicated the presence of clinically significant drug-resistant pathogens such as Escherichia coli, Pseudomonas putida, Pseudomonas aeruginosa, Enterobacter cloacae, Klebsiella pneumoniae, Klebsiella oxytoca, Acinetobacter baumannii, Shigella dysentery and Aeromonas caviae in the STP effluents. The emergence and spread of resistant bacteria through STP effluents poses exposure risk for the residents of the city.
Collapse
Affiliation(s)
- Manisha Lamba
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India
| | - Shaikh Ziauddin Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, India.
| |
Collapse
|
44
|
Vila-Costa M, Gioia R, Aceña J, Pérez S, Casamayor EO, Dachs J. Degradation of sulfonamides as a microbial resistance mechanism. WATER RESEARCH 2017; 115:309-317. [PMID: 28288310 DOI: 10.1016/j.watres.2017.03.007] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/02/2017] [Accepted: 03/04/2017] [Indexed: 05/03/2023]
Abstract
Two of the main mechanisms of bacterial resistance to sulfonamides in aquatic systems, spread of antibiotic resistance genes (ARG) among the microbial community and in-situ bacterial sulfonamide degradation, were studied in mesocosms experiments using water and cobble biofilms from upstream (pristine waters) and downstream (polluted waters) from the Llobregat river, NE Iberian Peninsula. Mesocosms were prepared at two different concentrations (5000 ng/L and 1000 ng/L) of sulfonamides antibiotics (sulfamethazine and sulfamethoxazole). Concentrations of ARG, nutrients, sulfonamides and their degradation products were measured during the time course of the experiments. Sulfonamides were efficiently degraded by the biofilms during the first four weeks of the experiment. The abundance of ARG in biofilms sharply decreased after addition of high concentrations of sulfonamides, but this was not observed in the mesocosms treated with low concentrations of sulfonamides. Sulfonamide degradation was faster in polluted waters and at high concentrations of sulfonamide (and lower ARG abundances), suggesting that both degradation and ARG are two complementary resistance strategies employed by the microbial community. This study shows that microbial degradation of antibiotics is an efficient resistance mechanism coupled with the presence of ARG, and suggests that in situ degradation prevails at high concentrations of antibiotics whereas physiological adaptation by ARG spread would be more important under relatively lower concentrations of antibiotics.
Collapse
Affiliation(s)
- Maria Vila-Costa
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-24, Barcelona 08034, Catalunya, Spain; Integrative Freshwater Ecology Group, Centre for Advanced Studies of Blanes, CEAB-CSIC, Accés Cala St. Francesc 14, E-17300 Blanes, Spain.
| | - Rosalinda Gioia
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-24, Barcelona 08034, Catalunya, Spain.
| | - Jaume Aceña
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-24, Barcelona 08034, Catalunya, Spain
| | - Sandra Pérez
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-24, Barcelona 08034, Catalunya, Spain
| | - Emilio O Casamayor
- Integrative Freshwater Ecology Group, Centre for Advanced Studies of Blanes, CEAB-CSIC, Accés Cala St. Francesc 14, E-17300 Blanes, Spain
| | - Jordi Dachs
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-24, Barcelona 08034, Catalunya, Spain
| |
Collapse
|
45
|
Gao XL, Shao MF, Luo Y, Dong YF, Ouyang F, Dong WY, Li J. Airborne bacterial contaminations in typical Chinese wet market with live poultry trade. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:681-687. [PMID: 27503629 DOI: 10.1016/j.scitotenv.2016.06.208] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 06/25/2016] [Accepted: 06/26/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED Chinese wet markets with live poultry trade have been considered as major sources of pathogen dissemination, and sites for horizontal transfer of bacterial and viral pathogens. In this study, the pathogenic bacteria and antibiotic resistant genes (ARGs) in air samples collected at a typical Chinese wet market had been analysis and quantified. Corynebacterium minutissimum and other pathogenic bacteria accounted for 0.81-8.02% of the whole microbial community in different air samples. The four ARGs quantified in this study showed a comparable relative concentration (copies/ng_DNA) with municipal wastewater. Poultry manures were demonstrated to be important microbial contamination source in wet market, which was supported by both microbial composition based source tracking and the quantification of airborne microbial density. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination. Our results indicate bioaerosols acted as important route for the transmissions of pathogens and ARGs. Continued surveillance of airborne microbial contamination is required in poultry trade wet market. PRACTICAL IMPLICATIONS Urban live poultry markets are important sources of pathogen dissemination, and sites for horizontal transfer of viral and bacterial pathogens. In the present field-study, pathogenic bacteria and antibiotic resistance genes were focused to provide quantitative information on the levels of microbial contaminations at the indoor air of wet markets. Results demonstrated that poultry manures were important microbial contamination source in wet market, and in the meanwhile bioaerosols were identified as important route for the transmissions of microbial contaminants. A series of Firmicutes and Bacteroidetes indicators of poultry area contamination were successfully screened, which will be useful for the more convenient monitoring of airborne poultry area contamination.
Collapse
Affiliation(s)
- Xin-Lei Gao
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Ming-Fei Shao
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Yu-Fang Dong
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Feng Ouyang
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Wen-Yi Dong
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China
| | - Ji Li
- Harbin Institute of Technology, Shenzhen Graduate School, Shenzhen Key Laboratory of Water Resource Utilization and Environmental Pollution Control, Shenzhen 518055, China.
| |
Collapse
|
46
|
Zhang SH, Lv X, Han B, Gu X, Wang PF, Wang C, He Z. Prevalence of antibiotic resistance genes in antibiotic-resistant Escherichia coli isolates in surface water of Taihu Lake Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:11412-21. [PMID: 25813640 DOI: 10.1007/s11356-015-4371-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/12/2015] [Indexed: 05/12/2023]
Abstract
The rapid development of antibiotic-resistant bacteria (ARB) has been of concern worldwide. In this study, antibiotic resistance genes (ARGs) were investigated in antibiotic-resistant Escherichia coli isolated from surface water samples (rivers, n = 17; Taihu Lake, n = 16) and from human, chicken, swine, and Egretta garzetta sources in the Taihu Basin. E. coli showing resistance to at least five drugs occurred in 31, 67, 58, 27, and 18% of the isolates from surface water (n = 665), chicken (n = 27), swine (n = 29), human (n = 45), and E. garzetta (n = 15) sources, respectively. The mean multi-antibiotic resistance (MAR) index of surface water samples (0.44) was lower than that of chicken (0.64) and swine (0.57) sources but higher than that of human (0.30) and E. garzetta sources (0.15). Ten tetracycline, four sulfonamide, four quinolone, five β-lactamase, and two streptomycin resistance genes were detected in the corresponding antibiotic-resistant isolates. Most antibiotic-resistant E. coli harbored at least two similar functional ARGs. Int-I was detected in at least 57% of MAR E. coli isolates. The results of multiple correspondence analysis and Spearman correlation analysis suggest that antibiotic-resistant E. coli in water samples were mainly originated from swine, chicken, and/or human sources. Most of the ARGs detected in E. garzetta sources were prevalent in other sources. These data indicated that human activities may have contributed to the spread of ARB in the aquatic environment.
Collapse
Affiliation(s)
- Song He Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing, 210098, China,
| | | | | | | | | | | | | |
Collapse
|
47
|
Du J, Geng J, Ren H, Ding L, Xu K, Zhang Y. Variation of antibiotic resistance genes in municipal wastewater treatment plant with A(2)O-MBR system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:3715-3726. [PMID: 25263411 DOI: 10.1007/s11356-014-3552-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
The variation of five antibiotic resistance genes (ARGs)-tetG, tetW, tetX, sul1, and intI1-in a full-scale municipal wastewater treatment plant with A(2)O-MBR system was studied. The concentrations of five resistance genes both in influent and in membrane bioreactor (MBR) effluent decreased as sul1 > intI1 > tetX > tetG > tetW, and an abundance of sul1 was statistically higher than three other tetracycline resistance genes (tetG, tetW, and tetX) (p < 0.05). The concentrations of five ARGs in the influent were all higher in spring (median 10(5.81)-10(7.32) copies mL(-1)) than they were in other seasons, and tetW, tetX, and sul1 reached its lowest concentration in autumn (10(4.61)-10(6.81) copies mL(-1)). The concentration of ARGs in wastewater decreased in the anaerobic effluent and anoxic effluent, but increased in the aerobic effluent, and then sharply declined in the MBR effluent. The reduction of tetW, intI1, and sul1 was all significantly positively correlated with the reduction of 16S ribosomal DNA (rDNA) in the wastewater treatment process (p < 0.01). The concentration of ARGs (copies mg(-1)) in sludge samples increased along the treatment process, but the abundance of five ARGs (ratio of ARGs to 16S rDNA) remained the same from anaerobic to anoxic to aerobic basins, while an increment ratio in MBR was observed for all ARGs.
Collapse
Affiliation(s)
- Jing Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|
48
|
Gillings MR, Gaze WH, Pruden A, Smalla K, Tiedje JM, Zhu YG. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME JOURNAL 2014; 9:1269-79. [PMID: 25500508 PMCID: PMC4438328 DOI: 10.1038/ismej.2014.226] [Citation(s) in RCA: 858] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 09/18/2014] [Accepted: 10/23/2014] [Indexed: 12/14/2022]
Abstract
Around all human activity, there are zones of pollution with pesticides, heavy metals, pharmaceuticals, personal care products and the microorganisms associated with human waste streams and agriculture. This diversity of pollutants, whose concentration varies spatially and temporally, is a major challenge for monitoring. Here, we suggest that the relative abundance of the clinical class 1 integron-integrase gene, intI1, is a good proxy for pollution because: (1) intI1 is linked to genes conferring resistance to antibiotics, disinfectants and heavy metals; (2) it is found in a wide variety of pathogenic and nonpathogenic bacteria; (3) its abundance can change rapidly because its host cells can have rapid generation times and it can move between bacteria by horizontal gene transfer; and (4) a single DNA sequence variant of intI1 is now found on a wide diversity of xenogenetic elements, these being complex mosaic DNA elements fixed through the agency of human selection. Here we review the literature examining the relationship between anthropogenic impacts and the abundance of intI1, and outline an approach by which intI1 could serve as a proxy for anthropogenic pollution.
Collapse
Affiliation(s)
- Michael R Gillings
- Department of Biological Sciences, Genes to Geoscience Research Centre, Macquarie University, Sydney, New South Wales, Australia
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Royal Cornwall Hospital, Truro, UK
| | - Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Braunschweig, Germany
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, USA
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
49
|
Guo X, Liu S, Wang Z, Zhang XX, Li M, Wu B. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. CHEMOSPHERE 2014; 112:1-8. [PMID: 25048881 DOI: 10.1016/j.chemosphere.2014.03.068] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/13/2014] [Accepted: 03/16/2014] [Indexed: 05/18/2023]
Abstract
Iron (Fe) has been widely applied to treat arsenic (As)-contaminated water, and Fe could influence bioavailability and toxicity of As. However, little is known about the impact of As and/or Fe on gut microbiota, which plays important roles in host health. In this study, high-throughput sequencing and quantitative real time PCR were applied to analyze the impact of As and Fe on mouse gut microbiota. Co-exposure of As and Fe mitigated effects on microbial community to a certain extent. Correlation analysis showed the shifts in gut microbiota caused by As and/or Fe exposure might be important reason of changes in metabolic profiles of mouse. For antibiotic resistance genes (ARGs), co-exposure of As and Fe increased types and abundance of ARGs. But for high abundance ARGs, such as tetQ, tetO and tetM, co-exposure of As and Fe mitigated effects on their abundances compared to exposure to As and Fe alone. No obvious relationship between ARGs and mobile genetic elements were found. The changes in ARGs caused by metal exposure might be due to the alteration of gut microbial diversity. Our results show that changes of gut microbial community caused by As and/or Fe can influence host metabolisms and abundances of ARGs in gut, indicating that changes of gut microbiota should be considered during the risk assessment of As and/or Fe.
Collapse
Affiliation(s)
- Xuechao Guo
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Su Liu
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Zhu Wang
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Xu-xiang Zhang
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Mei Li
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Bing Wu
- State Key Lab of Pollutant Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
50
|
Du J, Ren H, Geng J, Zhang Y, Xu K, Ding L. Occurrence and abundance of tetracycline, sulfonamide resistance genes, and class 1 integron in five wastewater treatment plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:7276-7284. [PMID: 24566967 DOI: 10.1007/s11356-014-2613-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
To understand the transport and fate of antibiotic resistance genes in wastewater treatment plants, 12 resistance genes (ten tetracycline resistance genes, two sulfonamides genes) and class 1 integron gene (intI1) were studied in five wastewater treatment plants with different treatment processes and different sewage sources. Among these resistance genes, sulfonamides genes (sul1 and sul2) were of the most prevalent genes with detection frequency of 100%. The effluent water contained fewer types of resistance genes than the influent in most selected plants. The abundance of five quantified resistance genes (tetG, tetW, tetX, sul1, and intI1) decreased in effluent of plants treating domestic or industrial wastewater with anaerobic/aerobic or membrane bioreactor (MBR) technologies, but tetG, tetX, sul1, and intI1 increased along the treatment units of plants treating vitamin C production wastewater by anaerobic/aerobic technology. In plant treating cephalosporins production wastewater by UASB/aerobic process, the quantities of tetG, tetX, and sul1 first decreased in anaerobic effluent water but then increased in aerobic effluent water.
Collapse
Affiliation(s)
- Jing Du
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210046, Jiangsu, People's Republic of China
| | | | | | | | | | | |
Collapse
|