1
|
Góngora-Gamboa C, Ruiz-Sánchez E, Zamora-Bustillos R, Hernández-Núñez E, Ballina-Gómez H. Lethal and sublethal effects of flupyradifurone and cyantraniliprole on two neotropical stingless bee species. ECOTOXICOLOGY (LONDON, ENGLAND) 2025; 34:456-466. [PMID: 39777609 DOI: 10.1007/s10646-024-02848-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/29/2024] [Indexed: 01/11/2025]
Abstract
Stingless bees are important pollinators in tropical regions, but their survival and behavior have been impacted by various factors, including exposure to insecticides. Here, we evaluated the lethal and sublethal effects of commercial formulations of two widely used insecticides, flupyradifurone (FPF formulation), and cyantraniliprole (CY formulation), on Melipona beecheii and Nannotrigona perilampoides. The study involved oral exposure of bees to insecticides, calculation of the lethal concentration (LC50) and the lethal time (LT50), and evaluation of walking and flight take-off activities. The LC50 values showed that the largest bee, M. beecheii, was more sensitive than N. perilampoides to both insecticides and that the FPF formulation had faster lethal effects in both species (N. perilampoides, 9.6 h; M. beecheii, 5 h) compared to the effects of the CY formulation (N. perilampoides, 17 h; M. beecheii, 24.7 h). Sublethal concentrations (LC50/10 and LC50/100) of both insecticides affected walking and flight take-off activities. After 6-24 h of exposure, both FPF and CY formulations significantly reduced the mean walking speed of N. perilampoides (0.962-1.402 cm/s) and M. beecheii (2.026-2.589 cm/s) compared to the control groups (N. perilampoides: 1.648-1.941 cm/s; M. beecheii: 2.759-3.471 cm/s). Additionally, the FPF and the CY formulation impaired individual flight take-off in both species. This study provides the first comprehensive evaluation of the lethal and sublethal effects of flupyradifurone and cyantraniliprole on M. beecheii and N. perilampoides, offering valuable information for future research on insecticide toxicity in stingless bees.
Collapse
Affiliation(s)
| | - Esaú Ruiz-Sánchez
- Tecnológico Nacional de México, Instituto Tecnológico de Conkal, Conkal, Yucatán, Mexico.
| | | | - Emanuel Hernández-Núñez
- Departamento de Posgrado e Investigación, Instituto Tecnológico Superior de Calkiní, Calkiní, Campeche, Mexico
| | - Horacio Ballina-Gómez
- Tecnológico Nacional de México, Instituto Tecnológico de Conkal, Conkal, Yucatán, Mexico
| |
Collapse
|
2
|
Orikpete OF, Kikanme KN, Falade TDO, Dennis NM, Ejike Ewim DR, Fadare OO. Neonicotinoid pesticides in African agriculture: What do we know and what should be the focus for future research? CHEMOSPHERE 2025; 372:144057. [PMID: 39746486 DOI: 10.1016/j.chemosphere.2024.144057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
This review provides a comprehensive overview of the direct and indirect effects of neonicotinoid pesticides (NEO-P) within African agricultural ecosystems and identifies research gaps, particularly in the monitoring and regulation of pesticide use. We observed a decline in the numbers of NEO-P studies conducted in Africa since 2019 with 40.7% of the countries reporting at least one study to date. Imidacloprid (33.5%), acetamiprid (23.3%), and thiamethoxam (25.0%) are the most reported NEO-P across the continent with concentrations range from 9.0 × 10-5 to 7.2 × 107 mg kg-1, 1.7 × 10-5 to 2.1 × 103 mg kg-1, and 1.0 × 10-5 to 4.7 × 104 mg kg-1, respectively. NEO-P have been reported in honey, water, vegetables, fruits, and staple foods in most countries and in 92-100% of human urine samples collected in Ghana and Cameroon. This widespread presence indicates a potential food safety and public health concern, warranting further study. Studies on NEO-P interactions with bees have emanated mainly from North Africa (35.3% published studies) while Central/Middle, and Southern Africa accounted for 11.8% each of these studies, all of which were conducted in Cameroon and South Africa, respectively. It is important to have contextual evidence to understand neonicotinoids-pollinator interactions across specific African regions and countries; however, literature regarding the extent of NEO-P toxicities/effects on pollinators is required in 44 African countries. The environmental persistence of NEO-P and their broad-spectrum impact necessitate a re-evaluation of current regulatory practices and adoption of more sustainable pest management strategies across the continent. Furthermore, future studies should focus on investigating the long-term exposure to NEO-P, advanced computational methods in ecological risk assessments and eco-friendly alternatives to NEO-P.
Collapse
Affiliation(s)
- Ochuko Felix Orikpete
- Centre for Occupational Health, Safety and Environment (COHSE), University of Port Harcourt, Choba, Rivers State, 500102, Nigeria
| | - Kenneth N Kikanme
- Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, 79416, USA
| | - Titilayo D O Falade
- International Institute of Tropical Agriculture, Ibadan, Oyo State, 200001, Nigeria
| | - Nicole M Dennis
- Department of Environmental and Global Health, University of Florida, Gainesville, FL, 32610, USA
| | | | - Oluniyi O Fadare
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
3
|
Merivee E, Mürk A, Nurme K, Koppel M, Mänd M. Automated video-tracking analysis of Agriotes obscurus wireworm behaviour before, during and after contact with thiamethoxam- and imidacloprid-treated wheat seeds. Sci Rep 2025; 15:7218. [PMID: 40021755 PMCID: PMC11871367 DOI: 10.1038/s41598-025-91175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
Limited studies have highlighted the importance of incorporating behavioural assessments into insecticide efficacy evaluations for wireworm pest control. "For this study, video tracking technology combined with a soil bioassay arena was employed to analyse the behaviour of Agriotes obscurus wireworms before, during, and after exposure to wheat seeds treated with the neonicotinoid insecticides thiamethoxam and imidacloprid at field-relevant concentrations. The analysis identified a set of behavioural key metrics for assessing the effects of these insecticides on wireworms. The results showed that these insecticides exhibited neutral attractancy towards wireworms. A brief period of feeding followed by rapid intoxication minimised damage to seeds. Furthermore, the wireworms demonstrated a specific form of behavioural resistance to neonicotinoids that did not rely on sensory input. In these insects, the rapid speed of intoxication, accompanied by drastic changes in behaviour, ensured that they received a sublethal rather than lethal dose of the insecticide. The wireworms fully recovered from all behavioural abnormalities within a week, and none died within 20 days following the exposure. In conclusion, this video tracking method provides a rapid and efficient means of assessing insecticides intended for wireworm management, offering valuable insights prior to more resource-intensive and costly field trials.
Collapse
Affiliation(s)
- Enno Merivee
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Anne Mürk
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia.
| | - Karin Nurme
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Mati Koppel
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Marika Mänd
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
4
|
Schöfer N, Saxinger N, Braumandl K, Ruther J. Four Neurotoxic Insecticides Impair Partner and Host Finding in the Parasitoid Leptopilina heterotoma and Bioactive Doses Can Be Taken up Via the Host. J Chem Ecol 2025; 51:14. [PMID: 39880987 PMCID: PMC11779754 DOI: 10.1007/s10886-025-01554-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 01/31/2025]
Abstract
In modern agriculture, control of insect pests is achieved by using insecticides that can also have lethal and sublethal effects on beneficial non-target organisms. Here, we investigate acute toxicity and sublethal effects of four insecticides on the males' sex pheromone response and the female host finding ability of the Drosophila parasitoid Leptopilina heterotoma. The nicotinic acetylcholine receptor antagonists acetamiprid, flupyradifurone and sulfoxaflor, as well as the acetylcholinesterase inhibitor dimethoate were applied topically as acetone solutions. Males treated with all four insecticides no longer preferred the female sex pheromone in a T-olfactometer. Duration of wing fanning, an element of the pheromone-mediated male courtship behavior, was also reduced by all four insecticides. The ability of females to orientate towards host-infested feeding substrate was not affected by acetamiprid in the tested dose range. However, treatment with dimethoate, flupyradifurone and sulfoxaflor resulted in the loss of the females' preference for host odor. At the lowest doses interfering with olfactory abilities of L. heterotoma in this study (acetamiprid: 0.21 ng, dimethoate: 0.105 ng, flupyradifurone: 2.1 ng and sulfoxaflor: 0.21 ng), ≥ 90% of the wasps survive insecticide treatment. Male pheromone responses and female host finding were also disturbed in those L. heterotoma that had developed in D. melanogaster larvae reared on dimethoate-treated feeding medium at sublethal levels. Hence, doses of this insecticide sufficient to interfere with chemical orientation of L. heterotoma can be taken up by the parasitoid via the food chain.
Collapse
Affiliation(s)
- Nils Schöfer
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Nathalie Saxinger
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Katrin Braumandl
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Joachim Ruther
- Institute of Zoology, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany.
| |
Collapse
|
5
|
Nebauer CA, Prucker P, Ruedenauer FA, Kollmann J, Leonhardt SD. Bumblebees under stress: Interacting effects of pesticides and heatwaves on colony development and longevity. iScience 2024; 27:111050. [PMID: 39559759 PMCID: PMC11570329 DOI: 10.1016/j.isci.2024.111050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/02/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
Pollinator decline is linked to intensified agricultural practices, pathogens, climate change, and several other factors. We investigated the combined impact of heat and pesticide stress on food consumption, survival, and reproductive fitness of bumble bees. As climate change is expected to intensify heatwaves, we simulated a present-day and a future heatwave scenario (as expected in 50 years). In both scenarios, we exposed microcolonies to three widely used pesticides: azoxystrobin (fungicide), flupyradifurone, and sulfoxaflor (both insecticides)-mixed into pollen and nectar in field-realistic concentrations. We found that bees always consumed the least of sulfoxaflor-treated food, whereas consumption did not differ between other treatments or heatwave scenarios. Surprisingly, pesticide-stressed colonies performed slightly better in the future heatwave scenario in terms of reproductive fitness and survival. Sulfoxaflor consistently had the strongest negative effect, reducing survival rates, brood development, and food consumption, although effects were less severe in the future heatwave scenario.
Collapse
Affiliation(s)
- Carmen A. Nebauer
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Paula Prucker
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Fabian A. Ruedenauer
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Johannes Kollmann
- Restoration Ecology, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Sara D. Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| |
Collapse
|
6
|
Manzer S, Thamm M, Hilsmann L, Krischke B, Steffan-Dewenter I, Scheiner R. The neonicotinoid acetamiprid reduces larval and adult survival in honeybees (Apis mellifera) and interacts with a fungicide mixture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124643. [PMID: 39097258 DOI: 10.1016/j.envpol.2024.124643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Plant protection products (PPPs), which are frequently used in agriculture, can be major stressors for honeybees. They have been found abundantly in the beehive, particularly in pollen. Few studies have analysed effects on honeybee larvae, and little is known about effects of insecticide-fungicide-mixtures, although this is a highly realistic exposure scenario. We asked whether the combination of a frequently used insecticide and fungicides would affect developing bees. Honeybee larvae (Apis mellifera carnica) were reared in vitro on larval diets containing different PPPs at two concentrations, derived from residues found in pollen. We used the neonicotinoid acetamiprid, the combined fungicides boscalid/dimoxystrobin and the mixture of all three substances. Mortality was assessed at larval, pupal, and adult stages, and the size and weight of newly emerged bees were measured. The insecticide treatment in higher concentrations significantly reduced larval and adult survival. Interestingly, survival was not affected by the high concentrated insecticide-fungicides-mixture. However, negative synergistic effects on adult survival were caused by the low concentrated insecticide-fungicides-mixture, which had no effect when applied alone. The lower concentrated combined fungicides led to significantly lighter adult bees, although the survival was unaffected. Our results suggest that environmental relevant concentrations can be harmful to honeybees. To fully understand the interaction of different PPPs, more combinations and concentrations should be studied in social and solitary bees with possibly different sensitivities.
Collapse
Affiliation(s)
- Sarah Manzer
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany; Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Markus Thamm
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lioba Hilsmann
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Beate Krischke
- Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ingolf Steffan-Dewenter
- Animal Ecology and Tropical Biology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Ricarda Scheiner
- Behavioural Physiology and Sociobiology, Biocenter, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
7
|
Paoli M, Giurfa M. Pesticides and pollinator brain: How do neonicotinoids affect the central nervous system of bees? Eur J Neurosci 2024; 60:5927-5948. [PMID: 39258341 DOI: 10.1111/ejn.16536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Neonicotinoids represent over a quarter of the global pesticide market. Research on their environmental impact has revealed their adverse effect on the cognitive functions of pollinators, in particular of bees. Cognitive impairments, mostly revealed by behavioural studies, are the phenotypic expression of an alteration in the underlying neural circuits, a matter deserving greater attention. Here, we reviewed studies on the impact of field-relevant doses of neonicotinoids on the neurophysiology and neurodevelopment of bees. In particular, we focus on their olfactory system as much knowledge has been gained on the different brain areas that participate in odour processing. Recent studies have revealed the detrimental effects of neonicotinoids at multiple levels of the olfactory system, including modulation of odorant-induced activity in olfactory sensory neurons, diminished neural responses in the antennal lobe (the first olfactory processing centre) and abnormal development of the neural connectivity within the mushroom bodies (central neuropils involved in multisensory integration, learning and memory storage, among others). Given the importance of olfactory perception for multiple aspects of bee biology, the reported disruption of the olfactory circuit, which can occur even upon exposure to sublethal doses of neonicotinoids, has severe consequences at both individual and colony levels. Moreover, the effects reported for a multimodal structure such as the mushroom bodies indicate that neonicotinoids' impact translates to other sensory domains. Assessing the impact of field-relevant doses of pesticides on bee neurophysiology is crucial for understanding how neonicotinoids influence their behaviour in ecological contexts and for defining effective and sustainable agricultural practices.
Collapse
Affiliation(s)
- Marco Paoli
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
| | - Martin Giurfa
- Neuroscience Paris-Seine, Institut de Biologie Paris-Seine, CNRS, INSERM, Sorbonne University, Paris, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
8
|
English SG, Bishop CA, Bieber M, Elliott JE. Following Regulation, Imidacloprid Persists and Flupyradifurone Increases in Nontarget Wildlife. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1497-1508. [PMID: 38819074 DOI: 10.1002/etc.5892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/26/2023] [Accepted: 04/14/2024] [Indexed: 06/01/2024]
Abstract
After regulation of pesticides, determination of their persistence in the environment is an important indicator of effectiveness of these measures. We quantified concentrations of two types of systemic insecticides, neonicotinoids (imidacloprid, acetamiprid, clothianidin, thiacloprid, and thiamethoxam) and butenolides (flupyradifurone), in off-crop nontarget media of hummingbird cloacal fluid, honey bee (Apis mellifera) nectar and honey, and wildflowers before and after regulation of imidacloprid on highbush blueberries in Canada in April 2021. We found that mean total pesticide load increased in hummingbird cloacal fluid, nectar, and flower samples following imidacloprid regulation. On average, we did not find evidence of a decrease in imidacloprid concentrations after regulation. However, there were some decreases, some increases, and other cases with no changes in imidacloprid levels depending on the specific media, time point of sampling, and site type. At the same time, we found an overall increase in flupyradifurone, acetamiprid, thiamethoxam, and thiacloprid but no change in clothianidin concentrations. In particular, flupyradifurone concentrations observed in biota sampled near agricultural areas increased twofold in honey bee nectar, sevenfold in hummingbird cloacal fluid, and eightfold in flowers after the 2021 imidacloprid regulation. The highest residue detected was flupyradifurone at 665 ng/mL (parts per billion [ppb]) in honey bee nectar. Mean total pesticide loads were highest in honey samples (84 ± 10 ppb), followed by nectar (56 ± 7 ppb), then hummingbird cloacal fluid (1.8 ± 0.5 ppb), and least, flowers (0.51 ± 0.06 ppb). Our results highlight that limited regulation of imidacloprid does not immediately reduce residue concentrations, while other systemic insecticides, possibly replacement compounds, concurrently increase in wildlife. Environ Toxicol Chem 2024;43:1497-1508. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Simon G English
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christine A Bishop
- Pacific Wildlife Research Center, Environment and Climate Change Canada, Wildlife Research Division, Delta, British Columbia, Canada
| | - Matthias Bieber
- Pacific Wildlife Research Center, Environment and Climate Change Canada, Wildlife Research Division, Delta, British Columbia, Canada
| | - John E Elliott
- Pacific Wildlife Research Center, Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, Delta, British Columbia, Canada
| |
Collapse
|
9
|
Scheibli L, Wiedenmann M, Wolf H, Stemme T, Pfeffer SE. Flupyradifurone negatively affects survival, physical condition and mobility in the two-spotted lady beetle (Adalia bipunctata). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172617. [PMID: 38653409 DOI: 10.1016/j.scitotenv.2024.172617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Lady beetles play a crucial role in natural ecosystems and agricultural settings. Unfortunately, these insects and more specifically the two-spotted lady beetle (Adalia bipunctata) are currently facing a severe decline in populations due to various stressors, with pesticide exposure being a significant threat. Flupyradifurone is a relatively newly introduced insecticide and as existing research is mainly elucidating its effects on bees there remains a limited understanding of its effects on non-hymenopteran insects, including lady beetles. In this study we investigated the impact of acute orally applied flupyradifurone doses on survival and sublethal parameters such as physical condition and mobility on A. bipunctata. Our findings revealed a significant increase in mortality among individuals subjected to flupyradifurone doses of 19 ng/individual (corresponding to >1.5-2.0 ng active substance (a.s.)/mg body weight (bw). The calculated LD50 of flupyradifurone at 48 h was 2.11 ng a.s./mg bw corresponding to an amount of 26.38 ng/individual. Sublethal consequences were observable immediately after pesticide application. Even at doses as low as 2 ng/individual (corresponding to >0.0-0.5 ng a.s./mg bw), flupyradifurone induced trembling and temporary immobility in treated animals. Furthermore, pesticide intoxication led to hypoactivity, with less distance covered and a decline in straightness of locomotion. In conclusion, our study underscores the harmful effects of flupyradifurone on the two-spotted lady beetle at doses notably lower than those affecting bees. These findings stress the importance of additional research to attain a more holistic understanding of pesticide impacts not only on a broader range of non-target arthropods species, but also on various exposure routes as well as lethal and sublethal effects.
Collapse
Affiliation(s)
- Leonie Scheibli
- Ulm University, Institute of Neurobiology, 89081 Ulm, Germany.
| | | | - Harald Wolf
- Ulm University, Institute of Neurobiology, 89081 Ulm, Germany
| | - Torben Stemme
- Ulm University, Institute of Neurobiology, 89081 Ulm, Germany
| | | |
Collapse
|
10
|
Lewis A. A non-adaptationist hypothesis of play behaviour. J Physiol 2024; 602:2433-2453. [PMID: 37656171 DOI: 10.1113/jp284413] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 08/16/2023] [Indexed: 09/02/2023] Open
Abstract
Play is a suite of apparently non-functional, pleasurable behaviours observed in human and non-human animals. Although the phenomenon has been studied extensively, no adaptationist behavioural theory of how play evolved can be supported by the available evidence. However, the advancement of the extended evolutionary synthesis and developments in systems biology offer alternative avenues for non-adaptationist physiological hypotheses. I therefore propose a hypothesis of play, based upon a complex ACh activity that is under agential control of the organism, whereby play initiates ACh-mediated feedforward and feedback processes which act to: (i) regulate metabolic processes; (ii) form new ACh receptors via ACh mRNA activity; (iii) mediate attention, memory consolidation and learning; and (iv) mediate social behaviours, reproduction and embryonic development. However, play occurs across taxa, but does not occur across all taxonomic groups or within all species of a taxonomic group. Thus, to support the validity of the proposed hypothesis, I further propose potential explanations for this anomaly, which include sampling and observer biases, altricial versus precocial juvenile development, and the influence of habitat niche and environmental conditions on behaviour. The proposed hypothesis thus offers new avenues for study in both the biological and social sciences, in addition to having potential applications in applied sciences, such as animal welfare and biomedical research. Crucially, it is hoped that this hypothesis will promote further study of a valid and behaviourally significant, yet currently enigmatic, biological phenomenon.
Collapse
Affiliation(s)
- Amelia Lewis
- Independent Researcher, Lincoln, Lincolnshire, UK
| |
Collapse
|
11
|
Boff S, Ayasse M. Exposure to sublethal concentration of flupyradifurone alters sexual behavior and cuticular hydrocarbon profile in Heriades truncorum, an oligolectic solitary bee. INSECT SCIENCE 2024; 31:859-869. [PMID: 37602924 DOI: 10.1111/1744-7917.13268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
The aboveground oligolectic bee, Heriades truncorum, is a particularly good model for studying the impact of pesticides on sexual communication, since some aspects of its mating behavior have previously been described. We have tested (1) the interference of the pesticide flupyradifurone on male precopulatory behavior and male mating partner preferences, (2) the way that the pesticide interferes in male quality assessment by the female, and (3) the effects of the pesticide on the chemical compounds in the female cuticle. We exposed bees of both sexes to a sublethal concentration of flupyradifurone. Various behaviors were registered in a mating arena with two females (one unexposed and one exposed) and one male (either unexposed or exposed). Unexposed males were quicker to attempt to mate. Treatment also impacted precopulatory behavior and male quality assessment by females. Males approached unexposed females more quickly than insecticide-exposed ones. Females exposed to insecticide produced lower amounts of some cuticular hydrocarbons (sex pheromone candidates) and appeared less choosy than unexposed females. Our findings suggest that insecticide exposure affects sexual communication, playing a role both in male preference and in male quality assessment by the female.
Collapse
Affiliation(s)
- Samuel Boff
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
12
|
Bava R, Lupia C, Castagna F, Ruga S, Nucera S, Caminiti R, Bulotta RM, Naccari C, Carresi C, Musolino V, Statti G, Britti D, Mollace V, Palma E. Bergamot Polyphenolic Fraction for the Control of Flupyradifurone-Induced Poisoning in Honeybees. Animals (Basel) 2024; 14:608. [PMID: 38396576 PMCID: PMC10886160 DOI: 10.3390/ani14040608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024] Open
Abstract
Flupyradifurone (FLU) is a butenolide insecticide that has come onto the market relatively recently. It is used in agriculture to control aphids, psyllids, and whiteflies. Toxicity studies have decreed its low toxicity to honeybees. However, recent research has challenged these claims; oral exposure to the pesticide can lead to behavioral abnormalities and in the worst cases, lethal phenomena. Compounds with antioxidant activity, such as flavonoids and polyphenols, have been shown to protect against the toxic effects of pesticides. The aim of this research was to evaluate the possible protective effect of the bergamot polyphenolic fraction (BPF) against behavioral abnormalities and lethality induced by toxic doses of FLU orally administered to honeybees under laboratory conditions. Honeybees were assigned to experimental groups in which two toxic doses of FLU, 50 mg/L and 100 mg/L were administered. In other replicates, three doses (1, 2 and 5 mg/kg) of the bergamot polyphenolic fraction (BPF) were added to the above toxic doses. In the experimental groups intoxicated with FLU at the highest dose tested, all caged subjects (20 individuals) died within the second day of administration. The survival probability of the groups to which the BPF was added was compared to that of the groups to which only the toxic doses of FLU were administered. The mortality rate in the BPF groups was statistically lower (p < 0.05) than in the intoxicated groups; in addition, a lower percentage of individuals exhibited behavioral abnormalities. According to this research, the ingestion of the BPF attenuates the harmful effects of FLU. Further studies are needed before proposing BPF incorporation into the honeybees' diet, but there already seem to be beneficial effects associated with its intake.
Collapse
Affiliation(s)
- Roberto Bava
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Carmine Lupia
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, 88054 Sersale, Italy
| | - Fabio Castagna
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
- Mediterranean Ethnobotanical Conservatory, 88054 Sersale, Italy
| | - Stefano Ruga
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Saverio Nucera
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Rosamaria Caminiti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Rosa Maria Bulotta
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Clara Naccari
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Cristina Carresi
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Vincenzo Musolino
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy;
| | - Domenico Britti
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
| | - Vincenzo Mollace
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| | - Ernesto Palma
- Department of Health Sciences, University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy; (R.B.); (C.L.); (S.R.); (S.N.); (R.C.); (R.M.B.); (C.N.); (C.C.); (V.M.); (D.B.); (V.M.); (E.P.)
- Center for Pharmacological Research, Food Safety, High Tech and Health (IRC-FSH), University of Catanzaro Magna Græcia, 88100 Catanzaro, Italy
| |
Collapse
|
13
|
Lu Q, Ding H, Liu L, Xu L, Kuang H, Xu C, Guo L. Immunochromatographic assay for rapid detection of flupyradifurone in grape, blueberry, and tomato samples. Food Chem 2024; 433:137328. [PMID: 37690139 DOI: 10.1016/j.foodchem.2023.137328] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/12/2023]
Abstract
Flupyradifurone (FPF) is a neonicotinoid insecticide that effectively controls the spread of various pests. In this study, we established an immunochromatographic assay based on a highly specific and sensitive anti-FPF monoclonal antibody (mAb) to screen for FPF residues in grapes, blueberries, and tomatoes. The cut-off value for the immunochromatographic assay was 5 mg/kg for grapes and 10 mg/kg for blueberries and tomatoes. The calculated limit of detection of the immunochromatographic assay was 0.009 mg/kg, 0.033 mg/kg, and 0.040 mg/kg for grapes, blueberries, and tomatoes, respectively. The recovery rates of the immunochromatographic assay were 97.0-108.2 % in grape samples, 90.9-105.1 % in blueberry samples, and 94.0-103.7 % in tomato samples, and the detection results were highly consistent with LC-MS/MS results. Therefore, this immunochromatographic assay was an effective and rapid tool for screening for FPF in grapes, blueberries, and tomatoes.
Collapse
Affiliation(s)
- Qianqian Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongliu Ding
- Key Laboratory of Food Safety Rapid Detection Technology and Product Evaluation for Market Regulation of Jiangsu Province, Suzhou, Jiangsu 215133, China
| | - Liqiang Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liguang Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hua Kuang
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Chuanlai Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Lingling Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, China; International Joint Research Laboratory for Biointerface and Biodetection, and School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
14
|
Scheibli L, Elsenhans T, Wolf H, Stemme T, Pfeffer SE. Influence of the pesticide flupyradifurone on mobility and physical condition of larval green lacewings. Sci Rep 2023; 13:19804. [PMID: 37957276 PMCID: PMC10643709 DOI: 10.1038/s41598-023-46135-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Global pesticide use in agriculture is one reason for the rapid insect decline in recent years. The relatively new pesticide flupyradifurone is neurotoxic to pest insects but considered harmless to bees according to previous risk assessments. With this study, we aim to investigate lethal and sublethal effects of flupyradifurone on larvae of the beneficial arthropod Chrysoperla carnea. We treated the animals orally with field-realistic concentrations of flupyradifurone and examined lethality as well as effects on condition, mobility and locomotion. For the lethal dose 50, we determined a value of > 120-200 ng/mg (corresponding to a mean amount of 219 ng/larva) after 168 h. Abnormal behaviors such as trembling and comatose larvae were observed even at the lowest concentration applied (> 0-20 ng/mg, 59 ng/larva). Mobility analysis showed impaired activity patterns, resulting in acute hypoactivity at all pesticide concentrations and time-delayed hyperactivity in larvae treated with > 40-60 ng/mg (100 ng/larva) and > 80-100 ng/mg (120 ng/larva), respectively. Even locomotion as a fundamental behavioral task was negatively influenced throughout larval development. In conclusion, our results demonstrate that flupyradifurone impacts life and survival of lacewing larvae and may pose-despite its status as bee-friendly-a major threat to insect fauna and environment.
Collapse
Affiliation(s)
- Leonie Scheibli
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Tabita Elsenhans
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Harald Wolf
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Torben Stemme
- Institute of Neurobiology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | | |
Collapse
|
15
|
Reiß F, Schuhmann A, Sohl L, Thamm M, Scheiner R, Noll M. Fungicides and insecticides can alter the microbial community on the cuticle of honey bees. Front Microbiol 2023; 14:1271498. [PMID: 37965543 PMCID: PMC10642971 DOI: 10.3389/fmicb.2023.1271498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/28/2023] [Indexed: 11/16/2023] Open
Abstract
Honey bees are crucial for our ecosystems as pollinators, but the intensive use of plant protection products (PPPs) in agriculture poses a risk for them. PPPs do not only affect target organisms but also affect non-targets, such as the honey bee Apis mellifera and their microbiome. This study is the first of its kind, aiming to characterize the effect of PPPs on the microbiome of the cuticle of honey bees. We chose PPPs, which have frequently been detected in bee bread, and studied their effects on the cuticular microbial community and function of the bees. The effects of the fungicide Difcor® (difenoconazole), the insecticide Steward® (indoxacarb), the combination of both (mix A) and the fungicide Cantus® Gold (boscalid and dimoxystrobin), the insecticide Mospilan® (acetamiprid), and the combination of both (mix B) were tested. Bacterial 16S rRNA gene and fungal transcribed spacer region gene-based amplicon sequencing and quantification of gene copy numbers were carried out after nucleic acid extraction from the cuticle of honey bees. The treatment with Steward® significantly affected fungal community composition and function. The fungal gene copy numbers were lower on the cuticle of bees treated with Difcor®, Steward®, and PPP mix A in comparison with the controls. However, bacterial and fungal gene copy numbers were increased in bees treated with Cantus® Gold, Mospilan®, or PPP mix B compared to the controls. The bacterial cuticular community composition of bees treated with Cantus® Gold, Mospilan®, and PPP mix B differed significantly from the control. In addition, Mospilan® on its own significantly changed the bacterial functional community composition. Cantus® Gold significantly affected fungal gene copy numbers, community, and functional composition. Our results demonstrate that PPPs show adverse effects on the cuticular microbiome of honey bees and suggest that PPP mixtures can cause stronger effects on the cuticular community than a PPP alone. The cuticular community composition was more diverse after the PPP mix treatments. This may have far-reaching consequences for the health of honey bees.
Collapse
Affiliation(s)
- Fabienne Reiß
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Antonia Schuhmann
- Behavioral Physiology and Sociobiology, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Leon Sohl
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
| | - Markus Thamm
- Behavioral Physiology and Sociobiology, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, Biocenter, Julius Maximilian University of Würzburg, Würzburg, Germany
| | - Matthias Noll
- Institute of Bioanalysis, Coburg University of Applied Sciences and Arts, Coburg, Germany
- Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
16
|
Caspary R, Wosula EN, Issa KA, Amour M, Legg JP. Cutting Dipping Application of Flupyradifurone against Cassava Whiteflies Bemisia tabaci and Impact on Its Parasitism in Cassava. INSECTS 2023; 14:796. [PMID: 37887808 PMCID: PMC10607024 DOI: 10.3390/insects14100796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 10/28/2023]
Abstract
The cassava whitefly Bemisia tabaci causes damage in cassava through the feeding and vectoring of plant viruses that cause cassava mosaic and cassava brown streak diseases. This study sought to explore the efficacy of cutting dipping in flupyradifurone for whitefly control and the impact of the mode of application on whitefly parasitism under farmer field conditions. The insecticide treatment significantly reduced adult whiteflies by 41%, nymphs by 64%, and cassava mosaic disease (CMD) incidence by 16% and increased root yield by 49%. The whitefly parasitism rate by Encarsia spp. parasitoids was 27.3 and 21.1%, while Eretmocerus spp. had 26.7 and 18.0% in control and flupyradifurone, respectively, and these differences were not significant. Electropenetrography recordings of whitefly feeding behaviour on flupyradifurone-treated plants showed significantly reduced probing activity and a delay in reaching the phloem as compared to the control. The findings from this study demonstrated that cassava cutting dipping in flupyradifurone significantly reduces whitefly numbers and cassava mosaic disease incidence, thus contributing to a significant root yield increase in cassava. Flupyradifurone applied through cutting dips does not significantly impact parasitism rates in cassava fields. Routine monitoring of parasitoids and predators in insecticide-treated versus control fields should be emphasized to determine the impact of pesticides on these beneficial non-target organisms.
Collapse
Affiliation(s)
- Ruben Caspary
- Faculty of Natural Sciences, Department Biology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Steinknöck 11, 91054 Erlangen, Germany;
| | - Everlyne N. Wosula
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania; (K.A.I.); (M.A.); (J.P.L.)
| | - Khamis A. Issa
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania; (K.A.I.); (M.A.); (J.P.L.)
| | - Massoud Amour
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania; (K.A.I.); (M.A.); (J.P.L.)
| | - James P. Legg
- International Institute of Tropical Agriculture, Dar es Salaam P.O. Box 34441, Tanzania; (K.A.I.); (M.A.); (J.P.L.)
| |
Collapse
|
17
|
Schuhmann A, Scheiner R. A combination of the frequent fungicides boscalid and dimoxystrobin with the neonicotinoid acetamiprid in field-realistic concentrations does not affect sucrose responsiveness and learning behavior of honeybees. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114850. [PMID: 37018858 DOI: 10.1016/j.ecoenv.2023.114850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/06/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
The increasing loss of pollinators over the last decades has become more and more evident. Intensive use of plant protection products is one key factor contributing to this decline. Especially the mixture of different plant protection products can pose an increased risk for pollinators as synergistic effects may occur. In this study we investigated the effect of the fungicide Cantus® Gold (boscalid/dimoxystrobin), the neonicotinoid insecticide Mospilan® (acetamiprid) and their mixture on honeybees. Since both plant protection products are frequently applied sequentially to the same plants (e.g. oilseed rape), their combination is a realistic scenario for honeybees. We investigated the mortality, the sucrose responsiveness and the differential olfactory learning performance of honeybees under controlled conditions in the laboratory to reduce environmental noise. Intact sucrose responsiveness and learning performance are of pivotal importance for the survival of individual honeybees as well as for the functioning of the entire colony. Treatment with two sublethal and field relevant concentrations of each plant protection product did not lead to any significant effects on these behaviors but affected the mortality rate. However, our study cannot exclude possible negative sublethal effects of these substances in higher concentrations. In addition, the honeybee seems to be quite robust when it comes to effects of plant protection products, while wild bees might be more sensitive.
Collapse
Affiliation(s)
- Antonia Schuhmann
- University of Würzburg, Behavioral Physiology and Sociobiology (Zoology II), Am Hubland, 97074 Würzburg, Germany.
| | - Ricarda Scheiner
- University of Würzburg, Behavioral Physiology and Sociobiology (Zoology II), Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
18
|
Xue J, Chen X, Zhao Y, Li Y. Exposure to high-performance benzotriazole ultraviolet stabilizers: Advance in toxicological effects, environmental behaviors and remediation mechanism using in-silica methods. CHEMOSPHERE 2023; 315:137699. [PMID: 36608879 DOI: 10.1016/j.chemosphere.2022.137699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Benzotriazole ultraviolet stabilizers (BUVSs), as light stabilizers, have attracted widespread attention because of their easy migration in the environment and their acute toxicity and biological toxicity effects, such as immunotoxicity and hepatotoxicity. Accordingly, the treatment and remediation mechanisms of high-performance, environmentally friendly, and low human health risk BUVS substitutes were analyzed. Firstly, the weights and the comprehensive effect (CE) values of migration and toxicity of BUVSs were determined by Topsis assisted by the coefficient of variation (CV) method. From this, a three-dimensional quantitative structure activity relationship (3D-QSAR) model based on the CE values of the 13 BUVSs was constructed. Secondly, EPI software was used to predict the functionality and environmental friendliness of BUVS substitutes, and a partial least squares regression machine learning (ML-PLSR) model was used to analyze the mechanism. Then, ADMET (absorption, distribution, metabolism, excretion, toxicity), TOPKAT, and exposure dose models were used to evaluate the ecological and human health risks of BUVSs and their substitutes. Finally, the key charge information affecting the UV-326 substitutes was deduced by time dependent density functional theory (TDDFT). Using UV-326 as an example, 15 UV-326 substitutes with reduced CE values were designed (reductions of 2.61%-23.18%). Compared with ML-PLSR models of acute toxicity, immunotoxicity, and hepatotoxicity, it was found that the decrease of DM and Qyy values and the increase of Qzz value could further decrease the toxicity of the UV-326 substitutes. Ecological and human health risk assessment showed that the exposure risks of the six UV-326 substitutes were within acceptable limits. TDDFT showed that the change of electron distribution and electron excitation type were the key factors affecting the performance of the UV-326 substitutes, and a charge transfer excitation type was more conducive to obtaining high-performance, environmentally friendly UV-326 substitutes. This study aims to alleviate the toxic damage to the ecological environment and human health caused by BUVS exposure.
Collapse
Affiliation(s)
- Jiaqi Xue
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Xinyi Chen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China; Zhejiang Institute of Mechanical & Electrical Engineering Co., Ltd, Hangzhou, 310051, China.
| | - Yuanyuan Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yu Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China; MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
19
|
Kablau A, Erler S, Eckert JH, Pistorius J, Sharbati S, Einspanier R. Effects of Flupyradifurone and Two Reference Insecticides Commonly Used in Toxicological Studies on the Larval Proteome of the Honey bee Apis mellifera. INSECTS 2023; 14:77. [PMID: 36662005 PMCID: PMC9862931 DOI: 10.3390/insects14010077] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/21/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
The western honey bee Apis mellifera is globally distributed due to its beekeeping advantages and plays an important role in the global ecology and economy. In recent decades, several studies have raised concerns about bee decline. Discussed are multiple reasons such as increased pathogen pressure, malnutrition or pesticide use. Insecticides are considered to be one of the major factors. In 2013, the use of three neonicotinoids in the field was prohibited in the EU. Flupyradifurone was introduced as a potential successor; it has a comparable mode of action as the banned neonicotinoids. However, there is a limited number of studies on the effects of sublethal concentrations of flupyradifurone on honey bees. Particularly, the larval physiological response by means of protein expression has not yet been studied. Hence, the larval protein expression was investigated via 2D gel electrophoresis after following a standardised protocol to apply sublethal concentrations of the active substance (flupyradifurone 10 mg/kg diet) to larval food. The treated larvae did not show increased mortality or an aberrant development. Proteome comparisons showed clear differences concerning the larval metabolism, immune response and energy supply. Further field studies are needed to validate the in vitro results at a colony level.
Collapse
Affiliation(s)
- Arne Kablau
- Institute of Veterinary Biochemistry, Freie Universität Berlin, 14163 Berlin, Germany
- LABOKLIN GmbH and Co. KG, 97688 Bad Kissingen, Germany
| | - Silvio Erler
- Institute for Bee Protection, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
- Zoological Institute, Technische Universität Braunschweig, 38106 Brauschweig, Germany
| | - Jakob H. Eckert
- Institute for Bee Protection, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
- Institute for Microbiology, Technische Universität Braunschweig, 38106 Brauschweig, Germany
| | - Jens Pistorius
- Institute for Bee Protection, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Soroush Sharbati
- Institute of Veterinary Biochemistry, Freie Universität Berlin, 14163 Berlin, Germany
| | - Ralf Einspanier
- Institute of Veterinary Biochemistry, Freie Universität Berlin, 14163 Berlin, Germany
| |
Collapse
|
20
|
Al Naggar Y, Singavarapu B, Paxton RJ, Wubet T. Bees under interactive stressors: the novel insecticides flupyradifurone and sulfoxaflor along with the fungicide azoxystrobin disrupt the gut microbiota of honey bees and increase opportunistic bacterial pathogens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157941. [PMID: 35952893 DOI: 10.1016/j.scitotenv.2022.157941] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 05/21/2023]
Abstract
The gut microbiome plays an important role in bee health and disease. But it can be disrupted by pesticides and in-hive chemicals, putting honey bee health in danger. We used a controlled and fully crossed laboratory experimental design to test the effects of a 10-day period of chronic exposure to field-realistic sublethal concentrations of two nicotinic acetylcholine receptor agonist insecticides (nACHRs), namely flupyradifurone (FPF) and sulfoxaflor (Sulf), and a fungicide, azoxystrobin (Azoxy), individually and in combination, on the survival of individual honey bee workers and the composition of their gut microbiota (fungal and bacterial diversity). Metabarcoding was used to examine the gut microbiota on days 0, 5, and 10 of pesticide exposure to determine how the microbial response varies over time; to do so, the fungal ITS2 fragment and the V4 region of the bacterial 16S rRNA were targeted. We found that FPF has a negative impact on honey bee survival, but interactive (additive or synergistic) effects between either insecticide and the fungicide on honey bee survival were not statistically significant. Pesticide treatments significantly impacted the microbial community composition. The fungicide Azoxy substantially reduced the Shannon diversity of fungi after chronic exposure for 10 days. The relative abundance of the top 10 genera of the bee gut microbiota was also differentially affected by the fungicide, insecticides, and fungicide-insecticide combinations. Gut microbiota dysbiosis was associated with an increase in the relative abundance of opportunistic pathogens such as Serratia spp. (e.g. S. marcescens), which can have devastating consequences for host health such as increased susceptibility to infection and reduced lifespan. Our findings raise concerns about the long-term impact of novel nACHR insecticides, particularly FPF, on pollinator health and recommend a novel methodology for a refined risk assessment that includes the potential effects of agrochemicals on the gut microbiome of bees.
Collapse
Affiliation(s)
- Yahya Al Naggar
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; Zoology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Bala Singavarapu
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany; Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany
| | - Robert J Paxton
- General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Tesfaye Wubet
- Department of Community Ecology, UFZ-Helmholtz Centre for Environmental Research, Theodor-Lieser-Str. 4, 06120 Halle (Saale), Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Qiao Z, Li P, Tan J, Peng C, Zhang F, Zhang W, Jiang X. Oxidative stress and detoxification mechanisms of earthworms (Eisenia fetida) after exposure to flupyradifurone in a soil-earthworm system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 322:115989. [PMID: 36055090 DOI: 10.1016/j.jenvman.2022.115989] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/26/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Flupyradifurone (FLU) has great application potential in agricultural production as a new generation of neonicotinoid insecticide after imidacloprid. Nevertheless, the toxic effects of FLU on non-target soil organisms remain unclear, resulting in considerable environmental risks. We evaluated the acute and subchronic toxicities of FLU to earthworms. The results of acute toxicity show that the median lethal concentration (LC50) values (14 d) of FLU were 186.9773 mg kg-1 for adult earthworms and 157.6502 mg kg-1 for juveniles, respectively. The subchronic toxicity of FLU that focused on the activities of antioxidant and detoxication enzymes showed the superoxide dismutase (SOD), catalase (CAT), and glutathione-S transferase (GST) activities in earthworms increased while the peroxidase (POD) and acetylcholinesterase (AChE) activities decreased after exposure to FLU. Oxidative damage analyses revealed that the reactive oxygen species (ROS) level and malonaldehyde (MDA) content in earthworms were increased by FLU, resulting in DNA damage. Transcriptomics and RT-qPCR confirmed that FLU influenced the expression of genes related to antioxidant response and detoxification of earthworms. Ultimately detoxification metabolism, environmental information processing, cell processes, and immune system pathways are significantly enriched to respond jointly to FLU. Our study fills the gaps in the toxicity of FLU to earthworms, providing a basis for its risk assessment of soil ecosystems and non-target biological toxicity.
Collapse
Affiliation(s)
- Zhihua Qiao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China
| | - Peiyao Li
- College of Agriculture, Qingdao Agricultural University, Qingdao, Shandong, 266109, PR China
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Fengwen Zhang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China; Tobacco Research Institute of Chinese Academy of Agricultural Sciences (CAAS), Qingdao, Shandong, 266101, PR China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Xingyin Jiang
- Key Laboratory of Pesticide Toxicology & Application Technique, College of Plant Protection, Shandong Agricultural University, Taian, Shandong, 271018, PR China.
| |
Collapse
|
22
|
Zhao H, Li G, Cui X, Wang H, Liu Z, Yang Y, Xu B. Review on effects of some insecticides on honey bee health. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105219. [PMID: 36464327 DOI: 10.1016/j.pestbp.2022.105219] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 04/03/2022] [Accepted: 08/26/2022] [Indexed: 06/17/2023]
Abstract
Insecticides, one of the main agrochemicals, are useful for controlling pests; however, the indiscriminate use of insecticides has led to negative effects on nontarget insects, especially honey bees, which are essential for pollination services. Different classes of insecticides, such as neonicotinoids, pyrethroids, chlorantraniliprole, spinosad, flupyradifurone and sulfoxaflor, not only negatively affect honey bee growth and development but also decrease their foraging activity and pollination services by influencing their olfactory sensation, memory, navigation back to the nest, flight ability, and dance circuits. Honey bees resist the harmful effects of insecticides by coordinating the expression of genes related to immunity, metabolism, and detoxification pathways. To our knowledge, more research has been conducted on the effects of neonicotinoids on honey bee health than those of other insecticides. In this review, we summarize the current knowledge regarding the effects of some insecticides, especially neonicotinoids, on honey bee health. Possible strategies to increase the positive impacts of insecticides on agriculture and reduce their negative effects on honey bees are also discussed.
Collapse
Affiliation(s)
- Hang Zhao
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Guilin Li
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xuepei Cui
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Yuewei Yang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China.
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
23
|
Dissipation, Processing Factors and Dietary Risk Assessment for Flupyradifurone Residues in Ginseng. Molecules 2022; 27:molecules27175473. [PMID: 36080241 PMCID: PMC9457792 DOI: 10.3390/molecules27175473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The massive use of pesticides has brought great risks to food and environmental safety. It is necessary to develop reliable analytical methods and evaluate risks through monitoring studies. Here, a method was used for the simultaneous determination of flupyradifurone (FPF) and its two metabolites in fresh ginseng, dried ginseng, ginseng plants, and soil. The method exhibited good accuracy (recoveries of 72.8–97.5%) and precision (relative standard deviations of 1.1–8.5%). The field experiments demonstrated that FPF had half-lives of 4.5–7.9 d and 10.0–16.9 d in ginseng plants and soil, respectively. The concentrations of total terminal residues in soil, ginseng plants, dried ginseng, and ginseng were less than 0.516, 2.623, 2.363, and 0.641 mg/kg, respectively. Based on these results, the soil environmental risk assessment shows that the environmental risk of FPF to soil organisms is acceptable. The processing factors for FPF residues in ginseng were 3.82–4.59, indicating that the concentration of residues increased in ginseng after drying. A dietary risk assessment showed that the risk of FPF residues from long-term and short-term dietary exposures to global consumers were 0.1–0.4% and 12.07–13.16%, respectively, indicating that the application of FPF to ginseng at the recommended dose does not pose a significant risk to consumers.
Collapse
|
24
|
Zhao Y, Zheng M, Zhang Y, Li Y. Coupling strategies for ecotoxicological assessment of neonicotinoid insecticides based on their selective lethal effects: Design, screening, and regulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119514. [PMID: 35609840 DOI: 10.1016/j.envpol.2022.119514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The recently recognized adverse environmental and toxic effects of neonicotinoid insecticides (NNIs) on non-target organisms are alarming. A comprehensive design, screening, and regulatory system was developed to generate NNI derivatives and mutant receptors with selective-ecotoxicological effects to overcome such adverse effects. For ligand design, taking ACE-09 derivative as an example, the toxicity on non-target animals (aboveground: bees; underground: earthworms), plant absorption, and soil absorption decreased by 4.80% and 13.7%, 10.0%, and 121%, while the toxicity on target animals (aboveground: aphids; underground: B. odoriphagas), plant metabolism, and soil degradation increased by 70.2% and 51.7%, 5.08%, and 8.28%. For receptor modification, the ability of mutants to absorb ACE-09 derivative decreased by 31.0%, while the ability of mutants to metabolize ACE-09 derivative increased by 28.0% in scenario 2 (mainly plant selectivity); the ability of mutants to degrade ACE-09 derivative increased by 11.6% in scenario 3 (mainly soil selectivity). The above results indicated that the selective-ecotoxicological effects of ligand design and receptor modification were both improved. Additionally, the combined effects of the ACE-09 derivative on plant absorption and metabolic mutants improved by 31.1% and 31.4% in scenario 2, respectively, while the effect on microbial degradation mutant improved by 14.9%, indicating that there was a synergistic effect between ligand design and receptor modification. Finally, based on the interaction between the ACE-09 derivative and mutants, the optimal environmental factors that improved the selectivity of their ecotoxicological effects were determined. For example, alternate application of nitrogen and phosphorus fertilizers effectively reduced the oxidative damage to plants caused by NNI residues. The novel ligand-receptor joint modification method, combined with the regulation of environmental factors under multiple scenarios, can biochemically address the ecotoxicological concern and highlight the harmful effects of pesticides on the environment and non-target organisms.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Maosheng Zheng
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| | - Yimei Zhang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China; Laboratory of Environmental Remediation and Functional Material, Suzhou Research Academy of North China Electric Power University, Suzhou, Jiangsu, 215213, China.
| | - Yu Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
25
|
Harwood GP, Prayugo V, Dolezal AG. Butenolide Insecticide Flupyradifurone Affects Honey Bee Worker Antiviral Immunity and Survival. FRONTIERS IN INSECT SCIENCE 2022; 2:907555. [PMID: 38468795 PMCID: PMC10926552 DOI: 10.3389/finsc.2022.907555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/20/2022] [Indexed: 03/13/2024]
Abstract
Honey bees face many environmental stressors, including exposure to pesticides and pathogens. A novel butenolide pesticide, flupyradifurone, was recently introduced to the US and shown to have a bee-friendly toxicity profile. Like the much-scrutinized neonicotinoids that preceded it, flupyradifurone targets the insect nervous system. Some neonicotinoids have been shown to interfere with antiviral immunity, which raised the concern that similar effects may be observed with flupyradifurone. In this study, we investigated how flupyradifurone and a neonicotinoid, clothianidin, affect the ability of honey bee workers to combat an infection of Israeli acute paralysis virus (IAPV). We exposed workers to field-realistic doses of the pesticides either with or without co-exposure with the virus, and then tracked survival and changes in viral titers. We repeated the experiment in the spring and fall to look for any seasonal effects. We found that flupyradifurone caused elevated mortality in the fall, but it did not lead to increased virus-induced mortality. Flupyradifurone also appeared to affect virus clearance, as bees co-exposed to the pesticide and virus tended to have higher viral titers after 48 hours than those exposed to the virus alone. Clothianidin had no effect on viral titers, and it actually appeared to increase resistance to viral infection in spring bees.
Collapse
Affiliation(s)
- Gyan P. Harwood
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | | | | |
Collapse
|
26
|
Yuanyuan Z, Zhixing R, Hao Y, Yu L. A novel multi-criteria framework for optimizing ecotoxicological effects and human health risks of neonicotinoid insecticides: Characterization, assessment and regulation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 432:128712. [PMID: 35316637 DOI: 10.1016/j.jhazmat.2022.128712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
The rapid increase of neonicotinoid insecticides (NNIs) leads to the resistance to target organisms and risks to non-target organisms in the ecosystem. Thus, we designed a multi-criteria framework for resistance to target organisms, exposure risks to non-target organisms under spraying and soil or seed treatment scenarios, and ruled out the NNIs on the priority control lists. The resistance and cross-resistance, as well as the toxicity (i.e., acute, chronic, and combined toxicities) were characterized and evaluated. Results showed that the cross-resistance between two NNIs (i.e., CLO and FLU) was 1.8 times higher than their single resistance. A medium to extra-high toxicity level of NNIs was found in non-target organisms. Regulation strategies for NNIs resistance and toxicity were also proposed. The best synergist blocking and control scheme for resistance and toxicity was screened out when three main synergists (i.e., TPP: DEM: PBO) with the ratio of 1:1:1. Four NNIs (i.e., NPM, IMI, ACE, TMX) used in grain crops and six NNIs (i.e., NPM, IMI, ACE, TMX, CLO, THI) used in vegetable crops were determined as the ruled-out pesticides on the priority control lists. This study highlights the adverse effects of NNIs on the ecosystem and human health which should not be overlooked.
Collapse
Affiliation(s)
- Zhao Yuanyuan
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Ren Zhixing
- College of Forestry, Northeast Forestry University, Harbin 150040, China.
| | - Yang Hao
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| | - Li Yu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, North China Electric Power University, Beijing 102206, China.
| |
Collapse
|
27
|
Mundy-Heisz KA, Prosser RS, Raine NE. Acute oral toxicity and risks of four classes of systemic insecticide to the Common Eastern Bumblebee (Bombus impatiens). CHEMOSPHERE 2022; 295:133771. [PMID: 35120955 DOI: 10.1016/j.chemosphere.2022.133771] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
The Common Eastern Bumblebee (Bombus impatiens) is native to North America with an expanding range across Eastern Canada and the USA. This species is commercially produced primarily for greenhouse crop pollination and is a common and abundant component of the wild bumblebee fauna in agricultural, suburban and urban landscapes. However, there is a dearth of pesticide toxicity information about North American bumblebees. The present study determined the acute oral lethal toxicity (48-h LD50) of: the butenolide, flupyradifurone (>1.7 μg/bee); the diamide, cyantraniliprole (>0.54 μg/bee); the neonicotinoid, thiamethoxam (0.0012 μg/bee); and the sulfoximine, sulfoxaflor (0.0177 μg/bee). Compared with published honey bee (Apis mellifera) LD50 values, the present study shows that sulfoxaflor and thiamethoxam are 8.3× and 3.3× more acutely toxic to B. impatiens, whereas flupyradifurone is more acutely toxic to A. mellifera. The current rule of thumb for toxicity extrapolation beyond the honey bee as a model species, termed 10× safety factor, may be sufficient for bumblebee acute oral toxicity. A comparison of five risk assessment equations suggested that the Standard Risk Approach (SRA) and Fixed Dose Risk Approach (FDRA) provide more nuanced levels of risk evaluation compared to the Exposure Toxicity Ratio (ETR), Hazard Quotient (HQ), and Risk Quotient (RQ), primarily because the SRA and FDRA take into account real world variability in pollen and nectar pesticide residues and the chances that bees may be exposed to them.
Collapse
Affiliation(s)
- Kayla A Mundy-Heisz
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Ryan S Prosser
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
28
|
Schuhmann A, Schmid AP, Manzer S, Schulte J, Scheiner R. Interaction of Insecticides and Fungicides in Bees. FRONTIERS IN INSECT SCIENCE 2022; 1:808335. [PMID: 38468891 PMCID: PMC10926390 DOI: 10.3389/finsc.2021.808335] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/29/2021] [Indexed: 03/13/2024]
Abstract
Honeybees and wild bees are among the most important pollinators of both wild and cultivated landscapes. In recent years, however, a significant decline in these pollinators has been recorded. This decrease can have many causes including the heavy use of biocidal plant protection products in agriculture. The most frequent residues in bee products originate from fungicides, while neonicotinoids and, to a lesser extent, pyrethroids are among the most popular insecticides detected in bee products. There is abundant evidence of toxic side effects on honeybees and wild bees produced by neonicotinoids, but only few studies have investigated side effects of fungicides, because they are generally regarded as not being harmful for bees. In the field, a variety of substances are taken up by bees including mixtures of insecticides and fungicides, and their combinations can be lethal for these pollinators, depending on the specific group of insecticide or fungicide. This review discusses the different combinations of major insecticide and fungicide classes and their effects on honeybees and wild bees. Fungicides inhibiting the sterol biosynthesis pathway can strongly increase the toxicity of neonicotinoids and pyrethroids. Other fungicides, in contrast, do not appear to enhance toxicity when combined with neonicotinoid or pyrethroid insecticides. But the knowledge on possible interactions of fungicides not inhibiting the sterol biosynthesis pathway and insecticides is poor, particularly in wild bees, emphasizing the need for further studies on possible effects of insecticide-fungicide interactions in bees.
Collapse
Affiliation(s)
- Antonia Schuhmann
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Anna Paulina Schmid
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Sarah Manzer
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| | - Janna Schulte
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
- Institute of Biology and Environmental Sciences, University of Oldenburg, Oldenburg, Germany
| | - Ricarda Scheiner
- Behavioral Physiology and Sociobiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Feng Y, Zhang A, Bian Y, Liang L, Zuo B. Determination, residue analysis, dietary risk assessment and processing of flupyradifurone and its metabolites in pepper under field conditions by LC-MS/MS. Biomed Chromatogr 2022; 36:e5312. [PMID: 34981517 DOI: 10.1002/bmc.5312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 11/08/2022]
Abstract
An effective method based on liquid chromatography-tandem mass spectrometry was established to determine the concentrations of flupyradifurone, difluoroacetic acid, and 6-chloronicotinic acid in pepper. On the basis of this method, the dissipation, processing factor, and dietary risk of flupyradifurone in pepper were investigated. The results show that the half-life of flupyradifurone in peppers was 2.6-3.8 days. The terminal residual concentration of flupyradifurone in the supervised trials was not higher than the maximum residue limit (MRL) for pepper in the Codex Alimentarius Commission (CAC) (0.9 mg kg-1 ) with the highest residual values of 0.53 mg kg-1 . The national estimated daily intake of flupyradifurone was 0.00094 mg kg-1 , based on the dietary structure of Chinese consumers and the terminal residues under field conditions. The risk quotient for flupyradifurone was 0.012, which was significantly < 1. The processing factor of flupyradifurone in dried pepper was 10.9-14.2, which indicated that drying increased the residual amounts of flupyradifurone in dried pepper, but the residual concentration was still lower than its MRL of 9 mg kg-1 established by CAC.
Collapse
Affiliation(s)
- Yizhi Feng
- Key Laboratory for Chemical Pesticide of Shandong Province, Shandong Academy of Pesticide Sciences, Jinan, China
| | - Aijuan Zhang
- Key Laboratory for Chemical Pesticide of Shandong Province, Shandong Academy of Pesticide Sciences, Jinan, China
| | - Yanli Bian
- Key Laboratory for Chemical Pesticide of Shandong Province, Shandong Academy of Pesticide Sciences, Jinan, China
| | - Lin Liang
- Key Laboratory for Chemical Pesticide of Shandong Province, Shandong Academy of Pesticide Sciences, Jinan, China
| | - Bojun Zuo
- Key Laboratory for Chemical Pesticide of Shandong Province, Shandong Academy of Pesticide Sciences, Jinan, China
| |
Collapse
|
30
|
EFSA Panel on Plant Protection Products and their Residues (PPR), Hernandez Jerez A, Adriaanse P, Berny P, Coja T, Duquesne S, Focks A, Marinovich M, Millet M, Pelkonen O, Pieper S, Tiktak A, Topping C, Widenfalk A, Wilks M, Wolterink G, Rundlöf M, Ippolito A, Linguadoca A, Martino L, Panzarea M, Terron A, Aldrich A. Statement on the active substance flupyradifurone. EFSA J 2022; 20:e07030. [PMID: 35106089 PMCID: PMC8784983 DOI: 10.2903/j.efsa.2022.7030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Flupyradifurone is a novel butenolide insecticide, first approved as an active substance for use in plant protection products by Commission Implementing Regulation (EU) 2015/2084. Following concerns that this substance may pose high risks to humans and the environment, the French authorities, in November 2020, asked the Commission to restrict its uses under Article 69 of Regulation (EC) No 1107/2009. To support this request, competent Authorities from France cited a series of literature papers investigating its hazards and/or exposure to humans and the environment. In addition, in June 2020, the Dutch Authorities notified the Commission, under Article 56 of Regulation (EC) No 1107/2009, of new information on flupyradifurone on the wild bee species Megachile rotundata. This notification is also referred to in the French notification on flupyradifurone. Consequently, the EFSA PPR Panel was mandated to quantify the likelihood of this body of evidence constituting proof of serious risks to humans or the environment. Therefore, the EFSA PPR Panel evaluated the likelihood of these studies indicating new or higher hazards and exposure to humans and the environment compared to previous EU assessments. A stepwise methodology was designed, including: (i) the initial screening; (ii) data extraction and critical appraisal based on the principles of OHAT/NTP; (iii) weight of evidence, including consideration of the previous EU assessments; (iv) uncertainty analysis, followed, whenever relevant, by an expert knowledge elicitation process. For the human health, only one study was considered relevant for the genotoxic potential of flupyradifurone in vitro. These data did not provide sufficient information to overrule the EU assessment, as in vivo studies already addressed the genotoxic potential of flupyradifurone. Environment: All available data investigated hazards in bee species. For honey bees, the likelihood of the new data indicating higher hazards than the previous EU assessment was considered low or moderate, with some uncertainties. However, among solitary bee species - which were not addressed in the previous EU assessment - there was evidence that Megachile rotundata may be disproportionately sensitive to flupyradifurone. This sensitivity, which may partially be explained by the low bodyweight of this species, was mechanistically linked to inadequate bodily metabolisation processes.
Collapse
|
31
|
Haas J, Zaworra M, Glaubitz J, Hertlein G, Kohler M, Lagojda A, Lueke B, Maus C, Almanza MT, Davies TGE, Bass C, Nauen R. A toxicogenomics approach reveals characteristics supporting the honey bee (Apis mellifera L.) safety profile of the butenolide insecticide flupyradifurone. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 217:112247. [PMID: 33901780 DOI: 10.1016/j.ecoenv.2021.112247] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Flupyradifurone, a novel butenolide insecticide, selectively targets insect nicotinic acetylcholine receptors (nAChRs), comparable to structurally different insecticidal chemotypes such as neonicotinoids and sulfoximines. However, flupyradifurone was shown in acute toxicity tests to be several orders of magnitude less toxic to western honey bee (Apis mellifera L.) than many other insecticides targeting insect nAChRs. The underlying reasons for this difference in toxicity remains unknown and were investigated here. Pharmacokinetic studies after contact application of [14C]flupyradifurone to honey bees revealed slow uptake, with internalized compound degraded into a few metabolites that are all practically non-toxic to honey bees in both oral and contact bioassays. Furthermore, receptor binding studies revealed a lack of high-affinity binding of these metabolites to honey bee nAChRs. Screening of a library of 27 heterologously expressed honey bee cytochrome P450 enzymes (P450s) identified three P450s involved in the detoxification of flupyradifurone: CYP6AQ1, CYP9Q2 and CYP9Q3. Transgenic Drosophila lines ectopically expressing CYP9Q2 and CYP9Q3 were significantly less susceptible to flupyradifurone when compared to control flies, confirming the importance of these P450s for flupyradifurone metabolism in honey bees. Biochemical assays using the fluorescent probe substrate 7-benzyloxymethoxy-4-(trifluoromethyl)-coumarin (BOMFC) indicated a weak, non-competitive inhibition of BOMFC metabolism by flupyradifurone. In contrast, the azole fungicides prochloraz and propiconazole were strong nanomolar inhibitors of these flupyradifurone metabolizing P450s, explaining their highly synergistic effects in combination with flupyradifurone as demonstrated in acute laboratory contact toxicity tests of adult bees. Interestingly, the azole fungicide prothioconazole is only slightly synergistic in combination with flupyradifurone - an observation supported by molecular P450 inhibition assays. Such molecular assays have value in the prediction of potential risks posed to bees by flupyradifurone mixture partners under applied conditions. Quantitative PCR confirmed the expression of the identified P450 genes in all honey bee life-stages, with highest expression levels observed in late larvae and adults, suggesting honey bees have the capacity to metabolize flupyradifurone across all life-stages. These findings provide a biochemical explanation for the low intrinsic toxicity of flupyradifurone to honey bees and offer a new, more holistic approach to support bee pollinator risk assessment by molecular means.
Collapse
Affiliation(s)
- Julian Haas
- Institute of Crop Science and Resource Conservation, University of Bonn, 53115 Bonn, Germany; Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany
| | - Marion Zaworra
- Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany
| | | | | | - Maxie Kohler
- Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany
| | - Andreas Lagojda
- Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany
| | - Bettina Lueke
- Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany
| | - Christian Maus
- Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany
| | | | - T G Emyr Davies
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, D-40789 Monheim, Germany.
| |
Collapse
|
32
|
Tosi S, Nieh JC, Brandt A, Colli M, Fourrier J, Giffard H, Hernández-López J, Malagnini V, Williams GR, Simon-Delso N. Long-term field-realistic exposure to a next-generation pesticide, flupyradifurone, impairs honey bee behaviour and survival. Commun Biol 2021; 4:805. [PMID: 34183763 PMCID: PMC8238954 DOI: 10.1038/s42003-021-02336-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
The assessment of pesticide risks to insect pollinators have typically focused on short-term, lethal impacts. The environmental ramifications of many of the world's most commonly employed pesticides, such as those exhibiting systemic properties that can result in long-lasting exposure to insects, may thus be severely underestimated. Here, seven laboratories from Europe and North America performed a standardised experiment (a ring-test) to study the long-term lethal and sublethal impacts of the relatively recently approved 'bee safe' butenolide pesticide flupyradifurone (FPF, active ingredient in Sivanto®) on honey bees. The emerging contaminant, FPF, impaired bee survival and behaviour at field-realistic doses (down to 11 ng/bee/day, corresponding to 400 µg/kg) that were up to 101-fold lower than those reported by risk assessments (1110 ng/bee/day), despite an absence of time-reinforced toxicity. Our findings raise concerns about the chronic impact of pesticides on pollinators at a global scale and support a novel methodology for a refined risk assessment.
Collapse
Affiliation(s)
- Simone Tosi
- Department of Agricultural, Forest, and Food Sciences, University of Torino, Grugliasco (TO), Italy.
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, San Diego, CA, USA.
| | - James C Nieh
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, San Diego, CA, USA
| | | | - Monica Colli
- Ecotoxicological Unit, Biotecnologie BT S.r.l., Todi, Italy
| | | | | | | | - Valeria Malagnini
- Center for Technology Transfer, Edmund Mach Foundation, San Michele all'Adige, Italy
| | - Geoffrey R Williams
- Institute of Bee Health, University of Bern, Bern, Switzerland
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL, USA
| | - Noa Simon-Delso
- BeeLife European Beekeeping Coordination, Louvain la Neuve, Belgium
| |
Collapse
|
33
|
Liu B, Preisser EL, Jiao X, Xu W, Zhang Y. Lethal and Sublethal Effects of Flupyradifurone on Bemisia tabaci MED (Hemiptera: Aleyrodidae) Feeding Behavior and TYLCV Transmission in Tomato. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:1072-1080. [PMID: 33825898 DOI: 10.1093/jee/toab040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Pesticides primarily affect target organisms via direct toxicity, but may also alter the feeding behaviors of surviving individuals in ways that alter their effect on host plants. The latter impact is especially important when pests can transmit plant pathogens. The Mediterranean (MED) population of the sweetpotato whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) transmits Tomato yellow leaf curl virus (TYLCV), a pathogen that can be economically devastating in field and greenhouse cropping systems. We first assessed the impact of sublethal (LC15) and label concentrations of flupyradifurone, a butenolide-derived insecticide, on the feeding behavior of TYLCV-infected MED on tomato. We next measured the effect of flupyradifurone on plant TYLCV load, vector transmission efficiency, and MED survival. Both the LC15 and label flupyradifurone concentrations dramatically altered MED feeding and caused the near cessation of both salivation and phloem ingestion (necessary for viral transmission and acquisition, respectively). Both concentrations also significantly reduced plant TYLCV load, and the label rate of flupyradifurone sharply decreased TYLCV transmission while killing >99% of MED. As the first report of pesticide-induced changes in the feeding behavior of viruliferous Bemisia, our findings highlight the potential importance of chemically driven feeding cessation in the control of TYLCV and other Bemisia-transmitted plant pathogens.
Collapse
Affiliation(s)
- Baiming Liu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA
| | - Xiaoguo Jiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Center for Behavioral Ecology & Evolution, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Weihong Xu
- Institute of Plant Protection, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Youjun Zhang
- Department of Entomology, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
34
|
Abati R, Sampaio AR, Maciel RMA, Colombo FC, Libardoni G, Battisti L, Lozano ER, Ghisi NDC, Costa-Maia FM, Potrich M. Bees and pesticides: the research impact and scientometrics relations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:10.1007/s11356-021-14224-7. [PMID: 33961189 DOI: 10.1007/s11356-021-14224-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Bees are fundamental insects in agroecosystems, mainly due to pollination. However, its decline has been observed in recent years, and the contamination by pesticides is suspected to be responsible. This relationship is the objective of our research, which is the first scientometric study on this subject. The data were obtained from the Web of Science database (1231) and were analyzed using Microsoft Office Excel and CiteSpace. The results point to a significant increase in pesticide and bee reseach in the last 15 years in the most influential scientific journals. The USA and France have the largest number of publications and a moderade relationship between this trait and GDP (gross domestic product) was observed (r = 0.80; r2 = 0.60). There is no correlation between the use of pesticides and studies of the effects on pollinators and the use of pesticides and the countries' GDP. In general, studies have shown the negative effects of the contamination by pesticides on bees; however, most publications are with bees of the Apis genus, and therefore it is necessary to explore the action of pesticides on bumble bees and wild bees, as well furthur as studies are needed regarding the sublethal effects of these products on bees as the number of molecules used in the management of agricultural crops is vast.
Collapse
Affiliation(s)
- Raiza Abati
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04 CEP, 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Amanda Roberta Sampaio
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04 CEP, 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Rodrigo Mendes Antunes Maciel
- Programa de Pós-Graduação em Entomologia, Universidade Federal do Paraná, Avenida Coronel Francisco Heráclito dos Santos, 100, Centro Politécnico - Jardim das Américas, Cx, 1903, CEP 81531-980, Curitiba, Paraná, Brasil
| | - Fernanda Caroline Colombo
- Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Câmpus Universitário Cx, 10.011, CEP 86.057-970, Londrina, Paraná, Brasil
| | - Gabriela Libardoni
- Programa de Pós-Graduação em Agronomia, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Câmpus Universitário Cx, 10.011, CEP 86.057-970, Londrina, Paraná, Brasil
| | - Lucas Battisti
- Programa de Pós-Graduação em Ciências Biológicas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Câmpus Universitário Cx, 10.011, CEP 86.057-970, Londrina, Paraná, Brasil
| | - Everton Ricardi Lozano
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04 CEP, 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Nédia de Castilhos Ghisi
- Programa de Pós-Graduação em Biotecnologia, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04, CEP 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Fabiana Martins Costa-Maia
- Programa de Pós-Graduação em Zootecnia, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04, CEP 85660-000, Dois Vizinhos, Paraná, Brasil
| | - Michele Potrich
- Programa de Pós-Graduação em Agroecossistemas, Universidade Tecnológica Federal do Paraná, Câmpus Dois Vizinhos, Estrada para Boa Esperança, Km 04 CEP, 85660-000, Dois Vizinhos, Paraná, Brasil.
| |
Collapse
|
35
|
Guo Y, Diao QY, Dai PL, Wang Q, Hou CS, Liu YJ, Zhang L, Luo QH, Wu YY, Gao J. The Effects of Exposure to Flupyradifurone on Survival, Development, and Foraging Activity of Honey Bees ( Apis mellifera L.) under Field Conditions. INSECTS 2021; 12:357. [PMID: 33923512 PMCID: PMC8074100 DOI: 10.3390/insects12040357] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/10/2021] [Accepted: 04/13/2021] [Indexed: 11/25/2022]
Abstract
Flupyradifurone (FPF) is a novel systemic nAChR agonist that interferes with signal transduction in the central nervous system of sucking pests. Despite claims that FPF is potentially "bee-safe" by risk assessments, laboratory data have suggested that FPF has multiple sub-lethal effects on individual honey bees. Our study aimed to expand the studies to the effects of field-realistic concentration of FPF. We found a statistically significant decrease in the survival rate of honey bees exposed to FPF, whereas there were no significantly negative effects on larvae development durations nor foraging activity. In addition, we found that the exposed foragers showed significantly higher expression of ApidNT, CYP9Q2, CYP9Q3, and AmInR-2 compared to the CK group (control group), but no alteration in the gene expression was observed in larvae. The exposed newly emerged bees showed significantly higher expression of Defensin and ApidNT. These results indicate that the chronic exposure to the field-realistic concentration of FPF has negligible effects, but more important synergistic and behavioral effects that can affect colony fitness should be explored in the future, considering the wide use of FPF on crops pollinated and visited by honey bees.
Collapse
Affiliation(s)
- Yi Guo
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100093, China; (Y.G.); (Q.-Y.D.); (P.-L.D.); (Q.W.); (C.-S.H.); (Y.-J.L.); (L.Z.)
| | - Qing-Yun Diao
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100093, China; (Y.G.); (Q.-Y.D.); (P.-L.D.); (Q.W.); (C.-S.H.); (Y.-J.L.); (L.Z.)
| | - Ping-Li Dai
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100093, China; (Y.G.); (Q.-Y.D.); (P.-L.D.); (Q.W.); (C.-S.H.); (Y.-J.L.); (L.Z.)
| | - Qiang Wang
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100093, China; (Y.G.); (Q.-Y.D.); (P.-L.D.); (Q.W.); (C.-S.H.); (Y.-J.L.); (L.Z.)
| | - Chun-Sheng Hou
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100093, China; (Y.G.); (Q.-Y.D.); (P.-L.D.); (Q.W.); (C.-S.H.); (Y.-J.L.); (L.Z.)
| | - Yong-Jun Liu
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100093, China; (Y.G.); (Q.-Y.D.); (P.-L.D.); (Q.W.); (C.-S.H.); (Y.-J.L.); (L.Z.)
| | - Li Zhang
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100093, China; (Y.G.); (Q.-Y.D.); (P.-L.D.); (Q.W.); (C.-S.H.); (Y.-J.L.); (L.Z.)
| | - Qi-Hua Luo
- Bureau of Landscape and Forestry, Miyun District, Beijing 101500, China;
| | - Yan-Yan Wu
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100093, China; (Y.G.); (Q.-Y.D.); (P.-L.D.); (Q.W.); (C.-S.H.); (Y.-J.L.); (L.Z.)
| | - Jing Gao
- Key Laboratory of Pollinating Insect Biology, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing 100093, China; (Y.G.); (Q.-Y.D.); (P.-L.D.); (Q.W.); (C.-S.H.); (Y.-J.L.); (L.Z.)
| |
Collapse
|
36
|
Wu YY, Pasberg P, Diao QY, Nieh JC. Flupyradifurone reduces nectar consumption and foraging but does not alter honey bee recruitment dancing. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 207:111268. [PMID: 32916533 DOI: 10.1016/j.ecoenv.2020.111268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/11/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Foraging is essential for honey bee colony fitness and is enhanced by the waggle dance, a recruitment behavior in which bees can communicate food location and quality. We tested if the consumption of nectar (sucrose solution) with a field-realistic concentration of 4 ppm flupyradifurone (FPF) could alter foraging behavior and recruitment dancing in Apis mellifera. Foragers were repelled by FPF. They visited the FPF feeder less often and spent less time imbibing sucrose solution (2.5 M, 65% w/w) with FPF. As a result, bees feeding on the FPF treatment consumed 16% less nectar. However, FPF did not affect dancing: there were no effects on unloading wait time, the number of dance bouts per nest visit, or the number of dance circuits performed per dance bout. FPF could therefore deter bees from foraging on contaminated nectar. However, the willingness of bees to recruit nestmates for nectar with FPF is concerning. Recruitment can rapidly amplify the number of foragers and could overcome the decrease in consumption of FPF-contaminated nectar, resulting in a net inflow of pesticide to the colony. FPF also significantly altered the expression of 116 genes, some of which may be relevant for the olfactory learning deficits induced by FPF and the toxicity of FPF.
Collapse
Affiliation(s)
- Yan-Yan Wu
- Institute of Apicultural Research Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| | - Patrick Pasberg
- UCSD Division of Biological Sciences Section of Ecology, Behavior, and Evolution, La Jolla, CA, USA.
| | - Qing-Yun Diao
- Institute of Apicultural Research Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| | - James C Nieh
- UCSD Division of Biological Sciences Section of Ecology, Behavior, and Evolution, La Jolla, CA, USA.
| |
Collapse
|
37
|
Al Naggar Y, Paxton RJ. The novel insecticides flupyradifurone and sulfoxaflor do not act synergistically with viral pathogens in reducing honey bee (Apis mellifera) survival but sulfoxaflor modulates host immunocompetence. Microb Biotechnol 2021; 14:227-240. [PMID: 32985125 PMCID: PMC7888445 DOI: 10.1111/1751-7915.13673] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/14/2020] [Indexed: 12/12/2022] Open
Abstract
The decline of insect pollinators threatens global food security. A major potential cause of decline is considered to be the interaction between environmental stressors, particularly between exposure to pesticides and pathogens. To explore pesticide-pathogen interactions in an important pollinator insect, the honey bee, we used two new nicotinic acetylcholine receptor agonist insecticides (nACHRs), flupyradifurone (FPF) and sulfoxaflor (SULF), at sublethal and field-realistic doses in a fully crossed experimental design with three common viral honey bee pathogens, Black queen cell virus (BQCV) and Deformed wing virus (DWV) genotypes A and B. Through laboratory experiments in which treatments were administered singly or in combination to individual insects, we recorded harmful effects of FPF and pathogens on honey bee survival and immune gene expression. Though we found no evidence of synergistic interactions among stressors on either honey bee survival or viral load, the combined treatment SULF and DWV-B led to a synergistic upregulation of dicer-like gene expression. We conclude that common viral pathogens pose a major threat to honey bees, while co-exposure to these novel nACHR insecticides does not significantly exacerbate viral impacts on host survival in the laboratory.
Collapse
Affiliation(s)
- Yahya Al Naggar
- General ZoologyInstitute for BiologyMartin Luther University Halle‐WittenbergHoher Weg 8Halle (Saale)06120Germany
- Zoology DepartmentFaculty of ScienceTanta UniversityTanta31527Egypt
| | - Robert J. Paxton
- General ZoologyInstitute for BiologyMartin Luther University Halle‐WittenbergHoher Weg 8Halle (Saale)06120Germany
| |
Collapse
|
38
|
Siviter H, Muth F. Do novel insecticides pose a threat to beneficial insects? Proc Biol Sci 2020; 287:20201265. [PMID: 32993471 PMCID: PMC7542824 DOI: 10.1098/rspb.2020.1265] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Systemic insecticides, such as neonicotinoids, are a major contributor towards beneficial insect declines. This has led to bans and restrictions on neonicotinoid use globally, most noticeably in the European Union, where four commonly used neonicotinoids (imidacloprid, thiamethoxam, clothianidin and thiacloprid) are banned from outside agricultural use. While this might seem like a victory for conservation, restrictions on neonicotinoid use will only benefit insect populations if newly emerging insecticides do not have similar negative impacts on beneficial insects. Flupyradifurone and sulfoxaflor are two novel insecticides that have been registered for use globally, including within the European Union. These novel insecticides differ in their chemical class, but share the same mode of action as neonicotinoids, raising the question as to whether they have similar sub-lethal impacts on beneficial insects. Here, we conducted a systematic literature search of the potential sub-lethal impacts of these novel insecticides on beneficial insects, quantifying these effects with a meta-analysis. We demonstrate that both flupyradifurone and sulfoxaflor have significant sub-lethal impacts on beneficial insects at field-realistic levels of exposure. These results confirm that bans on neonicotinoid use will only protect beneficial insects if paired with significant changes to the agrochemical regulatory process. A failure to modify the regulatory process will result in a continued decline of beneficial insects and the ecosystem services on which global food production relies.
Collapse
Affiliation(s)
- Harry Siviter
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | | |
Collapse
|
39
|
Exposure Level of Neonicotinoid Insecticides in the Food Chain and the Evaluation of Their Human Health Impact and Environmental Risk: An Overview. SUSTAINABILITY 2020. [DOI: 10.3390/su12187523] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Neonicotinoid insecticides (neonics) were the most rapidly growing class of insecticides over the past few decades, and are used mainly for vegetables, fruits, and grains. Although neonics exhibit lower toxicity in mammals and humans compared to traditional insecticides, increasing numbers of studies are demonstrating that neonics may accumulate in the food chain and environmental media. Long-term exposure to neonics may raise potential risks to animals and even to humans. The present report reviews the development, application, and prohibition of neonics in the farmland ecosystem, and summarizes the exposure level and harmful effects of these insecticides in the food chain. In addition, the present review analyzes and summarizes the evaluation of the human health impact and environmental risk of the neonics, and overviews the unresolved problems and future research directions in this field. The aim of the present report was to review the exposure level, potential toxicity, human health impact, and environmental risk assessment of neonics in various media in order to provide reliable technical support for strengthening the environmental and food safety supervision and green pesticide designing.
Collapse
|
40
|
Chakrabarti P, Carlson EA, Lucas HM, Melathopoulos AP, Sagili RR. Field rates of Sivanto™ (flupyradifurone) and Transform® (sulfoxaflor) increase oxidative stress and induce apoptosis in honey bees (Apis mellifera L.). PLoS One 2020; 15:e0233033. [PMID: 32437365 PMCID: PMC7241780 DOI: 10.1371/journal.pone.0233033] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 04/27/2020] [Indexed: 01/01/2023] Open
Abstract
Pesticide exposures can have detrimental impacts on bee pollinators, ranging from immediate mortality to sub-lethal impacts. Flupyradifurone is the active ingredient in Sivanto™ and sulfoxaflor is the active ingredient in Transform®. They are both relatively new insecticides developed with an intent to reduce negative effects on bees, when applied to bee-attractive crops. With the growing concern regarding pollinator health and pollinator declines, it is important to have a better understanding of any potential negative impacts, especially sub-lethal, of these pesticides on bees. This study reports novel findings regarding physiological stress experienced by bees exposed to field application rates of these two insecticides via a Potter Tower sprayer. Two contact exposure experiments were conducted-a shorter 6-hour study and a longer 10-day study. Honey bee mortality, sugar syrup and water consumption, and physiological responses (oxidative stress and apoptotic protein assays) were assessed in bees exposed to Sivanto™ and Transform®, and compared to bees in control group. For the longer, 10-day contact exposure experiment, only the Sivanto™ group was compared to the control group, as high mortality recorded in the sulfoxaflor treatment group during the shorter contact exposure experiment, made the latter group unfeasible to test in the longer 10-days experiment. In both the studies, sugar syrup and water consumptions were significantly different between treatment groups and controls. The highest mortality was observed in Transform® exposed bees, followed by the Sivanto™ exposed bees. Estimates of reactive oxygen/nitrogen species indicated significantly elevated oxidative stress in both pesticide treatment groups, when compared to controls. Caspase-3 protein assays, an indicator of onset of apoptosis, was also significantly higher in the pesticide treatment groups. These differences were largely driven by post exposure duration, indicating sub-lethal impacts. Further, our findings also emphasize the need to revisit contact exposure impacts of Sivanto™, given the sub-lethal impacts and mortality observed in our long-term (10-day) contact exposure experiment.
Collapse
Affiliation(s)
| | - Emily A. Carlson
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Hannah M. Lucas
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Andony P. Melathopoulos
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| | - Ramesh R. Sagili
- Department of Horticulture, Oregon State University, Corvallis, Oregon, United States of America
| |
Collapse
|
41
|
Bell HC, Benavides JE, Montgomery CN, Navratil JRE, Nieh JC. The novel butenolide pesticide flupyradifurone does not alter responsiveness to sucrose at either acute or chronic short-term field-realistic doses in the honey bee, Apis mellifera. PEST MANAGEMENT SCIENCE 2020; 76:111-117. [PMID: 31309692 DOI: 10.1002/ps.5554] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/28/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Sublethal exposure to neonicotinoids, a popular class of agricultural pesticides, can lead to behavioral effects that impact the health of pollinators. Therefore, new compounds, such as flupyradifurone (FPF), have recently been developed as 'safer' alternatives. FPF is an excitotoxic nicotinic acetylcholine receptor agonist, similar to neonicotinoids. Given the novelty of FPF, what data exist are focused mostly on assessing the effect of FPF on pollinator mortality. One important avenue for investigation is the potential effect of FPF on the sensitivity of nectar foragers, such as Apis mellifera, to sucrose concentrations. Neonicotinoids can alter this sucrose responsiveness and disrupt foraging. Compounding this effect, neonicotinoid-containing solutions are preferred by A. mellifera over pure sucrose solutions. We therefore conducted four studies, administering FPF under both acute and chronic conditions, and at field-realistic and higher than field-realistic doses, to assess the influence of FPF exposure on sucrose responsiveness and sucrose solutions with FPF in A. mellifera nectar foragers. RESULTS We found no evidence that FPF exposure under acute or chronic field-realistic conditions significantly altered sucrose responsiveness, and we did not find that bees exposed to FPF consumed more of the solution. However, at the much higher median lethal dose (48 h), among bees that survived, FPF-exposed foragers responded to significantly lower concentrations of sucrose than controls and responded at significantly higher rates to all concentrations of sucrose than controls. CONCLUSION We found no evidence that FPF alters the sucrose responsiveness of nectar foragers at field-realistic doses during winter or early spring, but caution and further investigation are warranted, particularly on the effects of FPF in conjunction with other stressors. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Heather Christine Bell
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, California, USA
| | - Jaime Edilberto Benavides
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, California, USA
| | - Corina Noelle Montgomery
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, California, USA
| | | | - James Charles Nieh
- Division of Biological Sciences, Section of Ecology, Behavior, and Evolution, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
42
|
Al Naggar Y, Baer B. Consequences of a short time exposure to a sublethal dose of Flupyradifurone (Sivanto) pesticide early in life on survival and immunity in the honeybee (Apis mellifera). Sci Rep 2019; 9:19753. [PMID: 31874994 PMCID: PMC6930273 DOI: 10.1038/s41598-019-56224-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/04/2019] [Indexed: 12/26/2022] Open
Abstract
Dramatic losses of pollinating insects have become of global concern, as they threaten not only key ecosystem services but also human food production. Recent research provided evidence that interactions between ecological stressors are drivers of declining pollinator health and responsible for observed population collapses. We used the honeybee Apis mellifera and conducted a series of experiments to test for long-term effects of a single short exposure to the agricultural pesticide flupyradifurone to a second environmental stressor later in life. To do this, we exposed individuals during their larval development or early adulthood to sublethal dosages of flupyradifurone (0.025 μg for larvae and 0.645 μg for imagos), either pure or as part of an agricultural formulation (Sivanto). We afterwards exposed bees to a second ecological stressor infecting individuals with 10,000 spores of the fungal gut parasite Nosema ceranae. We found that pesticide exposures significantly reduced survival of bees and altered the expression of several immune and detoxification genes. The ability of bees to respond to these latter effects differed significantly between colonies, offering opportunities to breed bees with elevated levels of pesticide tolerance in the future. We conclude that short episodes of sublethal pesticide exposures during development are sufficient to trigger effects later in life and could therefore contribute to the widespread declines in bee health.
Collapse
Affiliation(s)
- Yahya Al Naggar
- Center for Integrative Bee Research (CIBER), Department of Entomology, University of California Riverside, Riverside, CA, 92507, USA. .,Zoology Department, Faculty of Science, Tanta University31527, Tanta, Egypt. .,General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher weg 8, 06120, Halle (Saale), Germany.
| | - Boris Baer
- Center for Integrative Bee Research (CIBER), Department of Entomology, University of California Riverside, Riverside, CA, 92507, USA.
| |
Collapse
|
43
|
Li Q, Zhao F, Li J, Tao Q, Gao J, Lu YY, Wang L. Effects of maximum residue limit of triflumezopyrim exposure on fitness of the red imported fire ant Solenopsis invicta. PeerJ 2019; 7:e8241. [PMID: 31844593 PMCID: PMC6910108 DOI: 10.7717/peerj.8241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/19/2019] [Indexed: 11/30/2022] Open
Abstract
The impact of exposure to free feeding concentrations of triflumezopyrim to the red imported fire ant, Solenopsis invicta, in maximum residue tolerances for 56 days was investigated to understand whether triflumezopyrim, a novel neonicotinoid, poses unacceptable risks to the environment. Our results demonstrated that neither 0.5 μg/ml nor 0.2 μg/ml triflumezopyrim have a significant impact on the growth of the S. invicta colony and their food consumption (sugar water and locusts) during the length of treatment. While both 0.5 μg/ml and 0.2 μg/ml triflumezopyrim improved the grasping ability of S. invicta, and 0.5 μg/ml not 0.2 μg/ml triflumezopyrim increased their rate of locomotion. In addition, although 0.5 μg/ml and 0.2 μg/ml triflumezopyrim increased their individual aggressiveness index, the probability of the survival of S. invicta was not impacted by triflumezopyrim treatments in aggressive group encounters. This study suggests that triflumezopyrim did not have a negative impact on the fitness of S. invicta at 0.5 μg/ml and 0.2 μg/ml exposures.
Collapse
Affiliation(s)
- Qiting Li
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fei Zhao
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiayi Li
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - QiuHong Tao
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - JiaQian Gao
- Guangdong Tianhe Agricultural Means of Production Co., Ltd., Guangzhou, Guangdong, China
| | - Yong-Yue Lu
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lei Wang
- College of Agriculture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
44
|
Design, Synthesis and Insecticidal Activities of Novel 5-Alkoxyfuran-2(5H)-one Derivatives. Chem Res Chin Univ 2019. [DOI: 10.1007/s40242-019-9122-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|