1
|
Touahir N, Alouache S, Dehane D. Assessment and characterization of heavy metals resistance bacteria isolated in Southwestern Mediterranean coastal waters (Bou-Ismail Bay): Impacts of anthropogenic activities. MARINE POLLUTION BULLETIN 2023; 192:115085. [PMID: 37301007 DOI: 10.1016/j.marpolbul.2023.115085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Bacteria present in the marine environment can cause ecological risks and seriously impact human health through direct contact or the food chain. This paper examines bacterial resistance to heavy metals and anthropogenic inputs' influence in four Bou-Ismail Bay regions (Algerian coast). The study was conducted from May to October 2018. High levels of resistance of total flora and total coliform were observed respectively for zinc (29.5 %, 30.5 %), copper (26.2 %, 20.7 %), mercury (17.4 %, 17.2 %), lead (16.9 %, 14.2 %), and cadmium (8.9 %, 0 %). A total 118 metal resistant bacteria were identified. All isolates were tested against 5 heavy metals and 7 antibiotics. The isolates showed tolerance to different concentrations of heavy metals ranging from 12.5 to 6400 μg/ml and exposed a co-resistance to the other heavy metals. The majority of strains were multi-resistant to heavy metals and antibiotics. Therefore, the bacteria isolated from Bou-Ismail Bay are highly resistant to heavy metals and antibiotics.
Collapse
Affiliation(s)
- Nawal Touahir
- Laboratory Conservation and Valorization of Marine Resources (CVRM), National Higher School of Marine Sciences and Coastal Management (ENSSMAL), Algiers, Algeria.
| | - Souhila Alouache
- Laboratory Conservation and Valorization of Marine Resources (CVRM), National Higher School of Marine Sciences and Coastal Management (ENSSMAL), Algiers, Algeria; Laboratory of Cellular and Molecular Biology, Faculty of Biological Sciences, University of Sciences and Technology Houari-Boumédiène, Algiers, Algeria
| | - Djema Dehane
- Laboratory Conservation and Valorization of Marine Resources (CVRM), National Higher School of Marine Sciences and Coastal Management (ENSSMAL), Algiers, Algeria
| |
Collapse
|
2
|
Kilic M, Kilic S, Yenisoy-Karakaş S. The method development for elimination of matrix interferences in seawater monitoring to determine elements by ICP-MS. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 195:180. [PMID: 36480108 DOI: 10.1007/s10661-022-10748-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/08/2022] [Indexed: 06/17/2023]
Abstract
A simple, versatile, and economical method development with matrix elimination to determine the elements As, Ba, Cd, Co, Cr, Cu, Mn, Ni, Pb, V, and Zn in seawater by using the technique of inductively coupled plasma mass spectrometry is reported. Real seawater was used as a matrix for the standard adding calibration and other validation parameters. The samples were open digested at 80 °C with 2 mL HNO3 and 0.25 mL HF under the hood. A two-step digestion procedure was applied, and the volume was completed to 10 mL with deionized water. Chloride removal was accomplished by using this procedure. The concentrations of Ca and Mg ions were lessened by 15% and 20%, respectively. These results were verified with ion chromatography, SEM-EDS, and mass difference analyses. It was observed that there was a 40% loss in the average mass of particulate matter on the filter media after applying the two-step digestion procedure. Recovery and trueness values were in the range of 86 and 109%. The average precision amounts for elements were determined as RSD (%) in the range of 1.0% and 3.4%. The concentrations of elements determined in the 18 samples collected from the Konyaaltı Beach located in Antalya were higher than the maximum allowable concentrations of the Directive 2013/39/EU.
Collapse
Affiliation(s)
- Murat Kilic
- Central Research Laboratory Application and Research Center, Isparta University of Applied Sciences, Isparta, Turkey
| | - Serpil Kilic
- Department of Chemistry and Chemical Processing Technologies, Vocational High School of Technical Sciences, Isparta University of Applied Sciences, Isparta, Turkey
| | - Serpil Yenisoy-Karakaş
- Faculty of Art and Sciences, Department of Chemistry, University of Bolu Abant Izzet Baysal, Bolu, Turkey.
| |
Collapse
|
3
|
Kalkan S. Heavy metal resistance of marine bacteria on the sediments of the Black Sea. MARINE POLLUTION BULLETIN 2022; 179:113652. [PMID: 35500375 DOI: 10.1016/j.marpolbul.2022.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/22/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The Black Sea is unfortunately globally established as a highly polluted sea, with contaminants from various sources polluting its marine sediments. This study aimed at analyzing heavy metal resistance levels by heterotrophic bacteria colonizing marine sediments across Black Sea shores within Turkey. Twenty-nine bacterial samples from marine sediments were investigated through exposure to sixteen heavy metal salts using the microdilution method. The minimum inhibitory concentration values for bacterial colonies within such marine sediment samples ranged from <0.97 mM/L to >1000 mM/L. Trough and peak minimum inhibitory concentration values were determined at <0.17 mg/mL and > 331 mg/mL. Peak tolerated and peak toxic heavy metals were identified as iron and cadmium, respectively. Resistance ratios were also obtained in this study. Bacillus wiedmannii was identified as the most resistant bacterial population when exposed to heavy metal salts. This study shows occurrence of heavy metal resistant bacteria within Black Sea sediments.
Collapse
Affiliation(s)
- Samet Kalkan
- Recep Tayyip Erdogan University, Faculty of Fisheries, Ataturk Street Fener District, 53100 Merkez, Rize, Turkey.
| |
Collapse
|
4
|
Altuğ G, Çardak M, Türetken PSÇ, Kalkan S, Gürün S. Antibiotic and Heavy Metal Resistant Bacteria Isolated from Aegean Sea Water and Sediment in Güllük Bay, Turkey : Quantifying the resistance of identified bacteria species with potential for environmental remediation applications. JOHNSON MATTHEY TECHNOLOGY REVIEW 2020. [DOI: 10.1595/205651320x15953337767424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heavy metal and antibiotic-resistant bacteria have potential for environmental bioremediation applications. Resistant bacteria were investigated in sediment and seawater samples taken from the Aegean Sea, Turkey, between 2011 and 2013. Bioindicator bacteria in seawater samples were
tested using the membrane filtration technique. The spread plate technique and VITEK® 2 Compact 30 micro identification system were used for heterotrophic aerobic bacteria in the samples. The minimum inhibition concentration method was used for heavy metal-resistant bacteria.
Antibiotic-resistant bacteria were tested using the disk diffusion method. All bacteria isolated from sediment samples showed 100% resistance to rifampicin, sulfonamide, tetracycline and ampicillin. 98% of isolates were resistant against nitrofurantoin and oxytetracycline. Higher antibiotic
and heavy metal resistance was recorded in bacteria isolated from sediment than seawater samples. The highest levels of bacterial metal resistance were recorded against copper (58.3%), zinc (33.8%), lead (32.1%), chromium (31%) and iron (25.2%). The results show that antibiotic and heavy metal
resistance in bacteria from sediment and seawater can be observed as responses to environmental influences including pollution in marine areas.
Collapse
Affiliation(s)
- Gülşen Altuğ
- Department of Marine Biology, Faculty of Aquatic Sciences, Istanbul University Balabanağa Mahallesi Ordu Caddesi No 8, Laleli, Fatih Istanbul, 34134, Turkey
| | - Mine Çardak
- Department of Fisheries Technology, Faculty of Çanakkale Applied Sciences, Çanakkale Onsekiz Mart University, Terzioğlu Campus Çanakkale, 17020 Turkey
| | - Pelin Saliha Çiftçi Türetken
- Department of Marine Biology, Faculty of Aquatic Sciences, Istanbul University Balabanağa Mahallesi Ordu Caddesi No 8, Laleli, Fatih, Istanbul, 34134 Turkey
| | - Samet Kalkan
- Department of Marine Biology, Faculty of Fisheries and Aquatic Sciences, Recep Tayyip Erdoğan University, Zihni Derin Campus, Rize 53100 Turkey
| | - Sevan Gürün
- Department of Marine Biology, Faculty of Aquatic Sciences, Istanbul University, Balabanağa Mahallesi Ordu Caddesi No 8, Laleli, Fatih, Istanbul 34134 Turkey
| |
Collapse
|
5
|
Aljerf L. A Gateway to Metal Resistance: Bacterial Response to Heavy Metal Toxicity in the Biological Environment. ACTA ACUST UNITED AC 2018. [DOI: 10.29328/journal.aac.1001012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Pepi M, Borra M, Tamburrino S, Saggiomo M, Viola A, Biffali E, Balestra C, Sprovieri M, Casotti R. A Bacillus sp. isolated from sediments of the Sarno River mouth, Gulf of Naples (Italy) produces a biofilm biosorbing Pb(II). THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 562:588-595. [PMID: 27110973 DOI: 10.1016/j.scitotenv.2016.04.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 04/13/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
A Pb-resistant bacterial strain (named hereinafter Pb15) has been isolated from highly polluted marine sediments at the Sarno River mouth, Italy, using an enrichment culture to which Pb(II) 0.48mmoll(-1) were added. 16S rRNA gene sequencing (Sanger) allowed assignment of the isolate to the genus Bacillus, with Bacillus pumilus as the closest species. The isolate is resistant to Pb(II) with a minimum inhibitory concentration (MIC) of 4.8mmoll(-1) and is also resistant to Cd(II) and Mn(II) with MIC of 2.22mmoll(-1) and 18.20mmoll(-1), respectively. Inductively coupled plasma atomic emission spectrometry (ICP-AES) showed that Pb inoculated in the growth medium is absorbed by the bacterial cells at removal efficiencies of 31.02% and 28.21% in the presence of 0.48mmoll(-1) or 1.20mmoll(-1) Pb(II), respectively. Strain Pb15 forms a brown and compact biofilm when grown in presence of Pb(II). Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (SEM-EDS) confirm that the biofilm contains Pb, suggesting an active biosorption of this metal by the bacterial cells, sequestering 14% of inoculated Pb as evidenced by microscopic analyses. Altogether, these observations support evidence that strain Pb15 has potentials for being used in bioremediation of its native polluted sediments, with engineering solutions to be found in order to eliminate the adsorbed Pb before replacement of sediments in situ.
Collapse
Affiliation(s)
- Milva Pepi
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Marco Borra
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Stella Tamburrino
- Consiglio Nazionale delle Ricerche, Istituto per l'Ambiente Marino Costiero UOS Capo Granitola, Palermo, Italy
| | - Maria Saggiomo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Alfio Viola
- Università di Catania, Corso Italia 57, I-95129 Catania, Italy
| | - Elio Biffali
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Cecilia Balestra
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Mario Sprovieri
- Consiglio Nazionale delle Ricerche, Istituto per l'Ambiente Marino Costiero UOS Capo Granitola, Palermo, Italy
| | - Raffaella Casotti
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
7
|
Taskin OS, Ersoy N, Aksu A, Kiskan B, Balkis N, Yagci Y. Melamine-based microporous polymer for highly efficient removal of copper(II) from aqueous solution. POLYM INT 2016. [DOI: 10.1002/pi.5074] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Omer Suat Taskin
- Istanbul Technical University, Faculty of Science and Letters; Department of Chemistry; Maslak 34469 Istanbul Turkey
- Kirklareli University; Department of Chemistry; Merkez Kirklareli Turkey
| | - Nagihan Ersoy
- Istanbul University, Institute of Marine Science and Management; Department of Chemical Oceanography; Vefa 34134 Istanbul Turkey
| | - Abdullah Aksu
- Istanbul University, Institute of Marine Science and Management; Department of Chemical Oceanography; Vefa 34134 Istanbul Turkey
| | - Baris Kiskan
- Istanbul Technical University, Faculty of Science and Letters; Department of Chemistry; Maslak 34469 Istanbul Turkey
| | - Nuray Balkis
- Istanbul University, Institute of Marine Science and Management; Department of Chemical Oceanography; Vefa 34134 Istanbul Turkey
| | - Yusuf Yagci
- Istanbul Technical University, Faculty of Science and Letters; Department of Chemistry; Maslak 34469 Istanbul Turkey
- King Abdulaziz University; Center of Excellence for Advanced Materials Research (CEAMR) and Chemistry Department; Faculty of Science, PO Box 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
8
|
Seetharaman P, Sarma K, George G, Krishnan P, Roy SD, Sankar K. Impact of Coastal Pollution on Microbial and Mineral Profile of Edible Oyster (Crassostrea rivularis) in the Coastal Waters of Andaman. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 95:599-605. [PMID: 26347459 DOI: 10.1007/s00128-015-1601-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 07/08/2015] [Indexed: 06/05/2023]
Abstract
The impact of coastal pollution was studied using edible oysters, Crassostrea rivularis as an indicator at two sites viz., North Wandoor (NW) and Phoenix Jetty (PJ) in Port Blair, Andaman. The hydrographic parameters showed that nitrite, nitrate and phosphate concentration were less and dissolved oxygen were more at NW compared to PJ. The oysters were collected from the study sites and biochemical, microbial, mineral profiles and ATPase activities were estimated. ATPase activity was inhibited in the gill tissue of oysters (p<0.05) of PJ sample. Total microbial load in the water and oyster, and coliform bacteria (MPN) in the water were significantly (p<0.05) higher at PJ compared to the NW. There was no significant difference (p>0.05) in the mineral profile of water collected from both the sites. However, calcium and magnesium were more in the oysters collected from NW (p<0.05), and Cu, Zn and Cd were more in PJ samples (p<0.05).
Collapse
Affiliation(s)
- Prabukumar Seetharaman
- Central Agricultural Research Institute, ICAR, Andaman and Nicobar Island, Port Blair, 744 101, India
| | - Kamal Sarma
- Central Agricultural Research Institute, ICAR, Andaman and Nicobar Island, Port Blair, 744 101, India.
- ICAR Research Complex for Eastern Region, Patna, 800014, Bihar, India.
| | - Grinson George
- Central Agricultural Research Institute, ICAR, Andaman and Nicobar Island, Port Blair, 744 101, India
| | - Pandian Krishnan
- Central Agricultural Research Institute, ICAR, Andaman and Nicobar Island, Port Blair, 744 101, India
| | - S Dam Roy
- Central Agricultural Research Institute, ICAR, Andaman and Nicobar Island, Port Blair, 744 101, India
| | - Kiruba Sankar
- Central Agricultural Research Institute, ICAR, Andaman and Nicobar Island, Port Blair, 744 101, India
| |
Collapse
|
9
|
Busch J, Nascimento JR, Magalhães ACR, Dutilh BE, Dinsdale E. Copper tolerance and distribution of epibiotic bacteria associated with giant kelp Macrocystis pyrifera in southern California. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1131-40. [PMID: 25893330 PMCID: PMC4460293 DOI: 10.1007/s10646-015-1460-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2015] [Indexed: 06/04/2023]
Abstract
Kelp forests in southern California are important ecosystems that provide habitat and nutrition to a multitude of species. Macrocystis pyrifera and other brown algae that dominate kelp forests, produce negatively charged polysaccharides on the cell surface, which have the ability to accumulate transition metals such as copper. Kelp forests near areas with high levels of boating and other industrial activities are exposed to increased amounts of these metals, leading to increased concentrations on the algal surface. The increased concentration of transition metals creates a harsh environment for colonizing microbes altering community structure. The impact of altered bacterial populations in the kelp forest have unknown consequences that could be harmful to the health of the ecosystem. In this study we describe the community of microorganisms associated with M. pyrifera, using a culture based approach, and their increasing tolerance to the transition metal, copper, across a gradient of human activity in southern California. The results support the hypothesis that M. pyrifera forms a distinct marine microhabitat and selects for species of bacteria that are rarer in the water column, and that copper-resistant isolates are selected for in locations with elevated exposure to transition metals associated with human activity.
Collapse
Affiliation(s)
- Julia Busch
- />Biology Department, San Diego State University, San Diego, California USA
- />Scripps Institution of Oceanography, University of California, San Diego, USA
| | | | | | - Bas E. Dutilh
- />Computer Science Department, San Diego State University, California, USA
- />Centre for Molecular and Biomolecular Informatics, CMBI, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Crooteplein 28, 6526 GA Nijmegen, The Netherlands
| | - Elizabeth Dinsdale
- />Biology Department, San Diego State University, San Diego, California USA
| |
Collapse
|
10
|
Seasonal abundance and diversity of culturable heterotrophic bacteria in relation to environmental factors in the Gulf of Antalya, Eastern Mediterranean, Turkey. World J Microbiol Biotechnol 2015; 31:569-82. [PMID: 25663240 DOI: 10.1007/s11274-015-1810-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/24/2015] [Indexed: 10/24/2022]
Abstract
The abundance of culturable heterotropic bacteria studied on and according to depth levels and seasons in the Gulf of Antalya. Environmental factors were compared regarding culturable heterotrophic bacteria abundance and diversities of bacteria. During the study period (between August 2009 and April 2010, seasonally in the Gulf of Antalya, at six stations and six depth levels (0-20 cm, 10, 25, 50, 100, 200 m). The bacterial isolates were identified in the automated micro identification system VITEK 2 Compact 30 (Biomereux, France). The mean abundance was higher in Sts. D, E and F than Sts. A, B and C, located in the eastern part of the gulf. The mean abundance decreased as the depth level increased. The mean abundance of CHB ranged between 8.15 × 10(6) and 2.54 × 10(8) CFU ml(-1) throughout the year. Abundance of CHB differed according to the variations of biotic and abiotic factors. A total of 27 taxa of bacteria including six bacterial classes were reported in this study as the first records for the Gulf of Antalya. Six bacterial classes: Gamma Proteobacteria (46.81 %), Bacilli (27.66 %), Beta Proteobacteria (12.77 %), Alfa Proteobacteria (6.38 %), Actinobacteria (4.26 %) and Flavobacteria (2.13 %) were determined. The study resulted in increased knowledge on the composition and biochemical response of bacteria isolated from eutrophic and oligotrophic areas. 23 bacteria species belonging to 16 families were reported.
Collapse
|
11
|
Antibiotic and heavy metal resistance in Gram-negative bacteria isolated from the Seyhan Dam Lake and Seyhan River in Turkey. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0740-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
12
|
Kılıç Ö, Belivermiş M. Spatial and seasonal distribution of trace metal concentrations in mussel (Mytilus galloprovincialis) and sediment of Bosphorus and Golden Horn. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 91:402-408. [PMID: 23928883 DOI: 10.1007/s00128-013-1077-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
The Golden Horn Estuary and Bosphorus Strait are two major marine environments of metropolitan Istanbul which have been exposed to intensive industrial discharges for more than 50 years. In the present study, concentrations of cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb) and zinc (Zn) were measured in mussel tissue and sediment samples by using inductively coupled plasma-atomic emission spectroscopy to assess the current status of metal pollution in the Golden Horn and Bosphorus Strait. Ranges of Cd, Cr, Cu, Pb and Zn concentrations in soft parts of the mussels were BDL-2.59; BDL-7.35; 3.96-20.90; BDL-10.0; and 124.8-293.2 μg g(-1) dry weight (dw), respectively, while the ranges of Cd, Cr, Cu, Pb and Zn in <63 μm sediment fractions were BDL, 19.5-300.3, 16.9-724.7, 10.5-260.9, and 39.3-793.1 μg g(-1) dw, respectively. Ranges of Cd, Cr, Cu, Pb and Zn in >63 μm sediment fractions were BDL, 4.73-52.81, 3.45-481.87, 3.13-174.67 and 10.7-241.2 μg g(-1) dw, respectively. Trace metal concentrations found in sediment of the Golden Horn were 5-10 times higher than average literature values obtained in Mediterranean marine environment, whereas those of the Bosphorus Strait were consistent with or slightly higher than average literature values.
Collapse
Affiliation(s)
- Önder Kılıç
- Department of Biology, Faculty of Science, Istanbul University, 34134, Vezneciler, Istanbul, Turkey,
| | | |
Collapse
|
13
|
Lu Z, Cai M, Wang J, Yin Z, Yang H. Levels and distribution of trace metals in surface sediments from Kongsfjorden, Svalbard, Norwegian Arctic. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2013; 35:257-269. [PMID: 22965895 DOI: 10.1007/s10653-012-9481-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Accepted: 08/30/2012] [Indexed: 05/28/2023]
Abstract
Trace metal contents (Cd, Co, Cr, Cu, Hg, Mn, Ni, Pb and Zn) have been measured in 27 surface sediment samples collected from Kongsfjorden, Svalbard, Norwegian Arctic. The analyses yielded concentration values (in mg kg(-1)) of 0.13-0.63 for Cd, 11.89-21.90 for Co, 48.65-81.84 for Cr, 21.26-36.60 for Cu, 299.59-683.48 for Mn, 22.43-35.39 for Ni, 10.68-36.59 for Pb, 50.28-199.07 for Zn and 8.09-65.34 for Hg (in ng g(-1)), respectively. Relative cumulative frequency method has been used to define the baseline values of these metals, which (in mg kg(-1)) were 0.14 for Cd, 13.56 for Co, 57.86 for Cr, 25.14 for Cu, 364.08 for Mn, 26.22 for Ni, 17.46 for Pb, 70.49 for Zn and 9.76 for Hg (in ng g(-1)), respectively. The enrichment factor analysis indicated that Hg showed some extent of anthropogenic pollution, while Pb, Zn and Cd showed limited anthropogenic contamination in the study areas.
Collapse
Affiliation(s)
- Zhibo Lu
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | | | | | | | | |
Collapse
|
14
|
Matyar F. Antibiotic and heavy metal resistance in bacteria isolated from the Eastern Mediterranean Sea coast. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 89:551-6. [PMID: 22772881 DOI: 10.1007/s00128-012-0726-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/29/2012] [Indexed: 05/24/2023]
Abstract
In this study it aimed to determine the microbial diversity, level of antibiotic resistance patterns and distribution of heavy metal resistance of bacterial isolates from the Eastern Mediterranean Sea coast. The resistance of 255 gram-negative bacterial isolates to 16 different antibiotics and to 5 heavy metals was investigated. The most common strains isolated from all samples were Citrobacter koseri (9.0%), Escherichia coli (8.2%) and Pantoea agglomerans (8.2%). Our results revealed a high incidence of resistance to ampicillin (74.0%), streptomycin (70.0%) and cefazolin (48.3%). The multiple antibiotic resistance (MAR) index ranged from 0.2 to 0.75. Isolates showed tolerances to different concentrations of heavy metals. Our results show that the Eastern Mediterranean Sea coast has a significant proportion of antibiotic and heavy metal resistant pathogens, or opportunist gram-negative bacteria, and these bacteria may result in a potential public health hazard.
Collapse
Affiliation(s)
- Fatih Matyar
- Department of Science and Technology Education, Faculty of Education, Cukurova University, Saricam, 01330, Adana, Turkey.
| |
Collapse
|
15
|
Hölzel CS, Müller C, Harms KS, Mikolajewski S, Schäfer S, Schwaiger K, Bauer J. Heavy metals in liquid pig manure in light of bacterial antimicrobial resistance. ENVIRONMENTAL RESEARCH 2012; 113:21-27. [PMID: 22280821 DOI: 10.1016/j.envres.2012.01.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 12/30/2011] [Accepted: 01/04/2012] [Indexed: 05/31/2023]
Abstract
Heavy metals are regularly found in liquid pig manure, and might interact with bacterial antimicrobial resistance. Concentrations of heavy metals were determined by atomic spectroscopic methods in 305 pig manure samples and were connected to the phenotypic resistance of Escherichia coli (n=613) against 29 antimicrobial drugs. Concentrations of heavy metals (/kg dry matter) were 0.08-5.30 mg cadmium, 1.1-32.0 mg chrome, 22.4-3387.6 mg copper, <2.0-26.7 mg lead, <0.01-0.11 mg mercury, 3.1-97.3 mg nickel and 93.0-8239.0 mg zinc. Associated with the detection of copper and zinc, resistance rates against β-lactams were significantly elevated. By contrast, the presence of mercury was significantly associated with low antimicrobial resistance rates of Escherichia coli against β-lactams, aminoglycosides and other antibiotics. Effects of subinhibitory concentrations of mercury on bacterial resistance against penicillins, cephalosporins, aminoglycosides and doxycycline were also demonstrated in a laboratory trial. Antimicrobial resistance in the porcine microflora might be increased by copper and zinc. By contrast, the occurrence of mercury in the environment might, due to co-toxicity, act counter-selective against antimicrobial resistant strains.
Collapse
Affiliation(s)
- Christina S Hölzel
- Chair of Animal Hygiene, Technische Universität München, Weihenstephaner Berg 3, 85354 Freising, Germany.
| | | | | | | | | | | | | |
Collapse
|
16
|
Kalhoefer D, Thole S, Voget S, Lehmann R, Liesegang H, Wollher A, Daniel R, Simon M, Brinkhoff T. Comparative genome analysis and genome-guided physiological analysis of Roseobacter litoralis. BMC Genomics 2011; 12:324. [PMID: 21693016 PMCID: PMC3141670 DOI: 10.1186/1471-2164-12-324] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 06/21/2011] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Roseobacter litoralis OCh149, the type species of the genus, and Roseobacter denitrificans OCh114 were the first described organisms of the Roseobacter clade, an ecologically important group of marine bacteria. Both species were isolated from seaweed and are able to perform aerobic anoxygenic photosynthesis. RESULTS The genome of R. litoralis OCh149 contains one circular chromosome of 4,505,211 bp and three plasmids of 93,578 bp (pRLO149_94), 83,129 bp (pRLO149_83) and 63,532 bp (pRLO149_63). Of the 4537 genes predicted for R. litoralis, 1122 (24.7%) are not present in the genome of R. denitrificans. Many of the unique genes of R. litoralis are located in genomic islands and on plasmids. On pRLO149_83 several potential heavy metal resistance genes are encoded which are not present in the genome of R. denitrificans. The comparison of the heavy metal tolerance of the two organisms showed an increased zinc tolerance of R. litoralis. In contrast to R. denitrificans, the photosynthesis genes of R. litoralis are plasmid encoded. The activity of the photosynthetic apparatus was confirmed by respiration rate measurements, indicating a growth-phase dependent response to light. Comparative genomics with other members of the Roseobacter clade revealed several genomic regions that were only conserved in the two Roseobacter species. One of those regions encodes a variety of genes that might play a role in host association of the organisms. The catabolism of different carbon and nitrogen sources was predicted from the genome and combined with experimental data. In several cases, e.g. the degradation of some algal osmolytes and sugars, the genome-derived predictions of the metabolic pathways in R. litoralis differed from the phenotype. CONCLUSIONS The genomic differences between the two Roseobacter species are mainly due to lateral gene transfer and genomic rearrangements. Plasmid pRLO149_83 contains predominantly recently acquired genetic material whereas pRLO149_94 was probably translocated from the chromosome. Plasmid pRLO149_63 and one plasmid of R. denitrifcans (pTB2) seem to have a common ancestor and are important for cell envelope biosynthesis. Several new mechanisms of substrate degradation were indicated from the combination of experimental and genomic data. The photosynthetic activity of R. litoralis is probably regulated by nutrient availability.
Collapse
Affiliation(s)
- Daniela Kalhoefer
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Sebastian Thole
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Sonja Voget
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Rüdiger Lehmann
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Heiko Liesegang
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Antje Wollher
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Rolf Daniel
- Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August University of Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| | - Thorsten Brinkhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, 26129 Oldenburg, Germany
| |
Collapse
|