1
|
Yan H, Peng Z, Zhang H, Wang B, Xu W, He Z. Cadmium Minimization in Crops: A Trade-Off With Mineral Nutrients in Safe Breeding. PLANT, CELL & ENVIRONMENT 2025; 48:838-851. [PMID: 39351608 DOI: 10.1111/pce.15182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/15/2024] [Indexed: 12/06/2024]
Abstract
Cadmium (Cd) contamination poses a threat to global crop safety. To address this issue, researchers mainly focused on the Cd, explored mechanism of accumulation to low-Cd breeding technologies and created several low-Cd varieties over the past decades. However, new challenges have emerged, particularly the yield reduction due to disturbances in mineral nutrient balance. The goals of breeding have been transferred from a primary focus on 'low-Cd crops' to 'low-Cd/nutrient-balanced' crops, which means limiting Cd content while maintaining other nutrient elements like iron (Fe), manganese (Mn) and zinc (Zn) at a proper content, thus to meet the future agricultural demands. Here, on a multielement perspective, we reviewed the mechanisms of Cd and mineral nutrient transport system in crops and summarized the research advances in Cd minimization through artificial mutations, natural variations and genetic engineering. Furthermore, the challenge of disruption of mineral nutrients in low-Cd crops was discussed and two potential approaches designing Cd-mineral nutrient-optimized artificial transporters and pyramiding Cd-mineral nutrient-optimized variations were proposed. Aiming at addressing these challenges, these approaches represent promising advancements in the field and offer potential pathways for future research and development in the creation of safe and high-quality crops.
Collapse
Affiliation(s)
- Huili Yan
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Zhimei Peng
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hezifan Zhang
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Binghan Wang
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wenxiu Xu
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| | - Zhenyan He
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
- China National Botanical Garden, Beijing, China
| |
Collapse
|
2
|
Lashari A, Kazi TG, Afridi HI, Baig JA, Arain MB, Lashari AA. Evaluate the Work-Related Exposure of Vanadium on Scalp Hair Samples of Outdoor and Administrative Workers of Oil Drilling Field: Related Health Risks. Biol Trace Elem Res 2024; 202:5366-5372. [PMID: 38376729 DOI: 10.1007/s12011-024-04101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/08/2024] [Indexed: 02/21/2024]
Abstract
Petrochemical facilities, including oil well drilling, are discharging resources of extensive noxious waste into the environment. The workers in different sections might be exposed to vanadium (V) through different routes (groundwater and soil), which is linked with extensive physiological disorders, hypertension, respiratory disorders, anemia, skin, and gastrointestinal disorders. This study determined the contents of V in a biological sample (scalp hair) of workers of different categories (outdoor and office workers) in an oil drilling field in Sindh, Pakistan. The environmental samples, groundwater, bottled mineral water, and soil samples were also analyzed for V. For comparative purposes, the scalp hair of age-matched male subjects residing in domestic areas of Hyderabad city, Pakistan, was also analyzed. Generally, the concentrations of V in groundwater near the oil drilling field and drilled soil illustrated significant variations. The results show that the vanadium concentration in the scalp hair of non-exposed referents (controls) and office workers (exposed referents) was 62% and 45% lower than those observed for outdoor drilling and cleaning mud workers. It was observed that high exposure to V in outdoor workers might be linked with different physiological disorders such as anemia, eye problems, and bronchial disorders.
Collapse
Affiliation(s)
- Anjum Lashari
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Tasneem G Kazi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan.
| | - Hassan I Afridi
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Jameel A Baig
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| | - Mohammad B Arain
- Department of Chemistry University of Karachi, Karachi, Sindh, 75270, Pakistan
| | - Ayaz Ali Lashari
- National Centre of Excellence in Analytical Chemistry, University of Sindh, Jamshoro, 76080, Pakistan
| |
Collapse
|
3
|
Zhang X, Xu H, Tang J, Yang J, Guo Z, Xiao Y, Ge Y, Liu T, Hu Q, Ao H, Shi W. Cadmium absorption and translocation in rice plants are influenced by lower air temperatures during grain filling stage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176742. [PMID: 39374702 DOI: 10.1016/j.scitotenv.2024.176742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/13/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
The increasing frequency and severity of low temperatures, and soil cadmium (Cd) pollution threaten food security. However, the interactive effects of Cd exposure and low temperatures on rice yield and quality, as well as the mechanisms of Cd absorption and translocation, remain unclear. In this study, two rice varieties were cultivated in soils with two Cd contamination levels (Cdhigh and Cdlow) and exposed to control (CT25) or lower temperatures of 20 °C (LT20) and 17 °C (LT17) during grain-filling stage. Results showed significant decreases in seed setting rate and grain weight, reduced head rice yield, and increased chalkiness due to low temperatures, particularly in Cdhigh soils. Compared to CT25, LT17 and LT20 increased Cd concentration by 37.6 % and accumulation by 14.8 % in grains grown in Cdhigh soils. Enhanced root activity and upregulation of OsNramp1 and OsNramp5 under both low-temperatures increased Cd levels in roots. Lower temperatures also decreased phytochelatins (PCs) and increased expression of OsHMA2 and OsCAL1, facilitating Cd transport and raising Cd levels in stems. Furthermore, upregulated OsHMA2, OsLCT1, and OsZIP7 in stems under low-temperatures promoted Cd transport to panicles. Overall, low temperatures during grain filling increased Cd uptake and translocation into rice grains, especially in high Cd contaminated soils, raising health risks. The study highlights the need to address climate change's impact on cadmium hazards in rice.
Collapse
Affiliation(s)
- Xinzhen Zhang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Hang Xu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jiangying Tang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Juan Yang
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Zhiqiang Guo
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yang Xiao
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yulu Ge
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Tian Liu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qian Hu
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Hejun Ao
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Wanju Shi
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Engineering Research Center for Low Cadmium Accumulation in Rice, Changsha, Hunan 410128, China; Yuelushan Laboratory, Changsha, Hunan 410128, China.
| |
Collapse
|
4
|
Ge Y, Jia P, Tian S, Lu L. Cadmium distribution in rice: Understanding the role of plant nodes and growth stages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124919. [PMID: 39251124 DOI: 10.1016/j.envpol.2024.124919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/18/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Cadmium (Cd) contamination in farmland poses a significant threat to food security in staple crops, especially rice. Using a mix of hydroponic and soil culture methods, stable isotope tracers, and advanced analytical techniques, this study elucidated the mechanisms of Cd uptake, translocation, and accumulation in rice throughout different growth stages. Despite a notable linear correlation between soil DTPA (diethylene-triaminepentaacetic acid)-Cd and the total Cd concentration of rice, our findings showed that the influence of soil Cd level on the proportion of Cd in grain was negligible. The study highlighted the dynamic response of Cd distribution within plant nodes to changes in DTPA-extractable Cd. Heading stage (HS) and mature stage (MS) were critical for Cd uptake and upward transport in rice, and the contribution of Cd absorption in brown rice was 28.61% and 40.16%, respectively. Moreover, the distribution of Cd in nodes showed how important nodes are for controlling and redistributing Cd in rice. In the HS, the lower node had a function in re-transporting, whereas in the MS, there was a considerable redistribution of Cd in the upper node. These insights can help us understand rice Cd dynamics and develop agronomic techniques and rice cultivars that minimize Cd accumulation.
Collapse
Affiliation(s)
- Yining Ge
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Peihan Jia
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shengke Tian
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Agricultural Resource and Environment of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Zhu J, Nie G, Dai X, Wang D, Li S, Zhang C. Activating PPARβ/δ-Mediated Fatty Acid β-Oxidation Mitigates Mitochondrial Dysfunction Co-induced by Environmentally Relevant Levels of Molybdenum and Cadmium in Duck Kidneys. Biol Trace Elem Res 2024:10.1007/s12011-024-04450-8. [PMID: 39546187 DOI: 10.1007/s12011-024-04450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
Cadmium (Cd) and high molybdenum (Mo) pose deleterious effects on health. Prior studies have indicated that exposure to Mo and Cd leads to damage in duck kidneys, but limited studies have explored this damage from the perspective of fatty acid metabolism. In this study, 40 healthy 8-day-old ducks were randomly assigned to four groups and fed a basic diet containing Cd (4 mg/kg Cd) or Mo (100 mg/kg Mo) or both. Kidney tissues were harvested on the 16th week. Results demonstrated that Cd and/or Mo inhibited mitochondrial fatty acid β-oxidation and disrupted mitochondrial dynamics, along with significant suppression of peroxisome proliferator-activated receptor β/δ (PPARβ/δ) protein in duck kidneys. In vitro study, duck renal tubular epithelial cells were exposed for 12 h to either Mo (480 μM Mo), Cd (2.5 μM Cd), and GW0742 (0.3 μM, a potent agonist of PPARβ/δ) alone or in combination. The results demonstrated that Cd and/or Mo led to marked fatty acid oxidation deficiency and mitochondrial dysfunction and that PPARβ/δ protein was involved in the process. Altogether, this study found that activating PPARβ/δ-mediated fatty acid β-oxidation mitigates mitochondrial dysfunction co-induced by Mo and Cd in duck kidneys.
Collapse
Affiliation(s)
- Jiamei Zhu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gaohui Nie
- Jiangxi Hongzhou Vocational College, Fengcheng, Jiangxi, China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Dianyun Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - ShanXin Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
6
|
Guo Y, Cheng S, Fang H, Geng J, Li Y, Shi F, Wang H, Chen L, Zhou Y. Copper and cadmium co-contamination increases the risk of nitrogen loss in red paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135626. [PMID: 39197279 DOI: 10.1016/j.jhazmat.2024.135626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/27/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024]
Abstract
The microbiome plays a crucial role in soil nitrogen (N) cycling and in regulating its bioavailability. However, the functional and genomic information of microorganisms encoding N cycling in response to copper (Cu) and cadmium (Cd) contamination is largely unknown. Here, metagenomics and genome binning were used to examine microbial N cycling in Cu and Cd co-contaminated red paddy soils collected from a polluted watershed in southern China. The results showed that soil Cu and Cd concentrations induced more drastic changes in microbial N functional and taxonomic traits than soil general properties. Soil Cu and Cd co-contamination stimulated microbial nitrification, denitrification, and dissimilatory nitrate reduction processes mainly by increasing the abundance of Nitrospira (phylum Nitrospirota), while inhibiting N fixation by decreasing the abundance of Desulfobacca. These contrasting changes in microbial N cycling processes suggested a potential risk of N loss in paddy soils. A high-quality genome was identified as belonging to Nitrospirota with the highest abundance in heavily contaminated soils. This novel Nitrospirota strain possessed metabolic capacities for N transformation and metal resistance. These findings elucidate the genetic mechanisms underlying soil N bioavailability under long-term Cu and Cd contamination, which is essential for maintaining agricultural productivity and controlling heavy metal pollution.
Collapse
Affiliation(s)
- Yifan Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shulan Cheng
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Huajun Fang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an 343000, China.
| | - Jing Geng
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai 519082, China
| | - Yuna Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fangying Shi
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Chen
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Zhou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Ouyang KW, Wang TT, Wang H, Luo YX, Hu YF, Zheng XM, Ling Q, Wang KW, Xiong YW, Zhang J, Chang W, Zhang YF, Yuan Z, Li H, Gao L, Xu DX, Zhu HL, Yang L, Wang H. m6A-methylated Lonp1 drives mitochondrial proteostasis stress to induce testicular pyroptosis upon environmental cadmium exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172938. [PMID: 38703850 DOI: 10.1016/j.scitotenv.2024.172938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.
Collapse
Affiliation(s)
- Kong-Wen Ouyang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Center of Prenatal Diagnosis, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi 214000, China
| | - Tian-Tian Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yi-Fan Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Lan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Center of Prenatal Diagnosis, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi 214000, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
8
|
Zhang C, Cai X, Xia Z, Jin X, Wu H. Contamination characteristics of heavy metals in a small-scale tanning area of southern China and their source analysis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:5655-5668. [PMID: 33015724 DOI: 10.1007/s10653-020-00732-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Tanning industry has been identified as a significant source of heavy metals; however, heavy metals contamination in farmland soil due to small-scale tanning activities remains unstudied. Here, samples from topsoil, profile soil, water and sediments in the vicinity of a small-scale tanning area in Nanning, Guangxi Zhuang Autonomous Region, southern China, were collected to explore the contamination characteristics and source apportionment of Cd, Cr, Hg, As, Cu, Pb, Ni and Zn. The results show that the farmland soil was mainly contaminated by Cr and its content was 33.40-3830.00 mg kg-1. The highest level of Cr, Cd and Hg was above their thresholds, while the average contents of Cd, Cr, Pb and Hg exceeded the corresponding background levels. Moreover, enrichment of Cr in soil profiles and stream sediments were also observed, whose concentrations varied from 11.50 to 2590.00 mg kg-1 and 738.00 to 11,200.00 mg kg-1, respectively. Concentrations of Cr in top soils and soil profiles from farmland surrounding the stream were significantly higher than those from other areas, and the soils surrounding the stream were moderately to heavily polluted. The multivariate statistical analysis indicated that the heavy metals originated from traffic (Cu, Ni, Zn, Hg, and Pb), agriculture (Cr and Cd) and nature (As). Source apportionment with PMF model results showed that the relative contribution rates of heavy metals by traffic, tanning, agriculture, other industrial activities and natural sources were 16.00%, 18.88%, 20.88%, 22.04% and 22.20%, respectively. These findings indicate that small-scale tanning activities could also lead to heavy metal accumulation in the surrounding environment, which requires decision-makers to pay more attention and to develop effective remediation procedures.
Collapse
Affiliation(s)
- Chaolan Zhang
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Xianquan Cai
- School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | - Zhilin Xia
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaodan Jin
- Environmental Protection Research Institute of Guangxi, Nanning, 530022, China.
| | - Hao Wu
- Environmental Protection Research Institute of Guangxi, Nanning, 530022, China.
| |
Collapse
|
9
|
He P, Li Y, Huo T, Meng F, Peng C, Bai M. Priority planting area planning for cash crops under heavy metal pollution and climate change: A case study of Ligusticum chuanxiong Hort. FRONTIERS IN PLANT SCIENCE 2023; 14:1080881. [PMID: 36818883 PMCID: PMC9928953 DOI: 10.3389/fpls.2023.1080881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Soil pollution by heavy metals and climate change pose substantial threats to the habitat suitability of cash crops. Discussing the suitability of cash crops in this context is necessary for the conservation and management of species. We developed a comprehensive evaluation system that is universally applicable to all plants stressed by heavy metal pollution. METHODS The MaxEnt model was used to simulate the spatial distribution of Ligusticum chuanxiong Hort within the study area (Sichuan, Shaanxi, and Chongqing) based on current and future climate conditions (RCP2.6, RCP4.5, RCP6.0, and RCP8.5 scenarios). We established the current Cd pollution status in the study area using kriging interpolation and kernel density. Additionally, the three scenarios were used in prediction models to simulate future Cd pollution conditions based on current Cd pollution data. The current and future priority planting areas for L. chuanxiong were determined by overlay analysis, and two levels of results were obtained. RESULTS The results revealed that the current first- and secondary-priority planting areas for L. chuanxiong were 2.06 ×103 km2 and 1.64 ×104 km2, respectively. Of these areas, the seven primary and twelve secondary counties for current L. chuanxiong cultivation should be given higher priority; these areas include Meishan, Qionglai, Pujiang, and other regions. Furthermore, all the priority zones based on the current and future scenarios were mainly concentrated on the Chengdu Plain, southeastern Sichuan and northern Chongqing. Future planning results indicated that Renshou, Pingwu, Meishan, Qionglai, Pengshan, and other regions are very important for L. chuanxiong planting, and a pessimistic scenario will negatively impact this potential planting. The spatial dynamics of priority areas in 2050 and 2070 clearly fluctuated under different prediction scenarios and were mainly distributed in northern Sichuan and western Chongqing. DISCUSSION Given these results, taking reasonable measures to replan and manage these areas is necessary. This study provides. not only a useful reference for the protection and cultivation of L. chuanxiong, but also a framework for analyzing other cash crops.
Collapse
Affiliation(s)
- Ping He
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yunfeng Li
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
- Hebei Province Key Laboratory of Research and Development of Traditional Chinese Medicine, Chengde Medical University, Chengde, China
| | - Tongtong Huo
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Fanyun Meng
- Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Cheng Peng
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ming Bai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
10
|
Cho IG, Hwang DW, Kwon SY, Choi SD. Optimization and application of passive air sampling method for gaseous elemental mercury in Ulsan, South Korea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17257-17267. [PMID: 36192588 DOI: 10.1007/s11356-022-23375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
We compared uptake rates and concentrations of gaseous elemental mercury (GEM) by passive sampling conditions and investigated the spatial distribution of GEM in Ulsan, the largest industrial city in South Korea. For the optimization of sampling conditions, two outer sampling containers (cylindrical polyethylene terephthalate and two stainless steel bowls), two different sulfur contents of the sorbent (16.3% and 26.3%), and three sampling periods (1, 2, and 3 months) were considered. The uptake rates of GEM were not statistically different by the sampling container, but they were increased with the sulfur contents of activated carbon. A sampling condition using two stainless bowls and lower sulfur contents of activated carbon for 2-3 months was preferred with the highest precision of GEM concentrations. With the same method, passive air samples were collected for 3 months in duplicate from 10 sites in Ulsan. The concentrations of GEM ranged from 3.13 to 11.2 ng/m3 (mean 4.65 ng/m3), and the highest concentration was measured at a non-ferrous industrial complex. A zinc smelter in the non-ferrous industrial complex was identified as a major mercury source in Ulsan. This study is the first passive air sampling study investigating the spatial distributions of GEM in different types of industrial areas as well as residential areas of Ulsan.
Collapse
Affiliation(s)
- In-Gyu Cho
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Dong-Woon Hwang
- Marine Environment Research Division, National Institute of Fisheries Science (NIFS), Busan, 46083, Republic of Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
11
|
Küçüksümbül A, Akar AT, Tarcan G. Source, degree and potential health risk of metal(loid)s contamination on the water and soil in the Söke Basin, Western Anatolia, Turkey. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 194:6. [PMID: 34873666 DOI: 10.1007/s10661-021-09670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 11/27/2021] [Indexed: 05/14/2023]
Abstract
Water and soil quality are the two most important parameters for sustainable agriculture and regional development in the basin. This study focused on the causes of soil and water contamination and the potential impact of drinking water on community health. Reasons for metal(loid)s enrichment in the water and soil in the Söke Basin were examined by considering anthropogenic and geogenic inputs. Four rock samples in the drainage network, 28 soil samples, and 29 water samples in the Söke Plain were collected. All samples were analyzed for metal(loid)s by inductively coupled plasma-mass spectrometry (ICP-MS). The carcinogenic and non-carcinogenic effects of water on human health were calculated mathematically. Potential ecological risk index (PERI), enrichment factor (EF), and ecological risk (ER) were calculated for the soil samples. In addition, principal component analysis (PCA) with Varimax rotation and Kaiser normalization was applied to the soil data set. Cr, Ni, and Cd contamination in soils was associated with anthropogenic inputs, while arsenic contamination was related to both anthropogenic and geogenic inputs. As, B, Ba, Pb, and Sb contamination was found in some drinking water. As contamination has been clearly found to be caused by natural geological processes in and around Lake Azap. It was determined that metal(loid)s enrichment occurred in drinking water due to the mixing of geothermal waters affected by seawater intrusion with surface and groundwater. Contamination inputs were geogenic, but their negative impacts appearing in surface water and drinking water occurred due to human influence.
Collapse
Affiliation(s)
- Anıl Küçüksümbül
- Department of Geological Engineering, Dokuz Eylül University, Tinaztepe Campus, 35390, Izmir, Turkey.
| | - Ali Toygar Akar
- Department of Geological Engineering, Dokuz Eylül University, Tinaztepe Campus, 35390, Izmir, Turkey
| | - Gültekin Tarcan
- Department of Geological Engineering, Dokuz Eylül University, Tinaztepe Campus, 35390, Izmir, Turkey
| |
Collapse
|
12
|
Park MK, Choi SD. Monitoring and risk assessment of arsenic species and metals in the Taehwa River in Ulsan, the largest industrial city in South Korea. MARINE POLLUTION BULLETIN 2021; 172:112862. [PMID: 34438264 DOI: 10.1016/j.marpolbul.2021.112862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 08/09/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Toxic metals, As, and As species were monitored at 18 stations along the Taehwa River in Ulsan. The concentrations of Ni (98.4 μg/L) at stations near industrial areas were relatively high and exceeded the WHO's drinking water guidelines (70 μg/L) and the US EPA's national recommended water quality criteria (52 μg/L). Principal component analysis and cluster analysis revealed that Ni and Cu were more strongly influenced by industrial activity than other elements in the Taehwa River estuary. Analysis of the hazard quotient (HQ) and cancer risk (CR) indicated that As was of the greatest non-carcinogenic and carcinogenic concern. Notably, the HQ and CR of AsIII at suburban stations exceeded 1 and 10-4, respectively, representing a significant health risk. These results indicate that As speciation testing is crucial for the development of effective management plans based on health risks because the toxicity and mobility of As depend on its chemical form.
Collapse
Affiliation(s)
- Min-Kyu Park
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
13
|
Zou M, Zhou S, Zhou Y, Jia Z, Guo T, Wang J. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116965. [PMID: 33774546 DOI: 10.1016/j.envpol.2021.116965] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 03/14/2021] [Accepted: 03/15/2021] [Indexed: 05/22/2023]
Abstract
Cd accumulation in paddy soils and its subsequent transfer to the food chain are widespread environmental issues, which has been extensively investigated in China. However, most studies focused on regional scales and these results may not be applicable to present the Cd contamination status in soil-rice ecosystems at a national scale. Therefore, based on collected data from China's rice cultivation dominated regions, this study provides the Cd pollution level of paddy soils and rice grains in China. Results indicates that the Yangtze River basin, especially Hunan, required more attention due to the elevated Cd concentrations in soil-rice ecosystems. Moreover, this review summarizes the significant natural and anthropogenic sources, transport and accumulation mechanism as well as the influencing factors of Cd in soil-rice ecosystems. The wide occurrence of Cd contamination in paddy soils derived primarily from mining activities, intensive application of phosphates fertilizers and e-waste. Physicochemical characteristics of soil, soil microorganisms, temperature as well as the physiological features of rice plants all contribute to Cd accumulation in rice grains, which can be controlled to mitigate Cd accumulation in rice grains. This review will provide a scientific reference for Cd pollution control and management with respect to paddy field ecosystems in China and other countries.
Collapse
Affiliation(s)
- Mengmeng Zou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China.
| | - Yujie Zhou
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Zhenyi Jia
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Tianwei Guo
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| | - Junxiao Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing, 210023, China; Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, China
| |
Collapse
|
14
|
Park MK, Cho HK, Cho IG, Lee SE, Choi SD. Contamination characteristics of polychlorinated naphthalenes in the agricultural soil of two industrial cities in South Korea. CHEMOSPHERE 2021; 273:129721. [PMID: 33517113 DOI: 10.1016/j.chemosphere.2021.129721] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/31/2020] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
This study investigates the contamination characteristics of polychlorinated naphthalenes (PCNs) in the rice paddy soils of two industrial cities (Pohang and Ulsan) in South Korea. The paddy soils were collected from 40 sites in the paddy fields near industrial complexes in both cities. The mean concentration of Σ55 PCNs was 145.9 ± 101.7 pg/g and 95.4 ± 41.4 pg/g for the soils in Pohang and Ulsan, respectively. The toxic equivalents (TEQs) of Σ28 PCNs ranged from 0.007 pg-TEQ/g to 0.069 pg-TEQ/g in Pohang, and 0.015 pg-TEQ/g to 0.046 pg-TEQ/g in Ulsan. The PCN profiles were dominated by lower chlorinated homologues such as tetra- and tri-CNs for both cities, which are associated with the historical use of technical products, or more specifically, Halowaxes (HW 1099, 1031, 1013, and 1001). The results of the principal component analysis (PCA) indicate that the historical residues from the technical products contributed to the PCN contamination, but the influence of combustion sources was also observed with a high fraction of combustion-related congeners. Based on this study, we can expect that rice grown in these paddy fields will accumulate PCNs and other combustion-related pollutants, strongly suggesting the necessity for multimedia (e.g., air, soil, water, and rice) monitoring and human exposure assessments of PCNs.
Collapse
Affiliation(s)
- Min-Kyu Park
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Hye-Kyung Cho
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - In-Gyu Cho
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | - Sung-Eun Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Sung-Deuk Choi
- Department of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
15
|
González N, Esplugas R, Marquès M, Domingo JL. Concentrations of arsenic and vanadium in environmental and biological samples collected in the neighborhood of petrochemical industries: A review of the scientific literature. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145149. [PMID: 33540162 DOI: 10.1016/j.scitotenv.2021.145149] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 05/27/2023]
Abstract
Petrochemical facilities, including oil refineries, are emission sources of a wide range of environmental pollutants such as trace elements, volatile organic compounds, and polycyclic aromatic hydrocarbons, among others. Populations living near this kind of facilities may be potentially exposed to contaminants, which are, in turn, associated with a wide range of adverse effects. In our laboratory, we have shown that the environmental concentrations of trace elements near the petrochemical complex of Tarragona County (Spain), which is among the largest complexes in the European Union, should not be a relevant pollution source for these elements, with the exception of arsenic (As) and vanadium (V). Moreover, the International Agency for Research on Cancer (IARC) classified As and V as Group 1 and Group 2B, respectively. Based on it, the present paper was aimed at reviewing the available scientific information on the occurrence of As and V in the vicinity of petrochemical complexes worldwide, considering environmental matrices (air, dust, sediments, soil, and water), as well as biological samples (blood, hair, and urine). In general, levels of As and V in environmental matrices showed higher fluctuation throughout the world and was highly dependent on the samples zone while levels of both elements in urinary samples from subjects living near a petrochemical area were higher than those of population living further.
Collapse
Affiliation(s)
- Neus González
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain.
| | - Roser Esplugas
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain; Environmental Engineering Laboratory, Departament d'Enginyeria Química, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, Catalonia, Spain.
| | - Montse Marquès
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| | - José L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Sant Llorenç 21, 43201 Reus, Catalonia, Spain
| |
Collapse
|
16
|
Mi Y, Tong K, Zhu G, Zhang X, Liu X, Si Y. Surface spraying of anthocyanin through antioxidant defense and subcellular sequestration to decrease Cd accumulation in rice (Oryza sativa L.) grains in a lead-zinc mine area. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1855-1866. [PMID: 33159231 DOI: 10.1007/s10653-020-00763-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 10/25/2020] [Indexed: 06/11/2023]
Abstract
As an important class of flavonoids, anthocyanin has been used to enhance plant-defensive mechanisms against heavy metal stress. However, there are few available reports regarding surface spraying of anthocyanin for reduction of Cd poisoning in rice and its practical applications in paddy fields. After rice growing, measurements were taken of rice growth, pigments, the antioxidant system, thiol compounds, and distribution of Cd in rice tissues. The results showed that surface spraying anthocyanin could promote rice growth, and relative to the control, total chlorophyll significantly increased by 22.62% after surface spraying of 7.5 g L-1 anthocyanin. Simultaneously, Cd accumulation in rice grains was 0.17 ± 0.02 mg kg-1, which was significantly decreased by 46.88% relative to the control. In the pot experiment (40-day-old rice), treatment with 7.5 g L-1 anthocyanin resulted in decreases of ·O2-, H2O2, and malondialdehyde contents in rice leaves, while the activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase were increased by 59.10, 23.81, 41.75, and 9.39%, respectively. Meanwhile, contents of glutathione, ascorbic acid, non-protein thiols, and phytochelatins showed respective increases of 7.24, 14.49, 42.81, and 41.13% compared with the control value. Subcellular analysis revealed that surface spraying of anthocyanin increased organelle and soluble fractions of Cd in leaf cells. In conclusion, surface spraying of 7.5 g L-1 anthocyanin was mainly attributed to increased antioxidant activities and subcellular sequestration of Cd in organelles and soluble fractions in rice leaves to reduce Cd accumulation in rice grains in the field.
Collapse
Affiliation(s)
- Yazhu Mi
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Kun Tong
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Guangsen Zhu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Xu Zhang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Xiaohong Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
17
|
Zhao Y, Zhang Z, Li B, Zhao Y, Lu J, Tang X. Accurate Determination and Comprehensive Evaluation of Heavy Metals in Different Soils from Jilin Province in Northeast China. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1828908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yuyan Zhao
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, China
| | - Zeyu Zhang
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, China
| | - Bing Li
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, China
| | - Yu Zhao
- China Geological Survey, Xi’an Institute of Geology and Mineral Resources, Xi’an, China
| | - Jilong Lu
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, China
| | - Xiaodan Tang
- College of Geo-Exploration Science and Technology, Jilin University, Changchun, China
| |
Collapse
|
18
|
Adimalla N, Chen J, Qian H. Spatial characteristics of heavy metal contamination and potential human health risk assessment of urban soils: A case study from an urban region of South India. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 194:110406. [PMID: 32151868 DOI: 10.1016/j.ecoenv.2020.110406] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Due to the rapid development of urbanization, the contamination of heavy metals in urban soils has become one of the major concerns of environmental and risk to humans. The main objective was to determine the contamination of six heavy metals in 25 urban soils and also to evaluate the associated health risk via diverse indices for adults and children. The mean concentration of Pb (47.48 mg/kg), Cr (43.24 mg/kg), Cu (40.64 mg/kg), Zn (34.68 mg/kg), Co (16.54 mg/kg), and Ni (7.55 mg/kg) exceeded the geochemical background values. Pb and Zn were closely attributed to traffic sources. Geo-accumulation index (Igeo) showed that Pb and Co in the soils were at the moderately pollution level, while 4% of soil samples were moderately polluted to heavily pollution levels by Cu. Enrichment factor (EF) showed that soils presented minor to severe anthropogenic pollution levels in the investigated region. The heavy metals to the non-carcinogenic risk of humans in the investigated region are absolutely from Cr and Pb, while the carcinogenic risk is controlled by Cr, and the remaining metals pose no possible risk to the local people. Specially, children had larger health risks in terms of non-carcinogenic risks than adults which may be related to their behavioral and physiological characteristics.
Collapse
Affiliation(s)
- Narsimha Adimalla
- School of Environmental Science and Engineering, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China.
| | - Jie Chen
- School of Environmental Science and Engineering, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| | - Hui Qian
- School of Environmental Science and Engineering, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region of the Ministry of Education, Chang'an University, No. 126 Yanta Road, Xi'an, 710054, Shaanxi, China
| |
Collapse
|