1
|
M Al-Ma’abreh A, Hmedat DA, Edris G, Ibrahim AL, Hamed MA. Cypress fruit: A sustainable source of activated carbon for removal of Zn 2+, Cu 2+, and Ni 2. Sci Prog 2025; 108:368504251338646. [PMID: 40324970 PMCID: PMC12059435 DOI: 10.1177/00368504251338646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
In this study, Cypress fruit-based-activated carbon (ACCF) was employed to investigate the removal of Zn2+, Cu2+, and Ni2+ from aqueous solutions. The efficacy of adsorbent removal was studied concerning adsorption characteristics such as pH, dose of adsorbent, temperature, initial ion concentration, and contact time. The adsorption of metal ions on the ACCF surface was verified through Fourier transform infrared, scanning electron microscopy, and energy-dispersive X-ray spectroscopy analysis. Results revealed the best adsorption efficiencies for the investigated metal ions were attained in acidic to neutral medium for Zn2+ and Ni2+, and neutral for Cu2+, with an adsorbent dose of 0.04 for Zn2+ and Cu2+, and 0.08 for Ni2+. The most effective initial concentration for each of the three metal ions was 30 mg/L. Equilibrium was reached in 40 min for Zn2+ and in 100 min for both Cu2+ and Ni2+. When removing the ions simultaneously, equilibrium was achieved in 40 min. Kinetic studies revealed a pseudo-second-order adsorption mechanism for all investigated heavy metal ions. The equilibrium data were best described by the Freundlich isotherm model. The maximum adsorption capacities were: Zn2+ (239.23 mg.g-1), Cu2+ (134.95 mg.g-1), and Ni2+ (45.93 mg.g-1). Thermodynamic analysis suggests these adsorption processes to be endothermic and spontaneous. Cypress fruit-based activated carbon demonstrated high efficiency in removing Zn, Cu, and Ni metal ions from aqueous solutions.
Collapse
Affiliation(s)
- Alaa M Al-Ma’abreh
- Department of Chemistry, Faculty of Science, Isra University, Amman, Jordan
| | - Dareen A Hmedat
- Department of Chemistry, Faculty of Science, Isra University, Amman, Jordan
| | - Gada Edris
- Department of Chemistry, Faculty of Science, Isra University, Amman, Jordan
| | - Al-Labadi Ibrahim
- Department of Environmental Analysis and Technologies, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Gödöll˝o, Hungary
| | - Mariam A Hamed
- Department of Chemistry, Faculty of Science, Isra University, Amman, Jordan
| |
Collapse
|
2
|
Wang S, Guo J, Wu Z, Shang J, Shen C, Tang H, Huang Y, Liu Y. Zn 2+ adsorption in ferric-silicates microstructures in sulfidic tailings mediated through mineral weathering by Acidithiobacillus species. CHEMOSPHERE 2025; 370:144032. [PMID: 39732409 DOI: 10.1016/j.chemosphere.2024.144032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 12/30/2024]
Abstract
Heavy metals released from metallic sulfidic tailings pose significant environmental threats by contaminating surface and groundwater in mining areas. Sustainable rehabilitation methods are essential to remove or stabilize these metals, improving the quality of acid mine drainage and minimizing pollution. This study examines the adsorption capacity of zinc ions (Zn2+) by different iron-silicate mineral groups under natural weathering and bacteria-regulated weathered conditions. Batch experiments revealed that all tested mineral groups exhibit limited adsorption Zn2+ on iron-silicate surfaces, with adsorption behavior aligning with Langmuir and Freundlich isotherm models. Among the mineral groups, pristine iron-muscovite (2.58 mg/g) and iron-chlorite (4.52 mg/g) demonstrated the highest Zn2+adsorption capacity, primarily due to favorable ion exchange properties and surface characteristics. Acidic conditions induced by pyrite oxidation and the experimental growth medium slightly reduced Zn2+ adsorption in samples without microbial inoculation. In contrast, the addition of Acidithiobacillus species modestly enhanced Zn2+ adsorption, likely through microbial alteration of silicate surface properties and the formation of secondary iron-silicate aggregates with high adsorption potential. The dominant adsorption mechanisms included electrostatic attractions, surface complexation and coprecipitation. It is recommended to elevate pH levels and thus enhance metal ion adsorption through the incorporation of alkaline additives such as zeolites or bauxite residue to optimize Zn2+ immobilization in sulfidic tailings. This study highlights the importance of both microbial and clay mineral selection in designing effective strategies for stabilizing Zn2+ in metallic sulfidic tailings.
Collapse
Affiliation(s)
- Sicheng Wang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Junsheng Guo
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Zeqi Wu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Jianying Shang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Chongyang Shen
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Huaizhi Tang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yuanfang Huang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China
| | - Yunjia Liu
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
3
|
Yüksel B, Ustaoğlu F, Topaldemir H, Yazman MM, Tokatlı C. Unveiling the nutritional value and potentially toxic elements in fish species from Miliç Wetland, Türkiye: A probabilistic human health risk assessment using Monte Carlo simulation. MARINE POLLUTION BULLETIN 2025; 211:117417. [PMID: 39642435 DOI: 10.1016/j.marpolbul.2024.117417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
This study evaluates the nutritional value and health risks of fish from Miliç Wetland, Türkiye, focusing on potentially toxic elements (PTEs) in Esox lucius, Squalius cephalus, and Carassius gibelio. Using ICP-MS, mean PTE concentrations were determined, including Zn (4979 μg/kg), Fe (4241 μg/kg), and As (125 μg/kg). Macro elements like K, P, and Ca were also assessed for nutritional profiling. A Monte Carlo-based risk assessment confirmed that PTE levels were below safety limits, indicating safe consumption. Chemometric techniques (PCA, PCC, HCA) helped trace contamination sources, identifying residential, agricultural, and lithogenic inputs. Esox lucius showed the highest essential nutrient levels. This research highlights the importance of combining chemometric analysis with regular monitoring for food safety and public health protection.
Collapse
Affiliation(s)
- Bayram Yüksel
- Giresun University, Department of Property Protection and Security, Espiye 28600, Giresun, Türkiye.
| | - Fikret Ustaoğlu
- Giresun University, Department of Biology, Gure Campus, 28200 Giresun, Türkiye.
| | - Halim Topaldemir
- Ordu University, Department of Molecular Biology and Genetics, Faculty of Arts and Science, Ordu, Türkiye
| | - Mehmet Metin Yazman
- Giresun University, Department of Food Processing, Espiye 28600, Giresun, Türkiye
| | - Cem Tokatlı
- Trakya University, İpsala Vocational School, Department of Laboratory Technology, Evrenos Gazi Campus, Edirne, Türkiye
| |
Collapse
|
4
|
Tian R, Zhan S, He G, Wang Z, Zhang Z, Wang X. Research and application discussion on new technology for detecting cadmium ions based on a near-red light carbon dot fluorescence quenching method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:611-620. [PMID: 39676588 DOI: 10.1039/d4ay01760a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cadmium ions are considered one of the most dangerous heavy metal pollutants. The human body does not require cadmium for growth and development, yet continuous intake of cadmium ions due to environmental pollution can lead to their accumulation in the body. This accumulation can result in damage to the urinary system and, in severe cases, pose life-threatening risks. The current conventional methods for analyzing heavy metals in the environment primarily include inductively coupled plasma mass spectrometry (ICP-MS), atomic absorption spectrometry (AAS), and inductively coupled plasma atomic emission spectrometry (ICP-AES). These methods are known for their drawbacks such as complex testing procedures, as well as expensive instrumentation and equipment. In this study, a novel technique for detecting cadmium ions using the near-red light carbon spot fluorescence burst method was developed. The near-infrared carbon dots (NIR-CDs) exhibited vibrant deep red fluorescence ranging from 625 to 710 nm, with a prominent peak at 685 nm. At a pH of 7 and a concentration of 0.1805 g L-1, the linear detection range for Cd2+ was determined to be 0.15-0.75 μM. The CDs demonstrated selectivity for Cd2+ detection, boasting an impressive detection limit of 0.397 nM. Mechanistic studies indicated that the interaction between red carbon dots and cadmium ions involved dynamic bursting of the ions. The practical application of the near-red light carbon spot fluorescence burst method for detecting cadmium ions could be further explored through the establishment of a Cd2+ recovery detection system.
Collapse
Affiliation(s)
- Runfeng Tian
- Colorado State University, 1001 Amy Van Dyken Way, Fort Collins, CO 80523, USA
| | - Shifang Zhan
- Institute of Cardiovascular Diseases, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Guanlong He
- Colorado State University, 1001 Amy Van Dyken Way, Fort Collins, CO 80523, USA
| | - Zixuan Wang
- Colorado State University, 1001 Amy Van Dyken Way, Fort Collins, CO 80523, USA
| | - Zheng Zhang
- Colorado State University, 1001 Amy Van Dyken Way, Fort Collins, CO 80523, USA
| | - Xiaoyan Wang
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou 571199, China
| |
Collapse
|
5
|
Hamed M, Khaled MA, Said REM, Ghoneim SM, Saad E, El-Aal MA, Sayed AEDH. Patterns distribution, concentrations and sources of radioactive elements from black sand in the Red Sea coast, Egypt. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136051. [PMID: 39396440 DOI: 10.1016/j.jhazmat.2024.136051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/15/2024]
Abstract
In Egypt, the distribution of black sand in various coastal regions has been readily apparent by thorough research. Unfortunately, these investigations did not measure radioactivity in black sand, particularly in the vicinity of the Red Sea. Gamma-ray spectroscopy was used to detect the naturally occurring radioactivity from 238U, 232Th, 40K, and 226Ra in black sand samples from eight locations along the Red Sea coast: Ras Elbehar, Gemsa, Hurghada Elahiaa, Hurghada Titanic, Safaga, Qusier Elsharm Alqbly, Gabal Alrosass, and Marsa Alam. The resultant data were interpolated to represent the spatial distribution. Additionally, the potential rocks sources of radionuclides were geologically mapped to elucidate the relationship between rock components and radioactivity. The results showed that 226Ra, 232Th and238U were higher at samples collected from Ras Elbehar, Hurghada Elahiaa and Hurghada Titanic compared to the other sites. On the other hand, 40K showed the lowest mean value (75.3 ± 3.8 Bq/kg) in Hurghada Titanic samples, while it peaked (563 ± 28 Bq/kg) in Qusier Elsharm Alqbly samples. The interpolated results show notable differences in radioactive amounts between the north and south, which are indicative of several environmental conditions and human activities. Alkaline syenite, syenogranite, older granites (tonalite and granodiorite), and minor acidic volcanic/metavolcanic rocks make up the upstream area of the basin area draining into, for example, the Ras Elbehar locality (highest activity concentrations for 238U (1596 ± 80 Bq/kg) and 226Ra (886 ± 44 Bq/kg)), while alkali-feldspar granite, schist, and shale rocks make up the mid-stream area. The findings provide a basis for scientific forecasting on the impact of synthetic or naturally occurring radioactive isotopes introduced into aquatic environments.
Collapse
Affiliation(s)
- Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA; Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), 71524 Assiut, Egypt
| | - Mostafa A Khaled
- Marine Science Department, National Authority for Remote Sensing & Space Sciences (NARSS), Cairo, Egypt
| | - Rashad E M Said
- Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), 71524 Assiut, Egypt
| | - Sobhi M Ghoneim
- Department of Surveying and Remote Sensing, School of Geosciences and Info‑Physics, Central South University, Changsha 410083, China; Mineral Resources Department, National Authority for Remote Sensing and Space Sciences (NARSS), Cairo
| | - Eman Saad
- Geology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Mohamed Abd El-Aal
- Chemistry Department, Faculty of Science, Assiut University, 71516 Assiut, Egypt
| | - Alaa El-Din H Sayed
- Department of Zoology, Faculty of Science, Assiut University, 71516 Assiut, Egypt; Molecular Biology Research & Studies Institute, Assiut University, 71516 Assiut, Egypt.
| |
Collapse
|
6
|
Sousa CSV, Sun J, Mestre NC. Potential biomarkers of metal toxicity in deep-sea invertebrates - A critical review of the omics data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175628. [PMID: 39163939 DOI: 10.1016/j.scitotenv.2024.175628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/30/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024]
Abstract
Deep-sea mining (DSM) activities are expected to release potentially toxic metal mixtures through the generation of sediment plumes to the marine environment. This may disrupt the normal functioning of biological mechanisms, adversely affecting deep-sea invertebrate organisms. It is thus essential to understand the ecotoxicological effects from these toxic elements in deep-sea organisms and the omics approaches applied to ecotoxicology are seen as promising tools. Here, we provide an overview of the principal biological modifications identified in deep-sea invertebrates when exposed to metals and critically evaluate the current knowledge and discuss which potential biomarkers may be useful after metal exposure. Most of the 50 omics studies on deep-sea invertebrates revised are comparative transcriptomes (n = 41). Forty-three potential biomarker candidates are highlighted from immune system, 46 from cellular metabolism and 29 from oxidative stress. The processes mostly affected by metal toxicity in deep-sea invertebrates are related to innate immune defense; sulfur, chitin, and catabolic metabolism; antioxidation; and detoxification. We acknowledge the current limitations and future perspectives for their uses and emphasize the need to invest in further ecotoxicological studies using the omics approaches.
Collapse
Affiliation(s)
- Cármen S V Sousa
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Jin Sun
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China
| | - Nélia C Mestre
- Centre for Marine and Environmental Research (CIMA), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.
| |
Collapse
|
7
|
Brown CW, Goldfine CE, Allan-Blitz LT, Erickson TB. Occupational, environmental, and toxicological health risks of mining metals for lithium-ion batteries: a narrative review of the Pubmed database. J Occup Med Toxicol 2024; 19:35. [PMID: 39192280 DOI: 10.1186/s12995-024-00433-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND The global market for lithium-ion batteries (LIBs) is growing exponentially, resulting in an increase in mining activities for the metals needed for manufacturing LIBs. Cobalt, lithium, manganese, and nickel are four of the metals most used in the construction of LIBs, and each has known toxicological risks associated with exposure. Mining for these metals poses potential human health risks via occupational and environmental exposures; however, there is a paucity of data surrounding the risks of increasing mining activity. The objective of this review was to characterize these risks. METHODS We conducted a review of the literature via a systematic search of the PubMed database on the health effects of mining for cobalt, lithium, manganese, and nickel. We included articles that (1) reported original research, (2) reported outcomes directly related to human health, (3) assessed exposure to mining for cobalt, lithium, manganese, or nickel, and (4) had an available English translation. We excluded all other articles. Our search identified 183 relevant articles. RESULTS Toxicological hazards were reported in 110 studies. Exposure to cobalt and nickel mining were most associated with respiratory toxicity, while exposure to manganese mining was most associated with neurologic toxicity. Notably, no articles were identified that assessed lithium toxicity associated with mining exposure. Traumatic hazards were reported in six studies. Three articles reported infectious disease hazards, while six studies reported effects on mental health. Several studies reported increased health risks in children compared to adults. CONCLUSIONS The results of this review suggest that occupational and environmental exposure to mining metals used in LIBs presents significant risks to human health that result in both acute and chronic toxicities. Further research is needed to better characterize these risks, particularly regarding lithium mining.
Collapse
Affiliation(s)
- Connor W Brown
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA.
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA.
| | - Charlotte E Goldfine
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA
| | - Lao-Tzu Allan-Blitz
- Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Timothy B Erickson
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Medical Toxicology, Mass General Brigham, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Harvard Humanitarian Initiative, Boston, MA, USA
| |
Collapse
|
8
|
Torabi S, Gholizadeh M, Yazarlo M, Riahi Z. Health Risk Assessment of Heavy Metals in Marine Fish Caught from the Northwest Persian Gulf. Biol Trace Elem Res 2024; 202:3789-3799. [PMID: 37936015 DOI: 10.1007/s12011-023-03946-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/26/2023] [Indexed: 11/09/2023]
Abstract
Marine fish may become contaminated as a result of environmental pollution including hazardous metals. Due to the presence of metalloids and toxic metals such as cadmium, lead, copper, and zinc in fish tissue, it may endanger health, considering the countless benefits of consuming fish, which can harm the human body if consumed in toxic amounts. Therefore, it is vital to monitor the concentration of metals in fish meat to ensure compliance with food safety regulations and protect the consumer. We considered the levels of Ni, Zn, Cu, Pb, and Cd in 60 marine fish samples (3 species) collected from coastal areas of the northwestern coast of the Persian Gulf and estimated their health risk. Mean concentrations of Ni, Zn, Cu, Pb, and Cd were 1.88 ± 0.07 µg/g, 27.16 ± 8.11 µg/g, 11.55 ± 4.12 µg/g, 14 ± 0.06 µg/g, and 0.19 ± 0.03 µg/g wet weight. Estimated average daily intakes (EDIs) for adults and children of Ni, Zn, Cu, Pb, and Cd were 0.89-4.15 μg/kg bw/day, 12.89-60.02 μg/kg bw/day, 5.47-25.53 μg/kg bw/day, 0.54-2.51 μg/kg bw/day, and 0.09-0.42 μg/kg bw/day. Our analysis revealed elevated levels of Ni and Pb in the fish samples, raising concerns about potential health hazards associated with their consumption. This study provides critical insights into heavy metal contamination in marine fish, highlighting the need for ongoing monitoring and proactive measures to ensure safe seafood consumption in the northwest Persian Gulf.
Collapse
Affiliation(s)
- Solaleh Torabi
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran
| | - Mohammad Gholizadeh
- Department of Fisheries, Faculty of Agriculture and Natural Resources, Gonbad Kavous University, Gonbad Kavous, Iran.
| | - Mahsa Yazarlo
- Department of Fisheries and Aquatic Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Zahra Riahi
- Department of Biological Sciences, Faculty of Basic Sciences and Technical Engineering, Gonbad Kavous University, Gonbad Kavous, Iran
| |
Collapse
|
9
|
Yahaya T, Nana Aisha L, Sani Kalgo A, Muhammad N, Abubakar MJ, Faruk MU. Contamination and risk assessment of heavy metals in water and fish obtained in Bunza River in Kebbi State, Nigeria. ENVIRONMENTAL HEALTH ENGINEERING AND MANAGEMENT 2024; 11:191-199. [DOI: 10.34172/ehem.2024.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/14/2024] [Indexed: 01/11/2025]
Abstract
Background: Fish are consumed worldwide due to their nutritional and health benefits; however, heavy metal pollution is compromising their safety. This study aimed to determine heavy metal safety in water and fish, specifically tilapia (Oreochromis niloticus) and catfish (Clarias gariepinus), collected from Bunza River in Kebbi State, Nigeria. Methods: Water and fish samples underwent analysis for zinc (Zn), cadmium (Cd), copper (Cu), and lead (Pb) using atomic absorption spectroscopy. The obtained values were then utilized to assess the associated health risks. Results: The atomic absorption spectroscopy of fish revealed significant differences (P<0.05) between heavy metal concentrations in the fish organs and FAO/WHO standards. It indicated non-tolerable concentrations of copper (1.77-5.24 mg kg-1) and lead (1.85-4.53 mg kg-1). The estimated daily intake (EDI) of Pb and Cd through fish consumption was above the recommended daily intake (RDI). However, the hazard quotient (HQ) and health risk index (HI) of all the heavy metals were within tolerable limits (<1). On water samples, non-tolerable levels of the heavy metals and significant differences (P<0.05) were observed when compared with the standards. The water samples had average concentrations of Cu (4.64±0.62 mg kg-1), Pb (1.78±0.70 mg kg-1), Cd (0.50±0.02 mg kg-1), and Zn (18.90±3.08 mg kg-1). The average daily ingestion (ADI) and HQ of the heavy metals through the consumption of the water were above the recommended limits. Conclusion: Based on the results, the fish and water samples could cause heavy metal-related toxicity. There is a need for policies aimed at decontaminating the river.
Collapse
Affiliation(s)
- Tajudeen Yahaya
- Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
| | - Lawal Nana Aisha
- Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
| | - Abdulrahman Sani Kalgo
- Department of Biological Sciences, Federal University Birnin Kebbi, PMB 1157, Kebbi State, Nigeria
| | - Nasiru Muhammad
- Department of Physiology, College of Health Sciences, Federal University Birnin Kebbi, Nigeria
| | - Muhammad-Jamil Abubakar
- Department of Quantity Surveying, Faculty of Environmental Sciences, Federal University Birnin Kebbi, Nigeria
| | - Mohammed Umar Faruk
- Department of Pure and Industrial Chemistry, Federal University Birnin Kebbi, Nigeria
| |
Collapse
|
10
|
Li R, Yao J, Liu J, Sunahara G, Duran R, Xi B, El-Saadani Z. Bioindicator responses to extreme conditions: Insights into pH and bioavailable metals under acidic metal environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120550. [PMID: 38537469 DOI: 10.1016/j.jenvman.2024.120550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Acid mine drainage (AMD) caused environmental risks from heavy metal pollution, requiring treatment methods such as chemical precipitation and biological treatment. Monitoring and adapting treatment processes was crucial for success, but cost-effective pollution monitoring methods were lacking. Using bioindicators measured through 16S rRNA was a promising method to assess environmental pollution. This study evaluated the effects of AMD on ecological health using the ecological risk index (RI) and the Risk Assessment Code (RAC) indices. Additionally, we also examined how acidic metal stress affected the diversity of bacteria and fungi, as well as their networks. Bioindicators were identified using linear discriminant analysis effect size (LEfSe), Partial least squares regression (PLS-R), and Spearman analyses. The study found that Cd, Cu, Pb, and As pose potential ecological risks in that order. Fungal diversity decreased by 44.88% in AMD-affected areas, more than the 33.61% decrease in bacterial diversity. Microbial diversity was positively correlated with pH (r = 0.88, p = 0.04) and negatively correlated with bioavailable metal concentrations (r = -0.59, p = 0.05). Similarly, microbial diversity was negatively correlated with bioavailable metal concentrations (bio_Cu, bio_Pb, bio_Cd) (r = 0.79, p = 0.03). Acidiferrobacter and Thermoplasmataceae were prevalent in acidic metal environments, while Puia and Chitinophagaceae were identified as biomarker species in the control area (LDA>4). Acidiferrobacter and Thermoplasmataceae were found to be pH-tolerant bioindicators with high reliability (r = 1, P < 0.05, BW > 0.1) through PLS-R and Spearman analysis. Conversely, Puia and Chitinophagaceae were pH-sensitive bioindicators, while Teratosphaeriaceae was a potential bioindicator for Cu-Zn-Cd metal pollution. This study identified bioindicator species for acid and metal pollution in AMD habitats. This study outlined the focus of biological monitoring in AMD acidic stress environments, including extreme pH, heavy metal pollutants, and indicator species. It also provided essential information for heavy metal bioremediation, such as the role of omics and the effects of organic matter on metal bioavailability.
Collapse
Affiliation(s)
- Ruofei Li
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China.
| | - Jianli Liu
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Geoffrey Sunahara
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| | - Robert Duran
- School of Water Resource and Environment, Research Center of Environmental Science and Engineering, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing, 100083, China; Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS, 5254, Pau, France
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zozo El-Saadani
- Geology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| |
Collapse
|
11
|
Sun L, Sun B, Zhang Y, Chen K. Kinetic properties of glucose 6-phosphate dehydrogenase and inhibition effects of several metal ions on enzymatic activity in vitro and cells. Sci Rep 2024; 14:5806. [PMID: 38461203 PMCID: PMC10924972 DOI: 10.1038/s41598-024-56503-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 03/07/2024] [Indexed: 03/11/2024] Open
Abstract
Due to the non-degradable and persistent nature of metal ions in the environment, they are released into water bodies, where they accumulate in fish. In order to assess pollution in fish, the enzyme, glucose 6-phosphate dehydrogenase (G6PD), has been employed as a biomarker due to sensitivity to various ions. This study investigates the kinetic properties of the G6PD enzyme in yellow catfish (Pelteobagrus fulvidraco), and analyzes the effects of these metal ions on the G6PD enzyme activity in the ovarian cell line (CCO) of channel catfish (Ictalurus punctatus). IC50 values and inhibition types of G6PD were determined in the metal ions Cu2+, Al3+, Zn2+, and Cd2+. While, the inhibition types of Cu2+ and Al3+ were the competitive inhibition, Zn2+ and Cd2+ were the linear mixed noncompetitive and linear mixed competitive, respectively. In vitro experiments revealed an inverse correlation between G6PD activity and metal ion concentration, mRNA levels and enzyme activity of G6PD increased at the lower metal ion concentration and decreased at the higher concentration. Our findings suggest that metal ions pose a significant threat to G6PD activity even at low concentrations, potentially playing a crucial role in the toxicity mechanism of metal ion pollution. This information contributes to the development of a biomonitoring tool for assessing metal ion contamination in aquatic species.
Collapse
Affiliation(s)
- Lindan Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Binbin Sun
- School of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, China
| | - Yulei Zhang
- Guangdong South China Sea Key Laboratory of Aquaculture for Aquatic Economic Animals, Guangdong Ocean University, Zhanjiang, China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212000, Jiangsu, China.
| |
Collapse
|
12
|
Lu J, Wu D, Li S, Gao X. Reaction Process of Solid Waste Composite-Based Cementitious Materials for Immobilizing and Characterizing Heavy Metals in Lead and Zinc Tailings: Based on XRD, SEM-EDS and Compressive Strength Characterization. Molecules 2024; 29:996. [PMID: 38474511 DOI: 10.3390/molecules29050996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
This study investigates the synergistic effect and mechanism of gelling materials with blast furnace slag (BFS), steel slag (SS) and desulphurization gypsum (DG) as the main components on the hardening of heavy metal ions by lead and zinc tailings. It is found that lead and zinc tailing (LZT) is mainly composed of dolomite and quartz and contain small amounts of calcium, aluminum, iron, magnesium and other elements as well as heavy metals such as lead and zinc. By the mechanical activation method, it is found that the lead and zinc tailings powder has the largest specific surface area and the highest activity index when the ball milling time is 2 h. At a hardening timepoint of 28 d, the calcite crystals in the samples are intertwined with the amorphous C-S-H gel (C-S-H gels are mainly composed of 3CaO∙SiO2 and 2CaO∙SiO2), which enhances the structural strength of the samples. The chemical reaction analysis confirmed that the formation of calcite is a major driver for the hydration reaction of the steel slag-desulphurization gypsum (SSSDG) system. Overall, the slag, steel slag and desulphurization gypsum solid waste-based gelling materials have synergistic effects in hardening heavy metals by limiting the leaching of metal ions, adsorbing metal ions and hardening heavy metals, and facilitating the hydration process through the formation of compound salt precipitates.
Collapse
Affiliation(s)
- Jianwei Lu
- Anhui Province Intelligent Underground Exploration and Environmental Geotechnical Engineering Research Center, State Key Laboratory of Safety and Health for Metal Mines, College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
| | - Dun Wu
- Anhui Province Intelligent Underground Exploration and Environmental Geotechnical Engineering Research Center, State Key Laboratory of Safety and Health for Metal Mines, College of Civil Engineering, Anhui Jianzhu University, Hefei 230601, China
- School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Shuqin Li
- Sinosteel Maanshan General Institute of Mining Research Co., Ltd., Maanshan 243000, China
| | - Xia Gao
- School of Architecture and Urban Planning, Anhui Jianzhu University, Hefei 230601, China
| |
Collapse
|
13
|
Saidon NB, Szabó R, Budai P, Lehel J. Trophic transfer and biomagnification potential of environmental contaminants (heavy metals) in aquatic ecosystems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122815. [PMID: 37898430 DOI: 10.1016/j.envpol.2023.122815] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Physical, chemical weathering and volcanic eruptions release heavy metals into soils and surface waters naturally. Contaminants from anthropogenic sources originated from industrial and municipality waste substantially modify and increase their contributions. They are then absorbed by fish gills, amphipod cuticles, and other sensitive organs of aquatic creatures. This article discusses the essences on the determination, potential and plausible factors of trophic transfer and biomagnification of environmental contaminants particularly heavy metals across aquatic ecosystem. In general, arsenic is found to be bio-diminished across food webs in freshwater ecosystem while it biomagnified in marine ecosystem of higher trophic level (tertiary consumer of predatory fish) and dilute its concentration from lower trophic level (from producer to bottom level of consumer, secondary and lastly to tertiary consumer (forage fish)). Early study for Cadmium shown that it has no potential for biomagnification while later studies prove that cadmium does magnify for gastropod and epiphyte-based food webs. Mercury shown obvious biomagnification potential where it can bio-magnify from trophic level as low as particulate organic matter (POM) to higher trophic of fish. These findings proved that aquatic ecosystems must be preserved from contamination not just for human benefit, but also to prevent environmental degradation and biodiversity loss.
Collapse
Affiliation(s)
- Nadhirah B Saidon
- Department of Plant Protection, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360, Keszthely, Hungary
| | - Rita Szabó
- Department of Plant Protection, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360, Keszthely, Hungary
| | - Péter Budai
- Department of Plant Protection, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, 8360, Keszthely, Hungary.
| | - József Lehel
- Department of Food Hygiene, University of Veterinary Medicine Budapest, 1078, Budapest, Hungary; National Laboratory for Infectious Animal Diseases, Antimicrobial Resistance, Veterinary Public Health and Food Chain Safety, University of Veterinary Medicine Budapest, 1078, Budapest, Hungary
| |
Collapse
|
14
|
Lin C, Fu J, Liu L, Wang H, Wei L. Disruption of intestinal structure, tight junction complex, immune response and microbiota after chronic exposure to copper in swamp eel (Monopterus albus). FISH & SHELLFISH IMMUNOLOGY 2023; 143:109182. [PMID: 37879511 DOI: 10.1016/j.fsi.2023.109182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023]
Abstract
As an essential micronutrient, copper is crucial in aquatic organisms' growth and development. Numerous studies have consistently reported that excessive intake of copper can have harmful effects on organisms. However, there are limited studies on the impact of copper on the intestine of the swamp eel (Monopterus albus). This study aimed to investigate the changes of intestinal histopathology, tight junction complex, immune response, and microbiota in swamp eel treated with 0 mg/L Cu2+, 0.05 mg/L Cu2+, and 0.10 mg/L Cu2+ for 56 d. Intestinal histopathology showed major changes such as the increased number of erythrocytes and goblet cells in the lamina propria, and separation of the lamina propria. The expression of genes involved in tight junction complex (ZO-1, Claudin-3, Claudin-12 and Claudin-15) was significantly changed. In addition, copper exposure significantly increased the mRNA levels of TLR3, TLR7, TLR8, NF-κB, I-κB, TNF-α and IL-8, especially in 0.10 mg/L Cu2+ group. In contrast, the relative expression level of anti-inflammatory cytokine TGF-β was significantly decreased after exposure to copper. Analysis of the intestinal microbiome showed the intestinal microbiota of swamp eels in the control and copper exposure groups were dominated by Firmicutes and Proteobacteria at the phylum level. Notably, copper exposure changed the diversity of the intestinal microbiota and decreased the relative abundance of Firmicutes and Proteobacteria in the intestine of swamp eel. Collectively, this study demonstrates that chronic copper exposure induces intestinal pathologic changes and inflammatory response, disrupts the intestinal microbial diversity and microbiota composition, and decreases intestinal barrier function in swamp eel, which enhances our understanding of copper-induced intestinal toxicity in fish.
Collapse
Affiliation(s)
- Changgao Lin
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Jianping Fu
- College of Life Sciences, Jiangxi Normal University, Nanchang, Jiangxi Province, 330022, PR China
| | - Lin Liu
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Hui Wang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China
| | - Lili Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi Province, 330045, PR China.
| |
Collapse
|
15
|
Liu Y, Xie X, Wang S, Hu S, Wei L, Wu Q, Luo D, Xiao T. Hydrogeochemical evolution of groundwater impacted by acid mine drainage (AMD) from polymetallic mining areas (South China). JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104254. [PMID: 37826885 DOI: 10.1016/j.jconhyd.2023.104254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/31/2023] [Accepted: 10/01/2023] [Indexed: 10/14/2023]
Abstract
Mining activities have long-term impacts on the groundwater of surrounding areas and deserve in-depth analysis and study. Herein, the geochemical mechanisms of acid mine drainage (AMD)-affected groundwaters were examined, and groundwater quality was assessed through water quality indices. 15 water samples from 7 domestic and 4 groundwater monitoring wells were tested for physical and chemical parameters in 2022, and multivariate statistical analysis was carried out with monitoring data from 21 domestic wells in 2010. The groundwater chemical composition varied from a predominantly Ca-HCO3 type in 2010 to a Ca-SO4 type in 2022. The isotopic values of δ18O and δD indicate that groundwater has not been significantly affected by evaporation. Changes in groundwater sulfate and total dissolved solids (TDS) levels over the twelve-year period confirmed the AMD infiltration impact on groundwater quality. The groundwater chemical properties changed more slowly than those of surface waters affected by AMD based on a cumulative increase in sulfate concentration of 29.94 mg/L. Changes in groundwater quality were investigated, namely, the spatiotemporal distribution of potentially toxic elements (PTEs), including Fe, Mn, Cd, Pb, and As. Mn concentrations in upstream groundwater areas near the mine decreased by 61.8% between 2010 and 2022. Conversely, groundwater in midstream areas had Mn concentrations of 2.25 mg/L and arsenic concentrations of 11.8 μg/L, both exceeding the WHO, 2022 standard. According to multivariate statistical analysis, Mn, Cd, and Pb originated from polymetallic minerals, whereas As was likely derived from the reduction of Fe/Mn hydroxyl oxides. AMD remediation improved contaminated upstream groundwater quality over 12 years, with a 36.8% improvement in WQI values. PTE distribution determined water quality changes; therefore, PTE contamination should be treated in mid- and downstream regions while contaminated groundwater should be treated upstream.
Collapse
Affiliation(s)
- Yu Liu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Xianming Xie
- Guangdong Hydrogeology Battalion, Guangzhou 510080, China
| | - Song Wang
- Guangdong Hydrogeology Battalion, Guangzhou 510080, China
| | - Simin Hu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Lezhang Wei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Qihang Wu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China
| | - Dinggui Luo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Linköping University-Guangzhou University Research Center on Urban Sustainable Development, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China.
| | - Tangfu Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China; Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou 510006, China.
| |
Collapse
|
16
|
Obayemi OE, Ayoade MA, Komolafe OO. Health risk assessment of heavy metals in Coptodon zillii and Parachanna obscura from a tropical reservoir. Heliyon 2023; 9:e16609. [PMID: 37303515 PMCID: PMC10250757 DOI: 10.1016/j.heliyon.2023.e16609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 04/16/2023] [Accepted: 05/22/2023] [Indexed: 06/13/2023] Open
Abstract
In this study, the concentrations of trace metals were examined in commercially important fish, Coptodon zillii and Parachanna obscura from Osu reservoir. These were with a view to providing baseline information on the levels of heavy metals and its associated risks to human health through fish consumption. Fish samples were collected fortnightly for five months using fish traps and gill nets with the assistance of local fisherman. They were brought into the laboratory in an ice chest for identification. The fish samples were dissected and the gills, fillet and liver kept in freezer and later analyzed for heavy metals based on Atomic Absorption Spectrophotometric (AAS) method. The data collected were subjected to appropriate statistical software packages. The results revealed that the concentration of the heavy metals in P. obscura and C. zillii across the tissues were not significantly different (p > 0.05) from each other. Also, the mean concentration of heavy metals in the fish were below the recommended limits of FAO and WHO. The target hazard quotient (THQ) for each heavy metals were below one (1) while the estimated hazard index (HI) for C. zillii and P. obscura showed no threat to human health risk through the consumption of the fish species. However, continuous consumption of the fish could probably cause health risk to the consumers of the fish. According to the study's findings, human consumption of fish species with low concentration of heavy metals at the current accumulating level is safe.
Collapse
|
17
|
Das S, Kar I, Patra AK. Cadmium induced bioaccumulation, histopathology, gene regulation in fish and its amelioration - A review. J Trace Elem Med Biol 2023; 79:127202. [PMID: 37263063 DOI: 10.1016/j.jtemb.2023.127202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 05/03/2023] [Accepted: 05/14/2023] [Indexed: 06/03/2023]
Abstract
Different anthropogenic activities as well as natural sources contribute enormously towards various heavy metal contaminations in aquatic habitats. Cadmium (Cd) is one of most prevalent and toxic heavy metals with a long half life. Unlike terrestrial animals, exposure of Cd in fishes may happen not only through feeds but also from its habitat water. Bioaccumulation of Cd in fishes occurs in many tissues, but mainly in gill, liver, kidney, skin, and muscle. The concentrations of Cd in fish tissues depend upon the extent and duration of Cd exposure, species and age of fishes, dietary minerals and antioxidant concentrations, and habitat water quality. Specific histopathological observations in liver, kidney, and gill are useful to understand the effects of Cd, which could help to determine the ameliorating methods to be adopted. Exposure of Cd exerts several adverse effects on general growth and development, reproductive processes, osmoregulation, morphological and histological structures, stress tolerance, and endocrine system, mainly due to changes in biological functions induced by differential expressions of several genes related to oxidative stress, apoptosis, inflammation, immunosuppressions, genotoxicity, Cd chelation and carbohydrate metabolism. Chronic biomagnifications of Cd exceeding the permitted level may be harmful not only to the fishes itself but also to humans through food chains. Amelioration of such toxic heavy metal that has been categorized as a potent carcinogenic in humans is of utmost importance. Main modes of amelioration encompas reducing oxidative damages by promoting the antioxidative defenses, decreasing Cd absorption, increasing excretion through excretory system and improving the tolerance of fishes to Cd toxicity. Many amelioration measures such as use of minerals (for example, zinc, calcium, and iron), vitamins (vitamin C, A, and E), different herbs, probiotics and other agents (taurine, bentonite, chitosan, zeolite, and metallothionein) have been explored for their effective roles to reduce Cd bioaccumulation and toxicity symptoms in fishes. The present review discusses bioaccumulation of Cd, histopathological alterations, oxidative stress, synergism-antagonism, and gene regulation in different tissues, and its amelioration measures in fishes.
Collapse
Affiliation(s)
- Srinibas Das
- Department of Fish Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Indrajit Kar
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, West Bengal, India.
| | - Amlan Kumar Patra
- Department of Animal Nutrition, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India.
| |
Collapse
|
18
|
Hossain MA, Chowdhury T, Chowdhury G, Schneider P, Hussain M, Das B, Iqbal MM. Impact of Pb Toxicity on the Freshwater Pearl Mussel, Lamellidens marginalis: Growth Metrics, Hemocyto-Immunology, and Histological Alterations in Gill, Kidney, and Muscle Tissue. TOXICS 2023; 11:475. [PMID: 37368575 DOI: 10.3390/toxics11060475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/11/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023]
Abstract
Pb is one of the most extensively used harmful heavy metals in Bangladesh, and its occurrence in waters affects aquatic organisms significantly. The tropical pearl mussel, Lamellidens marginalis, was exposed to different concentrations (T1 21.93 mgL-1, T2 43.86 mgL-1, and T3 87.72 mgL-1) of Pb(NO3)2 and was evaluated against a control C 0 mgL-1 of Pb(NO3)2, followed by a 96 h acute toxicity test. The LC50 value was recorded as 219.32 mgL-1. The physicochemical parameters were documented regularly for each treatment unit. The values of % SGR, shell weight, soft tissue wet weight, and weight gain remained statistically higher for the control group in comparison with the treatment. No mortality was noted for control units, while a gradually decreased survival rate was recorded for the different treatment groups. Fulton's condition factor was recorded as highest in the control and lowest in the T3 unit, while the condition indices did not vary between the control and treatment groups. The hemocyte was accounted as maximum in the control and T1, while minimum in T2 and T3. The serum lysosomal parameters also followed a similar pattern, and a significantly low level of lysosomal membrane stability, and serum lysosome activity was noted for T3 and T2 units in comparison to the control group. The histology of the gill, kidney, and muscle was well structured in the control group, while distinct pathologies were observed in the gill, kidney, and muscle tissue of different treatment groups. The quantitative comparison revealed that the intensity of pathological alteration increased as the dosage of Pb increased. The current study, therefore, indicated that intrusion of Pb(NO3)2 in the living medium significantly alters growth performance and hemocyte counts, and chronic toxicity induces histomorphological abnormalities in vital organs.
Collapse
Affiliation(s)
- Mohammad Amzad Hossain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Toma Chowdhury
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Gourab Chowdhury
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Petra Schneider
- Department for Water, Environment, Civil Engineering and Safety, Magdeburg-Stendal University of Applied Sciences, Breitscheidstraße 2, 39114 Magdeburg, Germany
| | - Monayem Hussain
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Bipresh Das
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Mohammed Mahbub Iqbal
- Department of Fish Biology and Genetics, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| |
Collapse
|
19
|
Li H, Zeng Y, Wang C, Chen W, Zou M. Variation in the burden and chemical forms of thallium in non-detoxified tissues of tilapia fish (Oreochromis niloticus) from waterborne exposure. CHEMOSPHERE 2023; 333:138884. [PMID: 37187377 DOI: 10.1016/j.chemosphere.2023.138884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/17/2023]
Abstract
Thallium (Tl) is highly toxic to aquatic ecosystems, but information about its concentration and distribution characteristics in different fish tissues is limited. In this study, juvenile tilapia (Oreochromis niloticus) were exposed to Tl solutions with different sub-lethal concentrations for 28 days, and the Tl concentrations and distribution patterns in the fish non-detoxified tissues (gills, muscle, and bone) were analyzed. The Tl chemical form fractions, Tl-ethanol, Tl-HCl, and Tl-residual, corresponding to easy, moderate, and difficult migration fraction, respectively, in the fish tissues were obtained by sequential extractant approach. The Tl concentrations of different fractions and total burden were determined using graphite furnace atomic absorption spectrophotometry. Exposure-concentration effect determined the Tl burden in the fish tissues. The average Tl-total concentration factors were 360, 447, and 593 in the bone, gills, and muscle, respectively, and the limited variation during the exposure period indicates that tilapia have a strong ability to self-regulate and achieve Tl homeostasis. However, Tl fractions varied in tissues, and the Tl-HCl fraction dominated in the gills (60.1%) and bone (59.0%), switchover Tl-ethanol fraction dominated in the muscle (68.3%). This study has shown that Tl can be easily taken up by fish during 28-days-period and largely distributed in non-detoxified tissues especially muscle, in which concurrent risks of high Tl-total burden and high levels of Tl in the form of easy migration fraction, posing possible risks to public health.
Collapse
Affiliation(s)
- Haiyan Li
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Yanyi Zeng
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China.
| | - Chao Wang
- Key Laboratory of Prevention and Control for Aquatic Invasive Alien Species, Ministry of Agriculture and Rural Affairs & Guangdong Provincial Key Laboratory of Aquatic Animal Immunology and Sustainable Aquaculture, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, China
| | - Weiwei Chen
- Institute for Medical Biology and Hubei Provincial Key Laboratory for Protection and Application of Special Plants in Wuling Area of China, College of Life Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Mengyao Zou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| |
Collapse
|
20
|
Sepúlveda CH, Sotelo-Gonzalez MI, Osuna-Martínez CC, Frías-Espericueta MG, Sánchez-Cárdenas R, Bergés-Tiznado ME, Góngora-Gómez AM, García-Ulloa M. Biomonitoring of potentially toxic elements through oysters (Saccostrea palmula and Crassostrea corteziensis) from coastal lagoons of Southeast Gulf of California, Mexico: health risk assessment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2329-2348. [PMID: 35953735 DOI: 10.1007/s10653-022-01347-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The coastal lagoons of the Gulf of California support important traditional fisheries and mollusc cultures (generally oysters) and receive important volumes of agricultural, industrial and urban effluents, consumption of the oysters could pose risk to human health. The concentrations of arsenic (As), cadmium (Cd), copper (Cu), iron (Fe), lead (Pb), and zinc (Zn) in the oysters Saccostrea palmula and Crassostrea corteziensis, from four coastal lagoons (Altata, AL; Macapule, ML; Navachiste, NL; El Colorado, ECL) in the Southeast Gulf of California, were seasonally evaluated (summer 2019-spring 2020). The order of magnitude of potentially toxic elements concentrations in the soft tissue in both oyster species and at all sites was Zn > Fe > Cu > As > Cd > Pb. Cadmium, Cu, Pb, and Zn exceeded the maximum permissible limits in more than one sampling site. The highest concentrations (mg kg-1, wet weight) of As (4.2 ± 1.1, spring) and Cd (3.3 ± 0.7, autumn) were registered in S. palmula et al. and NL sampling sites, respectively. Crassostrea corteziensis presented higher levels of Cu (40.5 ± 6.7, spring), Pb (2.0 ± 0.4, spring), and Zn (96.9 ± 20.4, spring) in ECL and Fe (62.2 ± 25.4, autumn) in ML. The hazard quotient (HQ) values exceeded the safe level of 1 for Cd in S. palmula and C. corteziensis in NL for children (~ 16 kg weight). In addition, in children, the hazard index (HI) values in both species of oysters ranged from 0.7 to 2.1 and 0.6 to 1.9, respectively. On the other hand, the intake of the studied elements through the consumption of oysters would not induce adverse effects to human health (men and women weighing 70 and 60 kg, respectively); HQ and HI values were < 1.
Collapse
Affiliation(s)
- Carlos Humberto Sepúlveda
- Doctorado en Ciencias en Recursos Acuáticos, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Avenida de los Deportes S/N Ciudad Universitaria, C.P. 82017, Mazatlán, Sinaloa, Mexico
| | - Maria Isabel Sotelo-Gonzalez
- Doctorado en Ciencias en Recursos Acuáticos, Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Avenida de los Deportes S/N Ciudad Universitaria, C.P. 82017, Mazatlán, Sinaloa, Mexico
| | - Carmen Cristina Osuna-Martínez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen S/N Col. Los Pinos, C.P. 82000, Mazatlán, Sinaloa, Mexico
| | - Martín Gabriel Frías-Espericueta
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen S/N Col. Los Pinos, C.P. 82000, Mazatlán, Sinaloa, Mexico
| | - Rebeca Sánchez-Cárdenas
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa. Paseo Claussen S/N Col. Los Pinos, C.P. 82000, Mazatlán, Sinaloa, Mexico
| | - Magdalena Elizabeth Bergés-Tiznado
- Ingeniería en Tecnología Ambiental, Universidad Politécnica de Sinaloa. Carretera Municipal Libre Mazatlán-Higueras Km. 3, C.P. 82199, Mazatlán, Sinaloa, Mexico
| | - Andrés Martín Góngora-Gómez
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional. Blvd. Juan de Dios Bátiz Paredes, No. 250, Col. San Joachin, C.P. 81101, Guasave, Sinaloa, Mexico
| | - Manuel García-Ulloa
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Sinaloa, Instituto Politécnico Nacional. Blvd. Juan de Dios Bátiz Paredes, No. 250, Col. San Joachin, C.P. 81101, Guasave, Sinaloa, Mexico.
| |
Collapse
|
21
|
Wu L, Yue W, Wu J, Cao C, Liu H, Teng Y. Metal-mining-induced sediment pollution presents a potential ecological risk and threat to human health across China: A meta-analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117058. [PMID: 36528944 DOI: 10.1016/j.jenvman.2022.117058] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Aquatic sediment polluted by potentially toxic elements (PTEs) from mining activities represents a potential health "time bomb" for humans and the local ecology, but the integrated analysis of pollution and hazards of PTEs in sediment around typical metal mines in China is limited. Presently, the associated pollution status, spatial distribution, and ecological and health hazards of Cd, Cu, Zn, Pb, Cr, and As were investigated through index evaluation, spatial analysis, health risk assessment models, and Monte Carlo simulation. Overall, the sediment exhibited varying degrees of PTE contamination; notably, the level of Cd was 104.85 times higher than its background value, and it became the most enriched element in the surveyed sediment, followed in descending order by Cu, As, Zn, Pb, and Cr. Nationally, over 64.5% of metal-mining-affected sediment presented a very high ecological risk, contributed mostly by Cd (43.2%-98.7%) followed by As, Pb, and Cu; the risk contributed by both Cr and Zn was found to be negligible. The adverse health risk posed to children by most sediment was 1.72 and 6.46 times higher than that posed to adults for cancerous and noncancerous risks, respectively. The potential noncarcinogenic risks were mainly caused by As, which contributed over 78.9% of the Hazard Index values, then followed by Pb (>9.3%). For both children and adults, the carcinogenic risk of PTEs decreased in the following order: As > Cd > Cr > Pb. The investigated sediment was found seriously affected by nearby metal mines, especially those in regions with long-term and large-scale nonferrous-metal-mining activities. This study could provide a reference for policymakers to develop control strategies for PTE pollution in sediment around mining areas.
Collapse
Affiliation(s)
- Lijun Wu
- College of Water Sciences, Beijing Normal University, Xinjiekouwai Street 19, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Weifeng Yue
- College of Water Sciences, Beijing Normal University, Xinjiekouwai Street 19, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China.
| | - Jin Wu
- Faculty of Architecture, Civil and Transportation Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Changming Cao
- College of Water Sciences, Beijing Normal University, Xinjiekouwai Street 19, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Hong Liu
- College of Water Sciences, Beijing Normal University, Xinjiekouwai Street 19, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| | - Yanguo Teng
- College of Water Sciences, Beijing Normal University, Xinjiekouwai Street 19, Beijing, 100875, China; Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, Beijing, 100875, China
| |
Collapse
|
22
|
Cai S, Zhou S, Yan X, Xiao Y, Cheng J, Wang Q, Zeng B. Comparative study on metal concentrations in water, sediments, and two fish species (Cyprinus carpio and Pelteobagrus fulvidraco) from the Wujiang River, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44845-44860. [PMID: 36701068 DOI: 10.1007/s11356-023-25533-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
In order to assess the metal pollution in the Wujiang River, concentrations of Cu, Zn, Fe, Mn, Pb, Cd, As, and Hg in the water, sediments, and two fish species Cyprinus carpio and Pelteobagrus fulvidraco from the middle reaches (Tuomugang, TMG) and lower reaches (Wulong, WL) of the Wujiang River were examined. The results indicated that all metal concentrations were lower than the values for grade one water quality according to the Environment Quality Standard for Surface Water of China (GB 3838-2002). The bioavailable fraction concentrations of Zn, Fe, Mn, Pb, and Hg in WL were significantly higher than those in TMG (p < 0.05), indicating that these metals in sediments of WL have higher bioavailability and mobility. The Cu, Zn, Fe, Pb, As, and Hg were mainly related to the residual fraction, while the Mn and Cd were mainly associated with the non-residual fraction. The risk assessment code (RAC) and the secondary phase to the primary phase (RSP) values indicated that Mn and Cd have a high risk of secondary release. The mean metal concentrations in the liver of the two fish species were higher than those in muscle. The higher metal concentrations of fish in WL suggested that bioaccumulation of metals in fish could be influenced by metal bioavailability. No identical relationships between metal concentrations and fish length were manifested in the present study. The values of target hazard quotient (THQ) and hazard index (HI), and carcinogenic risk (CR) of metals for the consumption of C. carpio and P. fulvidraco indicated that the anglers would likely not experience significant non-carcinogenic risk, but the carcinogenic risk of As cannot be ignored. Thanks to prohibited commercial fishing in the Wujiang River, the metal pollution will probably not pose a health risk to the general public for wild fish consumption.
Collapse
Affiliation(s)
- Shenwen Cai
- College of Resources and Environment, Zunyi Normal University, Zunyi, China.
| | - Shaoqi Zhou
- College of Resources and Environment Engineering, Guizhou University, Guiyang, China
| | - Xiong Yan
- College of Resources and Environment, Zunyi Normal University, Zunyi, China
| | - Ye Xiao
- College of Resources and Environment, Zunyi Normal University, Zunyi, China
| | - Junwei Cheng
- College of Resources and Environment, Zunyi Normal University, Zunyi, China
| | - Qinghe Wang
- College of Resources and Environment, Zunyi Normal University, Zunyi, China
| | - Boping Zeng
- College of Biology and Agriculture, Zunyi Normal University, Zunyi, China
| |
Collapse
|
23
|
Ren Y, Cao X, Wu P, Li L. Experimental insights into the formation of secondary minerals in acid mine drainage-polluted karst rivers and their effects on element migration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160076. [PMID: 36356774 DOI: 10.1016/j.scitotenv.2022.160076] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/02/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Acid mine drainage (AMD) threatens the water quality and safety of karst river water (KRW), and the formation of secondary iron or aluminum-bearing minerals during the mixing of AMD with KRW plays a crucial role in the migration of elements. However, the variations in the mineralogical, morphological and elemental compositions of secondary minerals and their influences on the migration of elements during AMD-KRW mixing have not been systematically studied. In this study, we mixed different proportions of AMD and KRW in a laboratory experiment to simulate seasonal hydrological conditions in a river to understand the major and trace elemental distributions in the mixed water and in precipitates and we discuss the formation process for the secondary minerals. The results showed that AMD can lead to a decrease in pH and DO and an increase in heavy metals and rare earth elements (REEs) in KRW. With the biological or chemical oxidation of Fe2+, Fe3+ combines with SO42- to form schwertmannite or hydrolyzes to form Fe(OH)3(s) and FeOOH(s), accompanied by the formation of amorphous Al hydroxide, resulting in a decrease in pH and an increase in Eh. Schwertmannite had strong adsorption and coprecipitation effects on Mn, Cr, Cu and As, so the adsorption and coprecipitation effects of schwertmannite on REEs were inhibited, while the migration of REEs were mainly affected by Al hydroxides. Therefore, after the AMD mixes with KRW, it not only causes severe water and sediment pollution but also adsorbs and enriches high concentrations of heavy metals in the secondary minerals formed during the mixing process, creating a major ecological hazard that requires further attention.
Collapse
Affiliation(s)
- Yeye Ren
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 500025, China
| | - Xingxing Cao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 500025, China.
| | - Pan Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 500025, China
| | - Linwei Li
- College of Resources and Environmental Engineering, Guizhou University, Guiyang 500025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang 500025, China
| |
Collapse
|
24
|
Yoon H, Yoon J. The Impact Evaluation of Acid Mine Drainage on Zebrafish ( Danio rerio) and Water Fleas ( Daphnia magna) in the Vicinity of the Geum River Basin in Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16470. [PMID: 36554350 PMCID: PMC9778570 DOI: 10.3390/ijerph192416470] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
Heavy metals, such as copper, lead, and cadmium, carried by acid mine drainage are pollutants of the aquatic ecosystem, posing a significant health risk to the water resource for humans. Environmental technologies to reduce metal contamination are applied for post-mining prevention and improvement. Despite detailed pollution management, water contaminated by heavy metals still flows into the natural water system. This study investigated the impact of drainage discharged from abandoned mines near the major river in South Korea on aquatic organisms. The toxicity of the field water showed a more significant effect than observed through the experiment for each heavy-metal concentration. Various toxic substances coexisted in the field water around the mine, such that the overall toxic intensity was high even when the concentration of each heavy metal was low. As a result, the inhibition of activity of aquatic organisms was observed at low individual concentrations, and further investigation on the effect of long-term exposure to trace amounts of heavy metals is required.
Collapse
Affiliation(s)
- Hyojik Yoon
- Institute of Natural and Science, College of Science and Technology, Korea University, Sejong 30019, Republic of Korea
| | - Jonghyun Yoon
- National Institute of Environmental Research, Incheon 22689, Republic of Korea
| |
Collapse
|
25
|
Li A, Ding J, Shen T, Han Z, Zhang J, Abadeen ZU, Kulyar MFEA, Wang X, Li K. Environmental hexavalent chromium exposure induces gut microbial dysbiosis in chickens. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112871. [PMID: 34649138 DOI: 10.1016/j.ecoenv.2021.112871] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/12/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Hexavalent chromium [Cr (VI)] is a hazardous heavy metal that pollutes soil, water and crops. Moreover, its prolonged exposure can harm the gastrointestinal system, liver and respiratory tract in different species, but knowledge regarding Cr (VI) influence on gut microbiota in chickens remains scarce. Therefore, this study was performed to investigate the impact of Cr (VI) on gut microbiota in chickens. Results revealed that the gut microbiota in Cr (VI)-induced chickens exhibited a distinct reduction in alpha diversity, accompanied by significant shifts in microbial composition. Specifically, Firmicutes and Bacteroidetes were the most dominant phyla in the control chickens, whereas Firmicutes and Actinobacteria were observed to be predominant in the Cr (VI)-induced populations. Moreover, the types and relative abundances of predominant bacterial genus in control and Cr (VI)-induced chickens were also different. Bacterial taxonomic analysis revealed that the relative abundances of 3 phyla and 7 genera obviously increased, whereas 8 phyla and 30 genera dramatically decreased during Cr (VI) induction. Among them, 1 phylum (Deferribacteres) and 5 genera (Butyricicoccus, Butyricimonas, Intestinimonas, Lachnospiraceae_FCS020_group and Ruminococcaceae_V9D2013_group) even could not be found in the gut microbial community of Cr (VI)-induced chickens. Taken together, our study indicated that the long-term exposure to Cr (VI) dramatically alter the gut microbial diversity and composition in chickens. Notably, it represents a breakthrough in understanding the impact of Cr (VI) on the intestinal microbiota of chickens.
Collapse
Affiliation(s)
- Aoyun Li
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi City, Shandong 276005, PR China; College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jinxue Ding
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ting Shen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zhaoqing Han
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi City, Shandong 276005, PR China
| | - Jiabin Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zain Ul Abadeen
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, 38040 Faisalabad, Pakistan
| | | | - Xin Wang
- College of Agriculture and Forestry, Linyi University, Shuangling Road, Linyi City, Shandong 276005, PR China.
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
26
|
Munyai R, Ogola HJO, Modise DM. Microbial Community Diversity Dynamics in Acid Mine Drainage and Acid Mine Drainage-Polluted Soils: Implication on Mining Water Irrigation Agricultural Sustainability. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.701870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental degradation related to mining-generated acid mine drainage (AMD) is a major global concern, contaminating surface and groundwater sources, including agricultural land. In the last two decades, many developing countries are expanding agricultural productivity in mine-impacted soils to meet food demand for their rapidly growing population. Further, the practice of AMD water (treated or untreated) irrigated agriculture is on the increase, particularly in water-stressed nations around the world. For sustainable agricultural production systems, optimal microbial diversity, and functioning is critical for soil health and plant productivity. Thus, this review presents up-to-date knowledge on the microbial structure and functional dynamics of AMD habitats and AMD-impacted agricultural soils. The long-term effects of AMD water such as soil acidification, heavy metals (HM), iron and sulfate pollution, greatly reduces microbial biomass, richness, and diversity, impairing soil health plant growth and productivity, and impacts food safety negatively. Despite these drawbacks, AMD-impacted habitats are unique ecological niches for novel acidophilic, HM, and sulfate-adapted microbial phylotypes that might be beneficial to optimal plant growth and productivity and bioremediation of polluted agricultural soils. This review has also highlighted the impact active and passive treatment technologies on AMD microbial diversity, further extending the discussion on the interrelated microbial diversity, and beneficial functions such as metal bioremediation, acidity neutralization, symbiotic rhizomicrobiome assembly, and plant growth promotion, sulfates/iron reduction, and biogeochemical N and C recycling under AMD-impacted environment. The significance of sulfur-reducing bacteria (SRB), iron-oxidizing bacteria (FeOB), and plant growth promoting rhizobacteria (PGPRs) as key players in many passive and active systems dedicated to bioremediation and microbe-assisted phytoremediation is also elucidated and discussed. Finally, new perspectives on the need for future studies, integrating meta-omics and process engineering on AMD-impacted microbiomes, key to designing and optimizing of robust active and passive bioremediation of AMD-water before application to agricultural production is proposed.
Collapse
|