1
|
Riaz M, Kamran M, Hussain S, Yan L. "Nano-calcium L-Aspartate enhances rice tolerance to arsenic toxicity by improving nitrogen metabolism, cell wall sequestration, and antioxidant system". PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109862. [PMID: 40194504 DOI: 10.1016/j.plaphy.2025.109862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/26/2025] [Accepted: 03/30/2025] [Indexed: 04/09/2025]
Abstract
Rice is one of the major sources of human exposure to arsenic (As), and its contamination is a critical issue for crop productivity and human health. Herein, we investigated how nano-calcium L-aspartate (nano-Ca) nanoparticles alleviate As-induced toxicity in rice (Oryzae sativa L.) seedlings. The results showed that As stress restricted rice growth and increased the concentration of As in roots and shoots. Application of nano-Ca markedly improved seedling growth, including biomass, photosynthetic pigment content, and antioxidant enzyme activity. As a result, Nano-Ca decreased As concentrations in shoots and roots by 67.04 % and 22.78 %, respectively, primarily due to the increasing accumulation of As in pectin and hemicellulose. Furthermore, nano-Ca elevated the activity of nitrogen-metabolizing enzymes. The treatment also promoted demethylation of pectin, which enhanced its As-binding capability. Additionally, nano-Ca enhanced proline metabolism, also provided antioxidant defenses, and regulated calcium homeostasis, which help mitigate oxidative damage characteristics like malondialdehyde and hydrogen peroxidation. As these findings demonstrated, nano-Ca could be an efficient, friendly means of alleviating As toxicity in rice, offering an environmentally sustainable option for agricultural strategies in the arsenic-contaminated areas.
Collapse
Affiliation(s)
- Muhammad Riaz
- Guangdong Engineering and Technology Center for Environmental Pollution Prevention and Control in Agricultural Producing Areas, College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Muhammad Kamran
- School of Agriculture, Food, and Wine, The University of Adelaide, South Australia, 5005, Australia
| | - Saddam Hussain
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Lei Yan
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
2
|
Bouchiba E, Ellafi A, Ferrer AV, Younes SB, Haffouz A, HadjKacem B, Elgharbi F, López-Maldonado EA, Raldua D, Gómez-Canela C, Borgi MA. Analytical study, environmental risk assessment, and toxicity-based bioassays of effluents from phosphate fertilizer industry: a case study in Gafsa mining basin (SW Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36518-w. [PMID: 40405053 DOI: 10.1007/s11356-025-36518-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 05/06/2025] [Indexed: 05/24/2025]
Abstract
The phosphate fertilizer industry (PFI) in M'dhilla-Gafsa, Tunisia, discharges untreated effluents, creating environmental concerns due to unknown composition and toxic effects, leading to potential ecological and human health risks. This study characterized wastewater from three sampling points (SP1, SP2, SP3), and revealed their high acidity pH (2-3) and salinity (32.5-96.23 g/L). BOD5/COD ratios indicated the high recalcitrance (0.01-0.1) of the effluents, reflecting their low biodegradability and persistence in the environment. Excessive levels of phosphorus (206-2094 mg/L), fluoride (154-1071 mg/L), and sulfates (835.5-9266 mg/L) were detected by ionic chromatography. ICP-MS analysis highlighted for the first time the potentially toxic elements (PTEs) content in Tunisian PFI effluent, such us Cd (0.31-0.44 mg/L), Al (7.1-27.8 mg/L), Mn (1.9-3.5 mg/L), B (15.9-25.2 mg/L), Fe (15.7-28.7 mg/L), Ni (0.37-0.48 mg/L), and Cr (1.1-2.12 mg/L). These levels exceeded the permissible national and international limits for industrial discharges, as well as those of the World Health Organization (WHO) for drinking water, indicating serious potential environmental risks. Moreover, phytotoxicity tests on Medicago sativa, Pisum sativum, and Zea mays showed decreased amylolytic and proteolytic activities during germination. Blood toxicity assays indicated significant hemolytic effects. Indeed, 50% of SP1, SP2, and SP3 wastewaters caused hemolysis percentages equal to 52.04%, 57%, and 66.77%, respectively, implying therefore an acute toxicity of the effluents. Additionally, HEK-293 cells mortality was higher after exposure to effluents, with IC50 of 12.06%, 24.23%, and 17.68% for SP1, SP2, and SP3, respectively. These findings emphasized the potential risks posed by PFI effluents to the surrounding ecosystem and the agricultural sector, leading to the contamination of the food chain. This alarming threat imposes stricter wastewater treatment measures and regulatory enforcement in the PFI sector.
Collapse
Affiliation(s)
- Elhem Bouchiba
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems (LBBEEO), Faculty of Sciences of Gafsa, University of Gafsa, 2112, Zarroug, Gafsa, Tunisia
| | - Ali Ellafi
- Laboratory of Analysis, Treatment and Valorisation of Environment Pollutants and Products, Faculty of Pharmacy, Monastir, Tunisia
| | - Ariadna Verdaguer Ferrer
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Sonia Ben Younes
- Laboratory of Population Health, Environmental Aggressors and Alternative Therapies (LR24ES10), Faculty of Medicine of Tunis, 17/ES/13, Tunis, Tunisia
- Department of Life Sciences, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa, Tunisia
| | - Asma Haffouz
- Laboratory of Molecular Biotechnology of Eukaryotes, Biotechnology Center of Sfax, Sfax, Tunisia
| | - Basma HadjKacem
- Laboratory of Molecular Biotechnology of Eukaryotes, Biotechnology Center of Sfax, Sfax, Tunisia
| | - Fatma Elgharbi
- Laboratory of Microorganisms and Biomolecules (LMB), Centre of Biotechnology of Sfax (CBS), Sfax, Tunisia
| | - Eduardo Alberto López-Maldonado
- Faculty of Chemical Sciences and Engineering, Autonomous University of Baja California, 22424, Tijuana, Baja California, Mexico.
| | - Demetrio Raldua
- Institute for Environmental Assessment and Water Research (IDAEA), Consejo Superior de Investigaciones Cientificas (CSIC), Jordi Girona, 18, 08034, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Mohamed Ali Borgi
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems (LBBEEO), Faculty of Sciences of Gafsa, University of Gafsa, 2112, Zarroug, Gafsa, Tunisia
| |
Collapse
|
3
|
Ghassemi-Golezani K, Latifi S, Farhangi-Abriz S. Biochar-mediated remediation of nickel and copper improved nutrient availability and physiological performance of dill plants. Sci Rep 2025; 15:13660. [PMID: 40254713 PMCID: PMC12009968 DOI: 10.1038/s41598-025-98646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025] Open
Abstract
The presence of heavy metals, such as copper and nickel, in the rhizosphere reduces the physiological efficiency and growth of plants. This study evaluated the effects of plum tree biochar levels (0, 15, 30, and 45 g kg-1 soil) with and without copper sulfate (200 mg kg-1 soil), nickel sulfate (400 mg kg-1 soil), and their combination on dill plants in a factorial experiment with a randomized complete block design in three replicates. The results indicated that the presence of copper and nickel in the soil had detrimental effects on the growth and physiological performance of dill. Specifically, copper stress alone reduced biomass by 31%, nickel stress by 27%, and their combined treatment by 37.7%. On the other hand, incorporating biochar into the soil decreased the uptake of heavy metals, oxidative stress, and the production of osmotic regulators in the plants, while enhanced nutrient uptake (N, K, Ca, Mg, Fe, and Zn), photosynthetic pigments, and plant biomass. Increasing biochar application rate in the soil did not have any additional beneficial effect on growth and physiological characteristics of plants. These results suggest that the low rate of biochar (15 g kg-1) from agricultural wastes is an appropriate soil amendment to remediate copper and nickel pollutants in the rhizosphere to enhance nutrient availability and plant performance. Future research could focus on the long-term efficacy of biochar under diverse field conditions, soil types, and plant species to optimize sustainable agricultural practices.
Collapse
Affiliation(s)
- Kazem Ghassemi-Golezani
- Department of Plant Eco-Physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Sedigheh Latifi
- Department of Plant Eco-Physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Salar Farhangi-Abriz
- Cotton Research Institute of Iran, Agricultural Research, Education and Extension Organization (AREEO), Gorgan, Iran
| |
Collapse
|
4
|
Shah H, Awan MUF, Mehmood Z, Sana N, Abbas W, Ahmad A, Qasim A, Gul A, Hasnain A, Yang HH. Evaluation of genotoxicity and physicochemical variations of Eichhornia crassipes (Mart.) Solms exposed to paper-mill-contaminated wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:562. [PMID: 40240706 DOI: 10.1007/s10661-025-14015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 04/10/2025] [Indexed: 04/18/2025]
Abstract
The pulp and paper industry is a major global concern, as it consumes vast amounts of water during various stages of paper production and may discharge toxic effluents into the environment. This study aimed to determine the impact of pulp and paper mill effluents on Eichhornia crassipes (Mart.) Solms-a free-floating, invasive hydrophyte famous for its phytoremediation potential and grows extensively in wastewater-by assessing its morphological, physicochemical, and genomic deterioration. Wastewater analysis showed higher values of electrical conductivity (EC) (1.8 ± 0.69 S m-1), turbidity (332.9 ± 45.18 NTU), salinity (0.85 ± 0.39 ppt), and total dissolved solids (TDS) (1.14 ± 0.39 g L-1) as compared to the control sample. Morphological characters such as root length (7.19 ± 1.19 cm), leaves per plant (6.60 ± 1.53), and leaf area (627.75 ± 28.03 mm2) were reduced as compared to the control sample. Biochemical parameters like relative water content (RWC) (50%), total chlorophyll content (TCH) (0.41 mg g-1), and pH (6.12) were reduced and increased the ascorbic acid content (AA) (26.08 mg g-1) compared to control. The modified cetyltrimethylammonium bromide (CTAB) method was used to extract genomic DNA, and DNA damage was detected by comet assay. Genomic analysis revealed that wastewater caused significant DNA damage, as evidenced by increased comet tail intensity. The highest breaking frequency was observed in tail percentage DNA and tail moment, reaching 48.2% and 17.35 µm, respectively. These results indicate that pulp and paper mill effluents impact the morphological traits and biochemical processes of E. crassipes and cause genotoxicity, highlighting the urgent need to develop effective wastewater remediation strategies.
Collapse
Affiliation(s)
- Harma Shah
- Department of Botany, Government College University Lahore, Lahore, Pakistan
| | - Muhammad U F Awan
- Department of Botany, Government College University Lahore, Lahore, Pakistan
| | - Zahid Mehmood
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 413310, Taiwan.
- Department of Applied Chemistry, Chaoyang University of Technology, Taichung, 413310, Taiwan.
| | - Noor Sana
- Department of Botany, Government College University Lahore, Lahore, Pakistan
| | - Wasim Abbas
- Department of Botany, Government College University Lahore, Lahore, Pakistan
| | - Adeel Ahmad
- Department of Botany, Government College University Lahore, Lahore, Pakistan
| | - Abdullah Qasim
- Department of Botany, Government College University Lahore, Lahore, Pakistan
| | - Annum Gul
- Department of Botany, Government College University Lahore, Lahore, Pakistan
| | - Ali Hasnain
- Department of Botany, Government College University Lahore, Lahore, Pakistan
| | - Hsi-Hsien Yang
- Department of Environmental Engineering and Management, Chaoyang University of Technology, Taichung, 413310, Taiwan.
| |
Collapse
|
5
|
Song J, Cao X, An R, Ding H, Wang W, Zhou Y, Wu C, Cao Y, Wang H, Li C, Li Q. Physiological Adaptation to Different Heavy Metal Stress in Seedlings of Halophyte Suaeda liaotungensis. BIOLOGY 2025; 14:260. [PMID: 40136518 PMCID: PMC11940190 DOI: 10.3390/biology14030260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 03/27/2025]
Abstract
Soil contamination with heavy metals is a worldwide environmental issue that impacts plant growth and human health. This study is the first to investigate the tolerance and physiological response mechanism of Suaeda liaotungensis seedlings to heavy metal stress. The results exhibited that the toxicity degree of Pb, Cd, Cu, and Zn to Suaeda liaotungensis seedlings was highest for Cd and lowest for Pb. Heavy metal stress increased H2O2 levels in seedlings, thereby aggravating lipid peroxidation of the cell membrane and consequently increasing MDA content. Meanwhile, the SOD and CAT activities in seedlings increased under heavy metal stress, whereas POD activity decreased consistently under Cd and Zn stress. The soluble sugars and proline content in seedlings also showed an increasing trend under heavy metal stress. Furthermore, the tolerance in the seedlings from black seeds to Pb and Cd stress was improved by enhancing SOD and CAT activities and accumulating proline. However, the tolerance in the seedlings from brown seeds to Cu stress was improved by increasing CAT activity as well as accumulating soluble sugar and proline content. The results reveal the response mechanism of Suaeda liaotungensis seedlings to heavy metal stress and provide the basis for utilizing Suaeda liaotungensis to improve heavy metal-contaminated saline soil.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qiuli Li
- Key Laboratory of Plant Biotechnology of Liaoning Province, School of Life Sciences, Liaoning Normal University, Dalian 116081, China; (J.S.); (X.C.); (R.A.); (H.D.); (W.W.); (Y.Z.); (C.W.); (Y.C.); (H.W.); (C.L.)
| |
Collapse
|
6
|
Luo Y, Huang X, Sha A, He J, Chen X, Xiao W, Peng L, Zou L, Liu B, Li Q. Analysis of growth physiological changes and metabolome of highland barley seedlings under cadmium (II) stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125664. [PMID: 39805469 DOI: 10.1016/j.envpol.2025.125664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 12/24/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
This study aims to investigate the physiological changes in growth and metabolic response mechanisms of highland barley under different concentrations of cadmium. To achieve this, cadmium stress was applied to green barley at levels of 20, 40, and 80 mg/L. The results revealed that, under Cd(II) stress, the chlorophyll content and photosynthesis in leaves of highland barley seedlings were inhibited to some extent. Additionally, the malondialdehyde (MDA) content and superoxide dismutase activity increased significantly, indicating that the seedlings were affected by oxidative stress. In addition, Cd(II) stress also significantly affected the accumulation of metabolites in highland barley seedlings, resulting in an increase in lipids and lipid molecules, organic heterocyclic compounds, and phenylpropanoids. Cd(II) stress also significantly interfered with phenylalanine metabolism, fructose and mannose metabolism, amino acid, sugar, and nucleotide sugar metabolism, and biosynthetic metabolic pathways of isoquinoline alkaloids. The increase in Cd(II) stress also resulted in elevated levels of soluble sugars, soluble proteins, and proline as defense mechanisms against the stress. Overall, barley has a very good ability to resist adversity, and the mechanism of barley's resistance to adversity has not been deeply investigated. Therefore, in this paper, we systematically investigated the stress resistance mechanism of barley to cadmium stress and found that the growth physiology and metabolism of barley seedlings were significantly affected by cadmium stress. Differential changes in metabolites and enrichment of metabolic pathways may be the main mechanisms for barley seedlings to cope with Cd(II) stress. This provides direction for selecting better varieties of barley.
Collapse
Affiliation(s)
- Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xian Huang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Heredia B, Diaz Recio P, Young BJ, Pacheco P, Barcelo Zungre F, Hruby S, Acevedo MA, Mercado MI, Roqueiro G. Strategies of physiological, morpho-anatomical and biochemical adaptation in seedlings of native species exposed to mining waste. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 290:117750. [PMID: 39847881 DOI: 10.1016/j.ecoenv.2025.117750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/25/2025]
Abstract
Seeds of four native species of trees and shrubs (Larrea cuneifolia, Bulnesia retama, Plectrocarpa tetracantha and Prosopis flexuosa) were exposed to soil contaminated with As, Cu, Cd, and Zn from an abandoned gold mine to identify adaptation strategies. Several physiological, morpho-anatomical, and biochemical parameters were determined. The seed germination of L. cuneifolia, B. retama, and P. tetracantha was fully inhibited in 100 % contaminated soil. Toxicological endpoints as NOEC, LOEC and IC50 ranged from 10 % to 25 % of soil contaminated with mining waste. Radicle elongation was the most sensitive variable to high metal(loid) concentrations, except for L. cuneifolia that hypocotyl elongation was the most affected parameter. P. flexuosa was selected to evaluate biochemical biomarkers and morpho-anatomical parameters. It showed an increase in radicle diameter and central radicle cylinder. A concentration-dependent increase in the O2·- production was observed in radicle and cotyledon. A peak of the enzymatic activity of guaiacol peroxidase, ascorbate peroxidase and catalase enzymes in P. flexuosa seedlings showed a negative relationship between metal(loid) concentration and exposure time. After a drop in the enzymatic activity, an increase in the malondialdehyde content (lipid peroxidation) was observed. The tested native species could be useful for phytoremediation of soils with a very high degree of metal contamination. A further investigation should focus on strategies to improve soil physicochemical characteristics for plant survival at highest contamination levels.
Collapse
Affiliation(s)
- Belén Heredia
- Universidad Nacional de San Juan, Facultad de Ingeniería (FI-UNSJ), Av. Lib. San Martín (Oeste) 1109, San Juan, San Juan 5400, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria San Juan, Calle 11 y Vidart, Pocito, San Juan 5427, Argentina.
| | - Pablo Diaz Recio
- Universidad Nacional de San Juan, Facultad de Ingeniería (FI-UNSJ), Av. Lib. San Martín (Oeste) 1109, San Juan, San Juan 5400, Argentina.
| | - Brian Jonathan Young
- Instituto Nacional de Tecnología Agropecuaria (INTA), Instituto de Microbiología y Zoología Agrícola (IMyZA), Nicolas Repetto 2751, Hurlingham, Buenos Aires B1686, Argentina.
| | - Pablo Pacheco
- Instituto de Química San Luis (INQUISAL-CONICET), Chacabuco y Pedernera s/n, San Luis 5700, Argentina.
| | - Franco Barcelo Zungre
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria San Juan, Calle 11 y Vidart, Pocito, San Juan 5427, Argentina; Consejo Nacional de Investigación Científica y Técnica (CONICET-CCT San Juan), Facultad de Ingeniería-UNSJ, Av. Libertador Gral. San Martín 1109, San Juan 5400, Argentina.
| | - Silvina Hruby
- Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria San Juan, Calle 11 y Vidart, Pocito, San Juan 5427, Argentina; Consejo Nacional de Investigación Científica y Técnica (CONICET-CCT San Juan), Facultad de Ingeniería-UNSJ, Av. Libertador Gral. San Martín 1109, San Juan 5400, Argentina.
| | - Maria Andreína Acevedo
- Fundación Miguel Lillo, Instituto de Morfología Vegetal, Calle Miguel Lillo 251, San Miguel de Tucumán, Tucumán T4000JFE, Argentina.
| | - María Inés Mercado
- Fundación Miguel Lillo, Instituto de Morfología Vegetal, Calle Miguel Lillo 251, San Miguel de Tucumán, Tucumán T4000JFE, Argentina.
| | - Gonzalo Roqueiro
- Universidad Nacional de San Juan, Facultad de Ingeniería (FI-UNSJ), Av. Lib. San Martín (Oeste) 1109, San Juan, San Juan 5400, Argentina; Instituto Nacional de Tecnología Agropecuaria (INTA), Estación Experimental Agropecuaria San Juan, Calle 11 y Vidart, Pocito, San Juan 5427, Argentina.
| |
Collapse
|
8
|
Amist N, Khare S, Azim Z, Singh NB. Protective Role of Polyethylene Glycol Towards the Damaging Effects of Cadmium. Appl Biochem Biotechnol 2025; 197:113-136. [PMID: 39102083 DOI: 10.1007/s12010-024-05010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
This study aimed to evaluate the role of drought-induced changes in the effects of cadmium (Cd) in plants. Cd is the most hazardous and important environmental pollutant. Water deficit is the most common environmental stress encountered by plants and affects most of the plant functions. The present study assessed the effect of Cd and water deficit on Capsicum frutescens seedlings in single and combined treatments. The seedlings of Capsicum were grown in a hydroponic solution and treated with Cd. The seedlings were subjected to water deficit with the help of polyethylene glycol (PEG). The other set of seedlings was treated with combined Cd + PEG. In the absence of PEG, maximum Cd accumulation was observed. The root and shoot growth of the seedlings were affected under all treatments with maximum inhibition in Cd. Pigment, protein and sugar contents and nitrate reductase activity decreased significantly in all treatments, while proline content increased. Induction of oxidative damage occurred through the formation of free radicals which caused alteration in electrolyte leakage, lipid peroxidation and activities of antioxidant enzymes, viz. superoxide dismutase, catalase, ascorbate peroxidase, guaiacol peroxidase and non-enzymatic non-protein thiol content and ascorbic acid in the stressed seedlings. Water deficit buttressed the toxic effect of Cd on chilli seedlings.
Collapse
Affiliation(s)
- Nimisha Amist
- Department of Botany, Ewing Christian College, University of Allahabad, Prayagraj, 211003, India
| | - Shubhra Khare
- Department of Applied Sciences and Humanities, Invertis University, Bareilly, 234123, India
| | - Zeba Azim
- Plant Physiology Laboratory, Department of Botany, University of Allahabad, Uttar Pradesh, Allahabad, 211002, India
| | - Narsingh Bahadur Singh
- Plant Physiology Laboratory, Department of Botany, University of Allahabad, Uttar Pradesh, Allahabad, 211002, India.
| |
Collapse
|
9
|
Zamani E, Bakhtari B, Razi H, Hildebrand D, Moghadam A, Alemzadeh A. Comparative morphological, physiological, and biochemical traits in sensitive and tolerant maize genotypes in response to salinity and pb stress. Sci Rep 2024; 14:31036. [PMID: 39730710 DOI: 10.1038/s41598-024-82173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/03/2024] [Indexed: 12/29/2024] Open
Abstract
Salinity and lead are two important abiotic stresses that limit crop growth and yield. In this study, we assayed the effect of these stresses on tolerant and sensitive maize genotypes. Four-week-old maize plants were treated with 250 mM sodium chloride (NaCl) and 250 µM lead (Pb). Our results show that NaCl or Pb treatment of the sensitive genotype caused a significant reduction in the root length, plant height, total fresh and dry weights, as well as chlorophyll, and carotenoid content. Salt stress led to a significant decrease in the relative water content, shoot and root length, fresh and dry weight as well as leaf area and K+ content but increase Na+ content. Both NaCl and Pb stresses increased the antioxidant enzyme activity, proline content, malondialdehyde, and hydrogen peroxide levels. Principal component analysis (PCA) accounted for 69.8% and 16.5% of the total variation among all the variables studied. PCA also suggested a positive correlation between hydrogen peroxide, malondialdehyde, peroxidase, catalase, ascorbate peroxidase levels, and Na+ content and a negative correlation between K+ content, chlorophyll content, relative water content, leaf area, root length, plant height, and total fresh, and dry weights. Together, these results suggest that the salt-tolerant maize genotype is more suitable for adapting to Pb stress compared to the salt-sensitive genotype.
Collapse
Affiliation(s)
- Elnaz Zamani
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahlanes Bakhtari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Hooman Razi
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - David Hildebrand
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546, USA
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Abbas Alemzadeh
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
10
|
Krzyżak J, Rusinowski S, Szada-Borzyszkowska A, Pogrzeba M, Stec R, Janota P, Lipowska B, Stec K, Długosz J, Sitko K. A novel agrosinters support growth, photosynthetic efficiency and reduce trace metal elements accumulation in oilseed rape growing on metalliferous soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125095. [PMID: 39389250 DOI: 10.1016/j.envpol.2024.125095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Soil conditioners to fertilize, improve soil structure and support the phytostabilization of trace metal elements (TMEs) are being used more and more frequently. One of the options are agrosinters - slow-release ceramic fertilizers consisting mainly of SiO2, CaO, P2O5 and K2O, with an alkaline pH and high impact strength. The effect of two different agrosinters, A1 and A2, on the growth and physiological condition of Brassica napus grown in uncontaminated and Pb-, Cd- and Zn-contaminated soil was investigated in a pot experiment. In vivo data were collected using an infrared gas analyzer, a fluorimeter, a pigment content meter and a thermal camera. Elemental composition of the biomass was also investigated. The tested agrosinters promote biomass yield and have an effect on improving leaf chlorophyll content, phenomenological energy fluxes and plant gas exchange. The effect of the agrosinters on the plants was dose- and amendment-specific. An immobilization effect was observed not only in the soil but also in the plants. A reduction in the Cd (22%) and Zn (40%) content in the biomass was measured. All this was related to the effect of increasing the available form of P (50%), K (300%) and Ca (50%) in the soil, which improves soil fertility and reduces the bioavailable forms of the studied TMEs, due to the increase in soil pH and/or the complexation of these with phosphate compounds. The multidimensional analysis of A2 agrosinter shows the most positive effects on plant conditions, indicating that fly ash as a mixed substrate benefits the plants.
Collapse
Affiliation(s)
- J Krzyżak
- Institute for Ecology of Industrial Areas, Katowice, Poland.
| | - S Rusinowski
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | | | - M Pogrzeba
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | - R Stec
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | - P Janota
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | - B Lipowska
- Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Refractory Materials Centre in Gliwice, Poland
| | - K Stec
- Łukasiewicz Research Network-Institute of Ceramics and Building Materials, Refractory Materials Centre in Gliwice, Poland
| | - J Długosz
- Institute for Ecology of Industrial Areas, Katowice, Poland
| | - K Sitko
- Institute for Ecology of Industrial Areas, Katowice, Poland; Plant Ecophysiology Team, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
11
|
Malheiro C, Prodana M, Patinha C, Morgado RG, Loureiro S. Insect frass from upcycling vegetable by-products with cereals: Effects on the soil properties, plant development and soil invertebrate fitness. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 372:123234. [PMID: 39577183 DOI: 10.1016/j.jenvman.2024.123234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
The use of insects in organic management systems is expanding due to their ability to recycle waste into valuable co-products for agriculture, notably frass, constituted by the insect's excrements, larval exuviae, and remaining undigested feedstock. This study aimed to assess the effects of different application rates of frass (0.16, 0.32, 0.64, 1.28, 2.56 and 5.12%) produced by black soldier fly Hermetia illucens larvae (BSFL) on the survival and reproduction of two non-target invertebrate species, the enchytraeid Enchytraeus crypticus and the collembolan Folsomia candida, and early development of three representative species of crops as onion Allium cepa, turnip Brassica rapa and tomato Solanum lycopersicum. Chemical analyses were conducted to evaluate changes in the soil properties. Results showed that BSFL frass did not impact the invertebrates' survival while significantly enhancing the production of E. crypticus juveniles (after 21 days). F. candida juveniles remained similar (after 28 days). Seed germination decreased at the highest frass rate (5.12%), while the development was promoted at intermediate rates (0.64%-1.28%). The different outcomes may be linked to changes in certain soil parameters, such as the soil pH and electrical conductivity, the soil organic matter, and the availability of nutrients. In summary, frass posed no risk to the tested invertebrate species but may hinder seed germination at high rates, representing a risk for agricultural production. Nevertheless, intermediate rates of BSFL frass promoted plant development, showing potential as a sustainable alternative to conventional fertilizers. Further research is needed to ensure its safe and efficient application in agriculture.
Collapse
Affiliation(s)
- C Malheiro
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - M Prodana
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - C Patinha
- GEOBIOTEC - GeoBioSciences, GeoTechnologies and GeoEngineering & Departament of Geosciences, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - R G Morgado
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - S Loureiro
- CESAM - Centre for Environmental and Marine Studies & Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
12
|
Fang H, Lin D, Zhang Z, Chen H, Zheng Z, Jiang D, Wang W. Association of coexposure to perfluoroalkyl and polyfluoroalkyl compounds and heavy metals with pregnancy loss and reproductive lifespan: The mediating role of cholesterol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117160. [PMID: 39388969 DOI: 10.1016/j.ecoenv.2024.117160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
Previous studies have demonstrated the toxic effects of per- and polyfluoroalkyl substances (PFASs) and heavy metals on the reproductive system. However, the interactions and combined effects of these substances remain unexplored. This study utilizes data from the National Health and Nutrition Examination Survey to investigate the associations between coexposure to four types of PFASs, lead (Pb), mercury (Hg) and self-reported pregnancy loss and reproductive lifespan in females. Genes associated with these substances and abortion were identified via the Comparative Toxicogenomics Database. The results revealed that Ln-PFOA (IRR=1.88, 95 % CI=1.42-2.50, Ln--: log transformed), Ln-PFOS (IRR=1.58, 95 % CI=1.12-2.22), Ln-PFHxS (IRR=1.99, 95 % CI=1.57-2.52), and Ln-Hg (IRR=1.92, 95 % CI=1.41-2.43) were positively associated with the risk of pregnancy loss. Ln-PFOA (β=1.27, 95 % CI=0.28-2.27), Ln-PFOS (β=1.01, 95 % CI=0.39-1.63), Ln-PFHxS (β=0.71, 95 % CI=0.12-1.63), Ln-PFNA (β=1.15, 95 % CI=0.23-2.08), Ln-Pb (β=3.87, 95 % CI=2.58-5.15), and Ln-Hg (β=1.01, 95 % CI=0.39-1.64) exposures were positively associated with reproductive lifespan. The mixed and overall effects of coexposure to PFASs and heavy metals were positively correlated with the risk of pregnancy loss and reproductive lifespan. Cholesterol partially mediated the association with the risk of pregnancy loss, whereas delay in menopause fully mediated the association with reproductive lifespan. Significant additive interactions were observed between PFOA and Pb and between PFOS, PFHxS, PFNA and Hg at high levels of coexposure. Thirty-nine overlapping genes associated with abortion were identified for these substances, and further analyses revealed that these genes significantly interact and may contribute to abortion through oxidative stress.
Collapse
Affiliation(s)
- Hua Fang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Dai Lin
- Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Department of Nutrition and Food Safety, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Ziqi Zhang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Haoting Chen
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Zixin Zheng
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Dongdong Jiang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China
| | - Wenxiang Wang
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China; Fujian Province Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, Fujian, China.
| |
Collapse
|
13
|
Barhoumi Z. Physiological and biochemical attributes of the association host-parasite Tamarix aphylla-Plicosepalus acacia. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109163. [PMID: 39342662 DOI: 10.1016/j.plaphy.2024.109163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/15/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
Parasitic plants have been viewed as pests since they are able to damage agricultural crops and forest trees. They establish vasculature connections with the hosts and withdraw the required nutritive resources. This study aimed to explore the physiological and biochemical effects of the parasitic plant Plicosepalus acacia on the host Tamarix aphylla. It was conducted on young fully expanded leaves from the uninfected and infected trees and the parasitic plant 'in situ'. The parasite had higher net photosynthetic assimilation rate (A), transpiration rate (E) and stomatal conductance (gs) compared to the host. Equally, it had two-fold greater water potential (Ψ) and osmotic potential (Ψs). It accumulated high amount of K, while it avoided accumulation of the most trace and ultratrace elements. Otherwise, parasitism seemed to increase A, WUE, water uptake and accumulation of the most major, trace and ultra-trace elements, however it reduced the accumulation of osmolytes at the infected plants. Based on UPLC-MS approach, P. acacia seemed to use a group of composites to interact with the host, including oleamide as a protector metabolite against host's defense system, carvone to establish vasculature connections with the host, cuminaldehyde to weaken growth and proliferation of the host, and caprolactam to weaken the distal part of the host. In contrast, the host T. aphylla could be used pipecolinic acid and nicotinamide to regulate systemic resistance and to defense against the parasite infection. Finally, despite the defense molecular interactions between the two partners, the parasitic plant exhibited several beneficial effects on the host.
Collapse
Affiliation(s)
- Zouhaier Barhoumi
- King Khalid University, Biology Department, P.O. Box-9004, Abha, 61413, Kingdom of Saudi Arabia.
| |
Collapse
|
14
|
Dyson E, Hagmann DF, Idrovo C, Krumins JA, Goodey NM. Brownfield Topsoil Vertical Heterogeneity: Implications for Germination and Soil Microbial Functioning. ACS OMEGA 2024; 9:41544-41554. [PMID: 39398162 PMCID: PMC11465544 DOI: 10.1021/acsomega.4c05265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/05/2024] [Accepted: 09/20/2024] [Indexed: 10/15/2024]
Abstract
Soil vertical heterogeneity refers to the variation in soil properties and composition with depth. In uncontaminated soils, properties including the organic matter content and nutrient concentrations typically change gradually with depth due to natural processes such as weathering, leaching, and organic matter decomposition. In contaminated soils, heavy metals and organic contaminants can migrate vertically through leaching or root uptake and translocation by plants and macrobiota, if present, leading to vertical heterogeneity in contaminant concentrations at different depths. Contaminants can alter soil properties, and we investigated the implications of soil vertical heterogeneity for germination and microbial functioning. We collected soil from an urban brownfield and created two conditions: structured soil samples collected with the soil core intact and mixed (unstructured) samples. When planted, the germination rate was significantly lower in the structured conditions (3.1 ± 1.7%) compared to mixed soils (17 ± 4.6%), suggesting that the vertical heterogeneity of contaminated soil influenced plant germination. To map the vertical distribution of contaminants and nutrient cycling rates in the structured soil samples, we collected 10 cm-deep soil cores from the barren site and a neighboring vegetated reference site and measured heavy metal concentrations, soil enzyme activities, and organic matter content in five 2 cm vertical layers. In the barren soil cores, metals were found concentrated in the top 2 cm layer, while in the vegetated soil cores, metals were uniformly distributed. No significant differences were observed for the organic matter content or moisture along depth. Published studies on vertical distribution of enzyme activities and metal concentrations have treated the top 10-20 cm as a single layer and thus would have not revealed the thin (<2 cm thick) metal cap on the surface of the barren soil core. Despite the metal cap, enzyme activities in the top layer were similar to those in the lower layers of the barren soil core, suggesting that high metal concentrations do not limit soil enzyme activity under all circumstances. Investigating vertical heterogeneity in postindustrial soils can inform efforts to convert industrial barrens to vegetated environments.
Collapse
Affiliation(s)
- Eshariah
N. Dyson
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Diane F. Hagmann
- Department
of Earth and Environmental Science, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Cesar Idrovo
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| | - Jennifer Adams Krumins
- Department
of Biology, Montclair State University, Montclair, New Jersey 07043, United States
| | - Nina M. Goodey
- Department
of Chemistry and Biochemistry, Montclair
State University, Montclair, New Jersey 07043, United States
| |
Collapse
|
15
|
Xue C, Liu R, Xia Z, Jia J, Hu B, Rennenberg H. Sulfur availability and nodulation modify the response of Robinia pseudoacacia L. to lead (Pb) exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135612. [PMID: 39182290 DOI: 10.1016/j.jhazmat.2024.135612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Both sulfur (S) supply and legume-rhizobium symbiosis can significantly contribute to enhancing the efficiency of phytoremediation of heavy metals (HMs). However, the regulatory mechanism determining the performance of legumes at lead (Pb) exposure have not been elucidated. Here, we cultivated black locust (Robinia pseudoacacia L.), a leguminous woody pioneer species at three S supply levels (i.e., deficient, moderate, and high S) with rhizobia inoculation and investigated the interaction of these treatments upon Pb exposure. Our results revealed that the root system of Robinia has a strong Pb accumulation and anti-oxidative capacity that protect the leaves from Pb toxicity. Compared with moderate S supply, high S supply significantly increased Pb accumulation in roots by promoting the synthesis of reduced S compounds (i.e., thiols, phytochelatin), and also strengthened the antioxidant system in leaves. Weakened defense at deficient S supply was indicated by enhanced oxidative damage. Rhizobia inoculation alleviated the oxidative damage of its Robinia host by immobilizing Pb to reduce its absorption by root cells. Together with enhanced Pb chelation in leaves, these mechanisms strengthen Pb detoxification in the Robinia-rhizobia symbiosis. Our results indicate that appropriate S supply can improve the defense of legume-rhizobia symbiosis against HM toxicity.
Collapse
Affiliation(s)
- Caixin Xue
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Rui Liu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Zhuyuan Xia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Jin Jia
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| | - Bin Hu
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China.
| | - Heinz Rennenberg
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
16
|
Qiao H, Liu Z, Peng X, Xian H, Cheng K, Yang F. Significance of humic matters-soil mineral interactions for environmental remediation: A review. CHEMOSPHERE 2024; 365:143356. [PMID: 39303791 DOI: 10.1016/j.chemosphere.2024.143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Industrial and human activities have led to serious soil and water pollution. Traditional remediation techniques have problems such as high treatment costs and the tendency to cause secondary pollution. Soil minerals and humic matters are common active components in soils. Both play vital roles and are frequently bound together to form humic matters-mineral complexes, which are considered sustainable and eco-friendly materials for environmental remediation and improvement. However, due to the complexity of humic matters-mineral interactions and the wide variation in the removal of different pollutants, there is a lack of research in this area. This paper provides a comprehensive introduction and summary of the interaction mechanisms between humic matters and typical soil minerals such as layered phosphate minerals and iron oxides, and their applications in environmental remediation, especially for the treatment of heavy metals (lead, mercury, chromium and cadmium) and organic pollutants (antibiotics, pesticides and polycyclic aromatic hydrocarbons) in water and soil. The humic matters-mineral complex can reduce the toxicity and migration rate of pollutants through adsorption, electrostatic attraction, together with H-bonding and hydrophobic interactions, reducing the harm of these pollutants to soil and water environments and realizing the efficient remediation of soil and water environments. And compared with the traditional treatment technology, this method is more green and environmental protection, and the treatment cost is greatly reduced. Finally, the deficiencies of using humic matters-mineral complex to achieve soil and water remediation were summarized and also proposed directions for future endeavors as well as concrete measures.
Collapse
Affiliation(s)
- Hui Qiao
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China
| | - Xiongxin Peng
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China
| | - Husheng Xian
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China
| | - Kui Cheng
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China.
| |
Collapse
|
17
|
Murawska-Wlodarczyk K, van der Ent A, Wlodarczyk T, Słomka A, Paterson DJ, Brueckner D, Przybyłowicz WJ, Mesjasz-Przybyłowicz J, Ryan CC, Maier RM, Babst-Kostecka A. Habitat-specific allocations of elements in Atriplex lentiformis seeds indicate adaptation to metal toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5076-5090. [PMID: 38761108 DOI: 10.1093/jxb/erae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/16/2024] [Indexed: 05/20/2024]
Abstract
Self-sustaining vegetation in metal-contaminated areas is essential for rebuilding ecological resilience and community stability in degraded lands. Metal-tolerant plants originating from contaminated post-mining areas may hold the key to successful plant establishment and growth. Yet, little is known about the impact of metal toxicity on reproductive strategies, metal accumulation, and allocation patterns at the seed stage. Our research focused on the metal tolerant Atriplex lentiformis. Specifically, we examined the effects of toxic metal(loid) concentration in soils on variability in its reproductive strategies, including germination patterns, elemental uptake, and allocation within the seeds. We employed advanced imaging techniques like synchrotron X-ray fluorescence microscopy (2D scans and 3D tomograms) combined with inductively coupled plasma mass spectrometry to reveal significant differences in metal(loid) concentration and distribution within the seed structures of A. lentiformis from contrasting habitats. Exclusive Zn hotspots of high concentrations were found in the seeds of the metallicolous accession, primarily in the sensitive tissues of shoot apical meristems and root zones of the seed embryos. Our findings offer novel insights into phenotypic variability and metal tolerance and accumulation in plants from extreme environments. This knowledge can be applied to enhance plant survival and performance in land restoration efforts.
Collapse
Affiliation(s)
| | - Antony van der Ent
- Laboratory of Genetics, Wageningen University and Research, Wageningen, The Netherlands
- Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Queensland, Australia
- Laboratoire Sols et Environnement, INRAE, Université de Lorraine, Nancy, France
| | - Tomasz Wlodarczyk
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | | | | | - Wojciech J Przybyłowicz
- AGH University of Science and Technology, Faculty of Physics & Applied Computer Science, Krakow, Poland
- Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | | | - Chris C Ryan
- CSIRO, Mineral Resources, Clayton, Victoria, Australia
| | - Raina M Maier
- Department of Environmental Science, The University of Arizona, Tucson, AZ, USA
| | | |
Collapse
|
18
|
Sharma I, Sharma S, Sharma V, Singh AK, Sharma A, Kumar A, Singh J, Sharma A. PGPR-Enabled bioremediation of pesticide and heavy metal-contaminated soil: A review of recent advances and emerging challenges. CHEMOSPHERE 2024; 362:142678. [PMID: 38908452 DOI: 10.1016/j.chemosphere.2024.142678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 06/24/2024]
Abstract
The excessive usage of agrochemicals, including pesticides, along with various reckless human actions, has ensued discriminating prevalence of pesticides and heavy metals (HMs) in crop plants and the environment. The enhanced exposure to these chemicals is a menace to living organisms. The pesticides may get bioaccumulated in the food chain, thereby leading to several deteriorative changes in the ecosystem health and a rise in the cases of some serious human ailments including cancer. Further, both HMs and pesticides cause some major metabolic disturbances in plants, which include oxidative burst, osmotic alterations and reduced levels of photosynthesis, leading to a decline in plant productivity. Moreover, the synergistic interaction between pesticides and HMs has a more serious impact on human and ecosystem health. Various attempts have been made to explore eco-friendly and environmentally sustainable methods of improving plant health under HMs and/or pesticide stress. Among these methods, the employment of PGPR can be a suitable and effective strategy for managing these contaminants and providing a long-term remedy. Although, the application of PGPR alone can alleviate HM-induced phytotoxicities; however, several recent reports advocate using PGPR with other micro- and macro-organisms, biochar, chelating agents, organic acids, plant growth regulators, etc., to further improve their stress ameliorative potential. Further, some PGPR are also capable of assisting in the degradation of pesticides or their sequestration, reducing their harmful effects on plants and the environment. This present review attempts to present the current status of our understanding of PGPR's potential in the remediation of pesticides and HMs-contaminated soil for the researchers working in the area.
Collapse
Affiliation(s)
- Indu Sharma
- Department of Life Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Shivika Sharma
- Department of Molecular Biology and Genetic Engineering, Lovely Professional University, Jalandhar, Punjab, India
| | - Vikas Sharma
- Department of Molecular Biology and Genetic Engineering, Lovely Professional University, Jalandhar, Punjab, India
| | - Anil Kumar Singh
- Department of Agriculture Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Aksh Sharma
- Department of Life Sciences, University Institute of Sciences, Sant Baba Bhag Singh University, Jalandhar, Punjab, 144030, India
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Joginder Singh
- Department of Botany, Nagaland University, Hqrs. Lumami, Zunheboto, Nagaland, 798627, India.
| | - Ashutosh Sharma
- Faculty of Agricultural Sciences, DAV University, Jalandhar, Punjab, 144012, India.
| |
Collapse
|
19
|
Han Z, Zheng Y, Zhang X, Wang B, Guo Y, Guan Z. Flavonoid metabolism plays an important role in response to lead stress in maize at seedling stage. BMC PLANT BIOLOGY 2024; 24:726. [PMID: 39080516 PMCID: PMC11287917 DOI: 10.1186/s12870-024-05455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
BACKGROUND Pb stress, a toxic abiotic stress, critically affects maize production and food security. Although some progress has been made in understanding the damage caused by Pb stress and plant response strategies, the regulatory mechanisms and resistance genes involved in the response to lead stress in crops are largely unknown. RESULTS In this study, to uncover the response mechanism of maize to Pb stress phenotype, physiological and biochemical indexes, the transcriptome, and the metabolome under different concentrations of Pb stress were combined for comprehensive analysis. As a result, the development of seedlings and antioxidant system were significantly inhibited under Pb stress, especially under relatively high Pb concentrations. Transcriptome analysis revealed 3559 co-differentially expressed genes(co-DEG) under the four Pb concentration treatments (500 mg/L, 1000 mg/L, 2000 mg/L, and 3000 mg/L Pb(NO3)2), which were enriched mainly in the GO terms related to DNA-binding transcription factor activity, response to stress, response to reactive oxygen species, cell death, the plasma membrane and root epidermal cell differentiation. Metabolome analysis revealed 72 and 107 differentially expressed metabolites (DEMs) under T500 and T2000, respectively, and 36 co-DEMs. KEGG analysis of the DEMs and DEGs revealed a common metabolic pathway, namely, flavonoid biosynthesis. An association study between the flavonoid biosynthesis-related DEMs and DEGs revealed 20 genes associated with flavonoid-related metabolites, including 3 for genistin and 17 for calycosin. CONCLUSION In summary, the study reveals that flavonoid metabolism plays an important role in response to Pb stress in maize, which not only provides genetic resources for the genetic improvement of maize Pb tolerance in the future but also enriches the theoretical basis of the maize Pb stress response.
Collapse
Affiliation(s)
- Zanping Han
- College of Agronomy, Henan University of Science and Technology, Luoyang, China.
| | - Yan Zheng
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Xiaoxiang Zhang
- School of Agriculture, Henan Institute of Science and Technology, Xinxiang, China
| | - Bin Wang
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Yiyang Guo
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Zhongrong Guan
- Chongqing Yudongnan Academy of Agricultural Sciences, Chongqing, China
| |
Collapse
|
20
|
Luo C, Zhang L, Ali MM, Xu Y, Liu Z. Environmental risk substances in soil on seed germination: Chemical species, inhibition performance, and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134518. [PMID: 38749244 DOI: 10.1016/j.jhazmat.2024.134518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/20/2024] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
Nowadays, numerous environmental risk substances in soil worldwide have exhibited serious germination inhibition of crop seeds, posing a threat to food supply and security. This review provides a comprehensive summary and discussion of the inhibitory effects of environmental risk substances on seed germination, encompassing heavy metals, microplastics, petroleum hydrocarbons, salinity, phenols, essential oil, agricultural waste, antibiotics, etc. The impacts of species, concentrations, and particle sizes of various environmental risk substances are critically investigated. Furthermore, three primary inhibition mechanisms of environmental risk substances are elucidated: hindering water absorption, inducing oxidative damage, and damaging seed cells/organelles/cell membranes. To address these negative impacts, diverse effective coping measures such as biochar/compost addition, biological remediation, seed priming, coating, and genetic modification are proposed. In brief, this study systematically analyzes the negative effects of environmental risk substances on seed germination, and provides a basis for the comprehensive understanding and future implementation of efficient treatments to address this significant challenge and ensure food security and human survival.
Collapse
Affiliation(s)
- Cheng Luo
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Linyan Zhang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Mahmoud M Ali
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Agricultural Engineering Research Institute, Agricultural Research Center, Giza 12311, Egypt
| | - Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing 100083, China.
| |
Collapse
|
21
|
Abbas S, Tanwir K, Hussaan M, Masood S, Ali Q, Raza A, Shahid M, Chaudhary HJ, Mushtaq S, Javed MT. In vitro exploration of Acinetobacter strain (SG-5) for antioxidative potential and phytohormone biosynthesis in maize (Zea mays L.) cultivars differing in cadmium tolerance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45465-45484. [PMID: 38965111 DOI: 10.1007/s11356-024-34181-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
Cadmium (Cd) poses serious threats to plant growth and development, whereas the use of plant growth-promoting rhizobacteria (PGPR) has emerged a promising approach to diminish Cd retention in crops. A pot experiment was conducted to evaluate the effect of Cd tolerant strain Acinetobacter sp. SG-5 on growth, phytohormonal response, and Cd uptake of two maize cultivars (3062 and 31P41) under various Cd stress levels (0, 5, 12, 18, 26, and 30 μM CdCl2). The results revealed that CdCl2 treatment significantly suppressed the seed germination and growth together with higher Cd retention in maize cultivars in a dose-dependent and cultivar-specific manner with pronounced negative effect in 31P41. However, SG-5 strain exerted positive impact by up-regulating seed germination traits, plant biomass, photosynthetic pigments, enzymatic and non-enzymatic antioxidants, endogenous hormone level indole-3-acetic acid (IAA), abscisic acid (ABA), and sustained optimal nutrient's levels in both cultivars but predominantly in Cd-sensitive one (31P41). Further, Cd-resistant PGPR decreased the formation of reactive oxygen species in terms of malondialdehyde (MDA) and hydrogen peroxide (H2O2) verified through 3, 3'-diaminobenzidine (DAB) and nitroblue tetrazolium (NBT) analysis in conjunction with reduced Cd uptake and translocation in maize root and shoots in comparison to controls, advocating its sufficiency for bacterial-assisted Cd bioremediation. In conclusion, both SG-5 inoculated cultivars exhibited maximum Cd tolerance but substantial Cd tolerance was acquired by Cd susceptible cultivar-31P41 than Cd-tolerant one (3062). Current work recommended SG-5 strain as a promising candidate for plant growth promotion and bacterial-assisted phytomanagement of metal-polluted agricultural soils.
Collapse
Affiliation(s)
- Saghir Abbas
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Kashif Tanwir
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Hussaan
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Sajid Masood
- Department of Soil Science, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Qasim Ali
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Muhammad Shahid
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, 38000, Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Saba Mushtaq
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Tariq Javed
- Department of Botany, Faculty of Life Sciences, Government College University, Faisalabad, 38000, Pakistan.
| |
Collapse
|
22
|
Chowardhara B, Saha B, Awasthi JP, Deori BB, Nath R, Roy S, Sarkar S, Santra SC, Hossain A, Moulick D. An assessment of nanotechnology-based interventions for cleaning up toxic heavy metal/metalloid-contaminated agroecosystems: Potentials and issues. CHEMOSPHERE 2024; 359:142178. [PMID: 38704049 DOI: 10.1016/j.chemosphere.2024.142178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 03/22/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
Heavy metals (HMs) are among the most dangerous environmental variables for a variety of life forms, including crops. Accumulation of HMs in consumables and their subsequent transmission to the food web are serious concerns for scientific communities and policy makers. The function of essential plant cellular macromolecules is substantially hampered by HMs, which eventually have a detrimental effect on agricultural yield. Among these HMs, three were considered, i.e., arsenic, cadmium, and chromium, in this review, from agro-ecosystem perspective. Compared with conventional plant growth regulators, the use of nanoparticles (NPs) is a relatively recent, successful, and promising method among the many methods employed to address or alleviate the toxicity of HMs. The ability of NPs to reduce HM mobility in soil, reduce HM availability, enhance the ability of the apoplastic barrier to prevent HM translocation inside the plant, strengthen the plant's antioxidant system by significantly enhancing the activities of many enzymatic and nonenzymatic antioxidants, and increase the generation of specialized metabolites together support the effectiveness of NPs as stress relievers. In this review article, to assess the efficacy of various NP types in ameliorating HM toxicity in plants, we adopted a 'fusion approach', in which a machine learning-based analysis was used to systematically highlight current research trends based on which an extensive literature survey is planned. A holistic assessment of HMs and NMs was subsequently carried out to highlight the future course of action(s).
Collapse
Affiliation(s)
- Bhaben Chowardhara
- Department of Botany, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh-792103, India.
| | - Bedabrata Saha
- Plant Pathology and Weed Research Department, Newe Ya'ar Research Centre, Agricultural Research Organization, Ramat Yishay-3009500, Israel.
| | - Jay Prakash Awasthi
- Department of Botany, Government College Lamta, Balaghat, Madhya Pradesh 481551, India.
| | - Biswajit Bikom Deori
- Department of Environmental Science, Faculty of Science and Technology, Arunachal University of Studies, Namsai, Arunachal Pradesh 792103, India.
| | - Ratul Nath
- Department of Life-Science, Dibrugarh University, Dibrugarh, Assam-786004, India.
| | - Swarnendu Roy
- Department of Botany, University of North Bengal, P.O.- NBU, Dist- Darjeeling, West Bengal, 734013, India.
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Narendrapur Campus, Kolkata, India.
| | - Subhas Chandra Santra
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, 741235, India.
| |
Collapse
|
23
|
Luo X, Jiang J, Zhou J, Chen J, Cheng B, Li X. MyC Factor Analogue CO5 Promotes the Growth of Lotus japonicus and Enhances Stress Resistance by Activating the Expression of Relevant Genes. J Fungi (Basel) 2024; 10:458. [PMID: 39057343 PMCID: PMC11278419 DOI: 10.3390/jof10070458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
The symbiotic relationship between arbuscular mycorrhizal fungi (AMF) and plants is well known for its benefits in enhancing plant growth and stress resistance. Research on whether key components of the AMF colonization process, such as MyC factors, can be directly utilized to activate plant symbiotic pathways and key functional gene expression is still lacking. In this paper, we found that, using a hydroponics system with Lotus japonicus, MyC factor analogue chitin oligomer 5 (CO5) had a more pronounced growth-promoting effect compared to symbiosis with AMF at the optimal concentration. Additionally, CO5 significantly enhanced the resistance of Lotus japonicus to various environmental stresses. The addition of CO5 activated symbiosis, nutrient absorption, and stress-related signaling pathways, like AMF symbiosis, and CO5 also activated a higher and more extensive gene expression profile compared to AMF colonization. Overall, the study demonstrated that the addition of MyC factor analogue CO5, by activating relevant pathways, had a superior effect on promoting plant growth and enhancing stress resistance compared to colonization by AMF. These findings suggest that utilizing MyC factor analogues like CO5 could be a promising alternative to traditional AMF colonization methods in enhancing plant growth and stress tolerance in agriculture.
Collapse
Affiliation(s)
- Xinhao Luo
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.L.); (J.J.); (J.Z.); (J.C.)
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Jiaqing Jiang
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.L.); (J.J.); (J.Z.); (J.C.)
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jing Zhou
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.L.); (J.J.); (J.Z.); (J.C.)
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Jin Chen
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.L.); (J.J.); (J.Z.); (J.C.)
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Beijiu Cheng
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.L.); (J.J.); (J.Z.); (J.C.)
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoyu Li
- Schools of Life Sciences, Anhui Agricultural University, Hefei 230036, China; (X.L.); (J.J.); (J.Z.); (J.C.)
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
24
|
Dong X, Li W, Li C, Akan OD, Liao C, Cao J, Zhang L. Integrated transcriptomics and metabolomics revealed the mechanism of catechin biosynthesis in response to lead stress in tung tree (Vernicia fordii). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172796. [PMID: 38692325 DOI: 10.1016/j.scitotenv.2024.172796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Lead (Pb) affects gene transcription, metabolite biosynthesis and growth in plants. The tung tree (Vernicia fordii) is highly adaptive to adversity, whereas the mechanisms underlying its response to Pb remain uncertain. In this work, transcriptomic and metabolomic analyses were employed to study tung trees under Pb stress. The results showed that the biomass of tung seedlings decreased with increasing Pb doses, and excessive Pb doses resulted in leaf wilting, root rot, and disruption of Pb homeostasis. Under non-excessive Pb stress, a significant change in the expression patterns of flavonoid biosynthesis genes was observed in the roots of tung seedlings, leading to changes in the accumulation of flavonoids in the roots, especially the upregulation of catechins, which can chelate Pb and reduce its toxicity in plants. In addition, Pb-stressed roots showed a large accumulation of VfWRKY55, VfWRKY75, and VfLRR1 transcripts, which were shown to be involved in the flavonoid biosynthesis pathway by gene module analysis. Overexpression of VfWRKY55, VfWRKY75, and VfLRR1 significantly increased catechin concentrations in tung roots, respectively. These data indicate that Pb stress-induced changes in the expression patterns of those genes regulate the accumulation of catechins. Our findings will help to clarify the molecular mechanism of Pb response in plants.
Collapse
Affiliation(s)
- Xiang Dong
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Wenying Li
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, Hubei 438000, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Otobong Donald Akan
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China; Faculty of Biological Science, Akwa-Ibom State University, Akwa-Ibom State, Uyo 1167, Nigeria
| | - Chancan Liao
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jie Cao
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
25
|
Dai Y, Chen H, Li Y, Hui R, Zhang Z. Promising New Methods Based on the SOD Enzyme and SAUR36 Gene to Screen for Canola Materials with Heavy Metal Resistance. BIOLOGY 2024; 13:441. [PMID: 38927321 PMCID: PMC11200428 DOI: 10.3390/biology13060441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/30/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024]
Abstract
Canola is the largest self-produced vegetable oil source in China, although excessive levels of cadmium, lead, and arsenic seriously affect its yield. Therefore, developing methods to identify canola materials with good heavy metal tolerance is a hot topic for canola breeding. In this study, canola near-isogenic lines with different oil contents (F338 (40.62%) and F335 (46.68%) as the control) and heavy metal tolerances were used as raw materials. In an experiment with 100 times the safe standard values, the superoxide dismutase (SOD) and peroxidase (POD) activities of F335 were 32.02 mmol/mg and 71.84 mmol/mg, while the activities of F338 were 24.85 mmol/mg and 63.86 mmol/mg, exhibiting significant differences. The DEGs and DAPs in the MAPK signaling pathway of the plant hormone signal transduction pathway and other related pathways were analyzed and verified using RT-qPCR. SAUR36 and SAUR32 were identified as the key differential genes. The expression of the SAUR36 gene in canola materials planted in the experimental field was significantly higher than in the control, and FY958 exhibited the largest difference (27.82 times). In this study, SOD and SAUR36 were found to be closely related to heavy metal stress tolerance. Therefore, they may be used to screen for new canola materials with good heavy metal stress tolerance for canola breeding.
Collapse
Affiliation(s)
- Yue Dai
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| | - Hao Chen
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| | - Yufang Li
- Hunan Cotton Science Institute, No. 3036 Shanjuan Road, Changde 415101, China;
| | - Rongkui Hui
- Hunan Province Institute of Agricultural Science, South of Hongyuan East Road, Changsha 410125, China
| | - Zhenqian Zhang
- College of Agriculture, Agricultural University of Hunan, 1 Agricultural Road, Changsha 410128, China; (Y.D.); (H.C.)
| |
Collapse
|
26
|
Jobby R, Sarkar M, Bose R, Srivastava S, Suprasanna P. Chromiomics: Chromium detoxification and approaches for engineering tolerance in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 350:123991. [PMID: 38631449 DOI: 10.1016/j.envpol.2024.123991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/03/2024] [Accepted: 04/14/2024] [Indexed: 04/19/2024]
Abstract
Chromium (Cr) is a heavy metal that poses a grave threat to the ecosystem including plants. Chromium is very harmful to plants due to its effects on many physiological and metabolic pathways culminating in a negative impact on plant's growth, development, and ability to take up nutrients. Plants have developed physiological, biochemical, and molecular ways of defense against Cr, such as by augmenting antioxidant potential to reduce reactive oxygen species (ROS). A number of genes have been discovered to play a significant role in the defense mechanisms of plants against Cr, for example, genes associated with the activation of phytochelatins, metallothioneins, and those of enzymes like glutathione-S-transferases. Along with this, a few miRNAs have been found to be associated in alleviating Cr stress and, to augment plant tolerance by controlling transcription factors, HSPs, and the expression of a few proteins and hormones. Defense pathway genes and miRNAs have been used for the generation of transgenic phytoremediator plants. Not only do the transgenic plants have a higher tolerance to Cr, but they also act as hyperaccumulators for Cr and have the potential to remediate other heavy metals. This article describes about environmental Cr contamination, Cr effects on plants, different genes and miRNAs involved in Cr stress mitigation and use of candidate genes, microRNAs for creating transgenic plant systems for phytoremediation, and the applications of CRISPR technology. It is expected that the integration of omics approach and advanced genomics will offer scope for more effective phytoremediation of Chromium in the coming years.
Collapse
Affiliation(s)
- Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra - Pune Expressway, Bhatan, Panvel, Mumbai, Maharashtra 410206, India
| | - Mrittika Sarkar
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India
| | - Roshnee Bose
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India
| | - Sudhakar Srivastava
- Institute of Environment & Sustainable Development, Banaras Hindu University, Varanasi-221005, India
| | - Penna Suprasanna
- Amity Institute of Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India; Amity Centre for Nuclear Biotechnology, Amity University, Maharashtra - Pune Expressway, Bhatan, Panvel, Maharashtra 410206, India.
| |
Collapse
|
27
|
Rafiq M, Shahid M, Bibi I, Khalid S, Tariq TZ, Al-Kahtani AA, ALOthman ZA, Murtaza B, Niazi NK. Role of organic and inorganic amendments on physiological attributes of germinating pea seedlings under arsenic stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1243-1252. [PMID: 38265045 DOI: 10.1080/15226514.2024.2305684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
There are scarce data regarding the effects of soil amendments on biophysicochemical responses of plants at the early stages of growth/germination. This study critically compares the effects of ethylene-diamine-tetra-acetic-acid (EDTA) and calcium (Ca) on biophysicochemical responses of germinating pea seedlings under varied arsenic levels (As, 25, 125, 250 µM). Arsenic alone enhanced hydrogen peroxide (H2O2) level in pea roots (176%) and shoot (89%), which significantly reduced seed germination percentage, pigment contents, and growth parameters. Presence of EDTA and Ca in growth culture minimized the toxic effects of As on pea seedlings, EDTA being more pertinent than Ca. Both the amendments decreased H2O2 levels in pea tissues (16% in shoot and 13% in roots by EDTA, and 7% by Ca in shoot), and maintained seed germination, pigment contents, and growth parameters of peas close to those of the control treatment. The effects of all As-treatments were more pronounced in the pea roots than in the shoot. The presence of organic and inorganic amendments can play a useful role in alleviating As toxicity at the early stages of pea growth. The scarcity of data demands comparing plant biophysicochemical responses at different stages of plant growth (germinating vs mature) in future studies.
Collapse
Affiliation(s)
- Marina Rafiq
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Irshad Bibi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | | | - Abdullah A Al-Kahtani
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari, Pakistan
| | - Nabeel Khan Niazi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
28
|
Shirzad H, Siavash Moghaddam S, Rahimi A, Rezapour S, Xiao J, Popović-Djordjević J. Combined Effect of Biological and Organic Fertilizers on Agrobiochemical Traits of Corn ( Zea mays L.) under Wastewater Irrigation. PLANTS (BASEL, SWITZERLAND) 2024; 13:1331. [PMID: 38794402 PMCID: PMC11124832 DOI: 10.3390/plants13101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024]
Abstract
Corn (Zea mays L.) is an important annual grain that is cultivated as a food staple around the world. The current study examined the effect of wastewater and a combination of biological and organic fertilizers on the morphological and phytochemical traits of corn, using a factorial experiment based on a randomized complete block design with three replications. The first factor was biological and organic fertilizers at seven levels, including the control (no fertilization), bacterial biological fertilizers (NPK) along with iron and zinc Barvar biofertilizers, fungal biofertilizers made from Mycorrhiza and Trichoderma, biochar, a combination of bacterial and fungal biofertilizers, and a combination of bacterial and fungal biofertilizers with biochar. The second factor was irrigation at two levels (conventional irrigation and irrigation with wastewater). The traits studied included the morphological yield, phenols, flavonoids, polyphenols, glomalin, cadmium content in plant parts, and translocation factor (TF). The results disclosed that the best treatment in regard to the morphological traits was related to conventional water + biochar + mycorrhiza + Trichoderma + NPK. The highest phenol and flavonoid content were observed when biochar + mycorrhiza + Trichoderma + NPK treatments were used in both water treatments. Also, the wastewater + biochar + mycorrhiza + Trichoderma + NPK treatment demonstrated the highest total glomalin and phenylalanine ammonia-lyase (PAL) activity. The obtained results demonstrate that combined biological and organic fertilizer use on corn plants can effectively alleviate the deleterious effects of cadmium present in wastewater.
Collapse
Affiliation(s)
- Hossein Shirzad
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran; (H.S.); (A.R.)
| | - Sina Siavash Moghaddam
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran; (H.S.); (A.R.)
| | - Amir Rahimi
- Department of Plant Production and Genetics, Faculty of Agriculture, Urmia University, Urmia 5756151818, Iran; (H.S.); (A.R.)
| | - Salar Rezapour
- Department of Soil Science, Faculty of Agriculture, Urmia University, P.O. Box 165, Urmia 57134, Iran;
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, 36310 Vigo, Spain;
| | | |
Collapse
|
29
|
Zunaidi AA, Lim LH, Metali F. Heavy metal tolerance and accumulation in the Brassica species ( Brassica chinensis var. parachinensis and Brassica rapa L.): A pot experiment. Heliyon 2024; 10:e29528. [PMID: 38655289 PMCID: PMC11036052 DOI: 10.1016/j.heliyon.2024.e29528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024] Open
Abstract
This study delves into the heavy metal tolerance and accumulation capabilities of Brassica chinensis var. parachinensis (B. chinensis) and Brassica rapa L. (B. rapa) in a pot experiment, specifically focusing on cadmium (Cd), chromium (Cr) and lead (Pb). Agricultural topsoils were spiked with varying concentrations of these heavy metals (0 mg/kg, 75 mg/kg, 150 mg/kg, 225 mg/kg and 300 mg/kg) for each element. The experiment involved cultivating 15 pots each of B. chinensis and B. rapa over 60 days. Results indicated that both Brassica species experienced delayed germination, with B. chinensis exhibiting a significant drop in germination percentage to 53 % at the highest concentration (300 mg/kg), while B. rapa showed a tendency for an increased germination percentage of up to 80 % at elevated metal concentrations; however, these differences were not statistically significant. Both B. chinensis and B. rapa demonstrated a stable decline in growth rate from 0.05 cm/day to 0.04 cm/day with increasing heavy metal concentrations, and the he reduction in relative growth rate was significant at the highest concentration compared to the control. The stress tolerance index revealed a significant decrease in plant heights for B. chinensis, in contrast to the stable performance of B. rapa, showcasing the tolerance of B. rapa to toxic conditions. Despite insignificant differences in fresh biomass due to metal treatments, B. chinensis consistently yielded higher biomass, yet it had a lower edible index due to its higher root biomass. Leaf areas increased significantly in both species at higher soil treatments, while root lengths remained unchanged, suggesting their resilience to elevated heavy metal concentrations. Analysis of plant tissues (leaves, stems and roots) using ICP-OES revealed that B. rapa accumulated the highest Cd concentration (864 mg/kg), whereas B. chinensis accumulated the highest Pb concentration (953 mg/kg) in root parts. Both species significantly accumulated Cr in roots, demonstrating a sequestration mechanism. These findings suggest that both species, particularly, B. rapa possess strong tolerance and accumulation capabilities for non-essential heavy metals, making them potential hyperaccumulators for green remediation techniques in toxic soil environments. Understanding the molecular mechanisms driving these responses and validating phytoremediation potential in real-world scenarios is essential for developing sustainable soil management practices.
Collapse
Affiliation(s)
- Adzrin Asikin Zunaidi
- Chemical Sciences Programme, Faculty of Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Lee Hoon Lim
- Chemical Sciences Programme, Faculty of Sciences, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| | - Faizah Metali
- Environmental and Life Sciences Programme, Faculty of Science, Universiti Brunei Darussalam, Jalan Tungku Link, Gadong, BE1410, Brunei Darussalam
| |
Collapse
|
30
|
Acila S, Derouiche S, Allioui N. Embryo growth alteration and oxidative stress responses in germinating Cucurbita pepo seeds exposed to cadmium and copper toxicity. Sci Rep 2024; 14:8608. [PMID: 38615032 PMCID: PMC11016075 DOI: 10.1038/s41598-024-58635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/28/2023] [Indexed: 04/15/2024] Open
Abstract
This study investigated the influence of cadmium (Cd) and copper (Cu) heavy metals on germination, metabolism, and growth of zucchini seedlings (Cucurbita pepo L.). Zucchini seeds were subjected to two concentrations (100 and 200 μM) of CdCl2 and CuCl2. Germination parameters, biochemical and phytochemical attributes of embryonic axes were assessed. Results revealed that germination rate remained unaffected by heavy metals (Cd, Cu). However, seed vigor index (SVI) notably decreased under Cd and Cu exposure. Embryonic axis length and dry weight exhibited significant reductions, with variations depending on the type of metal used. Malondialdehyde and H2O2 content, as well as catalase activity, did not show a significant increase at the tested Cd and Cu concentrations. Superoxide dismutase activity decreased in embryonic axis tissues. Glutathione S-transferase activity significantly rose with 200 μM CdCl2, while glutathione content declined with increasing Cd and Cu concentrations. Total phenol content and antioxidant activity increased at 200 μM CuCl2. In conclusion, Cd and Cu heavy metals impede zucchini seed germination efficiency and trigger metabolic shifts in embryonic tissue cells. Response to metal stress is metal-specific and concentration-dependent. These findings contribute to understanding the intricate interactions between heavy metals and plant physiology, aiding strategies for mitigating their detrimental effects on plants.
Collapse
Affiliation(s)
- Smail Acila
- Department of Biology, Faculty of Nature and Life Sciences, University of El Oued, PO Box 789, 39000, El Oued, Algeria.
- Laboratory of Biology, Environment and Health, University of El Oued, El Oued, Algeria.
| | - Samir Derouiche
- Department of Cellular and Molecular Biology, Faculty of Nature and Life Sciences, University of El Oued, El Oued, Algeria
- Laboratory of Biodiversity and Application of Biotechnology in the Agricultural Field, University of El Oued, El Oued, Algeria
| | - Nora Allioui
- Department of Ecology and Environmental Engineering, Faculty of Nature and Life Sciences and Earth and Universe Sciences, University of May 8th, 1945, Guelma, Algeria
| |
Collapse
|
31
|
Man Y, Wang B, Wang J, Cai K, Rinklebe J, Zhang L, Feng X. New Insights into MeHg Accumulation in Rice ( Oryza sativa L.): Evidence from Cysteine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5942-5951. [PMID: 38507823 DOI: 10.1021/acs.est.3c08385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The intake of methylmercury (MeHg)-contaminated rice poses immense health risks to rice consumers. However, the mechanisms of MeHg accumulation in rice plants are not entirely understood. The knowledge that the MeHg-Cysteine complex was dominant in polished rice proposed a hypothesis of co-transportation of MeHg and cysteine inside rice plants. This study was therefore designed to explore the MeHg accumulation processes in rice plants by investigating biogeochemical associations between MeHg and amino acids. Rice plants and underlying soils were collected from different Hg-contaminated sites in the Wanshan Hg mining area. The concentrations of both MeHg and cysteine in polished rice were higher than those in other rice tissues. A significant positive correlation between MeHg and cysteine in rice plants was found, especially in polished rice, indicating a close geochemical association between cysteine and MeHg. The translocation factor (TF) of cysteine showed behavior similar to that of the TF of MeHg, demonstrating that these two chemical species might share a similar transportation mechanism in rice plants. The accumulation of MeHg in rice plants may vary due to differences in the molar ratios of MeHg to cysteine and the presence of specific amino acid transporters. Our results suggest that cysteine plays a vital role in MeHg accumulation and transportation inside rice plants.
Collapse
Affiliation(s)
- Yi Man
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Wang
- Health Management Center, Affiliated Hospital of Guizhou Medical University, Guiyang 550025, China
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Kai Cai
- Guizhou Academy of Tobacco Science, Guiyang 550081, China
| | - Jörg Rinklebe
- Laboratory of Soil and Groundwater Management, Institute of Foundation Engineering, Water and Waste-Management, School of Architecture and Civil Engineering, University of Wuppertal, 42285 Wuppertal, Germany
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Zhang J, Lu J, Zhu Y, Shen X, Zhu B, Qin L. Roles of endophytic fungi in medicinal plant abiotic stress response and TCM quality development. CHINESE HERBAL MEDICINES 2024; 16:204-213. [PMID: 38706819 PMCID: PMC11064630 DOI: 10.1016/j.chmed.2023.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/27/2022] [Accepted: 02/22/2023] [Indexed: 05/07/2024] Open
Abstract
Medicinal plants, as medicinal materials and important drug components, have been used in traditional and folk medicine for ages. However, being sessile organisms, they are seriously affected by extreme environmental conditions and abiotic stresses such as salt, heavy metal, temperature, and water stresses. Medicinal plants usually produce specific secondary metabolites to survive such stresses, and these metabolites can often be used for treating human diseases. Recently, medicinal plants have been found to partner with endophytic fungi to form a long-term, stable, and win-win symbiotic relationship. Endophytic fungi can promote secondary metabolite accumulation in medicinal plants. The close relationship can improve host plant resistance to the abiotic stresses of soil salinity, drought, and extreme temperatures. Their symbiosis also sheds light on plant growth and active compound production. Here, we show that endophytic fungi can improve the host medicinal plant resistance to abiotic stress by regulating active compounds, reducing oxidative stress, and regulating the cell ion balance. We also identify the deficiencies and burning issues of available studies and present promising research topics for the future. This review provides guidance for endophytic fungi research to improve the ability of medicinal plants to resist abiotic stress. It also suggests ideas and methods for active compound accumulation in medicinal plants and medicinal material development during the response to abiotic stress.
Collapse
Affiliation(s)
- Jiahao Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiemiao Lu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yichun Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xiaoxia Shen
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Songyang Institute of Zhejiang Chinese Medical University, Songyang 323400, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Songyang Institute of Zhejiang Chinese Medical University, Songyang 323400, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Songyang Institute of Zhejiang Chinese Medical University, Songyang 323400, China
| |
Collapse
|
33
|
Zhang Y, Sun D, Gao W, Zhang X, Ye W, Zhang Z. The metabolic mechanisms of Cd-induced hormesis in photosynthetic microalgae, Chromochloris zofingiensis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168966. [PMID: 38043816 DOI: 10.1016/j.scitotenv.2023.168966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Cadmium, an environmental pollutant, is highly toxic and resistant to degradation. It exhibits toxicity at elevated doses but triggers excitatory effects at low doses, a phenomenon referred to as hormesis. Microalgae, as primary producers in aquatic ecosystems, demonstrate hormesis induced by cadmium, though the specific mechanisms are not yet fully understood. Consequently, we examined the hormesis of cadmium in Chromochloris zofingiensis. A minimal Cd2+ concentration (0.05 mg L-1) prompted cell proliferation, whereas higher concentrations (2.50 mg L-1) inhibited growth. The group exposed to higher doses exhibited increased levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). Contrastingly, the group exposed to low doses exhibited a moderate antioxidant response without significantly increasing ROS. This implies that increased levels of antioxidative components counteract excessive ROS, maintaining cellular redox balance and promoting growth under conditions of low Cd2+. Validation experiments have established that NADPH oxidase-derived ROS primarily coordinates the hormesis effect in microalgae. Comparative transcriptome analysis has proved the involvement of antioxidant systems and photosynthesis in regulating hormesis. Notably, Aurora A kinases consistently displayed varying expression levels across all Cd2+ treatments, and their role in microalgal hormesis was confirmed through validation with SNS-314 mesylate. This study unveils the intricate regulatory mechanisms of Cd-induced hormesis in C. zofingiensis, with implications for environmental remediation and industrial microalgae applications.
Collapse
Affiliation(s)
- Yushu Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Dongzhe Sun
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weizheng Gao
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Xinwei Zhang
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Wenqi Ye
- Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China
| | - Zhao Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Hebei Research Center of the Basic Discipline of Cell Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China; Institute of Life Sciences and Green Development, Hebei University, Baoding 071000, China; Hebei Innovation Center for Bioengineering and Biotechnology, Baoding 071000, China.
| |
Collapse
|
34
|
Barhoumi Z. Photosynthesis, ionomics and metabolomics of the host-hemiparasite association Acacia gerrardii- Viscum schimperi. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 38035483 DOI: 10.1071/fp23206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/16/2023] [Indexed: 12/02/2023]
Abstract
Viscum schimperi is an evergreen hemiparasitic plant that can grow on stems and branches of several tree species. It penetrates the host tissues and forms a vascular bridge (haustorium) to withdraw the nutritive resources. Its relationships with hosts remain unknown. This study aimed to investigate the physiological and biochemical attributes of the host-hemiparasite association Acacia gerrardii -Viscum schimperi . The hemiparasite exhibited 2.4- and 3.0-fold lower photosynthetic activity and water use efficiency, and 1.2- and 4.1-fold higher transpiration rate and stomatal conductance. Equally, it displayed 4.9- and 2.6-fold greater water potential and osmotic potential, and in least 3.0times more accumulated 39 K, 85 Rb and 51 V, compared to the host. Nevertheless, it had no detrimental effect on photosynthetic activity, water status and multi-element accumulations in the host. Based on metabolome profiling, V. schimperi could use xanthurenic acid and propylparaben to acquire potassium from the host, and N -1-naphthylacetamide and N -Boc-hydroxylamine to weaken or kill the distal part of the infected branch and to receive the total xylem contents. In contrast, A. gerrardii could used N -acetylserotonin, arecoline, acetophenone and 6-methoxymellein to defend against V. schimperi infection.
Collapse
Affiliation(s)
- Zouhaier Barhoumi
- Biology Department, King Khalid University, P.O. Box-9004, Abha 61413, Saudi Arabia; and Laboratory of Extremophile Plants, Biotechnology Center of Borj Cedria, University Tunis El Manar, B.P. 901, Hammam-Lif, Tunis, Tunisia
| |
Collapse
|
35
|
Sharma J, Kumar S, Kumar V, Singh P, Khyalia P, Saini S, Sharma P, Kumar A, Sharma A. Stress-mitigating behavior of glycine betaine to enhance growth performance by suppressing the oxidative stress in Pb-stressed barley genotypes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7498-7513. [PMID: 38158536 DOI: 10.1007/s11356-023-31731-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/22/2023] [Indexed: 01/03/2024]
Abstract
The toxicity of lead (Pb) in agricultural soil is constantly increasing as a result of anthropogenic activities. Pb is one of the most phytotoxic metals in soil that accumulates in plant tissue, resulting in yield loss. It is currently becoming more popular to supplement glycine betaine (GB) for Pb-induced stress tolerance in crop plants. Currently, no report describes the use of GB as a stress mitigator for growth attributes and stress-specific biomarkers in barley plants under Pb stress conditions. Hence, the present research was designed to examine the stress-mitigating behavior of GB on various growth attributes including germination percentage, seed vigor index (SVI), radicle length, plant biomass (fresh and dry), shoot and root length, physiological attributes such as relative water content (RWC), and stress-specific biomarkers like electrolyte leakage (EL), and H2O2 content of two barley varieties viz. BH959 and BH946 at three Pb stress treatments (15 mM, 25 mM, and 35 mM), with and without GB (2 mM) supplementation in natural conditions. The present investigation showed that at the highest Pb stress (35 mM), the germination rate was reduced to zero, and the growth attributes and RWC of both barley varieties were also reduced as compared to the non-stressed plants (control) with an increase in Pb treatment. However, EL up to 70% and H2O2 content up to 30% increased with an increase in Pb stress concentration indicated by ROS accumulation, resulting in more oxidative stress. Additionally, GB application alleviated the toxic effect of Pb stress by improving the rate of germination by 33.3% and growth performance by reducing the ROS accumulation in terms of reducing stress biomarkers H2O2 by 25%, and EL by 12%. It has been revealed that the application of GB can minimize or reduce the toxic effects caused by Pb toxicity in both varieties, positively modulating plant growth performances and lowering oxidative stress. This research may provide a scientific basis for assessing Pb tolerance in barley plants and developing alternative approaches to protecting them from the severe effects of Pb toxicity.
Collapse
Affiliation(s)
- Jyoti Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sandeep Kumar
- Department of Botany, Baba Mast Nath University, Rohtak, 124001, Haryana, India
| | - Vikram Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pooja Singh
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Pradeep Khyalia
- Department of Environmental Science, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sakshi Saini
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Priyanka Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Ajay Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Asha Sharma
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
36
|
Ali S, Baloch SB, Bernas J, Konvalina P, Onyebuchi EF, Naveed M, Ali H, Jamali ZH, Nezhad MTK, Mustafa A. Phytotoxicity of radionuclides: A review of sources, impacts and remediation strategies. ENVIRONMENTAL RESEARCH 2024; 240:117479. [PMID: 37884073 DOI: 10.1016/j.envres.2023.117479] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/01/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
Various anthropogenic activities and natural sources contribute to the presence of radioactive materials in the environment, posing a serious threat to phytotoxicity. Contamination of soil and water by radioactive isotopes degrades the environmental quality and biodiversity. They persist in soils for a considerable amount of time and disturb the fauna and flora of any affected area. Hence, their removal from the contaminated medium is inevitable to prevent their entry into the food chain and the organisms at higher levels of the food chain. Physicochemical methods for radioactive element remediation are effective; however, they are not eco-friendly, can be expensive and impractical for large-scale remediation. Contrastingly, different bioremediation approaches, such as phytoremediation using appropriate plant species for removing the radionuclides from the polluted sites, and microbe-based remediation, represent promising alternatives for cleanup. In this review, sources of radionuclides in soil as well as their hazardous impacts on plants are discussed. Moreover, various conventional physicochemical approaches used for remediation discussed in detail. Similarly, the effectiveness and superiority of various bioremediation approaches, such as phytoremediation and microbe-based remediation, over traditional approaches have been explained in detail. In the end, future perspectives related to enhancing the efficiency of the phytoremediation process have been elaborated.
Collapse
Affiliation(s)
- Shahzaib Ali
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Sadia Babar Baloch
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Jaroslav Bernas
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic.
| | - Petr Konvalina
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Eze Festus Onyebuchi
- Department of Agroecosystems, Faculty of Agriculture and Technology, University of South Bohemia in Ceske Budejovice, Branišovská 1645/31A, 37005, Ceske Budejovice, Czech Republic
| | - Muhammad Naveed
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Hassan Ali
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zameer Hussain Jamali
- College of Environmental Science, Sichuan Agricultural University, 611130, Chengdu, Sichuan, China
| | - Mohammad Tahsin Karimi Nezhad
- Department of Forest Ecology, The Silva Tarouca Research Institute for Landscape and Ornamental 13 Gardening, Lidicka, 25/27, Brno, 60200, Czech Republic
| | - Adnan Mustafa
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences Guangzhou, 510650, China.
| |
Collapse
|
37
|
Bożym M, Rybak J. In vitro chronic phytotoxicity of heavy metals and metalloids to Lepidium sativum (garden cress). ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:94-103. [PMID: 38227083 DOI: 10.1007/s10646-024-02729-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/17/2024]
Abstract
The paper presents the results of studies on the influence of selected concentrations (10-100 mg L-1) of heavy metals (Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Zn) and metalloids (As, Sb, Se) on the germination and root elongation of garden cress (Lepidium sativum L). There are not many studies on phytotoxicity of heavy metals and metalloids with the complex use of single plant species so far. On the basis of the germination index (GI) and inhibition concentration IC50, the following order of phytotoxicity of the tested elements was determined: Se> As> Hg> Sb > Mo > Cd> Co > Zn > Ni. The other metals showed no phytotoxicity or even stimulating effect. In our study the stimulating effect of the majority of Pb concentrations and the lowest concentrations of Cd and Hg has been revealed. These metals do not play any role in living organisms, however some authors confirm their stimulating effect on plants at low concentrations. Toxic concentration of metals and metalloids calculated as IC50 are lower than the concentration calculated as GI (not phytotoxic). It is well known that seeds are more independent and tolerant to toxicants when they contain reserve substances which are used during the germination period. On the basis of conducted research, high tolerance of L. sativum to heavy metals and metalloids was found, which may indicate its usefulness for phytotoxicity assessment of leachate from contaminated soil or waste (e.g. foundry waste) and its application for bioremediation to manage heavy metal pollution of soils or foundry wastes containing heavy metals and metalloids. The understanding of heavy metal and metalloids toxicity will facilitate bioremediation.
Collapse
Affiliation(s)
- Marta Bożym
- Opole University of Technology, Prószkowska 76, 45-271, Opole, Poland
| | - Justyna Rybak
- Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50- 370, Wrocław, Poland.
| |
Collapse
|
38
|
Wang L, Tanveer M, Wang H, Arnao MB. Melatonin as a key regulator in seed germination under abiotic stress. J Pineal Res 2024; 76:e12937. [PMID: 38241678 DOI: 10.1111/jpi.12937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/23/2023] [Accepted: 01/02/2024] [Indexed: 01/21/2024]
Abstract
Seed germination (SG) is the first stage in a plant's life and has an immense importance in sustaining crop production. Abiotic stresses reduce SG by increasing the deterioration of seed quality, and reducing germination potential, and seed vigor. Thus, to achieve a sustainable level of crop yield, it is important to improve SG under abiotic stress conditions. Melatonin (MEL) is an important biomolecule that interplays in developmental processes and regulates many adaptive responses in plants, especially under abiotic stresses. Thus, this review specifically summarizes and discusses the mechanistic basis of MEL-mediated SG under abiotic stresses. MEL regulates SG by regulating some stress-specific responses and some common responses. For instance, MEL induced stress specific responses include the regulation of ionic homeostasis, and hydrolysis of storage proteins under salinity stress, regulation of C-repeat binding factors signaling under cold stress, starch metabolism under high temperature and heavy metal stress, and activation of aquaporins and accumulation of osmolytes under drought stress. On other hand, MEL mediated regulation of gibberellins biosynthesis and abscisic acid catabolism, redox homeostasis, and Ca2+ signaling are amongst the common responses. Nonetheless factors such as endogenous MEL contents, plant species, and growth conditions also influence above-mentioned responses. In conclusion, MEL regulates SG under abiotic stress conditions by interacting with different physiological mechanisms.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Mohsin Tanveer
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hongling Wang
- CAS Research Center for Ecology and Environment of Central Asia, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Marino B Arnao
- Phytohormones & Plant Development Laboratory, Department of Plant Biology (Plant Physiology), University of Murcia, Murcia, Spain
| |
Collapse
|
39
|
Ahmad MSA, Hameed M, Kaleem M, Fatima S, Ahmad F, Farooq M, Maratib M, Aziz I. Foliar architecture differentially restrains metal sequestration capacity in wheat grains (Triticum aestivum L.) grown in hyper-chloride-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113457-113480. [PMID: 37851260 DOI: 10.1007/s11356-023-30340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023]
Abstract
Anthropogenic activities, such as industrial wastewater and use of water softeners, cause hyper-accumulation of Cl- in water sources and soils. Currently, industries have no sustainable method to remove these Cl- ions from wastewater. This study was conducted to evaluate the integrative responses of wheat cultivated in five industrial effluent-affected areas (S2-S6) by investigating soil characters and bioaccumulation of metals in wheat plants and grains. The S4 site (near the second chloride outlet) exhibited a higher concentration of CO2, SO2, NO2, Cl-, Cd, Mn, Ni, Cr, and Zn. Soil from S6 (sewage wastewater downstream getting mixed with chloride-contaminated water) had a minimum level of nutrients (Na, K, and Ca), maximum metals (Cd, Fe, Pb, Mn), and reduction in plant biomass. In site S2 (sewage wastewater upstream of the chloride factory), a higher level of minerals and metals was noted in the roots. Maximum metals in grains occurred in S6 with higher organic osmolytes. The sequestration capacity of metals in leaves was also increased by alterations in anatomical traits. Results indicated that metals and hyper-Cl- concentration employed a negative influence on the plants because of poor soil quality, extremely damaged microstructures leading to reduced yield, poor grain quality, and excessive translocation from roots to wheat grains. These findings revealed that contaminated plants used as either green forage or hay are noxious to animals and if used as grain for feed or humans can lead to serious health hazards.
Collapse
Affiliation(s)
| | - Mansoor Hameed
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Sana Fatima
- Department of Botany, Government Sadiq College Women University, Bahawalpur, Pakistan
| | - Farooq Ahmad
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Muhammad Farooq
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Mehtab Maratib
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Iqra Aziz
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| |
Collapse
|
40
|
De Silva YSK, Rajagopalan UM, Kadono H, Li D. The synergy of microplastics with the heavy metal zinc has resulted in reducing the toxic effects of zinc on lentil ( Lens culinaris) seed germination and seedling growth. Heliyon 2023; 9:e21464. [PMID: 38034784 PMCID: PMC10685156 DOI: 10.1016/j.heliyon.2023.e21464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 10/14/2023] [Accepted: 10/21/2023] [Indexed: 12/02/2023] Open
Abstract
There is growing recognition of the impact of the rising presence of microplastics (MPs) on terrestrial plant growth and, in general, the terrestrial ecosystem. Simultaneously, there is growing heavy metal accumulation in agricultural lands at an astonishing rate owing to the overwhelming use of chemical fertilizers, herbicides, and weedicides. Thus, there is a need to investigate the synergetic effect of MPs along with heavy metals on the inducing combined toxicity. This study investigates effects at smaller exposure periods of a few hours using a novel optical imaging technique, Biospeckle Coherence Tomography. Biospeckle Optical Coherence Tomography (bOCT) is a novel optical imaging technique that we successfully demonstrated earlier in visualizing the internal activity of plants. Previous studies of authors using the bOCT technique have demonstrated its potential in the independent application of polyethylene microplastic (PEMPs) as well as zinc within 6 h after their treatments. The strong inhibitory effect of 100 mg L-1, Zn, and PEMPs alone on the germination of Lens culinaris could be visualized with bOCT. The current study demonstrated that against expectation, combined effects of Zn toxicity were reduced when combined with MPs. This is suggested due to the significant reduction of Zn uptake by the seedlings through the interaction of Zn and MPs in an aqueous solution. Mass-spectrometry results also indicate a reduced intake of Zn. Our findings suggest that PEMPs could be able to reduce the over-availability of Zn, thus mitigating the Zn toxicity on lentils.
Collapse
Affiliation(s)
- Y. Sanath K. De Silva
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan
- Department of Mechanical and Manufacturing Engineering, Faculty of Engineering, University of Ruhuna, Hapugala, Galle, 80000, Sri Lanka
| | - Uma Maheswari Rajagopalan
- Department of Mechanical Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Koto City, Tokyo, 135-8548, Japan
| | - Hirofumi Kadono
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan
| | - Danyang Li
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-okubo, Sakura-ku, Saitama-shi, Saitama, 338-8570, Japan
| |
Collapse
|
41
|
Diogo BS, Narayan A, Mansilha C, Marques JE, Flores D, Antunes SC. Phytotoxicity of coal waste elutriates (Douro Coalfield, North Portugal) in Lactuca sativa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:107650-107660. [PMID: 37735332 PMCID: PMC10611624 DOI: 10.1007/s11356-023-29868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
One of the most important mining areas in the Douro Carboniferous Basin is the Pejão Coalfield. In the summer of 2017, a wildfire promoted the ignition and self-burning some of the coal waste piles in the area and caused important environmental changes, promoting a new heterogenic pedological zonation. This study aims to assess the ecotoxicological effects of 25 soil elutriates from these different soil types in seed germination and individual (emergence, growth, and morphologic alterations) and subindividual parameters in Lactuca sativa. The different evaluated endpoints were differently affected regarding the soil elutriate revealing the high heterogeneity of soil characteristics. The presence of different potentially toxic elements (e.g., Cd, Cr, Pb, Zn) in soil elutriates, even in low concentrations, caused effects on L. sativa development. Unburned coal wastes and downhill soil elutriates were able to inhibit the germination of L. sativa and affect them individually and sub-individually (decrease in size, biomass, and presence of morphological alterations). Additionally, it was observed that all soil elutriates induce a decrease in root size. The results highlight the importance of using elutriate samples in phytotoxicity studies of coal mining waste, since the tailings lixiviate may reduce plant establishment and growth, affecting the terrestrial ecosystems. The integrated use of seed germination assays with the analysis of morphological and biochemical alterations in plants proved to be sensitive parameters to evaluate the phytotoxicity of coal mining wastes.
Collapse
Affiliation(s)
- Bárbara S Diogo
- Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Aracelis Narayan
- Instituto de Ciências da Terra (ICT), Universidade do Porto, Polo Porto, 4169-007, Porto, Portugal
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Catarina Mansilha
- Departamento da Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, 4000-055, Porto, Portugal
- LAQV/REQUIMTE, Universidade do Porto, 4050-083, Porto, Portugal
| | - Jorge Espinha Marques
- Instituto de Ciências da Terra (ICT), Universidade do Porto, Polo Porto, 4169-007, Porto, Portugal
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Deolinda Flores
- Instituto de Ciências da Terra (ICT), Universidade do Porto, Polo Porto, 4169-007, Porto, Portugal
- Departamento de Geociências, Ambiente e Ordenamento do Território, Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - Sara C Antunes
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR), Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007, Porto, Portugal.
| |
Collapse
|
42
|
Sun X, Wang S, Tian J, Xiang X, Zheng H, Liu H, Fang Z, Tian Z, Liu L, Zhu Y, Du S. Synergistic interplay between ABA-generating bacteria and biochar in the reduction of heavy metal accumulation in radish, pakchoi, and tomato. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122084. [PMID: 37356790 DOI: 10.1016/j.envpol.2023.122084] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Heavy metal (HM) contamination is an environmental concern that threatens the agricultural product safety and human health. To address this concern, we developed a novel strategy involving the synergistic application of Azospirillum brasilense, a growth-promoting rhizobacterium which produces abscisic acid (ABA), and biochar to minimize HM accumulation in the edible parts of vegetable crops. Compared to A. brasilense or biochar alone, the concentrations of Cd, Ni, Pb, and Zn in radish (Raphanus sativus L.), pakchoi (Brassica chinensis L.), and tomato (Lycopersicon esculentum L.) decreased by 18-63% and 14-56%, respectively. Additionally, the synergistic treatment led to a 14-63% decrease in the bioconcentration factor. The biomass of the edible parts of the three crops increased by 65-278% after synergistic treatment, surpassing the effects of single treatments. Furthermore, the synergistic application enhanced the SPAD values by 1-45% compared to single treatments. The MDA concentrations in stressed plants decreased by 16-39% with the bacteria-biochar co-treatment compared to single treatments. Co-treatment also resulted in increased soluble protein and sugar concentrations by 8-174%, and improvements in flavonoids, total phenols, ascorbic acid, and DPPH levels by 2-50%. Pearson correlation analysis and structural equation modeling revealed that the synergistic effect was attributed to the enhanced growth of A. brasilense facilitated by biochar and the improved availability of HMs in soils. Notably, although ABA concentrations were not as high as those achieved with A. brasilense alone, they were maintained at relatively high levels. Overall, the synergistic application of A. brasilense-biochar might have remarkable potential for reducing the accumulation of HMs while promoting growth and improving nutritional and antioxidant qualities in tuberous, leafy, and fruit crops.
Collapse
Affiliation(s)
- Xiaohang Sun
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Shengtao Wang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Jiaying Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Xiaobo Xiang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Haoyi Zheng
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Huijun Liu
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhiguo Fang
- College of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Zhongling Tian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Lijuan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yaxin Zhu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shaoting Du
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
43
|
Yadav M, George N, Dwibedi V. Emergence of toxic trace elements in plant environment: Insights into potential of silica nanoparticles for mitigation of metal toxicity in plants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122112. [PMID: 37392865 DOI: 10.1016/j.envpol.2023.122112] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/31/2023] [Accepted: 06/24/2023] [Indexed: 07/03/2023]
Abstract
Emergence of trace elements at potentially toxic concentrations in the environment has become a global issue in recent times. Owing to the rapid population growth, unregulated industrialisation, intensive farming practices and excessive mining activities, these elements are accumulating in environment at high toxic concentrations. The exposure of plants to metal-contaminated environments severely influences their reproductive and vegetative growth, eventually affecting crop performance and production. Hence, it is crucial to find alternatives to mitigate the stress caused by toxic elements, in plants of agricultural importance. In this context, silicon (Si) has been widely recognized to alleviate metal toxicity and promote plant growth during various stress conditions. Amending soil with silicates has shown to ameliorate the lethal effects of metals and stimulates crop development. However, in comparison to silicon in bulk form, nano-sized silica particles (SiNPs) have been demonstrated to be more efficient in their beneficial roles. SiNPs can be used for various technological applications, viz. Improving soil fertility, agricultural yield, and remediating heavy metal-polluted soil. The research outcomes of studies focussing on role of silica nanoparticles to specifically mitigate the metal toxicity in plants have not been reviewed earlier in depth. The aim of this review is to explore the potential of SiNPs in alleviating metal stress and improving plant growth. The benefits of nano-silica over bulk-Si fertilizers in farming, their performance in diverse plant varieties, and the possible mechanisms to mitigate metal toxicity in plants have been discussed in detail. Further, research gaps are identified and future prospects are envisioned for advanced investigations in this field. The growing interest towards nano-silica related research will facilitate exploration of the true prospective of these nanoparticles for mitigation of metal stress in crops and in other fields of agriculture as well.
Collapse
Affiliation(s)
- Mohini Yadav
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India
| | - Nancy George
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Vagish Dwibedi
- University Institute of Biotechnology, Chandigarh University, Mohali, Punjab, 140413, India; Institute of Soil, Water and Environmental Sciences, The Volcani Institute, Agricultural Research Organization, Rishon LeZion, 7505101, Israel
| |
Collapse
|
44
|
Zulfiqar U, Haider FU, Maqsood MF, Mohy-Ud-Din W, Shabaan M, Ahmad M, Kaleem M, Ishfaq M, Aslam Z, Shahzad B. Recent Advances in Microbial-Assisted Remediation of Cadmium-Contaminated Soil. PLANTS (BASEL, SWITZERLAND) 2023; 12:3147. [PMID: 37687393 PMCID: PMC10490184 DOI: 10.3390/plants12173147] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
Soil contamination with cadmium (Cd) is a severe concern for the developing world due to its non-biodegradability and significant potential to damage the ecosystem and associated services. Industries such as mining, manufacturing, building, etc., rapidly produce a substantial amount of Cd, posing environmental risks. Cd toxicity in crop plants decreases nutrient and water uptake and translocation, increases oxidative damage, interferes with plant metabolism and inhibits plant morphology and physiology. However, various conventional physicochemical approaches are available to remove Cd from the soil, including chemical reduction, immobilization, stabilization and electro-remediation. Nevertheless, these processes are costly and unfriendly to the environment because they require much energy, skilled labor and hazardous chemicals. In contrasting, contaminated soils can be restored by using bioremediation techniques, which use plants alone and in association with different beneficial microbes as cutting-edge approaches. This review covers the bioremediation of soils contaminated with Cd in various new ways. The bioremediation capability of bacteria and fungi alone and in combination with plants are studied and analyzed. Microbes, including bacteria, fungi and algae, are reported to have a high tolerance for metals, having a 98% bioremediation capability. The internal structure of microorganisms, their cell surface characteristics and the surrounding environmental circumstances are all discussed concerning how microbes detoxify metals. Moreover, issues affecting the effectiveness of bioremediation are explored, along with potential difficulties, solutions and prospects.
Collapse
Affiliation(s)
- Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Fasih Ullah Haider
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China;
- University of Chinese Academy of Sciences, Beijing 100039, China
| | | | - Waqas Mohy-Ud-Din
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Soil and Environmental Sciences, Ghazi University, D. G. Khan 32200, Pakistan
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA
| | - Muhammad Shabaan
- Land Resources Research Institute (LRRI), National Agricultural Research Centre (NARC), Islamabad, Pakistan;
| | - Muhammad Ahmad
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
| | - Muhammad Kaleem
- Department of Botany, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Muhammad Ishfaq
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan; (M.A.); (M.I.)
- Department of Agriculture, Extension, Azad Jammu & Kashmir, Pakistan
| | - Zoya Aslam
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Babar Shahzad
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7001, Australia
| |
Collapse
|
45
|
da Cunha Neto AR, da Silva IG, Calvelli JVB, Martins GEC, Carvalho M, Barbosa S. Toxicity of Heavy Metals that Affect Germination, Development and Cell Cycle of Allium cepa L. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 111:22. [PMID: 37563421 DOI: 10.1007/s00128-023-03775-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/20/2023] [Indexed: 08/12/2023]
Abstract
This study aimed to investigate the impact of heavy metals copper, cadmium, lead, aluminum and nickel, on the growth, physiology, metabolism, and cell cycle of Allium cepa L. Five treatments with increasing concentrations (0, 50, 100, 250, and 500 µM) were applied to the seeds. The results showed that the highest concentrations of copper and cadmium had phytotoxic and biochemical effects on the onion. Additionally, copper concentrations caused an increase in mitodepressive effect and chromosomal abnormalities. Aluminum also induced several chromosomal abnormalities. The study found that Cd > Cu > Pb > Ni > Al and Cu > Al > Ni > Pb > Cd had the highest phytotoxic and cytotoxic potentials, respectively. Furthermore, the UPGMA method revealed three divergent groups. These results suggest that heavy metals, especially copper, have a significant pollution potential when present in high concentrations.
Collapse
Affiliation(s)
| | | | | | | | - Marília Carvalho
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, 37130-000, MG, Brazil
| | - Sandro Barbosa
- Instituto de Ciências da Natureza, Universidade Federal de Alfenas, Alfenas, 37130-000, MG, Brazil.
| |
Collapse
|
46
|
Zhao X, Joo JC, Du D, Li G, Kim JY. Modelling heavy-metal phytoextraction capacities of Helianthus annuus L. and Brassica napus L. CHEMOSPHERE 2023:139341. [PMID: 37379985 DOI: 10.1016/j.chemosphere.2023.139341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/17/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Greenhouse experiments were conducted to test the phytoextraction potential of sunflower (Helianthus annuus L.) and rape (Brassica napus L.) during the initial growth in the heavy metal (i.e., Cd, Ni, Zn, and Pb) contaminated soil. The target plants were grown for 30 d in pots filled up with soil treated with various concentrations of heavy metals. The wet/dry weights of plants and heavy-metal concentrations were measured, and the bioaccumulation factors (BAFs) and Freundlich-type uptake model were then used to measure their capacities of phytoextracting accumulated heavy metals from the soil. It was observed that the wet/dry weights of sunflower and rapeseed decreased, and heavy-metal mass uptake increased in plants commensurate with the elevating heavy metal concentrations in the soil. The sunflower BAF for heavy metals was higher than that of rapeseed. The Freundlich-type uptake model suitably described the phytoextraction capacities of sunflower and rapeseed in a soil contaminated with a single heavy metal and can be used to compare the phytoextraction capacities of different plants for the same heavy metal or of the same plant with different heavy metals. Although this study is based on limited data from two species of plants and soils contaminated with one heavy metal, it provides a basis for evaluating the ability of plants to accumulate heavy metals during their initial growth stages. Additional studies utilizing diverse hyperaccumulator plants and soils polluted with multiple heavy metals are essential to enhance the suitability of the Freundlich-type uptake model for assessing the phytoextraction capacities of intricate systems.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanakgu, Seoul, 08826, Republic of Korea
| | - Jin Chul Joo
- Department of Civil and Environmental Engineering, Hanbat National University, Dongseo-daero 125, Yuseong-gu, Daejeon, 34158, Republic of Korea
| | - Daolin Du
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guanlin Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jae Young Kim
- Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanakgu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
47
|
Rai PK, Sonne C, Kim KH. Heavy metals and arsenic stress in food crops: Elucidating antioxidative defense mechanisms in hyperaccumulators for food security, agricultural sustainability, and human health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162327. [PMID: 36813200 DOI: 10.1016/j.scitotenv.2023.162327] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
The spread of heavy metal(loid)s at soil-food crop interfaces has become a threat to sustainable agricultural productivity, food security, and human health. The eco-toxic effects of heavy metals on food crops can be manifested through reactive oxygen species that have the potential to disturb seed germination, normal growth, photosynthesis, cellular metabolism, and homeostasis. This review provides a critical overview of stress tolerance mechanisms in food crops/hyperaccumulator plants against heavy metals and arsenic (HM-As). The HM-As antioxidative stress tolerance in food crops is associated with changes in metabolomics (physico-biochemical/lipidomics) and genomics (molecular level). Furthermore, HM-As stress tolerance can occur through plant-microbe, phytohormone, antioxidant, and signal molecule interactions. Information regarding the avoidance, tolerance, and stress resilience of HM-As should help pave the way to minimize food chain contamination, eco-toxicity, and health risks. Advanced biotechnological approaches (e.g., genome modification with CRISPR-Cas9 gene editing) in concert with traditional sustainable biological methods are useful options to develop 'pollution safe designer cultivars' with increased climate change resilience and public health risks mitigation. Further, the usage of HM-As tolerant hyperaccumulator biomass in biorefineries (e.g., environmental remediation, value added chemicals, and bioenergy) is advocated to realize the synergy between biotechnological research and socio-economic policy frameworks, which are inextricably linked with environmental sustainability. The biotechnological innovations, if directed toward 'cleaner climate smart phytotechnologies' and 'HM-As stress resilient food crops', should help open the new path to achieve sustainable development goals (SDGs) and a circular bioeconomy.
Collapse
Affiliation(s)
- Prabhat Kumar Rai
- Department of Environmental Science, Mizoram University, Aizawl 796004, India
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| |
Collapse
|
48
|
Matras E, Gorczyca A, Pociecha E, Przemieniecki SW, Zeliszewska P, Ocwieja M. Silver nanoparticles affect wheat ( Triticum aestivum L.) germination, seedling blight and yield. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:390-406. [PMID: 36944476 DOI: 10.1071/fp22086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 02/28/2023] [Indexed: 05/03/2023]
Abstract
The aim of the study was to evaluate the effect of two types of negatively charged quasi-spherical silver nanoparticles (AgNPs) at concentrations of 10, 20 and 30mgL-1 and silver ions at a concentration of 30mgL-1 on the growth, selected physiological aspects and yielding of wheat (Triticum aestivum L.) cv. Tybalt, and on plant resistance to seedling blight. Seed germination, α-amylase activity in seeds, morphology and infestation of seedlings by pathogens were assessed in a hydroponic treatment. Growth rate, PSII efficiency, heading and yield of the same plants were then analysed in pot culture. Results showed that the AgNPs and silver ions had a negative effect on roots, but reduced seedling blight and improved leaf area compared to the control. In addition, the AgNPs reduced with sodium borohydride in the presence of trisodium citrate at concentrations of 10 and 20mgL-1 stimulated germination, α-amylase activity and shoot length, which was not observed in the case of silver ions and the AgNPs reduced with sodium hypophosphite in the presence of sodium hexametaphosphate. In a pot experiment, the AgNPs improved plant growth, PSII efficiency, accelerated heading and increased yield-related parameters compared with the control. Results revealed the interaction strength in the following order: TCSB-AgNPs>SHSH-AgNPs>silver ions. TCSB-AgNPs in the lowest concentration had the most favourable effect, indicating their great potential for use in improving wheat cultivation.
Collapse
Affiliation(s)
- Ewelina Matras
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Mickiewicz Avenue 21, 31-120 Krakow, Poland
| | - Anna Gorczyca
- Department of Microbiology and Biomonitoring, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Mickiewicz Avenue 21, 31-120 Krakow, Poland
| | - Ewa Pociecha
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, University of Agriculture in Krakow, Podluzna 3, 30-239 Krakow, Poland
| | - Sebastian Wojciech Przemieniecki
- Department of Entomology, Phytopathology and Molecular Diagnostics, University of Warmia and Mazury in Olsztyn, Prawochenskiego 17, 10-720 Olsztyn, Poland
| | - Paulina Zeliszewska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Magdalena Ocwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| |
Collapse
|
49
|
Gong Z, Duan Y, Liu D, Zong Y, Zhang D, Shi X, Hao X, Li P. Physiological and transcriptome analysis of response of soybean (Glycine max) to cadmium stress under elevated CO 2 concentration. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130950. [PMID: 36860078 DOI: 10.1016/j.jhazmat.2023.130950] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
The continuous accumulation of Cd has long-lasting detrimental effects on plant growth and food safety. Although elevated CO2 concentration (EC) has been reported to reduce Cd accumulation and toxicity in plants, evidence on the functions of elevated CO2 concentration and its mechanisms in the possible alleviation of Cd toxicity in soybean are limited. Here, we used physiological and biochemical methods together with transcriptomic comparison to explore the effects of EC on Cd-stressed soybean. Under Cd stress, EC significantly increased the weight of roots and leaves, promoted the accumulations of proline, soluble sugars, and flavonoid. In addition, the enhancement of GSH activity and GST gene expressions promoted Cd detoxification. These defensive mechanisms reduced the contents of Cd2+, MDA, and H2O2 in soybean leaves. The up-regulation of genes encoding phytochelatin synthase, MTPs, NRAMP, and vacuoles protein storage might play vital roles in the transportation and compartmentalization process of Cd. The MAPK and some transcription factors such as bHLH, AP2/ERF, and WRKY showed changed expressions and might be engaged in mediation of stress response. These findings provide a boarder view on the regulatory mechanism of EC on Cd stress and provide numerous potential target genes for future engineering of Cd-tolerant cultivars in soybean breeding programs under climate changes scenarios.
Collapse
Affiliation(s)
- Zehua Gong
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China
| | - Yuqian Duan
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Danmei Liu
- School of Life Science, Shanxi University, 030036, Taiyuan, China
| | - Yuzheng Zong
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Dongsheng Zhang
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Xinrui Shi
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China
| | - Xingyu Hao
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China.
| | - Ping Li
- College of Agriculture, Shanxi Agricultural University, 030801 Taigu, China; State Key Laboratory of Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
50
|
Fatima A, Farid M, Asam ZUZ, Zubair M, Farid S, Abbas M, Rizwan M, Ali S. Efficacy of marigold (Tagetes erecta L.) for the treatment of tannery and surgical industry wastewater under citric acid amendment: a lab scale study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43403-43418. [PMID: 36658313 DOI: 10.1007/s11356-023-25299-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Contamination of land and aquatic ecosystems with heavy metals (HMs) is a global issue having the persistent potential to damage the quality of food and water. In the present study, Tagetes erecta L. plants were used to assess their potential to uptake HMs from wastewater. Plants were grown in soil for 20 days and then transplanted in hydroponic system containing Hoagland nutrient solution. After more than 15 days of growth, plants were then subjected to wastewater from tannery and surgical industries in different concentrations ranging from 25 to 100% in combination of citric acid (5 and 10 mM). After 6 weeks of treatment, plants were collected and segmented into roots, stem, and leaves for characterizing the morphological properties including plant height, roots length, fresh and dry mass of roots, stem, and leaves. For evaluation of the effect of wastewater on the plants, photosynthetic pigments; soluble proteins; reactive oxygen species (ROS); antioxidant enzymes SOD, POD, CAT, and APX; and metal accumulation were analyzed. Application of industrial wastewater revealed a significant effect on plant morphology under wastewater treatments. Overall growth and physiological attributes of plant decreased, and metal accumulation enhanced with increasing concentration of wastewater. Similarly, the production of ROS and antioxidant enzymes were also increased. Chlorophyll, protein content, and enzyme production enhanced with CA (5 and 10 mM) mediation; however, ROS production and EL were reduced. Metals analysis showed that the maximum accumulation of Pb was in roots, while Cr and Ni in the stem which further increased under CA mediation. Overall, the metal accumulation ability was in the order of Pb > Ni > Cr under CA.
Collapse
Affiliation(s)
- Arooj Fatima
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Mujahid Farid
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan.
| | - Zaki Ul Zaman Asam
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Muhammad Zubair
- Department of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Sheharyaar Farid
- Earth and Life Sciences, School of Natural Sciences and Ryan Institute, University of Galway, Galway, Ireland
- Department of Biology, Ecology and Evolution, University of Liege, Liege, Belgium
| | - Mohsin Abbas
- Department of Environmental Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, 50700, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan
| |
Collapse
|