1
|
Ott BD, Chisolm DO, Pfeiffer TJ. Postprandial oxygen consumption, ammonia excretion and carbon dioxide production of channel and blue catfish. JOURNAL OF FISH BIOLOGY 2025. [PMID: 40254797 DOI: 10.1111/jfb.70065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/24/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025]
Abstract
Fishes undergo dramatic physiological changes upon consumption of a meal, including an increase in oxygen consumption to support the metabolic cost of digestion [specific dynamic action (SDA)] and an increase in the excretion of ammonia. Channel catfish (Ictalurus punctatus) and blue catfish (I. furcatus) are two species commonly used for commercial aquaculture production in the United States. Postprandial ammonia excretion and oxygen consumption of both channel and blue catfish were measured at 25 and 32°C. Rates of both ammonia excretion and oxygen consumption increased quickly after feeding and were significantly higher within 2 h postfeeding. Ammonia excretion of channel catfish peaked 6 h postfeeding at both 25 and 32°C, with peak ammonia excretion rates increasing 8.3- and 4.7-fold higher than fasting rates at 25 and 32°C, respectively. Ammonia excretion of blue catfish at 25°C peaked 6.6-fold higher than fasting rates at 12 h postfeeding and 5.5-fold higher than fasting rates 6 h postfeeding at 32°C. Relative to fasting levels, postprandial oxygen consumption of channel catfish peaked 1.8- and 2.0-fold higher at 25 and 32°C, respectively. Blue catfish oxygen consumption peaked 1.9- and 1.8-fold higher at 25 and 32°C, respectively. Both channel and blue catfish rapidly increase ammonia excretion and oxygen consumption in response to feeding, with temperature mostly affecting changes in peak and minimum rates.
Collapse
Affiliation(s)
- Brian D Ott
- USDA Agricultural Research Service, Warmwater Aquaculture Research Unit, Stoneville, Mississippi, USA
| | - Dakoda O Chisolm
- USDA Agricultural Research Service, Warmwater Aquaculture Research Unit, Stoneville, Mississippi, USA
| | - Timothy J Pfeiffer
- USDA Agricultural Research Service, Warmwater Aquaculture Research Unit, Stoneville, Mississippi, USA
| |
Collapse
|
2
|
Songin K, Saborido-Rey F, Pierce GJ. Bottom Temperature Effect on Growth of Multiple Demersal Fish Species in Flemish Cap, Northwest Atlantic. Animals (Basel) 2025; 15:1120. [PMID: 40281953 PMCID: PMC12023976 DOI: 10.3390/ani15081120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
This study investigates the effects of warming water on growth in seven demersal fish species including Atlantic cod (Gadus morhua), American plaice (Hippoglossoides platessoides), Greenland halibut (Reinhardtius hippoglossoides), roughhead grenadier (Macrourus berglax) and three species of redfish (Sebastes spp.) in the Northwest Atlantic and compares the changes in growth across species. Length-at-age data were collected from EU bottom trawl surveys from 1993 to 2018, and bottom temperature data were obtained from the Copernicus Marine Service. Generalised additive mixed models (GAMMs) were used to describe the temperature effects on growth. The analysis was carried out separately for males and females. Both sexes of all species except American plaice showed significant temperature effects on growth. To obtain the growth parameters, von Bertalanffy growth functions (VBGFs) were fitted to the predictions from best-fit GAMMs for all species and both sexes under five different bottom temperature scenarios (3, 3.5, 4, 4.5 and 5 °C). The predictions from all best-fit GAMMs were broadly similar in form to the fitted von Bertalanffy growth functions (R2 > 90%). Increased bottom temperature generally resulted in a decrease in the asymptotic length (L∞) and an increase in the growth rate (k). The species with the most dramatic increase in k over the temperature range of 3 °C to 5 °C was Atlantic cod, for which k increased from 0.05 to 0.13 year-1 in females and from 0.08 to 0.14 year-1 in males. The maximum length (Lmax), predicted by the VBGF at maximum age generally declined from 3 °C to 5 °C. The species with the most pronounced decline in Lmax was beaked redfish (S. mentella). An increase in the proportion of smaller individuals could impact population productivity and result in lower biomass available to fisheries. Uneven changes in fish growth in the warming ocean could also have wider ecological implications and alter the trophic landscape.
Collapse
Affiliation(s)
- Krerkkrai Songin
- Instituto de Investigaciones Marinas (IIM), Consejo Superior de Investigaciones Científicas (CSIC), 36208 Vigo, Spain; (F.S.-R.); (G.J.P.)
| | | | | |
Collapse
|
3
|
Bihun CJ, Stewart EMC, Lechner ER, Brownscombe JW, Raby GD. Thermal performance curves for aerobic scope and specific dynamic action in a sexually dimorphic piscivore: implications for a warming climate. J Exp Biol 2024; 227:jeb247207. [PMID: 38881304 DOI: 10.1242/jeb.247207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Digestion can make up a substantial proportion of animal energy budgets, yet our understanding of how it varies with sex, body mass and ration size is limited. A warming climate may have consequences for animal growth and feeding dynamics that will differentially impact individuals in their ability to efficiently acquire and assimilate meals. Many species, such as walleye (Sander vitreus), exhibit sexual size dimorphism (SSD), whereby one sex is larger than the other, suggesting sex differences in energy acquisition and/or expenditure. Here, we present the first thorough estimates of specific dynamic action (SDA) in adult walleye using intermittent-flow respirometry. We fed male (n=14) and female (n=9) walleye two ration sizes, 2% and 4% of individual body mass, over a range of temperatures from 2 to 20°C. SDA was shorter in duration and reached higher peak rates of oxygen consumption with increasing temperature. Peak SDA increased with ration size and decreased with body mass. The proportion of digestible energy lost to SDA (i.e. the SDA coefficient) was consistent at 6% and was unrelated to temperature, body mass, sex or ration size. Our findings suggest that sex has a negligible role in shaping SDA, nor is SDA a contributor to SSD for this species. Standard and maximum metabolic rates were similar between sexes but maximum metabolic rate decreased drastically with body mass. Large fish, which are important for population growth because of reproductive hyperallometry, may therefore face a bioenergetic disadvantage and struggle most to perform optimally in future, warmer waters.
Collapse
Affiliation(s)
- Christian J Bihun
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada, K9L 0G2
| | - Erin M C Stewart
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada, K9L 0G2
| | - Emily R Lechner
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada, K9L 0G2
| | - Jacob W Brownscombe
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, ON, Canada, L7S 1A1
| | - Graham D Raby
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada, K9L 0G2
- Department of Biology, Trent University, Peterborough, ON, Canada, K9L 0G2
| |
Collapse
|
4
|
Nickel AK, Campana SE, Ólafsdóttir GÁ. Temperature and body size affect movement of juvenile Atlantic cod (Gadus morhua) and saithe (Pollachius virens) at nearshore nurseries. JOURNAL OF FISH BIOLOGY 2024. [PMID: 38924061 DOI: 10.1111/jfb.15850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
Seasonal migrations of marine fish between shallow summer feeding habitats and deep overwintering grounds are driven by fluctuations in the biotic and abiotic environment as well as by changes in the internal state. Ontogenetic shifts in physiology and metabolism affect the response to environmental drivers and may lead to changes in migration timing and propensity. In this study, we investigated the effect of temperature and body size on migration timing and depth distribution in acoustically tagged Atlantic cod, Gadus morhua, and saithe, Pollachius virens, during the period of seasonal migration from shallow summer habitats. The results from our study revealed a wide range of horizontal and vertical distribution of age 1 and 2 G. morhua within the fjord. Larger G. morhua inhabited deeper, cooler waters than smaller juveniles, likely reflecting size-dependent thermal preferences and predation pressure. Conversely, juvenile P. virens occupied primarily shallow waters close to land. The variation in depth distribution of G. morhua was mainly explained by body size and not, against our predictions, by water temperature. Conversely, the dispersal from the in-fjord habitats occurred when water temperatures were high, suggesting that seasonal temperature fluctuations can trigger the migration timing of P. virens and larger G. morhua from summer habitats. Partial migration of small juvenile G. morhua from in-fjord foraging grounds, likely influenced by individual body condition, suggested seasonal migration as a flexible strategy that individuals may use to reduce predation and energetic expenditure. Predation mortality rates of tagged juveniles were higher than previously suggested and are the first robust predation mortality rates for juvenile G. morhua and P. virens estimated based on acoustic transmitters with acidity sensors. The results have relevance for climate-informed marine spatial planning as under the scenario of increasing ocean temperatures, increasing summer temperatures may reduce the juveniles' resource utilization in the shallow summer nurseries, resulting in lower growth rates, increased predation pressure, and lower chances of juvenile winter survival.
Collapse
Affiliation(s)
- Anja K Nickel
- University of Iceland, Research Centre of the Westfjords, Bolungarvík, Iceland
| | - Steven E Campana
- University of Iceland, Faculty of Life and Environmental Sciences, Reykjavík, Iceland
| | | |
Collapse
|
5
|
Goodrich HR, Wood CM, Wilson RW, Clark TD, Last KB, Wang T. Specific dynamic action: the energy cost of digestion or growth? J Exp Biol 2024; 227:jeb246722. [PMID: 38533751 DOI: 10.1242/jeb.246722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
The physiological processes underlying the post-prandial rise in metabolic rate, most commonly known as the 'specific dynamic action' (SDA), remain debated and controversial. This Commentary examines the SDA response from two opposing hypotheses: (i) the classic interpretation, where the SDA represents the energy cost of digestion, versus (ii) the alternative view that much of the SDA represents the energy cost of growth. The traditional viewpoint implies that individuals with a reduced SDA should grow faster given the same caloric intake, but experimental evidence for this effect remains scarce and inconclusive. Alternatively, we suggest that the SDA reflects an organism's efficacy in allocating the ingested food to growth, emphasising the role of post-absorptive processes, particularly protein synthesis. Although both viewpoints recognise the trade-offs in energy allocation and the dynamic nature of energy distribution among physiological processes, we argue that equating the SDA with 'the energy cost of digestion' oversimplifies the complexities of energy use in relation to the SDA and growth. In many instances, a reduced SDA may reflect diminished nutrient absorption (e.g. due to lower digestive efficiency) rather than increased 'free' energy available for somatic growth. Considering these perspectives, we summarise evidence both for and against the opposing hypotheses with a focus on ectothermic vertebrates. We conclude by presenting a number of future directions for experiments that may clarify what the SDA is, and what it is not.
Collapse
Affiliation(s)
- Harriet R Goodrich
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS 7001, Australia
| | - Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T1Z4
| | - Rod W Wilson
- Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Timothy D Clark
- School of Life and Environmental Sciences, Deakin University, Geelong, VIC 3216, Australia
| | - Katja B Last
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Tobias Wang
- Zoophysiology, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
6
|
Queiros Q, McKenzie DJ, Dutto G, Killen S, Saraux C, Schull Q. Fish shrinking, energy balance and climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167310. [PMID: 37742954 DOI: 10.1016/j.scitotenv.2023.167310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
A decline in size is increasingly recognised as a major response by ectothermic species to global warming. Mechanisms underlying this phenomenon are poorly understood but could include changes in energy balance of consumers, driven by declines in prey size coupled with increased energy demands due to warming. The sardine Sardina pilchardus is a prime example of animal shrinking, European populations of this planktivorous fish are undergoing profound decreases in body condition and adult size. This is apparently a bottom-up effect coincident with a shift towards increased reliance on smaller planktonic prey. We investigated the hypothesis that foraging on smaller prey would lead to increased rates of energy expenditure by sardines, and that such expenditures would be exacerbated by warming temperature. Using group respirometry we measured rates of energy expenditure indirectly, as oxygen uptake, by captive adult sardines offered food of two different sizes (0.2 or 1.2 mm items) when acclimated to two temperatures (16 °C or 21 °C). Energy expenditure during feeding on small items was tripled at 16 °C and doubled at 21 °C compared to large items, linked to a change in foraging mode between filter feeding on small or direct capture of large. This caused daily energy expenditure to increase by ~10 % at 16 °C and ~40 % at 21 °C on small items, compared to large items at 16 °C. These results support that declines in prey size coupled with warming could influence energy allocation towards life-history traits in wild populations. This bottom-up effect could partially explain the shrinking and declining condition of many small pelagic fish populations and may be contributing to the shrinking of other fish species throughout the marine food web. Understanding how declines in prey size can couple with warming to affect consumers is a crucial element of projecting the consequences for marine fauna of ongoing anthropogenic global change.
Collapse
Affiliation(s)
- Quentin Queiros
- MARBEC, Univ Montpellier, IFREMER, CNRS, IRD, Montpellier, Sète, Palavas-les-Flots, France; DECOD (Ecosystem Dynamics and Sustainability), INRAE, Institut Agro, IFREMER, Rennes, France.
| | - David J McKenzie
- MARBEC, Univ Montpellier, IFREMER, CNRS, IRD, Montpellier, Sète, Palavas-les-Flots, France
| | - Gilbert Dutto
- MARBEC, Univ Montpellier, IFREMER, CNRS, IRD, Montpellier, Sète, Palavas-les-Flots, France
| | - Shaun Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Graham Kerr Building, Glasgow G12 8QQ, UK
| | - Claire Saraux
- IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg, France
| | - Quentin Schull
- MARBEC, Univ Montpellier, IFREMER, CNRS, IRD, Montpellier, Sète, Palavas-les-Flots, France
| |
Collapse
|
7
|
Wood CM, Wang J, Jung EH, Pelster B. The physiological consequences of a very large natural meal in a voracious marine fish, the staghorn sculpin (Leptocottus armatus). J Exp Biol 2023; 226:jeb246034. [PMID: 37675481 DOI: 10.1242/jeb.246034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Little information exists on physiological consequences when wild fish eat natural food. Staghorn sculpins at 10-13°C voluntarily consumed 15.8% of their body mass in anchovies. Gastric clearance was slow with >60% of the meal retained in the stomach at 48 h, and was not complete until 84 h. At 14-24 h post-feeding, pH was depressed by 3 units and Cl- concentration was elevated 2-fold in gastric chyme, reflecting HCl secretion, while in all sections of the intestine, pH declined by 1 pH unit but Cl- concentration remained unchanged. PCO2 and total ammonia concentration were greatly elevated throughout the tract, whereas PNH3 and HCO3- concentration were depressed. Intestinal HCO3- secretion rates, measured in gut sacs in vitro, were also lower in fed fish. Whole-animal O2 consumption rate was elevated approximately 2-fold for 72 h post-feeding, reflecting 'specific dynamic action', whereas ammonia and urea-N excretion rates were elevated about 5-fold. Arterial blood exhibited a modest 'alkaline tide' for about 48 h, but there was negligible excretion of metabolic base to the external seawater. PaCO2 and PaO2 remained unchanged. Plasma total amino acid concentration and total lipid concentration were elevated about 1.5-fold for at least 48 h, whereas small increases in plasma total ammonia concentration, PNH3 and urea-N concentration were quickly attenuated. Plasma glucose concentration remained unchanged. We conclude that despite the very large meal, slow processing with high efficiency minimizes internal physiological disturbances. This differs greatly from the picture provided by previous studies on aquacultured species using synthetic diets and/or force-feeding. Questions remain about the role of the gastro-intestinal microbiome in nitrogen and acid-base metabolism.
Collapse
Affiliation(s)
- Chris M Wood
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- Department of Biology, McMaster University, Hamilton, ON, Canada, L8S 4K1
| | - Jun Wang
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Ellen H Jung
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z4
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
| | - Bernd Pelster
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada, V0R 1B0
- Institute of Zoology, University of Innsbruck, 6020 Innsbruck, Austria
- Center for Molecular Biosciences, University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
8
|
Segler P, Vanselow KH, Schlachter M, Hasler M, Kaiser F, Schulz C. Dietary carbohydrates induce a higher SDA than lipids in rainbow trout (Oncorhynchus mykiss) based on environmental temperature. Comp Biochem Physiol B Biochem Mol Biol 2023; 267:110861. [PMID: 37121392 DOI: 10.1016/j.cbpb.2023.110861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
As global temperatures increase so do the needs to investigate how the energy metabolism of fish responds to a broad range of thermal condition. Limited resources make it additionally important to use them sustainably in the feeds for aquaculture. Here we investigated the use of three different carbohydrate to lipid ratios (1:1; 1: 0.6; 1.4: 1 as non-protein energy substrates (NPES) in diets for rainbow trout (Oncorhynchus mykiss) under five different thermal regimes (12; 14; 16; 18; 20 °C) in a bioenergetic approach using a group respirometer. The results showed that the diet with carbohydrate as the main NPES resulted in a quadratic relationship of the specific dynamic action (SDA) values to temperature while diets with lipid as main NPES or a balanced ratio did not show such a response. SDA values in the diet with carbohydrate as the main NPES were significantly higher at temperatures around the optimum (15-17 °C) than the diets with lipid as the main NPES or with a balanced carbohydrate to lipid ratio. The retained energy (RE) was highly dependent on the standard metabolic rate (SMR) and SDA values did not carry over onto them. The protein utilization for energy combustion was significantly lower at 12 °C in the diet with carbohydrate as the main NPES than in the diet with lipid as the main NPES thus indicating that carbohydrates hold a relevant nutritional value especially at lower temperatures.
Collapse
Affiliation(s)
- Philipp Segler
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Aquaculture und Aquatic Resources, Hafentörn 3, 25761 Büsum, Germany; Institute of Animal Breeding and Husbandry, Marine Aquaculture, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany.
| | - Klaus Heinrich Vanselow
- Forschungs- und Technologiezentrum Westküste, Christian-Albrechts-Universität zu Kiel, Hafentörn 1, 25761 Büsum, Germany
| | - Michael Schlachter
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Aquaculture und Aquatic Resources, Hafentörn 3, 25761 Büsum, Germany
| | - Mario Hasler
- Institute of Animal Breeding and Husbandry, Marine Aquaculture, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Frederik Kaiser
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Aquaculture und Aquatic Resources, Hafentörn 3, 25761 Büsum, Germany; Institute of Animal Breeding and Husbandry, Marine Aquaculture, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Carsten Schulz
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Aquaculture und Aquatic Resources, Hafentörn 3, 25761 Büsum, Germany; Institute of Animal Breeding and Husbandry, Marine Aquaculture, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| |
Collapse
|
9
|
Segler P, Vanselow KH, Schlachter M, Hasler M, Schulz C. SDA coefficient is temperature dependent in rainbow trout (Oncorhynchus mykiss, Walbaum 1792) in a practical approach using group respirometry. Comp Biochem Physiol B Biochem Mol Biol 2023; 265:110832. [PMID: 36706829 DOI: 10.1016/j.cbpb.2023.110832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/21/2022] [Accepted: 01/22/2023] [Indexed: 01/26/2023]
Abstract
Rising global temperatures have raised the need for detailed knowledge of the effects of rising temperatures on the physiology of animals used in aquaculture. Here we used a multifactorial bioenergetic approach using groups of rainbow trout (Oncorhynchus mykiss) with an average single fish weight of 183.75 g ± 0.65 g to investigate the interactions of feeding and temperature with key metabolic variables. We used a recirculating aquaculture respirometry system (RARS) to test three ration sizes (0.65; 0.975; 1.3% of live body weight (BW)) over a range of three consecutive temperatures (14; 17; 20 °C). The fish were fed once per day for 6 days at each temperature and subsequently starved for 5 days to return to standard metabolic rate (SMR). This study aimed to answer the highly discussed topic of the temperature dependency of key metabolic specific dynamic action (SDA)-variables SDAcoef and SDAdur. We were able to provide evidence, that in rainbow trout the SDAcoef is highly dependent on the environmental temperature in the first ever approach to assess these variables in a group respirometer with this species. We compared the results of this study with a sophisticated bioenergetic model by Elliot and Hurley (2002) and thereby provide evidence for the practicability of group respirometry as a method to assess bioenergetic data under culture like conditions.
Collapse
Affiliation(s)
- Philipp Segler
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Aquaculture und Aquatic Resources, Hafentörn 3, 25761 Büsum, Germany.
| | - Klaus Heinrich Vanselow
- Forschungs- und Technologiezentrum Westküste, Christian-Albrechts-Universität zu Kiel, Hafentörn 1, 25761 Büsum, Germany
| | - Michael Schlachter
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Aquaculture und Aquatic Resources, Hafentörn 3, 25761 Büsum, Germany
| | - Mario Hasler
- Institute of Animal Breeding and Husbandry, Marine Aquaculture, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| | - Carsten Schulz
- Fraunhofer Research Institution for Individualized and Cell-Based Medical Engineering, Aquaculture und Aquatic Resources, Hafentörn 3, 25761 Büsum, Germany; Institute of Animal Breeding and Husbandry, Marine Aquaculture, Christian-Albrechts-Universität zu Kiel, Olshausenstraße 40, 24098 Kiel, Germany
| |
Collapse
|
10
|
Fish feeds supplemented with calcium-based buffering minerals decrease stomach acidity, increase the blood alkaline tide and cost more to digest. Sci Rep 2022; 12:18468. [PMID: 36323724 PMCID: PMC9630376 DOI: 10.1038/s41598-022-22496-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Predatory fish in the wild consume whole prey including hard skeletal parts like shell and bone. Shell and bone are made up of the buffering minerals calcium carbonate (CaCO3) and calcium phosphate (Ca3(PO4)2). These minerals resist changes in pH, meaning they could have physiological consequences for gastric acidity, digestion and metabolism in fish. Using isocaloric diets supplemented with either CaCO3, Ca3(PO4)2 or CaCl2 as non-buffering control, we investigated the impacts of dietary buffering on the energetic cost of digestion (i.e. specific dynamic action or SDA), gastric pH, the postprandial blood alkalosis (the "alkaline tide") and growth in juvenile rainbow trout (Oncorhynchus mykiss). Increases in dietary buffering were significantly associated with increased stomach chyme pH, postprandial blood HCO3-, net base excretion, the total SDA and peak SDA but did not influence growth efficiency in a 21 day trial. This result shows that aspects of a meal that have no nutritional value can influence the physiological and energetic costs associated with digestion in fish, but that a reduction in the SDA will not always lead to improvements in growth efficiency. We discuss the broader implications of these findings for the gastrointestinal physiology of fishes, trade-offs in prey choice in the wild, anthropogenic warming and feed formulation in aquaculture.
Collapse
|
11
|
Lo VK, Martin BT, Danner EM, Cocherell DE, Cech, Jr JJ, Fangue NA. The effect of temperature on specific dynamic action of juvenile fall-run Chinook salmon, Oncorhynchus tshawytscha. CONSERVATION PHYSIOLOGY 2022; 10:coac067. [PMID: 36325131 PMCID: PMC9616469 DOI: 10.1093/conphys/coac067] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 09/08/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento-San Joaquin River Basin experience temporally and spatially heterogenous temperature regimes, between cool upper tributaries and the warm channelized Delta, during freshwater rearing and outmigration. Limited water resources necessitate human management of dam releases, allowing temperature modifications. The objective of this study was to examine the effect of temperature on specific dynamic action (SDA), or the metabolic cost associated with feeding and digestion, which is thought to represent a substantial portion of fish energy budgets. Measuring SDA with respect to absolute aerobic scope (AAS), estimated by the difference between maximum metabolic rate (MMR) and standard metabolic rate (SMR), provides a snapshot of its respective energy allocation. Fish were acclimated to 16°C, raised or lowered to each acute temperature (13°C, 16°C, 19°C, 22°C or 24°C), then fed a meal of commercial pellets weighing 2% of their wet mass. We detected a significant positive effect of temperature on SMR and MMR, but not on AAS. As expected, there was no significant effect of temperature on the total O2 cost of digestion, but unlike other studies, we did not see a significant difference in duration, peak metabolic rate standardized to SMR, time to peak, percent of meal energy utilized, nor the ratio of peak O2 consumption to SMR. Peak O2 consumption represented 10.4-14.5% of AAS leaving a large amount of aerobic capacity available for other activities, and meal energy utilized for digestion ranged from 5.7% to 7.2%, leaving substantial remaining energy to potentially assimilate for growth. Our juvenile fall-run Chinook salmon exhibited thermal stability in their SDA response, which may play a role in maintaining homeostasis of digestive capability in a highly heterogeneous thermal environment where rapid growth is important for successful competition with conspecifics and for avoiding predation.
Collapse
Affiliation(s)
- Vanessa K Lo
- Corresponding author: Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, CA 95616, USA.
| | - Benjamin T Martin
- Department of Theoretical and Computational Ecology, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Eric M Danner
- NOAA Southwest Fisheries Science Center, Santa Cruz, 95060 CA, USA
| | - Dennis E Cocherell
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, 95616 CA, USA
| | - Joseph J Cech, Jr
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, 95616 CA, USA
| | - Nann A Fangue
- Department of Wildlife, Fish and Conservation Biology, University of California Davis, Davis, 95616 CA, USA
| |
Collapse
|
12
|
Moffatt K, Rossi M, Park E, Svendsen JC, Wilson JM. Inhibition of gastric acid secretion with omeprazole affects fish specific dynamic action and growth rate: Implications for the development of phenotypic stomach loss. Front Physiol 2022; 13:966447. [PMID: 36237533 PMCID: PMC9552000 DOI: 10.3389/fphys.2022.966447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
An acid-secreting stomach provides many selective advantages to fish and other vertebrates; however, phenotypic stomach loss has occurred independently multiple times and is linked to loss of expression of both the gastric proton pump and the protease pepsin. Reasons underpinning stomach loss remain uncertain. Understanding the importance of gastric acid-secretion to the metabolic costs of digestion and growth will provide information about the metabolic expense of acid-production and performance. In this study, omeprazole, a well characterized gastric proton pump inhibitor, was used to simulate the agastric phenotype by significantly inhibiting gastric acidification in Nile tilapia. The effects on post-prandial metabolic rate and growth were assessed using intermittent flow respirometry and growth trials, respectively. Omeprazole reduced the duration (34.4%) and magnitude (34.5%) of the specific dynamic action and specific growth rate (21.3%) suggesting a decrease in digestion and assimilation of the meal. Gastric pH was measured in control and omeprazole treated fish to confirm that gastric acid secretion was inhibited for up to 12 h post-treatment (p < 0.05). Gastric evacuation measurements confirm a more rapid emptying of the stomach in omeprazole treated fish. These findings reinforce the importance of stomach acidification in digestion and growth and present a novel way of determining costs of gastric digestion.
Collapse
Affiliation(s)
| | - Mark Rossi
- Wilfrid Laurier University, Waterloo, Canada
| | - Edward Park
- Wilfrid Laurier University, Waterloo, Canada
| | - Jon Christian Svendsen
- Technical University of Denmark, National Institute of Aquatic Resources, Lyngby, Denmark
| | - Jonathan M. Wilson
- Wilfrid Laurier University, Waterloo, Canada
- CIIMAR University of Porto, Matosinhos, Portugal
- *Correspondence: Jonathan M. Wilson,
| |
Collapse
|
13
|
Stavrakidis-Zachou O, Lika K, Pavlidis M, Asaad MH, Papandroulakis N. Metabolic scope, performance and tolerance of juvenile European sea bass Dicentrarchus labrax upon acclimation to high temperatures. PLoS One 2022; 17:e0272510. [PMID: 35960751 PMCID: PMC9374223 DOI: 10.1371/journal.pone.0272510] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 07/20/2022] [Indexed: 11/19/2022] Open
Abstract
European sea bass is a species of great commercial value for fisheries and aquaculture. Rising temperatures may jeopardize the performance and survival of the species across its distribution and farming range, making the investigation of its thermal responses highly relevant. In this article, the metabolic scope, performance, and tolerance of juvenile E. sea bass reared under three high water temperatures (24, 28, 33°C), for a period of three months was evaluated via analysis of selected growth performance and physiological indicators. Effects on molecular, hormonal, and biochemical variables were analyzed along with effects of acclimation temperature on the metabolic rate and Critical Thermal maximum (CTmax). Despite signs of thermal stress at 28°C indicated by high plasma cortisol and lactate levels as well as the upregulation of genes coding for Heat Shock Proteins (HSP), E. sea bass can maintain high performance at that temperature which is encouraging for the species culture in the context of a warming ocean. Critical survivability thresholds appear sharply close to 33°C, where the aerobic capacity declines and the overall performance diminishes. European sea bass demonstrates appreciable capacity to cope with acute thermal stress exhibiting CTmax as high as 40°C for fish acclimated at high temperatures, which may indicate resilience to future heatwaves events.
Collapse
Affiliation(s)
- Orestis Stavrakidis-Zachou
- Department of Biology, University of Crete, Heraklion, Crete, Greece
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
- * E-mail:
| | - Konstadia Lika
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Michail Pavlidis
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Mohamed H. Asaad
- Beacon Development, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Nikos Papandroulakis
- Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
| |
Collapse
|
14
|
Yang S, Zhang C, Xu W, Li D, Feng Y, Wu J, Luo W, Du X, Du Z, Huang X. Heat Stress Decreases Intestinal Physiological Function and Facilitates the Proliferation of Harmful Intestinal Microbiota in Sturgeons. Front Microbiol 2022; 13:755369. [PMID: 35356512 PMCID: PMC8959899 DOI: 10.3389/fmicb.2022.755369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Heat is a common source of stress in aquatic environments and can alter the physiological and metabolic functions of aquatic animals, especially their intestinal function. Here, the effects of heat stress on the structure and function of the intestine and the characteristics of the intestinal microbiota were studied in sturgeon (Acipenser baerii ♀ × Acipenser schrenckii ♂ hybrid F1). Sturgeons were exposed to sub-extreme (24°C) and extreme (28°C) high water temperatures for 12 days. The heat stress caused systemic damage to the intestine of sturgeons, which displayed severe enteritis in the valve intestine. The microbial diversity analysis showed that heat stress led to the disorder in intestinal microbiota, manifesting as an explosive increase in the abundance of thermophilic intestinal pathogens such as Plesiomonas, Cetobacterium, and Aeromonas and causing physiological dysfunction in the sturgeons. The disorder was followed by significant inhibition of intestinal digestion with reduced chymotrypsin, α-amylase, and lipase activities in the valve intestine and of antioxidant function with reduced peroxidase (POD) and catalase (CAT) activities. Simultaneously, heat stress reduced the thermal tolerance of sturgeons by reducing Grp75 expression and damaged the valve intestine’s repair ability with increased Tgf-β expression. The results confirmed that heat stress damaged the sturgeon intestines obviously and disturbed the intestinal microbiota, resulting in serious physiological dysfunction. The present study investigated the mechanism of the effect of heat stress on the sturgeon intestine and will help develop strategies to improve the resistance to thermal stress for wild and cultured sturgeons.
Collapse
Affiliation(s)
- Shiyong Yang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, China
| | - Chaoyang Zhang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, China
| | - Wenqiang Xu
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, China
| | - Datian Li
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, China
| | - Yang Feng
- Basic Veterinary Science, Sichuan Agricultural University, Chengdu, China
| | - Jiayun Wu
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Wei Luo
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, China
| | - Xiaogang Du
- College of Life Sciences, Sichuan Agricultural University, Ya'an, China
| | - Zongjun Du
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoli Huang
- Department of Aquaculture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Chabot D, Zhang Y, Farrell AP. Valid oxygen uptake measurements: using high r 2 values with good intentions can bias upward the determination of standard metabolic rate. JOURNAL OF FISH BIOLOGY 2021; 98:1206-1216. [PMID: 33332581 PMCID: PMC9291193 DOI: 10.1111/jfb.14650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/14/2020] [Indexed: 05/08/2023]
Abstract
This analysis shows good intentions in the selection of valid and precise oxygen uptake ( M ˙ O2 ) measurements by retaining only slopes of declining dissolved oxygen level in a respirometer that have very high values of the coefficient of determination, r2 , are not always successful at excluding nonlinear slopes. Much worse, by potentially removing linear slopes that have low r2 only because of a low signal-to-noise ratio, this procedure can overestimate the calculation of standard metabolic rate (SMR) of the fish. To remedy this possibility, a few simple diagnostic tools are demonstrated to assess the appropriateness of a given minimum acceptable r2 , such as calculating the proportion of rejected M ˙ O2 determinations, producing a histogram of the r2 values and a plot of r2 as a function of M ˙ O2 . The authors offer solutions for cases when many linear slopes have low r2 . The least satisfactory but easiest to implement is lowering the minimum acceptable r2 . More satisfactory solutions involve processing (smoothing) the raw signal of dissolved oxygen as a function of time to improve the signal-to-noise ratio and the r2 s.
Collapse
Affiliation(s)
- Denis Chabot
- Fisheries & Oceans CanadaInstitut Maurice‐LamontagneMont‐JoliQuebecCanada
| | - Yangfan Zhang
- Faculty of Land and Food Systems, & Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Anthony P. Farrell
- Faculty of Land and Food Systems, & Department of ZoologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| |
Collapse
|
16
|
Lefevre S, Wang T, McKenzie DJ. The role of mechanistic physiology in investigating impacts of global warming on fishes. J Exp Biol 2021; 224:224/Suppl_1/jeb238840. [PMID: 33627469 DOI: 10.1242/jeb.238840] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Warming of aquatic environments as a result of climate change is already having measurable impacts on fishes, manifested as changes in phenology, range shifts and reductions in body size. Understanding the physiological mechanisms underlying these seemingly universal patterns is crucial if we are to reliably predict the fate of fish populations with future warming. This includes an understanding of mechanisms for acute thermal tolerance, as extreme heatwaves may be a major driver of observed effects. The hypothesis of gill oxygen limitation (GOL) is claimed to explain asymptotic fish growth, and why some fish species are decreasing in size with warming; but its underlying assumptions conflict with established knowledge and direct mechanistic evidence is lacking. The hypothesis of oxygen- and capacity-limited thermal tolerance (OCLTT) has stimulated a wave of research into the role of oxygen supply capacity and thermal performance curves for aerobic scope, but results vary greatly between species, indicating that it is unlikely to be a universal mechanism. As thermal performance curves remain important for incorporating physiological tolerance into models, we discuss potentially fruitful alternatives to aerobic scope, notably specific dynamic action and growth rate. We consider the limitations of estimating acute thermal tolerance by a single rapid measure whose mechanism of action is not known. We emphasise the continued importance of experimental physiology, particularly in advancing our understanding of underlying mechanisms, but also the challenge of making this knowledge relevant to the more complex reality.
Collapse
Affiliation(s)
- Sjannie Lefevre
- Section for Physiology and Cell Biology, Department of Biosciences, University of Oslo, 0316 Oslo, Norway
| | - Tobias Wang
- Department of Biology - Zoophysiology, Aarhus University, 8000 Aarhus C, Denmark
| | - David J McKenzie
- Marine Biodiversity, Exploitation and Conservation (MARBEC), Université de Montpellier, CNRS, Ifremer, IRD, 34000 Montpellier, France
| |
Collapse
|
17
|
Chung M, Jørgensen KM, Trueman CN, Knutsen H, Jorde PE, Grønkjær P. First measurements of field metabolic rate in wild juvenile fishes show strong thermal sensitivity but variations between sympatric ecotypes. OIKOS 2020. [DOI: 10.1111/oik.07647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Ming‐Tsung Chung
- Dept of Biology, Aarhus Univ. Aarhus Denmark
- Atmosphere and Ocean Research Inst., The Univ. of Tokyo Tokyo Japan
| | | | | | - Halvor Knutsen
- Inst. of Marine Research, Flødevigen Norway
- Center for Coastal Research, Univ. of Agder Kristiansand Norway
| | | | | |
Collapse
|
18
|
Musa SM, Ripley DM, Moritz T, Shiels HA. Ocean warming and hypoxia affect embryonic growth, fitness and survival of small-spotted catsharks, Scyliorhinus canicula. JOURNAL OF FISH BIOLOGY 2020; 97:257-264. [PMID: 32383486 DOI: 10.1111/jfb.14370] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 04/26/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
Elasmobranchs are key to a healthy marine ecosystem but are under threat from human activities, such as destructive fisheries and shark finning. Embryos of oviparous elasmobranchs may be further challenged during development by rising temperatures and falling dissolved oxygen concentrations in their intertidal environment. However, the impact of climate change on survival and growth of oviparous elasmobranchs is still poorly understood. Here, we investigate the effects of temperature and hypoxia on the growth and survival of small-spotted catshark (Scyliorhinus canicula) embryos by incubating eggs in normoxia 15°C, normoxia 20°C, hypoxia 15°C, or hypoxia 20°C. Incubation under the elevated temperature increased the embryonic growth rate, yolk consumption rate and Fulton's condition factor at hatching, whilst decreasing the total length and body mass of newly hatched sharks. Under low oxygen conditions (50% air saturation) the survival rate of S. canicula embryos dropped significantly and the temperature-induced increase in Fulton's condition factor was reversed. Together, these data demonstrate both the individual and compound effects of elevated temperature and hypoxia on the survival and growth during early ontogeny of a ubiquitous, coastal elasmobranch, S. canicula.
Collapse
Affiliation(s)
- Syafiq M Musa
- Faculty of Biology, Medicine and Health, The University of Manchester, 3.15d Core Technology Facility, Manchester, UK
- Marine Science Programme, Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Daniel M Ripley
- Faculty of Biology, Medicine and Health, The University of Manchester, 3.15d Core Technology Facility, Manchester, UK
| | - Timo Moritz
- Deutsches Meeresmuseum, Stralsund, Germany
- Institute for Zoology and Evolutionary Research, Friedrich-Schiller University of Jena, Jena, Germany
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, The University of Manchester, 3.15d Core Technology Facility, Manchester, UK
| |
Collapse
|
19
|
Volkoff H, Rønnestad I. Effects of temperature on feeding and digestive processes in fish. Temperature (Austin) 2020; 7:307-320. [PMID: 33251280 PMCID: PMC7678922 DOI: 10.1080/23328940.2020.1765950] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022] Open
Abstract
As most fish are ectotherms, their physiology is strongly affected by temperature. Temperature affects their metabolic rate and thus their energy balance and behavior, including locomotor and feeding behavior. Temperature influences the ability/desire of the fish to obtain food, and how they process food through digestion, absorb nutrients within the gastrointestinal tract, and store excess energy. As fish display a large variability in habitats, feeding habits, and anatomical and physiological features, the effects of temperature are complex and species-specific. The effects of temperature depend on the timing, intensity, and duration of exposure as well as the speed at which temperature changes occur. Whereas acute short-term variations of temperature might have drastic, often detrimental, effects on fish physiology, long-term gradual variations might lead to acclimation, e.g. variations in metabolic and digestive enzyme profiles. The goal of this review is to summarize our current knowledge on the effects of temperature on energy homeostasis, with specific focus on metabolism, feeding, digestion, and how fish are often able to "adapt" to changing environments through phenotypic and physiological changes.
Collapse
Affiliation(s)
- Helene Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
20
|
Flikac T, Cook DG, Davison W. The effect of temperature and meal size on the aerobic scope and specific dynamic action of two temperate New Zealand finfish Chrysophrys auratus and Aldrichetta forsteri. J Comp Physiol B 2020; 190:169-183. [PMID: 31996987 DOI: 10.1007/s00360-020-01258-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 11/30/2022]
Abstract
Shallow coastal and estuarine habitats function as nurseries for many juvenile fish. In this comparative study, metabolic profiles of two New Zealand finfish, snapper (Chrysophrys auratus) and yellow-eyed mullet-YEM (Aldrichetta forsteri) that as juveniles share the same temperate coastal environments, were examined. Metabolic parameters (routine and maximum metabolic rates, and specific dynamic action-SDA) were investigated at a set of temperatures (13, 17, 21 °C) within the range juveniles both species experience annually. SDA was also determined for a range of different feed rations to investigate the effects of meal size on postprandial metabolic response. Temperature was a strong modulator of snapper and YEM metabolic profile (routine and maximum metabolic rates, and absolute and factorial aerobic scope). Metabolic rates increased with temperature in both species as did absolute scope in YEM, though for snapper, it was only greater at the highest temperature. Factorial scope behaved in the same fashion for the two species, being greatest at 13 °C. Both absolute and factorial scope were ~ twofold greater in YEM than in snapper across the entire temperature range. Temperature also affected SDA response in snapper, while in YEM, SDA parameters were largely unaffected when temperature increased from 17 to 21 °C. Snapper were able to consume a large range of meal sizes (0.5-3.0% body mass-BM) with meal sizes > 1% BM having a pronounced effect on numerous SDA parameters, whereas mullet appeared to consume more limited ration sizes (≤ 1.0% BM). In both species, rations ≤ 1% BM produced similar changes in SDA parameters identifying comparable digestive bio-energetics. Overall, our metabolic characterisations demonstrate that both species can adjust to the variable temperate environmental temperatures and manage the energetic costs of digestion and feed assimilation. Yet, despite these general similarities, YEM's greater aerobic scope may point to better physiological adaptation to the highly variable temperate coastal environment than were observed in snapper.
Collapse
Affiliation(s)
- Tomislav Flikac
- Biological Sciences, University of Canterbury, Ilam, Christchurch, 8041, New Zealand.
| | - Denham G Cook
- Seafood Production Group, The New Zealand Institute for Plant and Food Research Limited, 293-297 Akersten Street, Port Nelson, 7043, New Zealand.
| | - William Davison
- Biological Sciences, University of Canterbury, Ilam, Christchurch, 8041, New Zealand
| |
Collapse
|
21
|
Timpone LT, Gavira RSB, Andrade DV. Effects of temperature and meal size on the postprandial metabolic response ofLeptodactylus latrans(Anura, Leptodactylidae). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 333:79-87. [DOI: 10.1002/jez.2326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/23/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Luá T. Timpone
- Departamento de Zoologia, Instituto de Biociências; Universidade Estadual Paulista; Rio Claro São Paulo Brazil
| | - Rodrigo S. B. Gavira
- Centre d’Études Biologiques de Chizé; UMR7372 - CNRS/University of La Rochelle; Villiers-en-Bois Deux-Sèvres France
| | - Denis V. Andrade
- Departamento de Zoologia, Instituto de Biociências; Universidade Estadual Paulista; Rio Claro São Paulo Brazil
| |
Collapse
|
22
|
Steell SC, Van Leeuwen TE, Brownscombe JW, Cooke SJ, Eliason EJ. An appetite for invasion: digestive physiology, thermal performance and food intake in lionfish ( Pterois spp.). ACTA ACUST UNITED AC 2019; 222:jeb.209437. [PMID: 31527176 DOI: 10.1242/jeb.209437] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 09/09/2019] [Indexed: 12/25/2022]
Abstract
Species invasions threaten global biodiversity, and physiological characteristics may determine their impact. Specific dynamic action (SDA; the increase in metabolic rate associated with feeding and digestion) is one such characteristic, strongly influencing an animal's energy budget and feeding ecology. We investigated the relationship between SDA, scope for activity, metabolic phenotype, temperature and feeding frequency in lionfish (Pterois spp.), which are invasive to western Atlantic marine ecosystems. Intermittent-flow respirometry was used to determine SDA, scope for activity and metabolic phenotype at 26°C and 32°C. Maximum metabolic rate occurred during digestion, as opposed to exhaustive exercise, as in more athletic species. SDA and its duration (SDAdur) were 30% and 45% lower at 32°C than at 26°C, respectively, and lionfish ate 42% more at 32°C. Despite a 32% decline in scope for activity from 26°C to 32°C, aerobic scope may have increased by 24%, as there was a higher range between standard metabolic rate (SMR) and peak SDA (SDApeak; the maximum postprandial metabolic rate). Individuals with high SMR and low scope for activity phenotypes had a less costly SDA and shorter SDAdur but a higher SDApeak Feeding frequently had a lower and more consistent cost than consuming a single meal, but increased SDApeak These findings demonstrate that: (1) lionfish are robust physiological performers in terms of SDA and possibly aerobic scope at temperatures approaching their thermal maximum, (2) lionfish may consume more prey as oceans warm with climate change, and (3) metabolic phenotype and feeding frequency may be important mediators of feeding ecology in fish.
Collapse
Affiliation(s)
- S Clay Steell
- Fish Ecology and Conservation Physiology Lab, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Travis E Van Leeuwen
- The Cape Eleuthera Institute, Eleuthera, The Bahamas.,Fisheries and Oceans Canada, 80 East White Hills Road, PO Box 5667, St John's, NL, Canada, A1C 5X1
| | - Jacob W Brownscombe
- Fish Ecology and Conservation Physiology Lab, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Steven J Cooke
- Fish Ecology and Conservation Physiology Lab, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada, K1S 5B6
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
23
|
Dickinson PS, Samuel HM, Stemmler EA, Christie AE. SIFamide peptides modulate cardiac activity differently in two species of Cancer crab. Gen Comp Endocrinol 2019; 282:113204. [PMID: 31201801 PMCID: PMC6719312 DOI: 10.1016/j.ygcen.2019.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022]
Abstract
The SIFamides are a broadly conserved arthropod peptide family characterized by the C-terminal motif -SIFamide. In decapod crustaceans, two isoforms of SIFamide are known, GYRKPPFNGSIFamide (Gly1-SIFamide), which is nearly ubiquitously conserved in the order, and VYRKPPFNGSIFamide (Val1-SIFamide), known only from members of the astacidean genus Homarus. While much work has focused on the identification of SIFamide isoforms in decapods, there are few direct demonstrations of physiological function for members of the peptide family in this taxon. Here, we assessed the effects of Gly1- and Val1-SIFamide on the cardiac neuromuscular system of two closely related species of Cancer crab, Cancer borealis and Cancer irroratus. In each species, both peptides were cardioactive, with identical, dose-dependent effects elicited by both isoforms in a given species. Threshold concentrations for bioactivity are in the range typically associated with hormonal delivery, i.e., 10-9 to 10-8 M. Interestingly, and quite surprisingly, while the predicted effects of SIFamide on cardiac output are similar in both C. borealis and C. irroratus, frequency effects predominate in C. borealis, while amplitude effects predominate in C. irroratus. These findings suggest that, while SIFamide is likely to increase cardiac output in both crabs, the mechanism through which this is achieved is different in the two species. Immunohistochemical/mass spectrometric data suggest that SIFamide is delivered to the heart hormonally rather than locally, with the source of hormonal release being midgut epithelial endocrine cells in both Cancer species. If so, midgut-derived SIFamide may function as a regulator of cardiac output during the process of digestion.
Collapse
Affiliation(s)
- Patsy S Dickinson
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA.
| | - Heidi M Samuel
- Department of Biology, Bowdoin College, 6500 College Station, Brunswick, ME 04011, USA
| | - Elizabeth A Stemmler
- Department of Chemistry, Bowdoin College, 6600 College Station, Brunswick, ME 04011, USA
| | - Andrew E Christie
- Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, School of Ocean and Earth Science and Technology, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA
| |
Collapse
|
24
|
Guzzo MM, Mochnacz NJ, Durhack T, Kissinger BC, Killen SS, Treberg JR. Effects of repeated daily acute heat challenge on the growth and metabolism of a cold water stenothermal fish. ACTA ACUST UNITED AC 2019; 222:jeb.198143. [PMID: 31097605 DOI: 10.1242/jeb.198143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/14/2019] [Indexed: 01/18/2023]
Abstract
Temperature is an important environmental factor influencing fish physiology that varies both spatially and temporally in ecosystems. In small north temperate zone lakes, cold water piscivores rely on nearshore prey; however, this region exceeds the optimal temperature of the foraging species during summer. To cope, piscivores make short excursions into the nearshore to feed and return to cold water to digest their meal, but the physiological impacts of these repeated acute exposures to warm water are not well understood. We exposed juvenile lake trout (Salvelinus namaycush) to treatments where they were held at ∼10°C and exposed to either 17 or 22°C for 5-10 min daily for 53 days mimicking warm-water forays. Control fish, held at an average temperature of ∼10°C but not exposed to thermal variation, consumed more food and grew slightly faster than heat challenged fish, with no clear differences in body condition, hepatosomatic index, ventricle mass, or muscle concentrations of lactate dehydrogenase and cytochrome c oxidase. Aerobic metabolic rates measured at 10°C indicated that standard metabolic rates (SMR) were similar among treatments; however, fish that were repeatedly exposed to 17°C had higher maximum metabolic rates (MMR) and aerobic scopes (AS) than control fish and those repeatedly exposed to 22°C. There were no differences in MMR or AS between fish exposed to 22°C and control fish. These results suggest that although SMR of fish are robust to repeated forays into warmer environments, MMR displays plasticity, allowing fish to be less constrained aerobically in cold water after briefly occupying warmer waters.
Collapse
Affiliation(s)
- Matthew M Guzzo
- Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Neil J Mochnacz
- Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | - Travis Durhack
- Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada
| | | | - Shaun S Killen
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Jason R Treberg
- Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB R3T 2N6, Canada.,Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
25
|
Clown knifefish ( Chitala ornata ) oxygen uptake and its partitioning in present and future temperature environments. Comp Biochem Physiol A Mol Integr Physiol 2018; 216:52-59. [DOI: 10.1016/j.cbpa.2017.11.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 11/21/2022]
|
26
|
Baktoft H, Jacobsen L, Skov C, Koed A, Jepsen N, Berg S, Boel M, Aarestrup K, Svendsen JC. Phenotypic variation in metabolism and morphology correlating with animal swimming activity in the wild: relevance for the OCLTT (oxygen- and capacity-limitation of thermal tolerance), allocation and performance models. CONSERVATION PHYSIOLOGY 2016; 4:cov055. [PMID: 27382465 PMCID: PMC4922247 DOI: 10.1093/conphys/cov055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/22/2015] [Accepted: 10/27/2015] [Indexed: 05/26/2023]
Abstract
Ongoing climate change is affecting animal physiology in many parts of the world. Using metabolism, the oxygen- and capacity-limitation of thermal tolerance (OCLTT) hypothesis provides a tool to predict the responses of ectothermic animals to variation in temperature, oxygen availability and pH in the aquatic environment. The hypothesis remains controversial, however, and has been questioned in several studies. A positive relationship between aerobic metabolic scope and animal activity would be consistent with the OCLTT but has rarely been tested. Moreover, the performance model and the allocation model predict positive and negative relationships, respectively, between standard metabolic rate and activity. Finally, animal activity could be affected by individual morphology because of covariation with cost of transport. Therefore, we hypothesized that individual variation in activity is correlated with variation in metabolism and morphology. To test this prediction, we captured 23 wild European perch (Perca fluviatilis) in a lake, tagged them with telemetry transmitters, measured standard and maximal metabolic rates, aerobic metabolic scope and fineness ratio and returned the fish to the lake to quantify individual in situ activity levels. Metabolic rates were measured using intermittent flow respirometry, whereas the activity assay involved high-resolution telemetry providing positions every 30 s over 12 days. We found no correlation between individual metabolic traits and activity, whereas individual fineness ratio correlated with activity. Independent of body length, and consistent with physics theory, slender fish maintained faster mean and maximal swimming speeds, but this variation did not result in a larger area (in square metres) explored per 24 h. Testing assumptions and predictions of recent conceptual models, our study indicates that individual metabolism is not a strong determinant of animal activity, in contrast to individual morphology, which is correlated with in situ activity patterns.
Collapse
Affiliation(s)
- Henrik Baktoft
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Lene Jacobsen
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Christian Skov
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Anders Koed
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Niels Jepsen
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Søren Berg
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Mikkel Boel
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Kim Aarestrup
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Jon C. Svendsen
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark
| |
Collapse
|
27
|
Di Santo V, Tran AH, Svendsen JC. Progressive hypoxia decouples activity and aerobic performance of skate embryos. CONSERVATION PHYSIOLOGY 2016; 4:cov067. [PMID: 27293746 PMCID: PMC4732404 DOI: 10.1093/conphys/cov067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 05/13/2023]
Abstract
Although fish population size is strongly affected by survival during embryonic stages, our understanding of physiological responses to environmental stressors is based primarily on studies of post-hatch fishes. Embryonic responses to acute exposure to changes in abiotic conditions, including increase in hypoxia, could be particularly important in species exhibiting long developmental time, as embryos are unable to select a different environment behaviourally. Given that oxygen is key to metabolic processes in fishes and aquatic hypoxia is becoming more severe and frequent worldwide, organisms are expected to reduce their aerobic performance. Here, we examined the metabolic and behavioural responses of embryos of a benthic elasmobranch fish, the little skate (Leucoraja erinacea), to acute progressive hypoxia, by measuring oxygen consumption and movement (tail-beat) rates inside the egg case. Oxygen consumption rates were not significantly affected by ambient oxygen levels until reaching 45% air saturation (critical oxygen saturation, S crit). Below S crit, oxygen consumption rates declined rapidly, revealing an oxygen conformity response. Surprisingly, we observed a decoupling of aerobic performance and activity, as tail-beat rates increased, rather than matching the declining metabolic rates, at air saturation levels of 55% and below. These results suggest a significantly divergent response at the physiological and behavioural levels. While skate embryos depressed their metabolic rates in response to progressive hypoxia, they increased water circulation inside the egg case, presumably to restore normoxic conditions, until activity ceased abruptly around 9.8% air saturation.
Collapse
Affiliation(s)
- Valentina Di Santo
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Corresponding author: Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA. Tel: +1 617 496 7199.
| | - Anna H. Tran
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Jon C. Svendsen
- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| |
Collapse
|
28
|
Rosewarne PJ, Wilson JM, Svendsen JC. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers. JOURNAL OF FISH BIOLOGY 2016; 88:265-283. [PMID: 26768978 DOI: 10.1111/jfb.12795] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 09/07/2015] [Indexed: 06/05/2023]
Abstract
Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology.
Collapse
Affiliation(s)
- P J Rosewarne
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - J M Wilson
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| | - J C Svendsen
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal
| |
Collapse
|
29
|
Chabot D, Koenker R, Farrell AP. The measurement of specific dynamic action in fishes. JOURNAL OF FISH BIOLOGY 2016; 88:152-172. [PMID: 26768974 DOI: 10.1111/jfb.12836] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
Specific dynamic action (SDA) is the postprandial increase in oxygen uptake. Whereas it is easy to measure in fishes that remain calm and motionless during the entire digestion period, spontaneous locomotor activity is a frequent problem that leads to overestimation of SDA amplitude and magnitude (area under the curve, bound by the standard metabolic rate, SMR). Few studies have attempted to remove the effect of fish activity on SDA. A new method, non-parametric quantile regression, is described to estimate SDA even when pronounced circadian activity cycles are present. Data from juvenile Atlantic cod Gadus morhua are used to demonstrate its use and advantages compared with traditional techniques. Software (scripts in the R language) is provided to facilitate its use.
Collapse
Affiliation(s)
- D Chabot
- Maurice Lamontagne Institute, Fisheries & Oceans Canada, Mont-Joli, QC, G5H 3Z4, Canada
| | - R Koenker
- Department of Economics, University of Illinois, Champaign, IL 61820, U.S.A
| | - A P Farrell
- Faculty of Land and Food Systems, Department of Zoology, 2357 Main Mall, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|