1
|
Kakavas D, Panagiotidis K, Rochfort KD, Grintzalis K. Miniaturizing Nanotoxicity Assays in Daphnids. Animals (Basel) 2024; 14:2046. [PMID: 39061509 PMCID: PMC11274355 DOI: 10.3390/ani14142046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
The rapid progress of the modern world has resulted in new materials and products created at an accelerating pace. As such, nanoparticles have widespread applications and often find their way into the aquatic ecosystem. In the case of freshwater ecosystems, one of the commonly used bioindicators species used for pollution assessment is Daphnid magna. The Organization for Economic Co-operation and Development (OECD), and other organizations such as the European Chemicals Agency (ECHA) and Environmental Protection Agency (EPA), have set guidelines for acute toxicity testing in daphnids that are severely lacking in terms of information on the characteristics of the exposure vessel when studying the adverse effects of nanoparticles (NPs). Understanding the toxicity mechanisms of nanomaterials is imperative given the scarcity of information on their adverse effects. Furthermore, miniaturization of nanotoxicity assays can reduce the number of daphnids used, as well as the cost and nanomaterial waste, and provide results even at the individual animal level with enhanced reproducibility of testing. In this study, the impact of the exposure vessel on the observed physiological changes of daphnids was investigated for a silver nano ink. Exposures in eleven commercially available vessels; nine made of plastic and two made of glass were compared for 24 h. The effect of surface to volume ratio of the exposure vessel and the animal number or "crowding" during exposure was investigated in the context of miniaturizing biomarker assays as alternatives to traditional experimental setups in Daphnid magna. Toxicity curves showed differences depending on the vessel used, while a novel feeding rate assay and the activity of key enzymes were assessed as physiology endpoints.
Collapse
Affiliation(s)
| | | | | | - Konstantinos Grintzalis
- School of Biotechnology, Dublin City University, D09 Y5NO Dublin, Ireland; (D.K.); (K.P.); (K.D.R.)
| |
Collapse
|
2
|
Li F, Li R, Lu F, Xu L, Gan L, Chu W, Yan M, Gong H. Adverse effects of silver nanoparticles on aquatic plants and zooplankton: A review. CHEMOSPHERE 2023; 338:139459. [PMID: 37437614 DOI: 10.1016/j.chemosphere.2023.139459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
With the rapid development of nanotechnology in the past decades, AgNPs are widely used in various fields and have become one of the most widely used nanomaterials, which leads to the inevitable release of AgNPs to the aquatic environment through various pathways. It is important to understand the effects of AgNPs on aquatic plants and zooplankton, which are widely distributed and diverse, and are important components of the aquatic biota. This paper reviews the effects of AgNPs on aquatic plants and zooplankton at the individual, cellular and molecular levels. In addition, the internal and external factors affecting the toxicity of AgNPs to aquatic plants and zooplankton are discussed. In general, AgNPs can inhibit growth and development, cause tissue damage, induce oxidative stress, and produce genotoxicity and reproductive toxicity. Moreover, the toxicity of AgNPs is influenced by the size, concentration, and surface coating of AgNPs, environmental factors including pH, salinity, temperature, light and co-contaminants such as NaOCl, glyphosate, As(V), Cu and Cd, sensitivity of test organisms, experimental conditions and so on. In order to investigate the toxicity of AgNPs in the natural environment, it is recommended to conduct toxicity evaluation studies of AgNPs under the coexistence of multiple environmental factors and pollutants, especially at natural environmental concentrations.
Collapse
Affiliation(s)
- Feng Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Ruixue Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Fengru Lu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Lijie Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Lu Gan
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China
| | - Wei Chu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Muting Yan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Han Gong
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
3
|
Brehm J, Ritschar S, Laforsch C, Mair MM. The complexity of micro- and nanoplastic research in the genus Daphnia - A systematic review of study variability and a meta-analysis of immobilization rates. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131839. [PMID: 37348369 DOI: 10.1016/j.jhazmat.2023.131839] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
In recent years, the number of publications on nano- and microplastic particles (NMPs) effects on freshwater organisms has increased rapidly. Freshwater crustaceans of the genus Daphnia are widely used in ecotoxicological research as model organisms for assessing the impact of NMPs. However, the diversity of experimental designs in these studies makes conclusions about the general impact of NMPs on Daphnia challenging. To approach this, we systematically reviewed the literature on NMP effects on Daphnia and summarized the diversity of test organisms, experimental conditions, NMP properties and measured endpoints to identify gaps in our knowledge of NMP effects on Daphnia. We use a meta-analysis on mortality and immobilization rates extracted from the compiled literature to illustrate how NMP properties, study parameters and the biology of Daphnia can impact outcomes in toxicity bioassays. In addition, we investigate the extent to which the available data can be used to predict the toxicity of untested NMPs based on the extracted parameters. Based on our results, we argue that focusing on a more diverse set of NMP properties combined with a more detailed characterization of the particles in future studies will help to fill current research gaps, improve predictive models and allow the identification of NMP properties linked to toxicity.
Collapse
Affiliation(s)
- Julian Brehm
- Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | - Sven Ritschar
- Animal Ecology I, University of Bayreuth, Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I, University of Bayreuth, Bayreuth, Germany; Bayreuth Center for Ecology and Environmental Research (BayCEER), Bayreuth, Germany.
| | - Magdalena M Mair
- Bayreuth Center for Ecology and Environmental Research (BayCEER), Bayreuth, Germany; Statistical Ecotoxicology, University of Bayreuth, Bayreuth, Germany.
| |
Collapse
|
4
|
Andrade VS, Ale A, Antezana PE, Desimone MF, Cazenave J, Gutierrez MF. Ecotoxicity of nanosilver on cladocerans and the role of algae provision. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27137-27149. [PMID: 36378381 DOI: 10.1007/s11356-022-24154-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Silver nanoparticles (AgNPs) are applied in diverse industries due to their biocide and physicochemical properties; therefore, they can be released into aquatic systems, interact with environmental factors, and ultimately exert adverse effects on the biota. We analyzed AgNPs effects on Ceriodaphnia reticulata (Cladocera) through mortality and life-history traits, considering the influence of food (Tetradesmus obliquus, Chlorophyceae) presence and concentration. C. reticulata was exposed to AgNPs in acute (absence and two algae concentrations plus five AgNPs treatments) and chronic assays (two algae concentrations plus three AgNPs treatments). AgNPs did not affect algae flocculation but increased Ag+ release, being these ions less toxic than AgNPs (as proved by the exposure to AgNO3). A reduction in AgNPs acute toxicity was observed when algae concentration increased. Acute AgNP exposure decreased C. reticulata body size and heart rate. The chronic AgNP exposure reduced C. reticulata molt number, growth, heart rate, and neonate size:number ratio, being these effects mitigated at the highest algae concentration. Increases in relative size and number of neonates were observed in AgNP treatments suggesting energy trade off. The increased Ag+ release with food presence suggests that the AgNP-algae interaction might be responsible of the decreased toxicity. Although algae reduced AgNP toxicity, they still exerted adverse effects on C. reticulata below predicted environmental concentrations. Since algae presence reduces AgNP effects but increases Ag+ release, studies should be continued to provide evidence on their toxicity to other organisms.
Collapse
Affiliation(s)
| | - Analía Ale
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
| | - Pablo Edmundo Antezana
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de La Química Y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Martín Federico Desimone
- Consejo Nacional de Investigaciones Científicas Y Técnicas (CONICET), Instituto de La Química Y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia Y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Cazenave
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
- Departamento de Ciencias Naturales, Facultad de Humanidades Y Ciencias, Universidad Nacional del Litoral (FHUC-UNL), Santa Fe, Argentina
| | - María Florencia Gutierrez
- Instituto Nacional de Limnología (CONICET-UNL), Santa Fe, Argentina
- Escuela Superior de Sanidad "Dr. Ramon Carrillo" Facultad de Bioquímica Y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB-UNL), Santa Fe, Argentina
| |
Collapse
|
5
|
Michalak I, Dziergowska K, Alagawany M, Farag MR, El-Shall NA, Tuli HS, Emran TB, Dhama K. The effect of metal-containing nanoparticles on the health, performance and production of livestock animals and poultry. Vet Q 2022; 42:68-94. [PMID: 35491930 PMCID: PMC9126591 DOI: 10.1080/01652176.2022.2073399] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/28/2022] [Accepted: 04/29/2022] [Indexed: 12/06/2022] Open
Abstract
The application of high doses of mineral feed additives in the form of inorganic salts increases the growth performance of animals, but at the same, due to their low bioavailability, can contaminate the environment. Therefore, there is a need to find a replacement of administering high doses of minerals with an equally effective alternative. The application of lower doses of metal-containing nanoparticles with the same effect on animal production could be a potential solution. In the present review, zinc, silver, copper, gold, selenium, and calcium nanoparticles are discussed as potential feed additives for animals. Production of nanoparticles under laboratory conditions using traditional chemical and physical methods as well as green and sustainable methods - biosynthesis has been described. Special attention has been paid to the biological properties of nanoparticles, as well as their effect on animal health and performance. Nano-minerals supplemented to animal feed (poultry, pigs, ruminants, rabbits) acting as growth-promoting, immune-stimulating and antimicrobial agents have been highlighted. Metal nanoparticles are known to exert a positive effect on animal performance, productivity, carcass traits through blood homeostasis maintenance, intestinal microflora, oxidative damage prevention, enhancement of immune responses, etc. Metal-containing nanoparticles can also be a solution for nutrient deficiencies in animals (higher bioavailability and absorption) and can enrich animal products with microelements like meat, milk, or eggs. Metal-containing nanoparticles are proposed to partially replace inorganic salts as feed additives. However, issues related to their potential toxicity and safety to livestock animals, poultry, humans, and the environment should be carefully investigated.
Collapse
Affiliation(s)
- Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Katarzyna Dziergowska
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, Egypt
| | - Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, Egypt
| | - Nahed A. El-Shall
- Department of Poultry and Fish Diseases, Faculty of Veterinary Medicine, Alexandria University, Edfina, El-Beheira, Egypt
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, Haryana, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, India
| |
Collapse
|
6
|
Slongo BD, Hayhurst LD, Drombolis PCT, Metcalfe CD, Rennie MD. Whole-lake nanosilver additions reduce northern pike (Esox lucius) growth. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156219. [PMID: 35623531 DOI: 10.1016/j.scitotenv.2022.156219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/06/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Nanosilver (AgNP) is an anti-microbial agent widely used in consumer products, with significant potential for these nanoparticles to be released into aquatic environments. Laboratory studies involving short-term exposures of fish to AgNP show a range of toxicological effects, but these studies do not address potential responses in long-lived organisms resulting from chronic exposures. A collaborative study involving additions of AgNP to environmentally relevant concentrations over two field seasons took place at the IISD-Experimental Lakes Area, providing an opportunity to study the impacts of chronic exposures to long-lived fish species. In the present study, we evaluated the abundance and growth of an apex predator, Northern Pike (Esox lucius), collected from Lake 222 before, during and after the AgNP dosing period and compared results to those from a nearby unmanipulated lake (Lake 239). While the abundance of Northern Pike from Lake 222 during the study period was essentially stable, per capita availability of their primary prey species, Yellow Perch (Perca flavescens) declined by over 30%. Northern Pike fork length- and weight-at-age (indices of growth rate) declined following AgNP additions, most notably in age 4 and 5 fish. No similar changes in prey availability or growth were observed in Northern Pike from the reference lake. Body condition did not change in Northern Pike collected from either Lake 222 or Lake 239. Our results indicate that declines in the growth of Northern Pike chronically exposed to AgNP likely resulted from reduced prey availability but direct sublethal effects from AgNP exposure could also have been a factor. The persistence of reduced growth in Northern Pike two years after the cessation of AgNP additions highlight the potential legacy impacts of this contaminant once released into aquatic ecosystems.
Collapse
Affiliation(s)
- Brenden D Slongo
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada.
| | - Lauren D Hayhurst
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada; IISD Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada.
| | - Paul C T Drombolis
- Upper Great Lakes Management Unit, Ontario Ministry of Northern Development, Mines, Natural Resources and Forestry, Thunder Bay, Ontario P7E 6S7, Canada.
| | - Chris D Metcalfe
- School of the Environment, Trent University, Peterborough, Ontario K9L 0G2, Canada.
| | - Michael D Rennie
- Department of Biology, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada; IISD Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada.
| |
Collapse
|
7
|
Sun Y, Liu Q, Huang J, Li D, Huang Y, Lyu K, Yang Z. Food abundance mediates the harmful effects of ZnO nanoparticles on development and early reproductive performance of Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113475. [PMID: 35364508 DOI: 10.1016/j.ecoenv.2022.113475] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/21/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Most aquatic ecosystems are at risk of being polluted by new environmental pollutant nanoparticles. As the main food source of zooplankton, the biomass of algae always fluctuates. Cladocerans, an important part of zooplankton, are usually be simultaneously exposed to different abundance of algae and nanoparticles in aquatic environment. To evaluate the combined effects of food abundance and ZnO nanoparticles concentration on the development and early reproductive performance of cladocerans, we exposed Daphnia magna, a common and representative model organism in cladocerans, to the combinations of different abundances of Chlorella pyrenoidosa and different concentrations of ZnO nanoparticles, recorded the key life-history traits, and used multiple models to fit the data. Results showed that high level of ZnO nanoparticles and low abundance Chlorella had an interactively negative effect on the life history of D. magna. When D. magna was exposed to ZnO nanoparticles, some life history traits, such as survival time, body length at maturation, and offspring per female, increased exponentially with the increase of food abundance, and then reached a theoretical maximum value, whereas some other life history traits, such as time to maturation and time to first brood, showed an opposite trend. However, higher Chlorella abundance reduced the negative effect of ZnO nanoparticles on D. magna, but the negative effect could not be eliminated with the increase of food abundance. Below Chlorella 0.30 mg C L-1, food plays a decisive role, while at or above this threshold, ZnO nanoparticles play a decisive role. Therefore, the effect of different ZnO nanoparticles concentrations can be fully reflected only when food is sufficient, and the negative effects of food shortages may mask the toxic effects of ZnO nanoparticles on D. magna. The findings indicated that the effects of food abundance should be considered in evaluating the realistic impact of pollutants on zooplankton.
Collapse
Affiliation(s)
- Yunfei Sun
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Qi Liu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Jing Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Da Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Yuan Huang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Kai Lyu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China
| | - Zhou Yang
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Biological Sciences, Nanjing Normal University, 1 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
8
|
Liu Z, Malinowski CR, Sepúlveda MS. Emerging trends in nanoparticle toxicity and the significance of using Daphnia as a model organism. CHEMOSPHERE 2022; 291:132941. [PMID: 34793845 DOI: 10.1016/j.chemosphere.2021.132941] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Nanoparticle production is on the rise due to its many uses in the burgeoning nanotechnology industry. Although nanoparticles have growing applications, there is great concern over their environmental impact due to their inevitable release into the environment. With uncertainty of environmental concentration and risk to aquatic organisms, the microcrustacean Daphnia spp. has emerged as an important freshwater model organism for risk assessment of nanoparticles because of its biological properties, including parthenogenetic reproduction; small size and short generation time; wide range of endpoints for ecotoxicological studies; known genome, useful for providing mechanistic information; and high sensitivity to environmental contaminants and other stressors. In this review, we (1) highlight the advantages of using Daphnia as an experimental model organism for nanotoxicity studies, (2) summarize the impacts of nanoparticle physicochemical characteristics on toxicity in relation to Daphnia, and (3) summarize the effects of nanoparticles (including nanoplastics) on Daphnia as well as mechanisms of toxicity, and (4) highlight research uncertainties and recommend future directions necessary to develop a deeper understanding of the fate and toxicity of nanoparticles and for the development of safer and more sustainable nanotechnology.
Collapse
Affiliation(s)
- Zhiquan Liu
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA; School of Life Science, East China Normal University, Shanghai, 200241, China
| | | | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
9
|
Peace A, Frost PC, Wagner ND, Danger M, Accolla C, Antczak P, Brooks BW, Costello DM, Everett RA, Flores KB, Heggerud CM, Karimi R, Kang Y, Kuang Y, Larson JH, Mathews T, Mayer GD, Murdock JN, Murphy CA, Nisbet RM, Pecquerie L, Pollesch N, Rutter EM, Schulz KL, Scott JT, Stevenson L, Wang H. Stoichiometric Ecotoxicology for a Multisubstance World. Bioscience 2021. [DOI: 10.1093/biosci/biaa160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Abstract
Nutritional and contaminant stressors influence organismal physiology, trophic interactions, community structure, and ecosystem-level processes; however, the interactions between toxicity and elemental imbalance in food resources have been examined in only a few ecotoxicity studies. Integrating well-developed ecological theories that cross all levels of biological organization can enhance our understanding of ecotoxicology. In the present article, we underline the opportunity to couple concepts and approaches used in the theory of ecological stoichiometry (ES) to ask ecotoxicological questions and introduce stoichiometric ecotoxicology, a subfield in ecology that examines how contaminant stress, nutrient supply, and elemental constraints interact throughout all levels of biological organization. This conceptual framework unifying ecotoxicology with ES offers potential for both empirical and theoretical studies to deepen our mechanistic understanding of the adverse outcomes of chemicals across ecological scales and improve the predictive powers of ecotoxicology.
Collapse
Affiliation(s)
- Angela Peace
- Department of Mathematics and Statistics, Texas Tech University, Lubbock, Texas, United States
| | - Paul C Frost
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| | - Nicole D Wagner
- Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, United States
| | | | - Chiara Accolla
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, Minneapolis, Minnesota, United States
| | | | - Bryan W Brooks
- Department of Environmental Science, Baylor University, Waco, Texas, United States
| | - David M Costello
- Department of Biological Sciences, Kent State University, Kent, Ohio, United States
| | - Rebecca A Everett
- Department of Mathematics and Statistics, Haverford College, Haverford, Pennsylvania, United States
| | - Kevin B Flores
- Department of Mathematics and the Center for Research in Scientific Computation, North Carolina State University, Raleigh, North Carolina, United States
| | - Christopher M Heggerud
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Roxanne Karimi
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York, United States
| | - Yun Kang
- Arizona State University, Mesa, Arizona, United States
| | - Yang Kuang
- Arizona State University, Tempe, Arizona, United States
| | - James H Larson
- US Geological Survey's Upper Midwest Environmental Sciences Center, La Crosse, Wisconsin, United States
| | - Teresa Mathews
- Environmental Sciences Division of Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States
| | - Gregory D Mayer
- Department of Environmental Toxicology, Texas Tech University, Lubbock, Texas, United States
| | - Justin N Murdock
- Department of Biology, Tennessee Tech University, Cookeville, Tennessee, United States
| | - Cheryl A Murphy
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, United States
| | - Roger M Nisbet
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California, United States
| | - Laure Pecquerie
- Université de Brest, CNRS, IRD, Ifremer, LEMAR, Plouzane, France
| | - Nathan Pollesch
- University of Wisconsin's Aquatic Sciences Center and with the US Environmental Protection Agency's Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, United States
| | - Erica M Rutter
- Department of Applied Mathematics, University of California, Merced, Merced, California, United States
| | - Kimberly L Schulz
- Department of Environmental and Forest Biology, State University of New York's College of Environmental Science and Forestry, Syracuse, New York, United States
| | - J Thad Scott
- Department of Biology, Baylor University, Waco, Texas, United States
| | - Louise Stevenson
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee; with the Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, California; and with the Department of Biological Sciences at Bowling Green State University, in Bowling Green, Ohio, United States
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Luo P, Wang N, Lu M, Chen X, Ji Y, Wang W, Xu Z, Jiang J, Zhang C, Xiao X. Acute and subchronic toxicity of Ag +-laden liposomes on Daphnia magna: the effect of encapsulation. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1349-1358. [PMID: 32693685 DOI: 10.1080/10934529.2020.1794444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 06/27/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
The toxic effects of various substances on Daphnia magna (D. magna) observed through traditional waterborne uptake may involve alterations to the nutritional quality of the contaminated algae and culture media. It is essential to find an alternative delivery method that will not affect the nutritional quality of D. magna's diet in order to elucidate the mechanisms of dietary metal toxicity. Therefore, this study examined the application of liposome encapsulation on the dietary toxicity of D. magna. Ag+-laden liposomes were prepared and the Ag encapsulation efficiency and inhibition effect on algae growth were examined. Then, acute and 14-day subchronic studies were performed to examine the effect of Ag+-laden liposomes on D. magna. The EC50 for the 24 h immobilization test was 10.59 µg/L for Ag+-laden liposomes and 3.07 µg/L for Ag+. In terms of subchronic effects, the estimated ECx values under the Ag+-laden liposome condition were always higher than the direct exposure condition. Furthermore, the bioaccumulation of Ag+-laden liposomes was about 1.68 times lower than direct exposure. Generally, Ag+-laden liposomes produced less efficient toxicity than direct exposure, e.g., lower D. magna mortality, production of more neonates, higher intrinsic rate of natural increase (rm), earlier time to first brood, and higher enzyme activities.
Collapse
Affiliation(s)
- Ping Luo
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| | - Na Wang
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| | - Mengtian Lu
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| | - Xiaoqu Chen
- Guangdong Laboratory Animals Monitoring Institute, Guangdong Provincial Key Laboratory of Laboratory Animals, Guangzhou, China
| | - Youqing Ji
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| | - Wenxuan Wang
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| | - Zhaona Xu
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| | - Jiachao Jiang
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| | - Chenglong Zhang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, China
| | - Xin Xiao
- School of Environment and Geo-informatics, China University of Mining and Technology, Xuzhou, China
| |
Collapse
|
11
|
Lekamge S, Miranda AF, Pham B, Ball AS, Shukla R, Nugegoda D. The toxicity of non-aged and aged coated silver nanoparticles to the freshwater shrimp Paratya australiensis. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 82:1207-1222. [PMID: 31900064 DOI: 10.1080/15287394.2019.1710887] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nanoparticles (NPs) transform in the environment which result in alterations to their physicochemical properties. However, the effects of aging on the toxicity of NPs to aquatic organisms remain to be determined. Further the reports that have been published present contradictory results. The aim of this study was to examine the stability of differently coated silver nanoparticles (AgNPs) in media and the influence of aging of these NP on potential toxicity to freshwater shrimp Paratya australiensis. Coating-dependent changes in the stability of AgNP were observed with aging. Curcumin (C) coated AgNPs were stable, while tyrosine (T) coated AgNPs and epigallocatechin gallate (E) coated AgNPs aggregated in the P. australiensis medium. Increased lipid peroxidation and catalase activity was noted in P. australiensis exposed to AgNPs, suggesting oxidative stress was associated with NP exposure. The enhanced oxidative stress initiated by aged C-AgNPs suggests that aging of these NPs produced different toxicological responses. In summary, data suggest that coating-dependent alterations in NPs, together with aging affect both persistence and subsequent toxicity of NPs to freshwater organisms. Thus, the coating-dependent fate and toxicity of AgNPs together with the effect of their aging need to be considered in assessing the environmental risk of AgNPs to aquatic organisms.
Collapse
Affiliation(s)
- Sam Lekamge
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| | - Ana F Miranda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
| | - Ben Pham
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| | - Ravi Shukla
- Nanobiotechnology Research Laboratory, RMIT University, Melbourne, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, School of Science, RMIT University, Bundoora, Australia
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Australia
| |
Collapse
|
12
|
Lekamge S, Ball AS, Shukla R, Nugegoda D. The Toxicity of Nanoparticles to Organisms in Freshwater. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 248:1-80. [PMID: 30413977 DOI: 10.1007/398_2018_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nanotechnology is a rapidly growing industry yielding many benefits to society. However, aquatic environments are at risk as increasing amounts of nanoparticles (NPs) are contaminating waterbodies causing adverse effects on aquatic organisms. In this review, the impacts of environmental exposure to NPs, the influence of the physicochemical characteristics of NPs and the surrounding environment on toxicity and mechanisms of toxicity together with NP bioaccumulation and trophic transfer are assessed with a focus on their impacts on bacteria, algae and daphnids. We identify several gaps which need urgent attention in order to make sound decisions to protect the environment. These include uncertainty in both estimated and measured environmental concentrations of NPs for reliable risk assessment and for regulating the NP industry. In addition toxicity tests and risk assessment methodologies specific to NPs are still at the research and development stage. Also conflicting and inconsistent results on physicochemical characteristics and the fate and transport of NPs in the environment suggest the need for further research. Finally, improved understanding of the mechanisms of NP toxicity is crucial in risk assessment of NPs, since conventional toxicity tests may not reflect the risks associated with NPs. Behavioural effects may be more sensitive and would be efficient in certain situations compared with conventional toxicity tests due to low NP concentrations in field conditions. However, the development of such tests is still lacking, and further research is recommended.
Collapse
Affiliation(s)
- Sam Lekamge
- Ecotoxicology Research Group, Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| | - Ravi Shukla
- Nanobiotechnology Research Laboratory, RMIT University, Melbourne, VIC, Australia
| | - Dayanthi Nugegoda
- Ecotoxicology Research Group, Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, VIC, Australia
| |
Collapse
|
13
|
Gaw S, Harford A, Pettigrove V, Sevicke‐Jones G, Manning T, Ataria J, Cresswell T, Dafforn KA, Leusch FDL, Moggridge B, Cameron M, Chapman J, Coates G, Colville A, Death C, Hageman K, Hassell K, Hoak M, Gadd J, Jolley DF, Karami A, Kotzakoulakis K, Lim R, McRae N, Metzeling L, Mooney T, Myers J, Pearson A, Saaristo M, Sharley D, Stuthe J, Sutherland O, Thomas O, Tremblay L, Wood W, Boxall ABA, Rudd MA, Brooks BW. Towards Sustainable Environmental Quality: Priority Research Questions for the Australasian Region of Oceania. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2019; 15:917-935. [PMID: 31273905 PMCID: PMC6899907 DOI: 10.1002/ieam.4180] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/26/2019] [Accepted: 06/24/2019] [Indexed: 05/06/2023]
Abstract
Environmental challenges persist across the world, including the Australasian region of Oceania, where biodiversity hotspots and unique ecosystems such as the Great Barrier Reef are common. These systems are routinely affected by multiple stressors from anthropogenic activities, and increasingly influenced by global megatrends (e.g., the food-energy-water nexus, demographic transitions to cities) and climate change. Here we report priority research questions from the Global Horizon Scanning Project, which aimed to identify, prioritize, and advance environmental quality research needs from an Australasian perspective, within a global context. We employed a transparent and inclusive process of soliciting key questions from Australasian members of the Society of Environmental Toxicology and Chemistry. Following submission of 78 questions, 20 priority research questions were identified during an expert workshop in Nelson, New Zealand. These research questions covered a range of issues of global relevance, including research needed to more closely integrate ecotoxicology and ecology for the protection of ecosystems, increase flexibility for prioritizing chemical substances currently in commerce, understand the impacts of complex mixtures and multiple stressors, and define environmental quality and ecosystem integrity of temporary waters. Some questions have specific relevance to Australasia, particularly the uncertainties associated with using toxicity data from exotic species to protect unique indigenous species. Several related priority questions deal with the theme of how widely international ecotoxicological data and databases can be applied to regional ecosystems. Other timely questions, which focus on improving predictive chemistry and toxicology tools and techniques, will be important to answer several of the priority questions identified here. Another important question raised was how to protect local cultural and social values and maintain indigenous engagement during problem formulation and identification of ecosystem protection goals. Addressing these questions will be challenging, but doing so promises to advance environmental sustainability in Oceania and globally.
Collapse
Affiliation(s)
- Sally Gaw
- School of Physical and Chemical SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Andrew Harford
- Department of the Environment and EnergyAustralian Government, DarwinAustralia
| | - Vincent Pettigrove
- Aquatic Environmental Stress Research CentreRMIT University, BundooraVictoriaAustralia
| | | | | | | | - Tom Cresswell
- Australia's Nuclear Science and Technology OrganisationLucas HeightsAustralia
| | | | - Frederic DL Leusch
- Australian Rivers Institute and School of Environment and ScienceGriffith UniversityBrisbaneAustralia
| | - Bradley Moggridge
- Institute for Applied EcologyUniversity of CanberraCanberraAustralia
| | | | - John Chapman
- Office of Environment and HeritageNew South WalesAustralia
| | - Gary Coates
- Te Rūnanga o Ngāi TahuChristchurchNew Zealand
| | - Anne Colville
- School of Life SciencesUniversity of Technology SydneySydneyAustralia
| | - Claire Death
- Faculty of Veterinary ScienceUniversity of MelbourneVictoriaAustralia
| | - Kimberly Hageman
- Department of Chemistry and BiochemistryUtah State University, LoganUtahUSA
| | - Kathryn Hassell
- Aquatic Environmental Stress Research CentreRMIT University, BundooraVictoriaAustralia
| | - Molly Hoak
- School of BiosciencesThe University of Melbourne, ParkvilleVictoriaAustralia
| | - Jennifer Gadd
- National Institute of Atmospheric and Water ResearchAucklandNew Zealand
| | - Dianne F Jolley
- Faculty of Science, University of Technology SydneySydneyAustralia
| | - Ali Karami
- Environmental Futures Research InstituteGriffith UniversityBrisbaneAustralia
| | | | - Richard Lim
- Faculty of Science, University of Technology SydneySydneyAustralia
| | - Nicole McRae
- School of Physical and Chemical SciencesUniversity of CanterburyChristchurchNew Zealand
| | | | - Thomas Mooney
- Department of the Environment and EnergyAustralian Government, DarwinAustralia
| | - Jackie Myers
- Aquatic Environmental Stress Research CentreRMIT University, BundooraVictoriaAustralia
| | | | - Minna Saaristo
- School of Biological SciencesMonash UniversityMelbourneAustralia
| | - Dave Sharley
- Bio2Lab, Melbourne Innovation CentreGreensboroughAustralia
| | | | | | - Oliver Thomas
- School of Applied Chemistry and Environmental ScienceRMIT University, MelbourneVictoriaAustralia
| | - Louis Tremblay
- Cawthron InstituteNelsonNew Zealand
- School of Biological SciencesUniversity of AucklandAucklandNew Zealand
| | | | | | | | | |
Collapse
|
14
|
Iswarya V, Palanivel A, Chandrasekaran N, Mukherjee A. Toxic effect of different types of titanium dioxide nanoparticles on Ceriodaphnia dubia in a freshwater system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:11998-12013. [PMID: 30827021 DOI: 10.1007/s11356-019-04652-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/19/2019] [Indexed: 06/09/2023]
Abstract
In the current study, the effect of different types of titanium dioxide (TiO2) nanoparticles (NPs) (rutile, anatase, and mixture) was analyzed on Ceriodaphnia dubia in the presence of algae under distinct irradiation conditions such as visible and UV-A. The toxicity experiments were performed in sterile freshwater to mimic the chemical composition of the freshwater system. In addition, the oxidative stress biomarkers such as MDA, catalase, and GSH were analyzed to elucidate the stress induced by the NPs on daphnids. Individually, both rutile and anatase NPs induced similar mortality under both visible and UV-A irradiations at all the test concentrations except 600 and 1200 μM where rutile induced higher mortality under UV-A. Upon visible irradiation, the binary mixture exhibited a synergistic effect at their lower concentration and an additive effect at higher concentrations. In contrast, UV-A irradiation demonstrated the additive effect of mixture except for 1200 μM which elucidated antagonistic effect. Mathematical model confirmed the effects of the binary mixture. The surface interaction between the individual NPs in the form of aggregation played a pivotal role in the induction of specific effects exhibited by the binary mixture. Oxidative stress biomarkers were highly increased upon NPs exposure especially under visible irradiation. These observations elucidated that the irradiation and crystallinity effect of TiO2 NPs were noted only on certain biomarkers and not on the mortality.
Collapse
Affiliation(s)
- Velu Iswarya
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | - Abirami Palanivel
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India
| | | | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
15
|
Chen Z, Sheng X, Wang J, Wen Y. Silver nanoparticles or free silver ions work? An enantioselective phytotoxicity study with a chiral tool. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 610-611:77-83. [PMID: 28803204 DOI: 10.1016/j.scitotenv.2017.08.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Nowadays, silver nanoparticles (AgNP) have been widely used and there are raising concerns about their potential adverse effects on organism. As for the exact toxicity mechanism of AgNP, opinions still vary and whether the released silver ions (Ag+) or AgNP themselves are responsible for the toxicity remains debatable. In the present study, we have designed two exposure systems where Ag+ and AgNP coexisted but differed in quantification by using photo-reduced method with cysteine enantiomers, and their toxicities to freshwater microalgae Scenedesmus obliquus and model plant Arabidopsis thaliana were determined. In the results, Ag+ was in suit photo-reduced by cysteine enantiomers, and the UV-Vis and circular dichroism spectrum evidence confirmed the quantification difference between Ag-l-cysteine (Ag-l-Cys) and Ag-d-cysteine (Ag-d-Cys), where there was more AgNP and less Ag+ in Ag-l-Cys. Furthermore, the toxicity assay data revealed that Ag-d-Cys was more toxic to S. obliquus but A. thaliana was more susceptible to Ag-l-Cys. The metal element distribution in Arabidopsis leaves was also influenced in an enantioselective manner, which was related to the oxidative stress. Considering the quantification difference between Ag-l-Cys and Ag-d-Cys, it can be concluded that AgNP exhibited their toxicity to S. obliquus by the action of Ag+, but toxicity brought to A. thaliana was attributed to AgNP themselves rather than Ag+. The results of the present study help to better clarify the role of Ag+ in AgNP toxicity and offer a chiral tool and a new sight to investigate the toxicity mechanism of AgNP.
Collapse
Affiliation(s)
- Zunwei Chen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaolin Sheng
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jia Wang
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Harmon AR, Kennedy AJ, Laird JG, Bednar AJ, Steevens JA. Comparison of acute to chronic ratios between silver and gold nanoparticles, using Ceriodaphnia dubia. Nanotoxicology 2017; 11:1127-1139. [DOI: 10.1080/17435390.2017.1399219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ashley R. Harmon
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Alan J. Kennedy
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Jennifer G. Laird
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Anthony J. Bednar
- Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | | |
Collapse
|
17
|
Conine AL, Rearick DC, Xenopoulos MA, Frost PC. Variable silver nanoparticle toxicity to Daphnia in boreal lakes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 192:1-6. [PMID: 28898784 DOI: 10.1016/j.aquatox.2017.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/29/2017] [Accepted: 09/02/2017] [Indexed: 06/07/2023]
Abstract
Variable sensitivity of organisms to silver nanoparticles (AgNPs) caused by changes in physico-chemical variables in aquatic ecosystems is receiving increasing attention. Variables such as dissolved organic carbon, pH, light, the presence of algae and bacteria, dissolved oxygen and different ions have all been studied individually, but it is still unclear how these variables in combination alter AgNP toxicity in natural ecosystems. Here we examined AgNP toxicity on survival of wild-caught Daphnia using AgNP suspensions placed in water from several different lakes at the IISD-Experimental Lakes Area, which span a gradient of water quality parameters. The partitioning of AgNPs between particulate and dissolved organic matter fractions was also assessed due to the potential for algal sequestration and detoxification of AgNPs. We found that toxicity varied between lakes with LC50 values ranging between 34 and 292μg AgL-1. Time of year in terms of days since ice-off and carbon to nitrogen ratios of particulate matter were the major predictors of toxicity between ecosystems. Total dissolved phosphorus, dissolved organic carbon, and particulate carbon to phosphorus ratios also played minor roles in influencing survival of Daphnia between water types. We found variable partitioning of silver into the particulate fraction within lakes and no significant differences between lakes. Silver associated with particulate organic matter increased with increasing concentrations of AgNPs in the ecosystem. Overall, we found strong evidence that AgNP toxicity is highly context dependent in natural lake ecosystems.
Collapse
Affiliation(s)
- Andrea L Conine
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, K9J 7B8, Canada.
| | - Daniel C Rearick
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| | | | - Paul C Frost
- Department of Biology, Trent University, Peterborough, Ontario, K9J 7B8, Canada
| |
Collapse
|