1
|
Huang W, Sun W, Zhou C, Long K, Zhang Z. Probabilistic Health Risk Assessment and Grading Benchmark Estimation of Atmospheric PM 2.5-Bound Heavy Metals in China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2025; 88:377-396. [PMID: 40053080 DOI: 10.1007/s00244-025-01118-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 01/24/2025] [Indexed: 05/01/2025]
Abstract
The formulation of reasonable concentration classification standards can significantly enhance the protection of populations against atmospheric heavy metals, and the development of these standards should be grounded in national-level probabilistic risk assessment to establish multiple grading benchmarks. In this study, the probabilistic health risk assessment model was used for the first time to assess the health risks of hazardous metals [arsenic (As), cadmium (Cd), cobalt (Co), chromium (Cr), mercury (Hg), manganese (Mn), nickel (Ni), lead (Pb), and vanadium (V)] based on a publication dataset containing 57,737 PM2.5-bound heavy metal samples from China. Our results showed that the average non-carcinogenic risk attributed to heavy metals in all provinces of China was less than 1. In contrast, the average carcinogenic risk was greater than 10-6 in all provinces. The logarithmic mean non-carcinogenic health risks for the eight non-carcinogenic metals were ranked as follows: V (- 1.55 ± 0.96) > As (- 1.79 ± 0.96) > Mn (- 1.84 ± 0.82) > Co (- 2.05 ± 0.89) > Cd (- 2.14 ± 0.94) > Ni (- 2.59 ± 0.92) > Cr (- 3.26 ± 0.93) > Hg (- 4.86 ± 0.91), while the logarithmic mean carcinogenic health risk for the seven carcinogenic metals was Cr (- 5.33 ± 0.93) > V (- 5.79 ± 0.96) > As (- 5.98 ± 0.96) > Co (- 6.32 ± 0.89) > Cd (- 6.89 ± 0.94) > Pb (- 7.02 ± 0.93) > Ni (- 7.22 ± 0.92). The metals that contributed most to the non-carcinogenic and carcinogenic risks were V (35.86%) and Cr (57.61%), respectively. Through probabilistic risk assessment, we constructed seven-level health benchmarks for carcinogenic metals (As, Cd, Co, Cr, Ni, Pb, V). These benchmarks of extremely low health risk for the seven carcinogenic metals (As, Cd, Co, Cr, Ni, Pb, V) were 0.00037 μg/m3, 0.0011 μg/m3, 0.00012 μg/m3, 0.00011 μg/m3, 0.0043 μg/m3, 0.025 μg/m3, and 0.00031 μg/m3, respectively. Overall, this study is the first nationwide comprehensive assessment of the probabilistic risk of atmospheric PM2.5-bound toxic metals and provides a theoretical basis for revising and improving China's air quality standards.
Collapse
Affiliation(s)
- Wei Huang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No.16, Section 3, South Renmin Road, Chengdu City, 610041, Sichuan Province, China
- Chengdu Center for Disease Control and Prevention, Chengdu, 610041, Sichuan, China
| | - Weilian Sun
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No.16, Section 3, South Renmin Road, Chengdu City, 610041, Sichuan Province, China
| | - Chifei Zhou
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No.16, Section 3, South Renmin Road, Chengdu City, 610041, Sichuan Province, China
| | - Keyan Long
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No.16, Section 3, South Renmin Road, Chengdu City, 610041, Sichuan Province, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, No.16, Section 3, South Renmin Road, Chengdu City, 610041, Sichuan Province, China.
| |
Collapse
|
2
|
Shahpasand S, Khatami SH, Ehtiati S, Salmani F, Zarei T, Shahpasand K, Ghobeh M, Karima S. Investigation of the expression of Cis P-tau and Pin1 proteins following air pollution induction in the brain tissue of C57BL/6 mice. Biotechnol Appl Biochem 2025; 72:247-259. [PMID: 39192599 DOI: 10.1002/bab.2660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
Alzheimer's disease (AD) is a multifactorial disease in which environmental factors play a role. Among environmental factors, air pollution is a vital issue in modern life. Despite extensive considerations, it remains uncertain how pollution mediates neurodegeneration in AD. Beta-amyloids and hyperphosphorylated tau proteins are the two main pathological markers that have been studied in AD so far. Tau protein is basically a phosphoprotein whose functions are controlled by phosphorylation. The function of tau protein is to be located on the surface of microtubules and stabilize them. Studies have shown that phosphorylated tau protein (p-tau) exists in cis and trans conformations at Thr231, among which cis is highly neurotoxic. The Pin1 enzyme performs the conversion of cis to trans or vice versa. In this study, an experimental mouse model was designed to investigate the formation of cis p-tau by inducing air pollution. In this way, mice were randomly exposed to pollution at 2-week, 1-month, and 2-month intervals. We investigated the formation of phosphorylated cis tau form during air pollution on mouse brains using Western blots and immunofluorescence. The fluorescent imaging results and Western blotting analysis of mouse brains revealed a significant accumulation of cis p-tau in pollution-treated mice models compared to the healthy control mice. According to Western blot results, air pollution induction caused a significant decrease in Pin1 protein. The results clearly show that the tauopathy observed during air pollution is mediated through the formation of cis tau. Our findings unravel tauopathy mysteries upon pollution and would help find a possible therapeutic target to fight the devastating disorder caused by modern life.
Collapse
Affiliation(s)
- Sheyda Shahpasand
- Department of Biology, Faculty of Basic Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyyed Hossein Khatami
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Ehtiati
- Student Research Committee, Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Salmani
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tayebe Zarei
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kourosh Shahpasand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Tehran, Iran
| | - Maryam Ghobeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Patnana DP, Chandra BP. Carcinogenicity and non-carcinogenicity health risks due to PM 2.5 bound trace metals at a sub urban site in Northwest Indo-Gangetic Plain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025; 35:345-356. [PMID: 38758168 DOI: 10.1080/09603123.2024.2353328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/04/2024] [Indexed: 05/18/2024]
Abstract
This study investigates the PM2.5 bound metals using yearlong measurements at a regionally representative suburban site in the Northwest Indo-Gangetic Plain (NWIGP). The order of the measured annual average concentrations of PM2.5 bound metals is Fe > Zn > Ba > Sn > Pb > Cd > Ni > Mn > Cr > Li. Lithium bound to airborne PM2.5 has been reported for the first time in NWIGP. Ni (72.4 ng m-3) and Cd (36.9 ng m-3) have exceeded the acceptable limits set by NAAQS, India. Estimated the hazard quotient (HQ > 1) of Mn and hazard index (HI > 1) of measured metals exceeded the threshold limits indicating the potential non-carcinogenic health risk due to inhalation exposure of PM2.5 bound trace metals. Further, excessive lifetime cancer risk due to inhalation exposure to Cd, Ni and Cr was estimated and found to exceed the threshold limit set by the USEPA for adults and children.
Collapse
Affiliation(s)
- Durga Prasad Patnana
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi, India
| | - B P Chandra
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi, India
| |
Collapse
|
4
|
Li S, Sun W. Establishment of a mouse model of allergic asthma sensitized and triggered with PM2.5. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-12. [PMID: 39829037 DOI: 10.1080/09603123.2025.2453054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025]
Abstract
To establish a mouse model of asthma sensitized and challenged with PM2.5 extract, 48 female BALB/c mice were included in this analysis. They were divided into six groups: normal control, ovalbumin (OVA) control, three PM2.5 dose groups, and a PM2.5+OVA combined group. Mice received intraperitoneal injections of PBS, OVA, PM2.5, or OVA+PM2.5 every 7 days for three weeks, followed by a one-week intranasal challenge. Airway responsiveness to acetylcholine was measured 24 hours post-challenge. Lung and nasal tissues were analyzed for histopathology, and bronchoalveolar lavage fluid (BALF) was assessed for inflammatory cells and cytokines. Compared to controls, PM2.5 and PM2.5+OVA groups showed increased airway hyperresponsiveness, pathological changes, elevated serum IgE, and altered cytokine levels (higher IL-4, IL-13; lower IFN-γ). In conclusion, PM2.5 extract can successfully establish a mouse model of allergic asthma.
Collapse
Affiliation(s)
- Shaohua Li
- Department of Respiratory and Critical Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Wuzhuang Sun
- Department of Respiratory and Critical Care Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
5
|
Chen YW, Ho TPT, Liu KT, Jian MY, Katoch A, Cheng YH. Exploring the characteristics and source-attributed health risks associated with polycyclic aromatic hydrocarbons and metal elements in atmospheric PM 2.5 during warm and cold periods in the northern metropolitan area of Taiwan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124703. [PMID: 39128606 DOI: 10.1016/j.envpol.2024.124703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and metal elements are commonly considered hazardous air pollutants due to their toxic, mutagenic, and carcinogenic properties. However, few studies have simultaneously examined their potential sources and health effects. This study aimed to quantify the PAHs and metal elements in atmospheric PM2.5, investigating their characteristics and potential sources to assess associated health risks in the northern metropolitan area of Taiwan. The measurements indicated that the mean concentrations of total PAHs and metal elements in PM2.5 were 0.97 ± 0.52 ng m-3 and 590 ± 200 ng m-3, respectively. Utilizing the positive matrix factorization profiles, the PAH pollution was classified into two sources: industrial emissions, traffic emissions, and coal combustion (69%) were the predominant sources of PAHs, with petroleum volatilization and biomass burning (31%) making a lesser contribution. Similarly, we traced metal elements to three potential sources: natural sources (48%), a combined source of industrial emissions, coal combustion, and traffic exhaust (32%), and a blend of non-exhaust emissions from traffic and waste incineration sources (20%). Results from the potential source contribution function model suggested that the emissions of PAHs and metals could be influenced by the eastern regions of China, although local sources, including waste incinerators, traffic, shipping, and harbor activities, were identified as the primary contributors. Source-attributed excess cancer risk revealed that industry, traffic, and coal combustion had the highest cancer risk posed by PAHs in the cold period (1.0 × 10-5), while the greatest cancer risk among metal elements was linked to non-exhaust emissions from traffic and waste incineration emissions (2.0 × 10-5). This research underscores the importance of considering source contributions to health risk and emission reduction when addressing PM2.5 pollution. These findings have direct implications for policymakers, providing them with valuable insights to develop strategies that protect public health from the detrimental effects of PAH and metal element exposure.
Collapse
Affiliation(s)
- Yi-Wen Chen
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Thi Phuong Thao Ho
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Kuan-Ting Liu
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Meng-Ying Jian
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Ankita Katoch
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan
| | - Yu-Hsiang Cheng
- Center for Environmental Sustainability and Human Health, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan; Department of Safety, Health and Environmental Engineering, Ming Chi University of Technology, Taishan, New Taipei, 243089, Taiwan; Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, 613016, Taiwan.
| |
Collapse
|
6
|
Castro Ramírez I, Rocha Amador DO, López Gutiérrez JM, Ramírez Mosqueda E, Cea Barcia GE, Ramos Patlán FD, Costilla Salazar R. Chemical Characterization and Assessment of Public Health Risk due to Inhalation of PM 2.5 in the City of Salamanca, Guanajuato. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2024; 113:47. [PMID: 39367941 DOI: 10.1007/s00128-024-03950-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 09/03/2024] [Indexed: 10/07/2024]
Abstract
In this study, we conducted an analysis of health risks faced by residents of Salamanca, Mexico, who were exposed to fine particulate matter with a diameter of 2.5 μm (PM2.5) through inhalation. The characterization and analysis of these particulate matter samples were undertaken. A total of 131 samples were collected from two different sites: 65 from the Red Cross site (RC) and 66 from the Integral Family Development site (DIF) in 2014-2015. These samples were analyzed for a set of chemical components, including metals and ions. Non-cancerous health risk levels associated with PM2.5 exposure through the human respiratory system, as per the WHO benchmark (assigned a value of 1), revealed notable risk values for two elements: Manganese (Mn) with a range of 1.19-2.12 in the adult population and 1.59-2.84 in the child population, and Nickel (Ni) with a uniform risk value of 1.39 for both evaluated population groups. However, concerns arose regarding potential non-cancerous effects as the cumulative risk levels for various assessed elements showed elevated indices. These ranged from 3.81 to 4.4 in adults and 4.48-5.24 in children. This study provided comprehensive data on composition and its potential impact on human health, offering valuable insights for the implementation of mitigation measures aimed at reducing inhalation-related exposure.
Collapse
Affiliation(s)
- Israel Castro Ramírez
- Environmental Science Department, DICIVA, University of Guanajuato, Irapuato, Mexico
| | | | | | | | | | | | | |
Collapse
|
7
|
Liu Q, Liu J, Zhang Y, Chen H, Liu X, Liu M. Associations between atmospheric PM 2.5 exposure and carcinogenic health risks: Surveillance data from the year of lowest recorded levels in Beijing, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124176. [PMID: 38768675 DOI: 10.1016/j.envpol.2024.124176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Scant research has pinpointed the year of minimum PM2.5 concentration through extensive, uninterrupted monitoring, nor has it thoroughly assessed carcinogenic risks associated with analyzing numerous components during this nadir in Beijing. This study endeavored to delineate the atmospheric PM2.5 pollution in Beijing from 2015 to 2022 and to undertake comprehensive evaluation of carcinogenic risks associated with the composition of atmospheric PM2.5 during the year exhibiting the lowest concentration. PM2.5 concentrations were monitored gradually in 9 districts of Beijing for 7 consecutive days per month from 2015 to 2022, and 32 kinds of PM2.5 components collected in the lowest PM2.5 concentration year were analyzed. This comprehensive dataset served as the basis for carcinogenic risk assessment using Monte Carlo simulation. And we applied the Positive Matrix Factorization (PMF) method to identity the sources of atmospheric PM2.5. Furthermore, we integrated this source appointment model with risk assessment model to discern the origins of these risks. The findings revealed that the annual average PM2.5 concentration in 2022 stood at 43.1 μg/m3, marking the lowest level recorded. The mean carcinogenic risks of atmospheric PM2.5 exposure calculated at 6.30E-6 (empirical 95% CI 1.09E-6 to 2.25E-5) in 2022. The PMF model suggested that secondary sources (35.4%), coal combustion (25.6%), resuspended dust (15.1%), biomass combustion (14.1%), vehicle emissions (7.1%), industrial emissions (2.0%) and others (0.7%) were the main sources of atmospheric PM2.5 in Beijing. The mixed model revealed that coal combustion (2.41E-6), vehicle emissions (1.90E-6) and industrial emissions (1.32E-6) were the main sources of carcinogenic risks with caution. Despite a continual decrease in atmospheric PM2.5 concentration in recent years, the lowest concentration levels still pose non-negligible carcinogenic risks. Notably, the carcinogenic risks associated with metals and metalloids exceeded that of PAHs. And the distribution of risk sources did not align proportionally with the distribution of PM2.5 mass concentration.
Collapse
Affiliation(s)
- Qichen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Institute for Environmental Health, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yong Zhang
- Institute for Environmental Health, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Huajie Chen
- Institute for Environmental Health, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Xiaofeng Liu
- Institute for Environmental Health, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Min Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.
| |
Collapse
|
8
|
Yang D, Li M, Geng X, Feng Z. Sources and Specified Health Risks of 12 PM 2.5-Bound Metals in a Typical Air-Polluted City in Northern China during the 13th Five-Year Plan. TOXICS 2024; 12:581. [PMID: 39195683 PMCID: PMC11360060 DOI: 10.3390/toxics12080581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/29/2024]
Abstract
The continuous monitoring of PM2.5 (including 12 metal elements) was conducted in Jinan, a city with poor air quality in China, during the 13th Five-Year Plan (2016-2020). Positive matrix factorization (PMF) was used to identify emission sources of PM2.5-bound metals, and the health risks of the metals and their emission sources were assessed. During the study period, the concentration of most metals showed a decreasing trend (except Al and Be), and a significant seasonal difference was found: winter > fall > spring > summer. The PMF analysis showed that there were four main sources of PM2.5-bound metals, and their contributions to the total metals (TMs) were dust emissions (54.3%), coal combustion and industrial emissions (22.3%), vehicle emissions (19.3%), and domestic emissions (4.1%). The results of the health risk assessment indicated that the carcinogenic risk of metals (Cr and As) exceeded the acceptable level (1 × 10-6), which was of concern. Under the influence of emission reduction measures, the contribution of emission sources to health risks changes dynamically, and the emission sources that contribute more to health risks were coal combustion and industrial emissions, as well as vehicle emissions. In addition, our findings suggest that a series of emission reduction measures effectively reduced the health risk from emission sources of PM2.5-bound metals.
Collapse
Affiliation(s)
- Deai Yang
- Department of Labor Hygiene and Environmental Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan 250021, China;
| | - Mingjun Li
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan 250021, China;
| | - Xingyi Geng
- Jinan Municipal Center for Disease Control and Prevention Affiliated to Shandong University, Jinan 250021, China;
| | - Zhihui Feng
- Department of Labor Hygiene and Environmental Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| |
Collapse
|
9
|
Abbaslou H, Ahmadi Jalaldehi P, Kalantary S, Azam K, Zanjani E, Shahtaheri SJ, Khadem M. Health risk assessment of occupational exposure to heavy metals among green space workers in Iran. Toxicol Ind Health 2024; 40:353-365. [PMID: 38662893 DOI: 10.1177/07482337241247088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Exposure to heavy metals can result in various adverse health effects. Tehran is rated as one of the world's most polluted cities. Green space workers are continuously exposed to such pollutants in this city. Thus, this study aimed to estimate the health risks caused by exposure to heavy metals among green space workers. Eighty-eight workers and office personnel in two regions with different air quality levels were chosen for sampling. Air samples were collected using the NIOSH-7300 method and analyzed using an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) instrument. The hazard quotient (HQ) and the lifetime cancer risk (LTCR) were calculated to assess carcinogenic and non-carcinogenic risk levels. The results revealed that the rank order of heavy metals was determined as Zn, Pb, Mn, Ni, Co, and Cd. Workers were subjected to higher concentrations of Ni, Pb, Zn, and Co than office personnel. Furthermore, the Cd, Co, and Zn exposure levels stood significantly higher in region 6 than in region 14. Non-carcinogenic risk levels for all participants fell within the acceptable range. Moreover, no employee had a carcinogenic risk level within the acceptable range when exposed to Cd. Also, 2.3% of individuals demonstrated Ni's acceptable carcinogenic risk level. Owing unacceptable risk levels, proper interventions are required to minimize occupational exposure to heavy metals. These interventions include optimizing shift schedules, using personal protective equipment, and conducting regular health assessments.
Collapse
Affiliation(s)
- Hossein Abbaslou
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Pourya Ahmadi Jalaldehi
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Saba Kalantary
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamal Azam
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Zanjani
- Iran National Influenza Center (NIC), School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Jamaleddin Shahtaheri
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh Khadem
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Ting YC, Zou YX, Pan SY, Ko YR, Ciou ZJ, Huang CH. Sources-attributed contributions to health risks associated with PM 2.5-bound polycyclic aromatic hydrocarbons during the warm and cold seasons in an urban area of Eastern Asia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171325. [PMID: 38428604 DOI: 10.1016/j.scitotenv.2024.171325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/28/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Despite the well-established recognition of the health hazards posed by PM2.5-bound PAHs, a comprehensive understanding of their source-specific impact has been lacking. In this study, the health risks associated with PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and source-specific contributions were investigated in the urban region of Taipei during both cold and warm seasons. The levels of PM2.5-bound PAHs and their potential health risks across different age groups of humans were also characterized. Diagnostic ratios and positive matrix factorization analysis were utilized to identify the sources of PM2.5-bound PAHs. Moreover, potential source contribution function (PSCF), concentration-weighted trajectory (CWT) and source regional apportionment (SRA) analyses were employed to determine the potential source regions. Results showed that the total PAHs (TPAHs) concentrations ranged from 0.08 to 2.37 ng m-3, with an average of 0.69 ± 0.53 ng m-3. Vehicular emissions emerged as the primary contributor to PM2.5-bound PAHs, constituting 39.8 % of the TPAHs concentration, followed by industrial emissions (37.6 %), biomass burning (13.8 %), and petroleum/oil volatilization (8.8 %). PSCF and CWT analyses revealed that industrial activities and shipping processes in northeast China, South China Sea, Yellow Sea, and East China Sea, contributed to the occurrence of PM2.5-bound PAHs in Taipei. SRA identified central China as the primary regional contributor of ambient TPAHs in the cold season and Taiwan in the warm season, respectively. Evaluations of incremental lifetime cancer risk demonstrated the highest risk for adults, followed by children, seniors, and adolescents. The assessments of lifetime lung cancer risk showed that vehicular and industrial emissions were the main contributors to cancer risk induced by PM2.5-bound PAHs. This research emphasizes the essential role of precisely identifying the origins of PM2.5-bound PAHs to enhance our comprehension of the related human health hazards, thus providing valuable insights into the mitigation strategies.
Collapse
Affiliation(s)
- Yu-Chieh Ting
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan.
| | - Yu-Xuan Zou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Shih-Yu Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Ru Ko
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Zih-Jhe Ciou
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Chuan-Hsiu Huang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
11
|
Lin Z, Fan X, Chen G, Hong Y, Li M, Xu L, Hu B, Yang C, Chen Y, Shao Z, Chen J. Sources appointment and health risks of PM 2.5-bound trace elements in a coastal city of southeastern China. J Environ Sci (China) 2024; 138:561-571. [PMID: 38135420 DOI: 10.1016/j.jes.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 12/24/2023]
Abstract
To gain a comprehensive understanding of sources and health risks of trace elements in an area of China with high population densities and low PM2.5 concentrations, 15 trace elements (Al, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Sn, Ba, Pb) in PM2.5 were monitored from December 2020 to November 2021 in a representative city, Xiamen. The concentrations of trace elements in Xiamen displayed an obvious seasonal variation and were dominated by K, Fe, Al, Ca and Zn. Based on Positive Matrix Factorization analysis, source appointment revealed that the major sources of trace elements in Xiamen were traffic, dust, biomass and firework combustion, industrial manufacture and shipping emission. According to health risk assessment combined with the source appointment results, it indicated that the average noncarcinogenic risk was below the threshold and cancer risk of four hazardous metals (Cr, Ni, As, Pb) exceeded the threshold (10-6). Traffic-related source had almost half amount of contribution to the health risk induced by PM2.5-bound trace elements. During the dust transport period or Spring Festival period, the health risks exceeded an acceptable threshold even an order of magnitude higher, suggesting that the serious health risks still existed in low PM2.5 environment at certain times. Health risk assessment reminded that the health risk reduction in PM2.5 at southeastern China should prioritize traffic-related hazardous trace elements and highlighted the importance of controlling vehicles emissions in the future.
Collapse
Affiliation(s)
- Ziyi Lin
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolong Fan
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gaojie Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youwei Hong
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Mengren Li
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lingling Xu
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Baoye Hu
- Minnan Normal University, Zhangzhou 363000, China
| | - Chen Yang
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanting Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Zhiqian Shao
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
12
|
Namvar Z, Ramezani Tehrani F, Shahsavani A, Khodagholi F, Hashemi SS, Binayi F, Salimi M, Abdollahifar MA, Hopke PK, Mohseni-Bandpei A. Reduction of ovarian reserves and activation of necroptosis to in vivo air pollution exposures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:2052-2066. [PMID: 37204020 DOI: 10.1080/09603123.2023.2210109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/30/2023] [Indexed: 05/20/2023]
Abstract
We investigated the association between air pollution and changes in ovarian follicles, anti-mullerian hormone (AMH) levels, the occurrence of necroptosis cell death by activation of receptor-interacting protein kinase 3 (RIPK3) and, the activation of mixed lineage kinase domain-like (MLKL) proteins. Forty-two female Wistar rats were divided into three groups of 14 each, which were exposed to real-ambient air, filtered air and purified air (control) in two periods of 3 and 5 months. The results showed that the number of ovarian follicles decreased in the group exposed to real-ambient air versus the control group (P < 0.0001). The trend of age-related AMH changes with respect to exposure to air pollutants was affected and its levels decreased after 3 months of exposure. The MLKL increased in the group exposed to the real-ambient air compared to the control group (P = 0.033). Apparently long-term exposure to air pollution can reduce ovarian reserves.
Collapse
Affiliation(s)
- Zahra Namvar
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Ramezani Tehrani
- Reproductive Endocrinology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Saeed Hashemi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fateme Binayi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mina Salimi
- Department of Physiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | - Anoushiravan Mohseni-Bandpei
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Dwivedi S, Zehra F, Masih J, Gupta T, Lawrence A. Investigating the temporal dynamics of sub-micron particles and particle-bound transition metals in indoor air of a metropolitan city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:49. [PMID: 38227135 DOI: 10.1007/s10653-023-01786-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/13/2023] [Indexed: 01/17/2024]
Abstract
The present study portrays an association between particle-bound transition metals and children's health. The indoor air quality of the urban metropolitan city households was monitored for four PM sizes, namely PM1.0-2.5, PM0.50-1.0, PM0.25-0.50 and PM<0.25, in major seasons observed in the city; summer and winter. Further transition/heavy metals, viz. Cr, Cu, Fe, Mn, Ni, Pb and Zn, were analysed in PM1-2.5 samples. In order to evaluate the effect, health risk assessment was performed using mathematical and computational model for assessing dermal exposure and dose estimation (multiple path particle dosimetry model version3.0). The study principally targeted the children aged 2-15 years for the health risk assessment. According to the results, for the largest particle size i.e. PM1.0-2.5 the highest deposition was in the head region (49.1%) followed by pulmonary (43.6%) and tracheobronchial region (7.2%), whereas, for the smallest particle size i.e. PM<0.25 the highest deposition was obtained in the pulmonary region (73.0%) followed by the head (13.6%) and TB region (13.2%). Also, the most imperilled group of children with highest dose accumulation was found to be children aged 8-9 years for all particle sizes. Moreover, the dermal exposure dose as evaluated was found to be preeminent for Ni, Zn and Pb. Besides, seasonal variation gesticulated towards elevated concentrations in winter relative to the summer season. Altogether, the study will provide a conception to the researchers in the fields mounting season-specific guidelines and mitigation approaches. Conclusively, the study commends future work focussing on defining the effects of other chemical components on particles and associated transition metal composition along with proper extenuation of the same.
Collapse
Affiliation(s)
- Samridhi Dwivedi
- Department of Chemistry, Isabella Thoburn College, Lucknow, India
| | - Farheen Zehra
- Department of Chemistry, Isabella Thoburn College, Lucknow, India
| | - Jamson Masih
- Department of Chemistry, Wilson College, Mumbai, India
| | - Tarun Gupta
- Department of Civil Engineering, Indian Institute of Technology, Kanpur, India
| | - Alfred Lawrence
- Department of Chemistry, Isabella Thoburn College, Lucknow, India.
| |
Collapse
|
14
|
Soltanpour Z, Rasoulzadeh Y, Ansarin K, Seyedrezazadeh E, Mohammadian Y. Carcinogenic and non-carcinogenic risk of exposure to metal fume in different types of welding processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:83728-83734. [PMID: 37349491 DOI: 10.1007/s11356-023-28258-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The international agency for cancer research (IARC) has classified welding fumes as definitive carcinogens. The aim of the present study was to assess health risk due to exposure to welding fumes in different welding types. In this study, exposure to fumes of iron (Fe), chromium (Cr), and nickel (Ni) in the breathing zone air of 31 welder engaged in arc, argon and CO2 welding was assessed. Carcinogenic and non-carcinogenic risk assessments due to exposure to fumes were performed using the method proposed by the Environmental Protection Agency (EPA) by Monte Carlo simulation. The results showed that in the CO2 welding, concentration of Ni, Cr, and Fe was lower than the 8-h Time-Weighted Average Threshold Limit Value (TWA-TLV), recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). In argon welding, Cr and Fe concentrations were higher than the TWA-TLV. In arc welding, concentrations of Ni and Fe were more than the TWA-TLV. In addition, the risk of non-carcinogenicity due to exposure to Ni and Fe in all three types of welding was more than standard level (HQ>1). The results indicated that the welders are at health risk due to exposure to metal fumes. Preventive exposure control measures such as local ventilation need to be implemented in welding workplaces.
Collapse
Affiliation(s)
- Zahra Soltanpour
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yahya Rasoulzadeh
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khalil Ansarin
- Rahat Breath and Sleep Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ensiyeh Seyedrezazadeh
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Mohammadian
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
15
|
Khoshakhlagh AH, Mohammadzadeh M, Manafi SS, Yousefian F, Gruszecka-Kosowska A. Inhalational exposure to formaldehyde, carcinogenic, and non-carcinogenic risk assessment: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121854. [PMID: 37236589 DOI: 10.1016/j.envpol.2023.121854] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023]
Abstract
Formaldehyde is one of the most widely used substances in a variety of industries, although it was classified as a human carcinogen by the International Agency for Research on Cancer (IARC). The present systematic review was conducted to retrieve studies related to occupational exposure to formaldehyde until November 2, 2022. Aims of the study were to identify workplaces exposed to formaldehyde, to investigate the formaldehyde concentrations in various occupations and to evaluate carcinogenic and non-carcinogenic risks caused by respiratory exposure to this chemical among workers. A systematic search was done in Scopus, PubMed and Web of Science databases to find the studies done in this field. In this review, studies that did not meet the criteria specified by Population, Exposure, Comparator, and Outcomes (PECO) approach were excluded. In addition, the inclusion of studies dealing with the biological monitoring of FA in the body and review studies, conference articles, books, and letters to the editors were avoided. The quality of the selected studies was also evaluated using the Joanna Briggs Institute (JBI) checklist for analytic-cross-sectional studies. Finally, 828 studies were found, and after the investigations, 35 articles were included in this study. The results revealed that the highest formaldehyde concentrations were observed in waterpipe cafes (1,620,000 μg/m3) and anatomy and pathology laboratories (4237.5 μg/m3). Carcinogenic and non-carcinogenic risk indicated the potential health effects for employees due to respiratory exposure as acceptable levels of CR = 1.00 × 10-4 and HQ = 1, respectively were reported to be exceeded in more than 71% and 28.57% of the investigated studies. Therefore, according to the confirmation of formaldehyde's adverse health effects, it is necessary to adopt targeted strategies to reduce or eliminate exposure to this compound from the occupational usage.
Collapse
Affiliation(s)
- Amir Hossein Khoshakhlagh
- Department of Occupational Health Engineering, School of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdiyeh Mohammadzadeh
- Social Determinants of Health (SDH) Research Center, Department of Environment Health, Kashan University of Medical Sciences, Kashan, Iran.
| | - Seyede Somayeh Manafi
- Head of Environmental and Urban Health Studies, Tehran Urban Research and Planning Center Municipality of Tehran, Tehran, Iran
| | - Fatemeh Yousefian
- Department of Environmental Health Engineering, Faculty of Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Agnieszka Gruszecka-Kosowska
- AGH University of Science and Technology; Faculty of Geology, Geophysics, and Environmental Protection; Department of Environmental Protection; Al. Mickiewicza 30, 30-059 Krakow, Poland
| |
Collapse
|
16
|
Li S, Liu B, Liu Y, Ding YQ, Zhang J, Feng L. Effects of maternal urban particulate matter SRM 1648a exposure on birth outcomes and offspring growth in mice. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2387-2400. [PMID: 35972609 DOI: 10.1007/s10653-022-01352-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The association between exposure to particulate matter (PM) during pregnancy and abnormal birth outcomes is still inconclusive. This study aims to provide more evidence for this public health concern by investigating birth outcomes and the growth of offspring in mice exposed to PM during pregnancy. C57BL/6 J pregnant mice were exposed to PM via nasal drip at three doses or solvent control. The dam weight gain was recorded during pregnancy. The number of pups, pup weight, and placental weight were recorded at embryonic day 18.5 (E18.5) necropsy. For mice that gave birth naturally, we calculated the gestation length and measured the body weight of offspring once a week from the 1st to the 6th week after birth. The results showed that there were no significant differences in maternal body weight gain, conception rate, pregnancy duration, and litter size among different groups. There were no significant differences in fetal weight, placental weight, and fetal/placental weight ratio at E18.5. Weight gain in offspring was reduced after birth. The average body weight of offspring in the high-dose group was significantly lower than that in the control group at weeks 5 in female pups. There were no significant differences in the body weight of male offspring among groups from 1st to the 6th. Together, our study indicated that maternal exposure to PM did not significantly impact birth outcomes of C57BL/6 J mice but affected growth trajectories in offspring after birth in a dose- and fetal sex-dependent manner.
Collapse
Affiliation(s)
- Shuman Li
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Bin Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yongjie Liu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China
| | - Yu-Qiang Ding
- Department of Laboratory Animal Science, Fudan University, Shanghai, 200032, China
| | - Jun Zhang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, School of Public Health, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
| | - Liping Feng
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao-Tong University School of Medicine, Shanghai, China.
- Division of Reproductive Science, Department of Obstetrics and Gynecology, Duke University Medical Center, Box 103208, Durham, NC, 27710, USA.
| |
Collapse
|
17
|
Galvão ES, Santos JM, Goulart EV, Junior NCR. Health risk assessment of inorganic and organic constituents of the coarse and fine PM in an industrialized region of Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161042. [PMID: 36572292 DOI: 10.1016/j.scitotenv.2022.161042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
A health risk assessment of inorganic and organic species associated with coarse and fine particulate matter (PM) was conducted in Southeastern Brazil. TSP, PM10, and PM2.5 samples were collected, and their elemental (metals/metalloids) and organic (PAHs) composition were determined by EDXRF and GC-MS. The health risks were determined through hazard quotient (HQ) and cancer risk (CR). It was found that different elements and routes of exposure lead to different health risks, even for the PM concentration in compliance with air quality standards. The major routes of exposure for adults were inhalation and dermal contact whereas for children were ingestion and dermal contact. High non-cancer risks (HQ) caused by Cl and Fe exposure were associated with coarser fractions, PM10 and TSP, respectively, whereas high HQ for Se, Sb, and V exposure were associated with PM2.5. HQ values for children were near twice that for adults, and CR values were 65 % to 130 % higher for children than for adults. CR posed by PAHs was negligible. The results highlighted that the HQ might be over- or underestimated depending on the form in which the element Cl is determined (elemental or ion), reinforcing the need for an embracing chemical characterization of the PM. High HQ values were found related to the exposure to some elements present in the TSP, showing that this PM fraction should not be neglected.
Collapse
Affiliation(s)
- Elson Silva Galvão
- Universidade Federal do Espírito Santo, Departamento de Engenharia Ambiental, ES, Brazil.
| | - Jane Meri Santos
- Universidade Federal do Espírito Santo, Departamento de Engenharia Ambiental, ES, Brazil
| | - Elisa Valentim Goulart
- Universidade Federal do Espírito Santo, Departamento de Engenharia Ambiental, ES, Brazil
| | | |
Collapse
|
18
|
Soltanpour Z, Rasoulzadeh Y, Mohammadian Y. Occupational Exposure to Metal Fumes Among Iranian Welders: Systematic Review and Simulation-Based Health Risk Assessment. Biol Trace Elem Res 2023; 201:1090-1100. [PMID: 35508890 DOI: 10.1007/s12011-022-03246-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/14/2022] [Indexed: 02/07/2023]
Abstract
There have been numerous reports of welder's worker exposure to metal fumes. Carcinogenic and non-carcinogenic (neurological, dermal, and etc.) effects are the adverse outcomes of exposure to welding fumes. In this review study, data were collected from previous studies conducted in Iran from 1900 to 2020. The risk of carcinogenicity and non-carcinogenicity due to exposure to welding metal fumes was assessed using the United States Environmental Protection Agency (USEPA) method based on the Monte Carlo simulation (MCS). Results showed mean of metal fume concentration in gas welding was in the range of 1.8248 to 1060.6 (µg/m3) and in arc welding was 54.935 to 4882.72 (µg/m3). The mean concentration of fumes in gas welding is below the recommended American Conference of Governmental Industrial Hygienists (ACGIH) standard exposure limit except for manganese, and in the arc welding, all metal fume concentrations are below the standard exposure limit except for manganese and aluminum. The results showed that the risk of carcinogenicity due to exposure to nickel, manganese in both gas and arc welding, and cadmium in gas welding was higher than standard level (hazard quotient (HQ) more than 1). Cancer risk due to exposure to nickel in both gas and arc welding was probable (1 × 10-6 < cancer risk (CR) < 1 × 10-4). Health risk assessment showed that welders are exposed to health risks. Preventive measures should be applied in welding workplaces to reduce the concentrations of metal fumes.
Collapse
Affiliation(s)
- Zahra Soltanpour
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yahya Rasoulzadeh
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
- Road Traffic Injury Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Mohammadian
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
19
|
Ge P, Liu Z, Chen M, Cui Y, Cao M, Liu X. Chemical Characteristics and Cytotoxicity to GC-2spd(ts) Cells of PM 2.5 in Nanjing Jiangbei New Area from 2015 to 2019. TOXICS 2023; 11:92. [PMID: 36850968 PMCID: PMC9966943 DOI: 10.3390/toxics11020092] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/03/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
PM2.5 is an air pollutant with complex components. After entering the body through respiration, PM2.5 can not only cause respiratory diseases, but also break through the blood-testis barrier and influence the reproductive system. PM2.5 with different components may result in different toxic effects. In the first five years of Nanjing Jiangbei New Area, industrial transformation would change the concentration and chemical fraction of PM2.5 in the local environment to a certain extent. In this study, PM2.5 collected in Nanjing Jiangbei New Area every autumn and winter from 2015 to 2019 was analyzed. PM2.5 concentration generally decreased year by year. The large proportion of secondary inorganic ions indicated the presence of secondary pollution at the sampling site. PM2.5 was mainly emitted from fossil fuel combustion and vehicle exhaust. The cytotoxicity of PM2.5 samples was evaluated by PM2.5 exposure to mouse spermatocytes (GC-2spd(ts) cells). Cell viability was relatively low in 2016 and 2018, and relatively high in 2017 and 2019. Reactive oxygen species levels and DNA damage levels followed similar trends, with an overall annual decrease. The cytotoxicity of PM2.5 on GC-2spd(ts) cells was significantly correlated with water-soluble ions, water-soluble organic carbon, heavy metals and polycyclic aromatic hydrocarbons (p < 0.01). According to principal component analysis and multiple linear regression, fossil fuel combustion, secondary transformation of pollutants and construction dust were identified as the major contributors to cytotoxic effects, contributing more than 50%.
Collapse
Affiliation(s)
- Pengxiang Ge
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhengjiang Liu
- Gansu Water Resources and Hydropower Survey and Design Research Institute, Lanzhou 730000, China
| | - Mindong Chen
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yan Cui
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Maoyu Cao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Xiaoming Liu
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
20
|
Xie Y, Shi K, Yuan Y, Gu M, Zhang S, Wang K, Fu L, Shen C, Yuan Z. Bibliometric Analysis Reveals the Progress of PM 2.5 in Health Research, Especially in Cancer Research. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1271. [PMID: 36674029 PMCID: PMC9859174 DOI: 10.3390/ijerph20021271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
PM2.5 has an aerodynamic diameter of less than or equal to 2.5 microns due to its inherent physical and chemical properties so that it can enter the alveoli through the respiratory tract for blood gas exchange. Numerous studies have shown that PM2.5 is a serious air pollutant that poses a wide range of health risks, especially for cancer. Bibliometric methods were employed to have comprehensively analyzed the research of PM2.5 in cancer for about a decade in Web of Science to identify hotspots and trends using VOSviewer, CiteSpace, and R. The field has undergone overall growth in the past decade. As research on PM2.5 in health deepens, cancer related to it expanded beyond the respiratory system to the digestive system, urinary system, female gonadal axis, breast cancer and other cancers. Another observation is that research on PM2.5 in cancer has progressed in the mechanisms of deterioration, such as the role of matrix metalloproteinases in cancer. In addition, research on the risks of PM2.5 in combination with polycyclic aromatic hydrocarbons and heavy metals has also emerged. Results showed that there are relatively more studies on PM2.5 in high-latitude countries, which may be due to different national conditions, such as climate and coal combustion. Our research has combed through the progress of PM2.5 in cancer research and provided a supplement for developing pollution prevention ideas with different national conditions in this field.
Collapse
Affiliation(s)
- Yaxuan Xie
- School of Public Health, Wuhan University, Wuhan 430000, China
| | - Kejian Shi
- School of Public Health, Wuhan University, Wuhan 430000, China
| | - Yuncong Yuan
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430000, China
| | - Shihan Zhang
- School of Public Health, Wuhan University, Wuhan 430000, China
| | - Kai Wang
- School of Public Health, Wuhan University, Wuhan 430000, China
| | - Liangying Fu
- School of Public Health, Wuhan University, Wuhan 430000, China
| | - Chao Shen
- College of Life Sciences, Wuhan University, Wuhan 430000, China
| | - Zhanpeng Yuan
- School of Public Health, Wuhan University, Wuhan 430000, China
- Hubei Provincial Key Laboratory of Applied Toxicology, D1 Safety Assessment Center, Bio-City Innovation Park, Wuhan 430000, China
| |
Collapse
|
21
|
Galvão ES, Paiva HB, Menezes HC, de Almeida Albuquerque TT, Cardeal ZDL. Cancer risk assessment and source apportionment of the gas- and particulate-phase of the polycyclic aromatic hydrocarbons in a metropolitan region in Brazil. CHEMOSPHERE 2023; 311:136872. [PMID: 36252898 DOI: 10.1016/j.chemosphere.2022.136872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 09/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
A risk assessment and a source apportionment of the particulate- and gas-phase PAHs were conducted in a high vehicular traffic and industrialized region in southeastern Brazil. Higher concentrations of PAHs were found during summer, being likely driven by the contributions of PAHs in the vapor phase caused by fire outbreaks during this period. Isomer ratio diagnostic and Principal Component Analysis (PCA) identified four potential sources in the region, in which the Positive Matrix Factorization (PMF) model confirmed and apportioned as gasoline-related (31.8%), diesel-related (25.1%), biomass burning (23.4%), and mixed sources (19.6%). The overall cancer risk had a tolerable value, with ∑CR = 4.6 × 10-5, being ingestion the major via of exposure (64% of the ∑CR), followed by dermal contact (33% of the ∑CR) and inhalation (3%). Mixed sources contributed up to 45% of the overall cancer risk (∑CR), followed by gasoline-related (up to 35%), diesel-related (up to 15%), and biomass burning (up to 10%). The risk assessment for individual PAH species allowed identifying higher CR associated with BaP, DBA, BbF, BaA, and BkF, species associated with gasoline-related and industrial sources. Higher risks were associated with PM2.5-bound PAHs exposure, mainly via ingestion and dermal contact, highlighting the need for measures of mitigation and control of PM2.5 in the region.
Collapse
Affiliation(s)
- Elson Silva Galvão
- Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270, Brazil
| | | | - Helvécio Costa Menezes
- Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270, Brazil
| | | | | |
Collapse
|
22
|
Shams Solari M, Ashrafi K, Pardakhti A, Hassanvand MS, Arhami M. Meteorological dependence, source identification, and carcinogenic risk assessment of PM 2.5-bound Polycyclic Aromatic Hydrocarbons (PAHs) in high-traffic roadside, urban background, and remote suburban area. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:813-826. [PMID: 36406605 PMCID: PMC9672248 DOI: 10.1007/s40201-022-00821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 07/31/2022] [Indexed: 06/16/2023]
Abstract
The Polycyclic Aromatic Hydrocarbons (PAHs) bound to ambient fine Particular Matter (PM2.5) are currently drawing a lot of attention due to their adverse health effects increasing lung cancer risk in humans. In this study, The PM2.5 samples were collected by high volume air samplers simultaneously from three different sites (high-traffic roadside, urban background, and remote suburban) in Tehran, Iran during warm and cold seasons (from July 2018 to March 2019), and 16 PAHs were analyzed using Gas Chromatography-Mass Spectrometry (GC-MS). Unlike previous studies, a remote suburban area was chosen so as to observe the spatial differentiation in PM2.5-bound PAH characteristics. In high-traffic roadside site, the average concentration of total PM2.5-bound PAHs (ƩPAHs) was 3.7 times the concentration value in remote suburban area. Average (ƩPAHs) ranged from 5.54 ng/m3 for remote suburban area to 20.67 ng/m3 for high-traffic roadside site. In all sites, seasonal trends of PAH concentrations elucidated high concentrations in the cold season and low concentrations in the warm season. Correlation analysis between ƩPAHs and atmospheric factors (meteorology parameters and criteria air pollutants) indicated the heterogeneous processes play an important role in the level of PAHs. The results of diagnostic ratio (DR) analysis disclosed that the dominant source of PM2.5-bound PAHs was the combustion of liquid fossil fuels. Despite the fact that incremental lifetime cancer risk (ILCR) via inhaling PM2.5-bound PAHs varied significantly in high-traffic roadside site and remote suburban site, its value was beyond the acceptable risk level in both sites. Our results suggested that effective regulations are needed to monitor PAHs concentrations and reduce PAHs emissions from liquid fossil fuel combustion so as to mitigate the potential carcinogenic risk of PAHs in ambient air. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-022-00821-2.
Collapse
Affiliation(s)
- Mohsen Shams Solari
- Faculty of Environment, University of Tehran, 15 Ghods St, Enghelab Ave, Tehran, 14155-6135 Iran
| | - Khosro Ashrafi
- Faculty of Environment, University of Tehran, 15 Ghods St, Enghelab Ave, Tehran, 14155-6135 Iran
| | - Alireza Pardakhti
- Faculty of Environment, University of Tehran, 15 Ghods St, Enghelab Ave, Tehran, 14155-6135 Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Arhami
- Department of Civil Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
23
|
Saxena P, Kumar A, Mahanta SSK, Sreekanth B, Patel DK, Kumari A, Khan AH, Kisku GC. Chemical characterization of PM 10 and PM 2.5 combusted firecracker particles during Diwali of Lucknow City, India: air-quality deterioration and health implications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:88269-88287. [PMID: 35831653 PMCID: PMC9281250 DOI: 10.1007/s11356-022-21906-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/04/2022] [Indexed: 04/15/2023]
Abstract
Urban air pollution is a growing menace leading to human discomfort, increased hospitalizations, morbidity, and mortality. This study deals with deteriorated air quality due to firecracker bursting during Diwali in Lucknow. Inhalable particulates and gaseous pollutants were monitored during Diwali 2020 using air samplers. Elements, ions, and surface morphology of particles were analyzed using ICP-MS, ion chromatograph, and SEM-EDX, respectively. PM10, PM2.5, SO2, and NO2 were 558, 352, 44, and 86 μg/m3 during Diwali night and 233, 101, 17, and 40 μg/m3 on pre-Diwali night while 241, 122, 24, and 43 μg/m3 on Diwali day. Concentrations surged for PM10: 139% and 132%, PM2.5: 249% and 189%, SO2: 159% and 83%, and NO2: 115% and 100% on Diwali night compared to pre-Diwali night and corresponding Diwali day, respectively. Al, K, Ba, and B showed dominance in PM10 whereas Zn, Al, Ba, and K in PM2.5 on Diwali night. The order of metal abundance in PM2.5 was Cd < Co < Ag < As < Cr < Ni < Cu < Bi < Pb < Mn < Sr < Fe < B < Zn < Al < Ba < K. Cations NH4+, K+, Mg2+, Ca2+, and anions F-, Cl-, NO3-, Br-, NO2-, SO4-2, PO43- showed a 2-8 fold increase on Diwali night relative to pre-Diwali night. Average metal concentrations varied by 2.2, 1.6, and 0.09 times on Diwali than pre-Diwali in residential, commercial, and industrial areas, respectively. PM10 concentration increased by 458% and 1140% while PM2.5, 487%, and 2247% than respective NAAQS and WHO standards. Tiny firecracker particles vary in toxicity as compared to vehicular emissions and have enhanced bioavailability leading to severe threat in terms of LRI, COPD, and atherosclerosis for city dwellers. It is imperative to recognize the present status of ambient air quality and implement regulatory strategies for emission reduction.
Collapse
Affiliation(s)
- Priya Saxena
- Environmental Monitoring Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, UP, 226001, India
- Department of Botany, University of Lucknow, Lucknow, UP, 226007, India
| | - Ankit Kumar
- Environmental Monitoring Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - S S Kalikinkar Mahanta
- Environmental Monitoring Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Bojjagani Sreekanth
- Environmental Monitoring Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, UP, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
| | - Devendra Kumar Patel
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India
- Analytical Chemistry Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, UP, 226001, India
| | - Alka Kumari
- Department of Botany, University of Lucknow, Lucknow, UP, 226007, India
| | - Altaf Husain Khan
- Environmental Monitoring Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, UP, 226001, India
| | - Ganesh Chandra Kisku
- Environmental Monitoring Division, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31-Mahatma Gandhi Marg, Lucknow, UP, 226001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP, 201002, India.
| |
Collapse
|
24
|
Tian Y, Jia B, Zhao P, Song D, Huang F, Feng Y. Size distribution, meteorological influence and uncertainty for source-specific risks: PM 2.5 and PM 10-bound PAHs and heavy metals in a Chinese megacity during 2011-2021. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120004. [PMID: 35995293 DOI: 10.1016/j.envpol.2022.120004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
This study aims at exploring size distribution, meteorological influence and uncertainty for source-specific risks of atmospheric particulate matter (PM), which can improve risk-mitigation strategies for health protection. Heavy metals (HMs) and polycyclic aromatic hydrocarbons (PAHs) in PM2.5 and PM10 were detected in a Chinese megacity during 2011-2021. A new method named as PMFBMR, which combines the Positive Matrix Factorization, Bootstrapping, Mote Carlo and Risk assessment model, was developed to estimate uncertainty of source-specific risks. It was found that PAH risks concentrated in fine PM, while HMs showed high risks in both fine and coarse PMs. For PM2.5, HQ (non-cancer risk hazard quotient) of gasoline combustion (GC), diesel and heavy oil combustion (DC), coal combustion (CC), industrial source (IS), resuspended dust (RD) and secondary and transport PM (ST) were 0.6, 1.4, 0.9, 1.6, 0.3, and 0.3. ILCR (lifetime cancer risk) of sources were IS (9.2E-05) > DC (2.6E-05) = CC (2.6E-05) > RD (2.2E-05) > GC (1.7E-05) > ST (6.4E-06). PM2.5 from GC, DC, CC and IS caused higher risks than coarse PM, while coarse PM from RD caused higher risks. Source-specific risks were influenced not only by emissions, but also by meteorological condition and dominant toxic components. Risks of GC and DC were usually high during stable weather. Some high risks of CC, IS and RD occurred at strong WS due to transport or wind-blown resuspension. GC and DC risks (influenced by both PAHs and HMs) showed strong relationship with T, while IS and RD risks (dominated by HMs) showed weak link with meteorological conditions. For uncertainty of source-specific risks, HQ and ILCR were sensitive for different variables, because they were dominated by components with different uncertainties. When using source-specific risks for risk-mitigation strategies, the focused toxic components, used toxic values, PM sizes and uncertainty are necessary to be considered.
Collapse
Affiliation(s)
- Yingze Tian
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin, 300350, China.
| | - Bin Jia
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Peng Zhao
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Danlin Song
- Chengdu Research Academy of Environmental Sciences, Chengdu, 610015, China
| | - Fengxia Huang
- Chengdu Research Academy of Environmental Sciences, Chengdu, 610015, China
| | - Yinchang Feng
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; CMA-NKU Cooperative Laboratory for Atmospheric Environment-Health Research, Tianjin, 300350, China
| |
Collapse
|
25
|
Imam B, Rahmatinia M, Shahsavani A, Khodagholi F, Hopke PK, Bazazzpour S, Hadei M, Yarahmadi M, Abdollahifar MA, Torkmahalleh MA, Kermani M, Ilkhani S, MirBehbahani SH. Autism-like symptoms by exposure to air pollution and valproic acid-induced in male rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59263-59286. [PMID: 35384534 DOI: 10.1007/s11356-022-19865-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
Exposure to air pollution during prenatal or neonatal periods is associated with autism spectrum disorder (ASD) according to epidemiology studies. Furthermore, prenatal exposure to valproic acid (VPA) has also been found to be associated with an increased prevalence of ASD. To assess the association between simultaneous exposure to VPA and air pollutants, seven exposure groups of rats were included in current study (PM2.5 and gaseous pollutants exposed - high dose of VPA (PGE-high); PM2.5 and gaseous pollutants exposed - low dose of VPA (PGE-low); gaseous pollutants only exposed - high dose of VPA (GE-high); gaseous pollutants only exposed - low dose of VPA (GE-low); clean air exposed - high dose of VPA (CAE-high); clean air exposed - low dose of VPA (CAE-low) and clean air exposed (CAE)). The pollution-exposed rats were exposed to air pollutants from embryonic day (E0) to postnatal day 42 (PND42). In all the induced groups, decreased oxidative stress biomarkers, decreased oxytocin receptor (OXTR) levels, and increased the expression of interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor alpha (TNF-α) were found. The volumes of the cerebellum, hippocampus, striatum, and prefrontal decreased in all induced groups in comparison to CAE. Additionally, increased numerical density of glial cells and decreased of numerical density of neurons were found in all induced groups. Results show that simultaneous exposure to air pollution and VPA can cause ASD-related behavioral deficits and air pollution reinforced the mechanism of inducing ASD ̉s in VPA-induced rat model of autism.
Collapse
Affiliation(s)
- Bahran Imam
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rahmatinia
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Shahsavani
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Air Quality and Climate Change Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Philip K Hopke
- Department of Public Health Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY, 14642, USA
- Institute for a Sustainable Environment, Clarkson University, Potsdam, NY, 13699, USA
| | - Shahriyar Bazazzpour
- Student Research Committee, Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Yarahmadi
- Environmental and Occupational Health Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Mohammad-Amin Abdollahifar
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Amouei Torkmahalleh
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan, 010000
| | - Majid Kermani
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Ilkhani
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
26
|
Abril GA, Amarillo AC, Mateos AC, Diez SC, Wannaz ED, Pignata ML, Carreras HA. Exposure to atmospheric particle-bound Polycyclic Aromatic Hydrocarbons in the vicinity of two cement plants in Córdoba, Argentina. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Mohammadi S, Shafiee M, Faraji SN, Rezaeian M, Ghaffarian-Bahraman A. Contamination of breast milk with lead, mercury, arsenic, and cadmium in Iran: a systematic review and meta-analysis. Biometals 2022; 35:711-728. [PMID: 35575819 DOI: 10.1007/s10534-022-00395-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/29/2022] [Indexed: 12/29/2022]
Abstract
Breast milk is a complete food for the development of the newborn, but it can also be an important route for environmental pollutants transmission to the infants. This study was aimed to evaluate the status of heavy metals including lead (Pb), mercury (Hg), cadmium (Cd) and arsenic (As) in the breast milk of Iranian mothers. The international databases including Scopus, PubMed, Web of Science and the Persian electronic databases including Scientific Information Database, IranMedex and Magiran were examined to find relevant articles published until July 2021. A total of 23 studies examined the levels of toxic metals in Iranian breast milk samples. According to the findings, the pooled average concentrations (µg/L) of Pb, Cd, Hg and As were 25.61, 2.40, 1.29 and 1.16, respectively. The concentration of Hg and Pb in colostrum milk was more than twice of mature milk. The Hg mean concentration in the breast milk of mothers with at least one amalgam-filled tooth was approximately three times that of mothers without amalgam-filled teeth. Risk assessment analysis indicated that the intake of Pb and Hg by infants through breastfeeding can be considered a health concern in Iran. It seems necessary to reduce the Pb exposure of pregnant and lactating women in Iran. However, more extensive studies are needed to clarify the toxic metals' exposure status of infants through breast milk in other parts of the country.
Collapse
Affiliation(s)
- Salman Mohammadi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Shafiee
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nooreddin Faraji
- School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Rezaeian
- Department of Epidemiology and Biostatistics, Occupational Environment Research Center, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
28
|
Nasirzadeh N, Mohammadian Y, Dehgan G. Health Risk Assessment of Occupational Exposure to Hexavalent Chromium in Iranian Workplaces: a Meta-analysis Study. Biol Trace Elem Res 2022; 200:1551-1560. [PMID: 34420136 DOI: 10.1007/s12011-021-02789-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/09/2021] [Indexed: 12/15/2022]
Abstract
Occupational exposure to hexavalent chromium (Cr+6) has reported in different industries. The Cr6+ has the carcinogenic and non-carcinogenic effects. The aim of this study was to provide a meta-analysis and health risk assessment of occupational exposure to Cr6+ in Iranian workplaces. Databases including Scopus, Web of Sciences (WOS), and Scientific Information Database (SID), as a national database, were searched from 2000 to February 2021. The related studies to occupational exposure to Cr6+ were selected by Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol. Lung cancer and non-cancer risk (nasal mucosal irritation, atrophy, and perforation) of Cr6+ were estimated by Environmental Protection Agency (EPA) method, based on the Monte Carlo simulation (MCS). Also, the results of spirometry and biomonitoring of previous studies were reviewed. We found 14 articles based on inclusion criteria. Pooled concentration of Cr6+ was estimated 0.037 ± 0.002 mg/m3 which was higher than the recommended exposure limit by the ACGIH (0.002 mg/m3). The mean lung cancer risk was estimated to be 5.49E-2, which was considerable risk. In the Cr6+-exposed workers, all parameters of pulmonary function had decreased. The level of Cr6+ in urinary and blood samples was higher than threshold limit. Results indicated that exposure to Cr6+ and its health risk were more than recommended exposure limit. The results of present study could be helpful for health policy maker to control exposure to Cr6+ in workplaces.
Collapse
Affiliation(s)
- Nafiseh Nasirzadeh
- Department of Occupational Health Engineering, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Yousef Mohammadian
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Science, 5165665931, Tabriz, Iran.
| | - Golnoush Dehgan
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Science, 5165665931, Tabriz, Iran
| |
Collapse
|
29
|
Soltanpour Z, Mohammadian Y, Fakhri Y. The exposure to formaldehyde in industries and health care centers: A systematic review and probabilistic health risk assessment. ENVIRONMENTAL RESEARCH 2022; 204:112094. [PMID: 34563530 DOI: 10.1016/j.envres.2021.112094] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/08/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Formaldehyde is classified as a definitive human carcinogen by the International Agency for Research on Cancer (IARC). The workers in several industries such as foundry, melamine, resin, and health care centers (pathology and anatomy laboratories and operating rooms) are exposed to airborne formaldehyde. In this systematic review, studies conducted from 2000 to 2020 on occupational exposure to airborne formaldehyde in Iran were collected and analyzed. The carcinogenic and non-carcinogenic risk assessments of exposure to airborne formaldehyde were estimated using the recommended United State Environmental Protection Agency (USEPA) method by Monte-Carlo simulation. Results demonstrated that in both health care centers and industrial settings, mean concentrations of airborne formaldehyde were higher than that 8- hour time-weighted average threshold limit value (TWA-TLV) recommended by the American Conference of Governmental Industrial Hygienists (ACGIH). Also, results showed that cancer and non-cancer risks due to exposure to airborne formaldehyde (Neurological, dermal, respiratory effects and so on) were considerable in both industrial settings and health care settings. The results of this study could be used by health policy makers to eliminate or reduce exposure to airborne formaldehyde in workplaces.
Collapse
Affiliation(s)
- Zahra Soltanpour
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Mohammadian
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Yadolah Fakhri
- Social Determinants in Health Promotion Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
30
|
Zhang L, Yang Z, Liu J, Zeng H, Fang B, Xu H, Wang Q. Indoor/outdoor relationships, signatures, sources, and carcinogenic risk assessment of polycyclic aromatic hydrocarbons-enriched PM 2.5 in an emerging port of northern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:3067-3081. [PMID: 33501592 DOI: 10.1007/s10653-021-00819-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Humans spend most of their time in indoor environments, thus a thorough understanding of indoor and outdoor PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) origins for accurate assessment of health risks is required. In the present study, 84 pairs of PM2.5 samples from indoor (laboratory) and outdoor (campus) locations were collected from April to December 2018 in Caofeidian, China. The annual median concentration of PM2.5 outdoors was 90.80 µg/m3, 9.08 times higher than the annual standard of WHO guideline (10 µg/m3). Indoor PM2.5 annual median concentration (41.80 µg/m3) was also higher than the annual standard of ASHRAE guideline (15 µg/m3). The annual median concentrations of ∑18PAHs indoors (44.23 ng/m3) and outdoors (189.6 ng/m3) were highest in winter and descended in the order of autumn > spring > summer. Contrary to summer and autumn, indoor/outdoor concentration ratios were less than 1 in spring and winter, indicating that the contribution of outdoor particle infiltration was more significant than that of indoor sources. The positive matrix factorization model suggested that indoor PAHs came from three sources: vehicle emissions (43%), biomass burning (37%), industry emissions, and coal combustion (20%). Outdoor PAHs came from four sources: petroleum volatilization (39%), vehicle emissions (30%), coal combustion (18%), and biomass burning (13%). The incremental lifetime cancer risk values of indoor and outdoor PAHs in winter exceeded the acceptable level (10-6), and the carcinogenic risk of adults was higher than that of children and teenagers. These results indicated that simultaneous monitoring of indoor and outdoor PAHs is recommended for accurate assessment of health risk, and the analysis in the current work should be helpful to formulate policies to reduce PAHs emissions.
Collapse
Affiliation(s)
- Lei Zhang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, People's Republic of China
| | - Ze Yang
- Department of Occupational and Environmental Health, Tianjin Medical University, Tianjin, 300041, People's Republic of China
| | - Jiajia Liu
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, People's Republic of China
| | - Hao Zeng
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, People's Republic of China
| | - Bo Fang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, People's Republic of China
| | - Houjun Xu
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, People's Republic of China
| | - Qian Wang
- School of Public Health, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian, Tangshan, 063210, Hebei, People's Republic of China.
| |
Collapse
|
31
|
Nazarparvar-Noshadi M, Yadegari M, Mohammadian Y, Fakhri Y. The exposure to BTEX/Styrene and their health risk in the tire manufacturing. TOXIN REV 2021. [DOI: 10.1080/15569543.2021.1891937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Mehran Nazarparvar-Noshadi
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrdad Yadegari
- Department of Occupational Health, Faculty of Health, Medical University of Isfahan, Isfahan, Iran
| | - Yousef Mohammadian
- Department of Occupational Health Engineering, Faculty of Health, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
32
|
Nadali A, Leili M, Bahrami A, Karami M, Afkhami A. Phase distribution and risk assessment of PAHs in ambient air of Hamadan, Iran. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111807. [PMID: 33360291 DOI: 10.1016/j.ecoenv.2020.111807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/05/2020] [Accepted: 12/12/2020] [Indexed: 05/27/2023]
Abstract
In the present study, both gaseous and particulate (PM with dae <2.5 µm) phases of polycyclic aromatic hydrocarbons (PAHs) were measured in the ambient air of Hamadan city, Iran. For this reason, two low-volume samplers equipped with glass fiber filters were used for sampling of particulate phase (N = 30) and XAD-2 sorbent tubes were applied for sampling gaseous phase of PAHs (N = 30). The sampling was conducted during warm and cold seasons in 2019. The average of cold/warm season ratios for Σ16PAH and PM concentrations were 1.14 and 0.62, respectively. Summed PAHs concentration were determined to be in the range 0.008-59.46 (mean: 11.61) ng/m3 and 0.05-40.83 (mean: 10.22) ng/m3 for the cold and warm seasons, respectively. A negative Pearson correlation coefficient was obtained for wind speed and relative humidity. The average Benzo (a) Pyrene equivalent carcinogenic (BaPeq) levels in the cold season were lower than the maximum permissible risk level of 1 ng/m3 for BaP. The BaP toxicity equivalency (ΣBaPTEQ) and BaP mutagenicity equivalency (ΣBaPMEQ) appeared to be significantly higher in the cold season (averaging 0.35 and 1.65 ng/m3, respectively) than those in warm season. Health risk assessment was performed for children and adults based on BaPeq, inhalation cancer risk. The diagnostic ratios of individual PAHs concentration showed that the significant sources of PAH emissions may be related to light duty vehicles (LDVs) in Hamadan. Although, some other sources such as pyrogenic source and petrol combustion were also suggested.
Collapse
Affiliation(s)
- Azam Nadali
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mostafa Leili
- Department of Environmental Health Engineering, School of Public Health and Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Abdolrahman Bahrami
- Department of Occupational Health, Faculty of Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Manoochehr Karami
- Department of Epidemiology, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Abbas Afkhami
- Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
33
|
Soltanpour Z, Mohammadian Y, Fakhri Y. The concentration of benzene, toluene, ethylbenzene, and xylene in ambient air of the gas stations in Iran: A systematic review and probabilistic health risk assessment. Toxicol Ind Health 2021; 37:134-141. [PMID: 33506745 DOI: 10.1177/0748233720981218] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Exposure to benzene, toluene, ethylbenzene, and xylene (BTEX) has been reported in gas stations. Exposure to BTEX can result in adverse health outcomes in workers such as cancer and neurological effects. The health risk assessments of exposure to BTEX could be useful in choosing suitable control measures. In this review, data from previous studies of gas station environments in Iran were collected from years 2000 to 2020. The health risk assessments were conducted through the estimation of cancer and noncancer risks using a Monte Carlo simulation based on the US Environmental Protection Agency method. The results showed that exposure to BTEX in some cities of Iran was greater than the occupational exposure limits. The results of cancer risk assessments demonstrated that cancer risk was not increased. However, results of noncancer risk assessments demonstrated that neurological toxicity from exposure to BTEX was significant in different cities of Iran. The health risk assessments indicated that workers at gas station are at health risk.
Collapse
Affiliation(s)
- Zahra Soltanpour
- Department of Occupational Health Engineering, Faculty of Health, 48432Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yousef Mohammadian
- Department of Occupational Health Engineering, Faculty of Health, 48432Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yadolah Fakhri
- Social Determinants in Health Promotion Research Center, 14656Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
34
|
Dahmardeh Behrooz R, Kaskaoutis DG, Grivas G, Mihalopoulos N. Human health risk assessment for toxic elements in the extreme ambient dust conditions observed in Sistan, Iran. CHEMOSPHERE 2021; 262:127835. [PMID: 32763581 DOI: 10.1016/j.chemosphere.2020.127835] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/03/2020] [Accepted: 07/26/2020] [Indexed: 05/25/2023]
Abstract
This study evaluates the bioaccessibility and health risks related to heavy metals (Cd, Cr, Co, Cu, Mn, Ni, Pb, Zn and metalloid As) in airborne dust samples (TSP and PM2.5) in Zabol, Iran during the summer dust period, when peak concentration levels of PM are typically observed. High bioaccessibilities of carcinogenic metals in PM2.5 (i.e. 53.3%, 48.6% and 47.6% for Ni, Cr and As, respectively) were calculated. The carcinogenic and non-carcinogenic health risks were assessed for three exposure pathways (inhalation, ingestion and dermal contact), separately for children and adults. Non-carcinogenic inhalation risks were very high (Hazard Index: HI > 1) both for children and adults, while the carcinogenic risks were above the upper acceptable threshold of 10-4 for adults and marginally close (5.0-8.4 × 10-5) for children. High carcinogenic risks (>10-4) were found for the ingestion pathway both for children and adults, while HI values > 1 (8.2) were estimated for children. Carcinogenic and non-carcinogenic risk estimates for dermal contact were also above the limits considered acceptable, except for the carcinogenic risk for children (7.6 × 10-5). Higher non-carcinogenic and carcinogenic risks (integrated for all elements) were associated with the inhalation pathway in adults and children with the exception of carcinogenic risk for children, where the ingestion route remains the most important, while As was linked with the highest risks for nearly all exposure pathways. A comparative evaluation shows that health risks related with toxic elements in airborne particles in Sistan are among the highest reported in the world.
Collapse
Affiliation(s)
- Reza Dahmardeh Behrooz
- Department of Environmental Science, Faculty of Natural Resources, University of Zabol, P.O. Box 98615-538, Zabol, Iran.
| | - D G Kaskaoutis
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece; Environmental Chemical Processes Laboratory, University of Crete, 71003, Crete, Greece
| | - G Grivas
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece
| | - N Mihalopoulos
- Institute for Environmental Research and Sustainable Development, National Observatory of Athens, 15236, P. Penteli, Greece; Environmental Chemical Processes Laboratory, University of Crete, 71003, Crete, Greece
| |
Collapse
|
35
|
Jaafari J, Naddafi K, Yunesian M, Nabizadeh R, Hassanvand MS, Shamsipour M, Ghozikali MG, Shamsollahi HR, Nazmara S, Yaghmaeian K. The acute effects of short term exposure to particulate matter from natural and anthropogenic sources on inflammation and coagulation markers in healthy young adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 735:139417. [PMID: 32498012 DOI: 10.1016/j.scitotenv.2020.139417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 05/13/2023]
Abstract
Airborne particulate matter is associated with increasing the risk of cardiovascular diseases. The purpose of this study was to investigate the association between air pollution conditions and MDA, vWF, and fibrinogen markers in the blood of two panels of healthy young individuals in an urban area in Tehran city with a high air pollution background and another group was living in a rural area (Ahmad Abad Mostofi), with a low air pollution background. In each group, 4 blood samples were taken as follows: one in inversion days, the second in winter, but during the existence of normal condition in terms of air pollution, the third sample in the spring during the normal condition in terms of air pollution and the fourth sample during the dust storm conditions. In the urban and rural groups, there was a significant difference between the concentration of MDA, vWF, fibrinogen between inversion and cold season control conditions, and between dust storm conditions and warm season control conditions (p < 0.05). The results showed that the association of dust storm condition on the measured biomarkers was stronger than the inversion condition, which health consideration in the dust conditions be taken into account similar to the inversion conditions.
Collapse
Affiliation(s)
- Jalil Jaafari
- Research Center of Health and Environment, Guilan University of Medical Sciences, Rasht, Iran; Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran; Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sadegh Hassanvand
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| | - Mansour Shamsipour
- Department of Research Methodology and Data Analysis, Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Shamsollahi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahrokh Nazmara
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Kamyar Yaghmaeian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
36
|
Sun G, Feng X, Yang C, Zhang L, Yin R, Li Z, Bi X, Wu Y. Levels, sources, isotope signatures, and health risks of mercury in street dust across China. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122276. [PMID: 32109793 DOI: 10.1016/j.jhazmat.2020.122276] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/26/2020] [Accepted: 02/10/2020] [Indexed: 05/11/2023]
Abstract
Spatial distribution and isotope signature of mercury (Hg) in street dusts across China were investigated by collecting dust samples from 14 cities and reviewing previously published data from an additional 46 cities. Potential sources of street dust and the associated health risks to humans were also assessed. The total Hg (THg) concentrations in street dust ranged from 0.020-39.1 mg kg-1 with an average of 0.433 ± 0.185 mg kg-1 in the 60 cities. Street dust samples collected from 14 cities were characterized by slightly negative δ202Hg (-0.61 ± 0.92‰) and near-zero Δ199Hg (-0.03 ± 0.08‰) values, and coal combustion and industrial activities were estimated to be the major sources of Hg in street dust. The estimated average probable daily intake (PDI) of THg from street dust exposure for adults and children (1.36E-03 and 1.27E-02 μg d-1 kg-1, respectively) were comparable to their respective exposures via rice consumption in China. Children being exposed to THg in dust is a major concern in mercury mining areas (e.g., Wangshan and Xunyang), and may also be a concern in cities with major coal-based industries and nonferrous metal smelting. Results from this study suggest that exposure to street dust is not a primary MeHg exposure pathway in China.
Collapse
Affiliation(s)
- Guangyi Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Chenmeng Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, M3H5T4, Canada
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhonggen Li
- College of Resources and Environment, Zunyi Normal University, Zunyi, 563006, China.
| | - Xiangyang Bi
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
| | - Yunjie Wu
- School of Earth Sciences, China University of Geosciences, Wuhan, 430074, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
37
|
Hadei M, Naddafi K. Cardiovascular effects of airborne particulate matter: A review of rodent model studies. CHEMOSPHERE 2020; 242:125204. [PMID: 31675579 DOI: 10.1016/j.chemosphere.2019.125204] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/21/2019] [Accepted: 10/22/2019] [Indexed: 05/20/2023]
Abstract
In recent year, animal models have been growingly used to increase our knowledge about the toxicity of PM and underlying mechanisms leading to cardiovascular diseases. In this article, we review the current state of knowledge and findings of studies investigating the cardiovascular effects of PM in rats and mice. The six main areas covered in this review include: I) nature of particulate matter and toxicity mechanisms, II) systemic inflammation, III) heart rate and heart rate variability, IV) histopathological effects, V) atherosclerosis, VI) thrombosis, and VI) myocardial infarction. This review showed that animal model studies have been successful to bring new insights into the mechanisms underlying PM-induced cardiovascular diseases. However, there are some areas that the exact mechanisms are still unclear. In conclusion, investigating the cardiovascular effects of PM in vivo or interpreting the results should attempt to justify the role of different PM compositions, which may vastly affect the overall cytotoxicity of particles.
Collapse
Affiliation(s)
- Mostafa Hadei
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Kazem Naddafi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Zhang G, Jiang F, Chen Q, Yang H, Zhou N, Sun L, Zou P, Yang W, Cao J, Zhou Z, Ao L. Associations of ambient air pollutant exposure with seminal plasma MDA, sperm mtDNA copy number, and mtDNA integrity. ENVIRONMENT INTERNATIONAL 2020; 136:105483. [PMID: 31999972 DOI: 10.1016/j.envint.2020.105483] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/16/2019] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Current available evidence regarding the detrimental effects of low-level ambient air pollution on conventional semen parameters is inconclusive. In nonreproductive systems, air pollutant exposure has been demonstrated to induce oxidative stress (OS), which is a crucial mechanism that mediates sperm damage and male infertility. Thus, it may be essential to investigate the effects of air pollution on sperm quality in terms of the perspectives of OS and relative molecular damage. OBJECTIVES We assessed the associations of major air pollutant exposure to oxidative stress-mediated alterations in semen, including seminal plasma malondialdehyde (MDA), sperm mtDNA copy number, and integrity. METHODS The present study used data gathered from 516 young men participating in the Male Reproductive Health in Chongqing College student (MARCHS) cohort study during the follow-up stage in 2014 (n = 427 on the old campus, which is located in an urban area and has worse air quality, and n = 89 on the new campus, which is not urban and has better air quality). Data regarding major air pollutant exposure during 0-90, 0-9, 10-14 and 70-90 days before each semen examination (corresponding to the entire and three key periods of sperm development, respectively) were collected. The Mann-Whitney U nonparametric test was employed to compare distributions of major air pollutants and to explore differences in MDA, mtDNA copy number, and mtDNA integrity between the two campuses. A linear regression model was used as multivariable analysis to investigate associations of major air pollutant exposure with these biomarkers of oxidative damage to sperm and to adjust for potential confounders. RESULTS During all four key periods of sperm development, compared with college students on the new campus, college students on the old campus were exposed to higher levels of PM10, PM2.5, NO2, and CO, and had higher air quality index (AQI) values, indicating that these participants suffered from worse air quality. The levels of seminal plasma MDA in college students on the old campus were higher than those for the new campus (2.0 nmol/ml; 0.7, 3.6 vs. 1.6 nmol/ml; 0.4, 3.4, p < 0.001) (medians with 5th and 95th percentiles). There were no significant differences in sperm mtDNA copy number and mtDNA integrity between the two campuses. Furthermore, daily average PM10 exposure during 0-90 days before semen ejaculation was found to be significantly and positively associated with seminal plasma MDA level (10.4; 95% CI, 4.4, 16.4) (percentage change per 10-unit increase in air pollutant concentration; same meanings for the results below); daily average SO2 exposure for 70-90 days and NO2 exposure for 0-9 days prior to sampling were also positively associated with MDA level (74.7; 95% CI, 32.1, 119 and 11.9; 95% CI, 4.8, 19.0, respectively). AQI for 0-90 days and 70-90 days prior to sampling positively correlated with seminal plasma MDA concentrations (11.4; 95% CI, 4.7, 18.1 and 12.2; 95% CI, 5.3, 19.1, respectively). Additionally, daily average SO2 exposures for 10-14 and 0-9 days prior to sampling were negatively associated with sperm mtDNA copy number and mtDNA integrity, respectively (-9.0; 95% CI, -16.4, -1.6 and -38.3; 95% CI, -64.1, -11.8, respectively). However, only the correlations between SO2 exposure and AQI value for 70-90 days prior to sampling and MDA levels remained significant after multiplicity adjustment. CONCLUSIONS The results indicate that bad air quality, especially SO2 exposure during certain periods of sperm development, might be correlated with oxidative damage to sperm. These findings can deepen the understanding of the potential impacts of air pollution on sperm quality.
Collapse
Affiliation(s)
- Guowei Zhang
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Fan Jiang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Qing Chen
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Huan Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Niya Zhou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Lei Sun
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Peng Zou
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Wang Yang
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Jia Cao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China
| | - Ziyuan Zhou
- Department of Environmental Health, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
| | - Lin Ao
- Key Lab of Medical Protection for Electromagnetic Radiation, Ministry of Education of China, Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing, China.
| |
Collapse
|
39
|
Moradi Q, Mirzaei R, Alipour M, Bay A, Ghaderpoori M, Asadi A, Fakhri Y, Sorooshian A, Mousavi Khaneghah A. The concentration, characteristics, and probabilistic health risk assessment of potentially toxic elements (PTEs) in street dust: a case study of Kashan, Iran. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1728336] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qasem Moradi
- Department of Environment, Faculty of Natural Resources and Earth, University of Kashan, Kashan, Iran
| | - Rouhollah Mirzaei
- Department of Environment, Faculty of Natural Resources and Earth, University of Kashan, Kashan, Iran
| | - Mohammadraza Alipour
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abotaleb Bay
- Environmental Health Research Center, Golestan University of Medical Sciences, Golestan, Iran
| | - Mansour Ghaderpoori
- Department of Environmental Health Engineering, School of Health and Nutrition, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Anvar Asadi
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yadolah Fakhri
- Department of Environmental Health Engineering, Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
40
|
Atamaleki A, Motesaddi Zarandi S, Fakhri Y, Abouee Mehrizi E, Hesam G, Faramarzi M, Darbandi M. Estimation of air pollutants emission (PM 10, CO, SO 2 and NO x) during development of the industry using AUSTAL 2000 model: A new method for sustainable development. MethodsX 2019; 6:1581-1590. [PMID: 31321212 PMCID: PMC6612795 DOI: 10.1016/j.mex.2019.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 06/11/2019] [Indexed: 12/27/2022] Open
Abstract
There is well-documented relationship between industrial development and environmental pollution, but there are no enough studies that have predicted development impacts on pollutants emission. In the current study, impacts of three development periods of Bojnourd cement factory on pollutants emission (CO, SO2, NOx, and PM10) were investigated using the AUSTAL 2000 model. The collected emission data during 19 years were classified for each period and analyzed via the model, separately. Two sets of monitoring point (each contains 5 points) determined at the model; first set for estimation of pollutants concentration in residential areas (three villages, one suburban, and one city), and the second set for model validity assessment which located near the factory. According to model results, the second development period had the highest emission load per unit area for PM10 and SO2 by 164% and 262%, respectively. However, by applying the bag filter at the beginning of the third period, SO2 and PM10 concentrations were reduced significantly to the same as the first period. Unlike the two previous pollutants, emissions load of NOx and CO per unit area were increased in both the second period (167% and 154%, respectively) and third period (182% and 337%, respectively). Moreover, the model showed a good agreement compared with the field measured data that it could be usable to predict pollutants emission. The findings of this paper prove the predicting importance of the emissions prior to construction or any stages of industries upgrading and development. In other words, it emphasizes environmental protection during economic boost to maintain harmony between nature and sustainable development. Also, the model showed how the use of pollution control equipment (bag filter) during development can be effective to reduce the pollutants emission.
Collapse
Affiliation(s)
- Ali Atamaleki
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeed Motesaddi Zarandi
- Department of Environmental Health Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yadolah Fakhri
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Abouee Mehrizi
- Department of Environmental Health Engineering, Faculty of Public Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ghasem Hesam
- Student Research Committee, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|