1
|
Yamaguchi H, Nagai R. Insights from the fructose-derived product glucoselysine: Revisiting the polyol pathway in diabetic complications. J Diabetes Investig 2025; 16:569-577. [PMID: 39891559 PMCID: PMC11970307 DOI: 10.1111/jdi.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/08/2025] [Accepted: 01/22/2025] [Indexed: 02/03/2025] Open
Abstract
Advanced glycation end-products (AGEs) have been extensively studied because of their close association with the onset and progression of diabetic complications. However, owing to their formation through diverse metabolic pathways, AGEs often reflect a wide range of pathological conditions rather than being specific to diabetic complications. Consequently, identifying an AGE that directly correlates only with diabetic complications remains a challenge. Chronic hyperglycemia not only saturates the glycolytic pathway but also upregulates the polyol pathway, leading to the excessive production of fructose, a highly reactive reducing sugar. Although it has long been understood that fructose-derived AGEs contribute to diabetic complications, their chemical structures remain unidentified. Recent breakthroughs have revealed that glucoselysine (GL) is a primary fructose-specific AGE. Unlike other AGEs, GL is exclusively formed from fructose and not from other reducing sugars, such as glucose or galactose. This specificity provides GL with a distinct advantage in that its production pathway can be traced, making it a reliable indicator of polyol pathway activity. Furthermore, emerging evidence suggests that GL levels correlate with the progression of diabetic complications, including both micro- and macrovascular complications, making it a promising biomarker. GL's potential extends beyond diagnostics, as it may serve as a therapeutic target for managing complications associated with prolonged hyperglycemia and enhanced of polyol pathway. This review focuses on the enhanced polyol pathway and the formation of GL and discusses its biochemical characteristics, clinical significance, and potential as a novel diagnostic marker and therapeutic target in diabetic care.
Collapse
Affiliation(s)
- Hiroko Yamaguchi
- Laboratory of Food and Regulation Biology, Graduate School of BioscienceTokai UniversityKumamotoJapan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of BioscienceTokai UniversityKumamotoJapan
- Laboratory of Food and Regulation Biology, Department of Food and Life Science, School of AgricultureTokai UniversityKumamotoJapan
| |
Collapse
|
2
|
Chen Y, Schlotterer A, Lin J, Dietrich N, Fleming T, Lanzinger S, Holl RW, Hammes HP. Sex differences in the development of experimental diabetic retinopathy. Sci Rep 2024; 14:22812. [PMID: 39354039 PMCID: PMC11445250 DOI: 10.1038/s41598-024-73279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024] Open
Abstract
This study aimed to characterize the role of female sex in the pathogenesis of diabetic retinopathy. In the retinae of female Ins2Akita-diabetic mice (F-IA), ovariectomized female Ins2Akita-diabetic mice (F-IA/OVX), male Ins2Akita-diabetic mice (M-IA), and female STZ-diabetic mice (F-STZ), the formation of reactive metabolites and post-translational modifications, damage to the neurovascular unit, and expression of cellular stress response genes were analyzed. Compared to the male diabetic retina, the concentrations of the glycation adduct fructosyl-lysine, the Maillard product 3-deoxyglucosone, and the reactive metabolite methylglyoxal were significantly reduced in females. In females, there was also less evidence of diabetic damage to the neurovascular unit, as shown by decreased pericyte loss and reduced microglial activation. In the male diabetic retina, the expression of several members of the crystallin gene family (Cryab, Cryaa, Crybb2, Crybb1, and Cryba4) was increased. Clinical data from type 1 diabetic females showed that premenopausal women had a significantly lower prevalence of diabetic retinopathy compared to postmenopausal women stratified for disease duration and glycemic control. These data emphasize the importance of estradiol in protecting the diabetic retina and highlight the pathogenic relevance of sex in diabetic retinopathy.
Collapse
Affiliation(s)
- Ying Chen
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Andrea Schlotterer
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Jihong Lin
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Nadine Dietrich
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thomas Fleming
- Department of Internal Medicine I and Clinical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Stefanie Lanzinger
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Reinhard W Holl
- Institute of Epidemiology and Medical Biometry, ZIBMT, University of Ulm, Ulm, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Hans-Peter Hammes
- Fifth Medical Department, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
3
|
She YM, Jia Z, Zhang X. Region-selective and site-specific glycation of influenza proteins surrounding the viral envelope membrane. Sci Rep 2024; 14:18975. [PMID: 39152175 PMCID: PMC11329638 DOI: 10.1038/s41598-024-69793-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024] Open
Abstract
Analysis of protein modifications is critical for quality control of therapeutic biologics. However, the identification and quantification of naturally occurring glycation of membrane proteins by mass spectrometry remain technically challenging. We used highly sensitive LC MS/MS analyses combined with multiple enzyme digestions to determine low abundance early-stage lysine glycation products of influenza vaccines derived from embryonated chicken eggs and cultured cells. Straightforward sequencing was enhanced by MS/MS fragmentation of small peptides. As a result, we determined a widespread distribution of lysine modifications attributed by the region-selectivity and site-specificity of glycation toward influenza matrix 1, hemagglutinin and neuraminidase. Topological analysis provides insights into the site-specific lysine glycation, localizing in the distinct structural regions of proteins surrounding the viral envelope membrane. Our finding highlights the proteome-wide discovery of lysine glycation of influenza membrane proteins and potential effects on the structural assembly, stability, receptor binding and enzyme activity, demonstrating that the impacts of accumulated glycation on the quality of products can be directly monitored by mass spectrometry-based structural proteomics analyses.
Collapse
Affiliation(s)
- Yi-Min She
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Xu Zhang
- Centre for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Canada, Ottawa, ON, K1A 0K9, Canada.
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
4
|
Schmalhausen EV, Medvedeva MV, Muronetz VI. Glyceraldehyde-3-phosphate dehydrogenase is involved in the pathogenesis of Alzheimer's disease. Arch Biochem Biophys 2024; 758:110065. [PMID: 38906311 DOI: 10.1016/j.abb.2024.110065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
One of important characteristics of Alzheimer's disease is a persistent oxidative/nitrosative stress caused by pro-oxidant properties of amyloid-beta peptide (Aβ) and chronic inflammation in the brain. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is easily oxidized under oxidative stress. Numerous data indicate that oxidative modifications of GAPDH in vitro and in cell cultures stimulate GAPDH denaturation and aggregation, and the catalytic cysteine residue Cys152 is important for these processes. Both intracellular and extracellular GAPDH aggregates are toxic for the cells. Interaction of denatured GAPDH with soluble Aβ results in mixed insoluble aggregates with increased toxicity. The above-described properties of GAPDH (sensitivity to oxidation and propensity to form aggregates, including mixed aggregates with Aβ) determine its role in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- E V Schmalhausen
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia.
| | - M V Medvedeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Bld 73, 119991, Moscow, Russia
| | - V I Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory 1, Bld 40, 119991, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Leninskie Gory 1, Bld 73, 119991, Moscow, Russia
| |
Collapse
|
5
|
Yamaguchi H, Matsumura T, Sugawa H, Niimi N, Sango K, Nagai R. Glucoselysine, a unique advanced glycation end-product of the polyol pathway and its association with vascular complications in type 2 diabetes. J Biol Chem 2024; 300:107479. [PMID: 38879006 PMCID: PMC11283207 DOI: 10.1016/j.jbc.2024.107479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/13/2024] Open
Abstract
Glucoselysine (GL) is an unique advanced glycation end-product derived from fructose. The main source of fructose in vivo is the polyol pathway, and an increase in its activity leads to diabetic complications. Here, we aimed to demonstrate that GL can serve as an indicator of the polyol pathway activity. Additionally, we propose a novel approach for detecting GL in peripheral blood samples using liquid chromatography-tandem mass spectrometry and evaluate its clinical usefulness. We successfully circumvent interference from fructoselysine, which shares the same molecular weight as GL, by performing ultrafiltration and hydrolysis without reduction, successfully generating adequate peaks for quantification in serum. Furthermore, using immortalized aldose reductase KO mouse Schwann cells, we demonstrate that GL reflects the downstream activity of the polyol pathway and that GL produced intracellularly is released into the extracellular space. Clinical studies reveal that GL levels in patients with type 2 diabetes are significantly higher than those in healthy participants, while Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)ornithine (MG-H1) levels are significantly lower. Both GL and MG-H1 show higher values among patients with vascular complications; however, GL varies more markedly than MG-H1 as well as hemoglobin A1c, fasting plasma glucose, and estimated glomerular filtration rate. Furthermore, GL remains consistently stable under various existing drug treatments for type 2 diabetes, whereas MG-H1 is impacted. To the best of our knowledge, we provide important insights in predicting diabetic complications caused by enhanced polyol pathway activity via assessment of GL levels in peripheral blood samples from patients.
Collapse
Affiliation(s)
- Hiroko Yamaguchi
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, Japan
| | - Takeshi Matsumura
- Department of Metabolic Medicine, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Hikari Sugawa
- Laboratory of Food and Regulation Biology, Department of Food and Life Science, School of Agriculture, Tokai University, Kumamoto, Japan
| | - Naoko Niimi
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazunori Sango
- Diabetic Neuropathy Project, Department of Diseases and Infection, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ryoji Nagai
- Laboratory of Food and Regulation Biology, Graduate School of Bioscience, Tokai University, Kumamoto, Japan; Laboratory of Food and Regulation Biology, Department of Food and Life Science, School of Agriculture, Tokai University, Kumamoto, Japan.
| |
Collapse
|
6
|
Sivaram A, Patil N. Nanoparticles in prevention of protein glycation. VITAMINS AND HORMONES 2024; 125:287-309. [PMID: 38997167 DOI: 10.1016/bs.vh.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Advanced glycation end products (AGEs) are formed by the non-enzymatic attachment of carbohydrates to a biological macromolecule. These AGEs bind to their cognate receptor called receptor for AGEs (RAGEs), which becomes one of the important causal factors for the initiation and progression of several diseases. A deep understanding into the pathways of RAGEs will help in identifying novel intervention modalities as a part of new therapeutic strategies. Although several approaches exist to target this pathway using small molecules, compounds of plant origin etc, nanoparticles have proven to be a critical method, given its several advantages. A high bioavailability, biocompatibility, ability to cross blood brain barrier and modifiable surface properties give nanoparticles an upper edge over other strategies. In this chapter, we will discuss AGEs, their involvement in diseases and the nanoparticles used for targeting this pathway.
Collapse
Affiliation(s)
- Aruna Sivaram
- School of Bioengineering Sciences and Research, MIT ADT University, Pune, India
| | - Nayana Patil
- School of Bioengineering Sciences and Research, MIT ADT University, Pune, India.
| |
Collapse
|
7
|
Siddiqui S, Ahmad R, Ahmad Y, Faizy AF, Moin S. Biophysical insight into the binding mechanism of epigallocatechin-3-gallate and cholecalciferol to albumin and its preventive effect against AGEs formation: An in vitro and in silico approach. Int J Biol Macromol 2024; 267:131474. [PMID: 38599429 DOI: 10.1016/j.ijbiomac.2024.131474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Advanced glycation end products (AGEs) are produced non-enzymatically through the process of glycation. Increased AGEs production has been linked to several diseases including polycystic ovary syndrome (PCOS). PCOS contributes to the development of secondary comorbidities, such as diabetes, cardiovascular complications, infertility, etc. Consequently, research is going on AGEs-inhibiting phytochemicals for their potential to remediate and impede the progression of hyperglycaemia associated disorders. In this study human serum albumin is used as a model protein, as albumin is predominantly present in follicular fluid. This article focusses on the interaction and antiglycating potential of (-)-Epigallocatechin-3-gallate (EGCG) and vitamin D in combination using various techniques. The formation of the HSA-EGCG and HSA-vitamin D complex was confirmed by UV and fluorescence spectroscopy. Thermodynamic analysis verified the spontaneity of reaction, and presence of hydrogen bonds and van der Waals interactions. FRET confirms high possibility of energy transfer. Cumulative antiglycation resulted in almost 60 % prevention in AGEs formation, decreased alterations at lysine and arginine, and reduced protein carbonylation. Secondary and tertiary structural changes were analysed by circular dichroism, Raman spectroscopy and ANS binding assay. Type and size of aggregates were confirmed by Rayleigh and dynamic light scattering, ThT fluorescence, SEM and SDS-PAGE. Effect on cellular redox status, DNA integrity and cytotoxicity was analysed in lymphocytes using dichlorofluorescein (DCFH-DA), DAPI and MTT assay which depicted an enhancement in antioxidant level by cumulative treatment. These findings indicate that EGCG and vitamin D binds strongly to HSA and have antiglycation ability which enhances upon synergism.
Collapse
Affiliation(s)
- Sana Siddiqui
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Rizwan Ahmad
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Yusra Ahmad
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Abul Faiz Faizy
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India
| | - Shagufta Moin
- Department of Biochemistry, J.N.M.C., Faculty of Medicine, Aligarh Muslim University, Aligarh 202002, U.P., India.
| |
Collapse
|
8
|
Buchman AS, Yu L, Klein HU, Zammit AR, Oveisgharan S, Nag S, Tickotsky N, Levy H, Seyfried N, Morgenstern D, Levin Y, Schnaider Beeri M, Bennett DA. Glycoproteome-Wide Discovery of Cortical Glycoproteins That May Provide Cognitive Resilience in Older Adults. Neurology 2024; 102:e209223. [PMID: 38502899 PMCID: PMC11770689 DOI: 10.1212/wnl.0000000000209223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/05/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Molecular omics studies have identified proteins related to cognitive resilience but unrelated to Alzheimer disease and Alzheimer disease-related dementia (AD/ADRD) pathologies. Posttranslational modifications of proteins with glycans can modify protein function. In this study, we identified glycopeptiforms associated with cognitive resilience. METHODS We studied brains from adults with annual cognitive testing with postmortem indices of 10 AD/ADRD pathologies and proteome-wide data from dorsal lateral prefrontal cortex (DLPFC). We quantified 11, 012 glycopeptiforms from DLPFC using liquid chromatography with tandem mass spectrometry. We used linear mixed-effects models to identify glycopeptiforms associated with cognitive decline correcting for multiple comparisons (p < 5 × 10-6). Then, we regressed out the effect of AD/ADRD pathologies to identify glycopeptiforms that may provide cognitive resilience. RESULTS We studied 366 brains, average age at death 89 years, and 70% female with no cognitive impairment = 152, mild cognitive impairment = 93, and AD = 121 cognitive status at death. In models adjusting for age, sex and education, 11 glycopeptiforms were associated with cognitive decline. In further modeling, 8 of these glycopeptiforms remained associated with cognitive decline after adjusting for AD/ADRD pathologies: NPTX2a (Est., 0.030, SE, 0.005, p = 1 × 10-4); NPTX2b (Est.,0.019, SE, 0.005, p = 2 × 10-4) NECTIN1(Est., 0.029, SE, 0.009, p = 9 × 10-4), NPTX2c (Est., 0.015, SE, 0.004, p = 9 × 10-4), HSPB1 (Est., -0.021, SE, 0.006, p = 2 × 10-4), PLTP (Est., -0.027, SE, 0.009, p = 4.2 × 10-3), NAGK (Est., -0.027, SE, 0.008, p = 1.4 × 10-3), and VAT1 (Est., -0.020, SE, 0.006, p = 1.1 × 10-3). Higher levels of 4 resilience glycopeptiforms derived through glycosylation were associated with slower decline and higher levels of 4 derived through glycation were related to faster decline. Together, these 8 glycopeptiforms accounted for an additional 6% of cognitive decline over the 33% accounted for the 10 brain pathologies and demographics. All 8 resilience glycopeptiforms remained associated with cognitive decline after adjustments for the expression level of their corresponding protein. Exploratory gene ontology suggested that molecular mechanisms of glycopeptiforms associated with cognitive decline may involve metabolic pathways including pyruvate and NADH pathways and highlighted the importance of molecular mechanisms involved in glucose metabolism. DISCUSSION Glycopeptiforms in aging brains may provide cognitive resilience. Targeting these glycopeptiforms may lead to therapies that maintain cognition through resilience.
Collapse
Affiliation(s)
- Aron S Buchman
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Lei Yu
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Hans-Ulrich Klein
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Andrea R Zammit
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Shahram Oveisgharan
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Sukriti Nag
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Nili Tickotsky
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Hila Levy
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Nicholas Seyfried
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - David Morgenstern
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Yishai Levin
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - Michal Schnaider Beeri
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| | - David A Bennett
- From the Rush Alzheimer's Disease Center (A.S.B., L.Y., A.R.Z., S.O., S.N., D.A.B.); Department of Neurological Sciences (A.S.B., L.Y., S.O., D.A.B.), Rush University Medical Center, Chicago, IL; Center for Translational and Computational Neuroimmunology (H.-U.K.), Department of Neurology, Columbia University Medical Center, New York; Department of Pathology (Neuropathology) (S.N.), Rush University Medical Center, Chicago, IL; Katz Institute for Nanoscale Science and Technology Ben Gurion University (N.T.), Beer Sheva; The de Botton Institute for Protein Profiling (H.L., D.M., Y.L.), Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel; Department of Neurology (N.S.), Emory University School of Medicine; Department of Biochemistry (N.S.), Emory University, Atlanta, GA; and Department of Neurology (M.S.B.), Rutgers Robert Wood Johnson Medical School and Rutgers Brain Health Institute, NJ
| |
Collapse
|
9
|
Defant P, Regl C, Huber CG, Schubert M. The NMR signature of maltose-based glycation in full-length proteins. JOURNAL OF BIOMOLECULAR NMR 2024; 78:61-72. [PMID: 38114873 PMCID: PMC10981599 DOI: 10.1007/s10858-023-00432-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
Reducing sugars can spontaneously react with free amines in protein side chains leading to posttranslational modifications (PTMs) called glycation. In contrast to glycosylation, glycation is a non-enzymatic modification with consequences on the overall charge, solubility, aggregation susceptibility and functionality of a protein. Glycation is a critical quality attribute of therapeutic monoclonal antibodies. In addition to glucose, also disaccharides like maltose can form glycation products. We present here a detailed NMR analysis of the Amadori product formed between proteins and maltose. For better comparison, data collection was done under denaturing conditions using 7 M urea-d4 in D2O. The here presented correlation patterns serve as a signature and can be used to identify maltose-based glycation in any protein that can be denatured. In addition to the model protein BSA, which can be readily glycated, we present data of the biotherapeutic abatacept containing maltose in its formulation buffer. With this contribution, we demonstrate that NMR spectroscopy is an independent method for detecting maltose-based glycation, that is suited for cross-validation with other methods.
Collapse
Affiliation(s)
- Pauline Defant
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Christof Regl
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Christian G Huber
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria
| | - Mario Schubert
- Department of Biosciences and Medical Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020, Salzburg, Austria.
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany.
| |
Collapse
|
10
|
Tan Y, De La Toba E, Rubakhin SS, Labriola LT, Canfield C, Pan D, Sweedler JV. NanoLC-timsTOF-Assisted Analysis of Glycated Albumin in Diabetes-Affected Plasma and Tears. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:106-113. [PMID: 38016044 PMCID: PMC10843563 DOI: 10.1021/jasms.3c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Glycation is a spontaneous and nonenzymatic glycosylation. Glycated albumin (GA), which serves as an important biomarker in plasma in the diagnosis and characterization of diabetes, can be passively filtered from the plasma to tears. Tears are important targets for research in clinical diagnostics due to the ability to collect this biofluid noninvasively and repeatably. Therefore, the analysis of GA in tear film provides information for monitoring diabetes progression independent of blood pathologies. Due to the limited volume (1-5 μL) of natural tear film, we developed a small volume assay using a nano liquid chromatography-trapped ion mobility spectrometry-time-of-flight MS (nanoLC-timsTOF) platform for the analysis of glycated albumin in human plasma and tear films affected by diabetes. The peptides containing lysine 525, which is the main glycation site in GA, were relatively quantified and represented as the GA level. The results of the measurements showed that GA levels were significantly higher in diabetes-affected plasma and tears compared to controls with a p-value < 0.01. A strong correlation of glycated albumin levels was observed for the plasma and tear film in diabetes samples (Pearson coefficient 0.92 with a p-value 0.0012). Moreover, the number of GA glycation sites was significantly higher in diabetes-affected plasma and tear comparatively to controls. Among all the glycation sites in plasma albumin, the GA level quantified by lysine 136/137 had a strong correlation with more commonly used lysine 525, suggesting that lysine 136 /137 is an alternative diabetes biomarker in plasma. Overall, our findings demonstrate GA in tears as a biomarker for monitoring diabetes progression, highlighting new possibilities for quick and noninvasive diabetes detection and monitoring.
Collapse
Affiliation(s)
- Yanqi Tan
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Eduardo De La Toba
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S Rubakhin
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | | | | | - Dipanjan Pan
- Department of Nuclear Engineering and Materials Science and Engineering, Pennsylvania State University, State College, Pennsylvania 16802, United States
| | - Jonathan V Sweedler
- Department of Chemistry and the Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
11
|
Koike S, Saito Y, Ogasawara Y. Novel Fluorometric Assay of Antiglycation Activity Based on Methylglyoxal-Induced Protein Carbonylation. Antioxidants (Basel) 2023; 12:2030. [PMID: 38136150 PMCID: PMC10740428 DOI: 10.3390/antiox12122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Advanced glycation end products (AGEs), which can have multiple structures, are formed at the sites where the carbonyl groups of reducing sugars bind to the free amino groups of proteins through the Maillard reaction. Some AGE structures exhibit fluorescence, and this fluorescence has been used to measure the formation and quantitative changes in carbonylated proteins. Recently, fluorescent AGEs have also been used as an index for the evaluation of compounds that inhibit protein glycation. However, the systems used to generate fluorescent AGEs from the reaction of reducing sugars and proteins used for the evaluation of antiglycation activity have not been determined through appropriate research; thus, problems remain regarding sensitivity, quantification, and precision. In the present study, using methylglyoxal (MGO), a reactive carbonyl compound to induce glycation, a comparative analysis of the mechanisms of formation of fluorescent substances from several types of proteins was conducted. The analysis identified hen egg lysozyme (HEL) as a protein that produces stronger fluorescent AGEs faster in the Maillard reaction with MGO. It was also found that the AGE structure produced in MGO-induced in HEL was argpyrimidine. By optimizing the reaction system, we developed a new evaluation method for compounds with antiglycation activity and established an efficient evaluation method (HEL-MGO assay) with greater sensitivity and accuracy than the conventional method, which requires high concentrations of bovine serum albumin and glucose. Furthermore, when compounds known to inhibit glycation were evaluated using this method, their antiglycation activities were clearly and significantly measured, demonstrating the practicality of this method.
Collapse
Affiliation(s)
| | | | - Yuki Ogasawara
- Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan; (S.K.); (Y.S.)
| |
Collapse
|
12
|
Senavirathna L, Pan S, Chen R. Protein Advanced Glycation End Products and Their Implications in Pancreatic Cancer. Cancer Prev Res (Phila) 2023; 16:601-610. [PMID: 37578815 PMCID: PMC10843555 DOI: 10.1158/1940-6207.capr-23-0162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Protein advanced glycation end products (AGE) formed by nonenzymatic glycation can disrupt the normal structure and function of proteins, and stimulate the receptor for AGEs (RAGE), triggering intricate mechanisms that are etiologically related to various chronic diseases, including pancreatic cancer. Many common risk factors of pancreatic cancer are the major sources for the formation of protein AGEs and glycative stress in the human body. Abnormal accumulation of protein AGEs can impair the cellular proteome and promote AGE-RAGE driven pro-inflammatory signaling cascades, leading to increased oxidative stress, protease resistance, protein dysregulation, transcription activity of STAT, NF-κB, and AP-1, aberrant status in ubiquitin-proteasome system and autophagy, as well as other molecular events that are susceptible for the carcinogenic transformation towards the development of neoplasms. Here, we review studies to highlight our understanding in the orchestrated molecular events in bridging the impaired proteome, dysregulated functional networks, and cancer hallmarks initiated upon protein AGE formation and accumulation in pancreatic cancer.
Collapse
Affiliation(s)
- Lakmini Senavirathna
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Sheng Pan
- The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- Department of Integrative Biology and Pharmacology, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Ru Chen
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
13
|
Miranda ER, Haus JM. Glyoxalase I is a novel target for the prevention of metabolic derangement. Pharmacol Ther 2023; 250:108524. [PMID: 37722607 DOI: 10.1016/j.pharmthera.2023.108524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/07/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023]
Abstract
Obesity prevalence in the US has nearly tripled since 1975 and a parallel increase in prevalence of type 2 diabetes (T2D). Obesity promotes a myriad of metabolic derangements with insulin resistance (IR) being perhaps the most responsible for the development of T2D and other related diseases such as cardiovascular disease. The precarious nature of IR development is such that it provides a valuable target for the prevention of further disease development. However, the mechanisms driving IR are numerous and complex making the development of viable interventions difficult. The development of metabolic derangement in the context of obesity promotes accumulation of reactive metabolites such as the reactive alpha-dicarbonyl methylglyoxal (MG). MG accumulation has long been appreciated as a marker of disease progression in patients with T2D as well as the development of diabetic complications. However, recent evidence suggests that the accumulation of MG occurs with obesity prior to T2D onset and may be a primary driving factor for the development of IR and T2D. Further, emerging evidence also suggests that this accumulation of MG with obesity may be a result in a loss of MG detoxifying capacity of glyoxalase I. In this review, we will discuss the evidence that posits MG accumulation because of GLO1 attenuation is a novel target mechanism of the development of metabolic derangement. In addition, we will also explore the regulation of GLO1 and the strategies that have been investigated so far to target GLO1 regulation for the prevention and treatment of metabolic derangement.
Collapse
Affiliation(s)
- Edwin R Miranda
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America; Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, United States of America
| | - Jacob M Haus
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America.
| |
Collapse
|
14
|
Trujillo MN, Galligan JJ. Reconsidering the role of protein glycation in disease. Nat Chem Biol 2023; 19:922-927. [PMID: 37430113 PMCID: PMC10807257 DOI: 10.1038/s41589-023-01382-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Protein glycation has long-been considered a toxic consequence of carbohydrate metabolism. Yet recent evidence demonstrates tight regulation for these non-enzymatic post-translational modifications, pointing to a broader role in cell biology rather than simply serving as a biomarker for toxicity.
Collapse
Affiliation(s)
- Marissa N Trujillo
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA
| | - James J Galligan
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
15
|
Nesterowicz M, Lauko KK, Żendzian-Piotrowska M, Ładny JR, Zalewska A, Maciejczyk M. Agomelatine's antiglycoxidative action- In vitro and in silico research and systematic literature review. Front Psychiatry 2023; 14:1164459. [PMID: 37181902 PMCID: PMC10166843 DOI: 10.3389/fpsyt.2023.1164459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/24/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Agomelatine is an atypical antidepressant drug enhancing norepinephrine and dopamine liberation; nevertheless, additional mechanisms are considered for the drug's pharmacological action. Since protein glycoxidation plays a crucial role in depression pathogenesis, agomelatine's impact on carbonyl/oxidative stress was the research purpose. Methods Reactive oxygen species scavenging (hydroxyl radical, hydrogen peroxide, and nitrogen oxide) and antioxidant capacity (2,2-diphenyl-1-picrylhydrazyl radical and ferrous ion chelating assays) of agomelatine were marked. Agomelatine's antiglycoxidation properties were assayed in sugars (glucose, fructose, and galactose) and aldehydes- (glyoxal and methylglyoxal) glycated bovine serum albumin (BSA). Aminoguanidine and α-lipoic acid were used as standard glycation/oxidation inhibitors. Results Agomelatine did not show meaningful scavenging/antioxidant capacity vs. standards. Sugars/aldehydes increased glycation (↑kynurenine, ↑N-formylkynurenine, ↑dityrosine, ↑advanced glycation end products, and ↑β-amyloid) and oxidation (↑protein carbonyls and ↑advanced oxidation protein products) parameters in addition to BSA. Standards restored BSA baselines of glycation and oxidation markers, unlike agomelatine which sometimes even intensifies glycation above BSA + glycators levels. Molecular docking analysis of agomelatine in BSA demonstrated its very weak binding affinity. Discussion Agomelatine's very low affinity to the BSA could proclaim non-specific bonding and simplify attachment of glycation factors. Thereby, the drug may stimulate brain adaptation to carbonyl/oxidative stress as the systematic review indicates. Moreover, the drug's active metabolites could exert an antiglycoxidative effect.
Collapse
Affiliation(s)
- Miłosz Nesterowicz
- Students' Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Białystok, Poland
| | - Kamil Klaudiusz Lauko
- Students' Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Białystok, Poland
| | | | - Jerzy Robert Ładny
- 1st Department of General Surgery and Endocrinology, Medical University of Bialystok, Białystok, Poland
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, Białystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Białystok, Poland
| |
Collapse
|
16
|
Kabach I, Bouchmaa N, Zouaoui Z, Ennoury A, El Asri S, Laabar A, Oumeslakht L, Cacciola F, El Majdoub YO, Mondello L, Zyad A, Nhiri N, Nhiri M, Ben Mrid R. Phytochemical profile and antioxidant capacity, α-amylase and α-glucosidase inhibitory activities of Oxalis pes-caprae extracts in alloxan-induced diabetic mice. Biomed Pharmacother 2023; 160:114393. [PMID: 36774725 DOI: 10.1016/j.biopha.2023.114393] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetes and its complications are closely correlated with chronic hyperglycemia, causing severe oxidative stress and leading to glycation reaction with formation of advanced glycation end products. However, medicinal plants are still a source of inspiration for the discovery of new treatments of several diseases, including diabetes. The present study was aimed to evaluate the antioxidant and antidiabetic properties of Oxalis pes-caprae flowers extract in alloxan-induced diabetic mice. The phytochemical and antioxidant activities of both aqueous and methanolic extracts were assessed by in-vitro testing such as free radical scavenging assays (DPPH and ABTS+), ferrous ions (Fe2+) chelating activity and reducing power assay. Additionally, the detection of Amadori products and advanced glycation end products was used to determine the antiglycation potential. α-glucosidase and α-amylase inhibitory assessment was employed to determine the antidiabetic effect, while alloxan-induced diabetic mice were used to measure the in-vivo activities of antioxidants and carbohydrates enzymes. The effect of the methanolic extract on body weight and blood glucose level of extract-treated diabetic mice were also investigated. Among the tested extract, the methanolic extract was the richest in phenolic compounds which is directly related with their remarkable antioxidant, enzyme inhibitory and antiglycation activity. The oral administration of the two doses of Oxalis pes-caprae flowers (150 mg/kg and 250 mg/kg) daily for 3 weeks resulted in hypoglycemic effect compared to the reference drug, glibenclamide (10 mg/kg). Furthermore, the extract was shown to significantly increase the activities of antioxidants and glycolysis enzymes in the liver, kidney and spleen of diabetic mice, compared to diabetic control group. Therefore, Oxalis pes-caprae extract effectively exhibited hypoglycemic and antidiabetic effects as indicated by in-vitro and in-vivo studies, confirming the protective effects on hyperglycemia and oxidative damage.
Collapse
Affiliation(s)
- Imad Kabach
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB-P), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco; Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-pharmacology, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Sara El Asri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Abdelmounaim Laabar
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Morocco
| | - Loubna Oumeslakht
- Institute of Biological Sciences (ISSB-P), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy.
| | - Yassine Oulad El Majdoub
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Luigi Mondello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Abdelmajid Zyad
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-pharmacology, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Naima Nhiri
- Institute for the Chemistry of Natural Substances, CNRS, Paris Saclay University, 91190 Gif-Sur-Yvette, France
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Reda Ben Mrid
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco; Institute of Biological Sciences (ISSB-P), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco.
| |
Collapse
|
17
|
Masania J, Wijten P, Keipert S, Ost M, Klaus S, Rabbani N, Thornalley PJ. Decreased methylglyoxal-mediated protein glycation in the healthy aging mouse model of ectopic expression of UCP1 in skeletal muscle. Redox Biol 2023; 59:102574. [PMID: 36521306 PMCID: PMC9772855 DOI: 10.1016/j.redox.2022.102574] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
Mice with ectopic expression of uncoupling protein-1 (UCP1) in skeletal muscle exhibit a healthy aging phenotype with increased longevity and resistance to impaired metabolic health. This may be achieved by decreasing protein glycation by the reactive metabolite, methylglyoxal (MG). We investigated protein glycation and oxidative damage in skeletal muscle of mice with UCP1 expression under control of the human skeletal actin promoter (HSA-mUCP1) at age 12 weeks (young) and 70 weeks (aged). We found both young and aged HSA-mUCP1 mice had decreased advanced glycation endproducts (AGEs) formed from MG, lysine-derived Nε(1-carboxyethyl)lysine (CEL) and arginine-derived hydroimidazolone, MG-H1, whereas protein glycation by glucose forming Nε-fructosyl-lysine (FL) was increased ca. 2-fold, compared to wildtype controls. There were related increases in FL-linked AGEs, Nε-carboxymethyl-lysine (CML) and 3-deoxylglucosone-derived hydroimidazolone 3DG-H, and minor changes in protein oxidative and nitration adducts. In aged HSA-mUCP1 mice, urinary MG-derived AGEs/FL ratio was decreased ca. 60% whereas there was no change in CML/FL ratio - a marker of oxidative damage. This suggests that, normalized for glycemic status, aged HSA-mUCP1 mice had a lower flux of whole body MG-derived AGE exposure compared to wildtype controls. Proteomics analysis of skeletal muscle revealed a shift to increased heat shock proteins and mechanoprotection and repair in HSA-mUCP1 mice. Decreased MG-derived AGE protein content in skeletal muscle of aged HSA-mUCP1 mice is therefore likely produced by increased proteolysis of MG-modified proteins and increased proteostasis surveillance of the skeletal muscle proteome. From this and previous transcriptomic studies, signaling involved in enhanced removal of MG-modified protein is likely increased HSPB1-directed HUWE1 ubiquitination through eIF2α-mediated, ATF5-induced increased expression of HSPB1. Decreased whole body exposure to MG-derived AGEs may be linked to increased weight specific physical activity of HSA-mUCP1 mice. Decreased formation and increased clearance of MG-derived AGEs may be associated with healthy aging in the HSA-mUCP1 mouse.
Collapse
Affiliation(s)
- Jinit Masania
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK
| | - Patrick Wijten
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar
| | - Susanne Keipert
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558, Nuthetal, Germany
| | - Mario Ost
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558, Nuthetal, Germany
| | - Susanne Klaus
- Department of Physiology of Energy Metabolism, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14558, Nuthetal, Germany; University of Potsdam, Institute of Nutrition Science, Potsdam-Rehbruecke, 14558, Nuthetal, Germany
| | - Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Paul J Thornalley
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, CV2 2DX, UK; Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
18
|
Voziyan P, Uppuganti S, Leser M, Rose KL, Nyman JS. Mapping glycation and glycoxidation sites in collagen I of human cortical bone. BBA ADVANCES 2023; 3:100079. [PMID: 37082268 PMCID: PMC10074956 DOI: 10.1016/j.bbadva.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/20/2023] [Accepted: 01/20/2023] [Indexed: 01/23/2023] Open
Abstract
Accumulation of advanced glycation end products (AGEs), particularly in long-lived extracellular matrix proteins, has been implicated in pathogenesis of diabetic complications and in aging. Knowledge about specific locations of AGEs and their precursors within protein primary structure is critical for understanding their physiological and pathophysiological impact. However, the information on specific AGE sites is lacking. Here, we identified sequence positions of four major AGEs, carboxymethyllysine, carboxyethyllysine, 5-hydro-5-methyl imidazolone, and 5-hydro-imidazolone, and an AGE precursor fructosyllysine within the triple helical region of collagen I from cortical bone of human femurs. The presented map provides a basis for site-specific quantitation of AGEs and other non-enzymatic post-translational modifications and identification of those sites affected by aging, diabetes, and other diseases such as osteoporosis; it can also help in guiding future studies of AGE impact on structure and function of collagen I in bone.
Collapse
Affiliation(s)
- Paul Voziyan
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Vanderbilt Center for Matrix Biology, Vanderbilt University Medical Center, Nashville, TN 37212, United States
| | - Sasidhar Uppuganti
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Micheal Leser
- Department of Biochemistry and Proteomics Core, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, United States
| | - Kristie L. Rose
- Department of Biochemistry and Proteomics Core, Mass Spectrometry Research Center, Vanderbilt University, Nashville, TN 37232, United States
| | - Jeffry S. Nyman
- Department of Orthopaedic Surgery, Vanderbilt University Medical Center, Nashville, TN 37232, United States
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN 37212, United States
| |
Collapse
|
19
|
Mechanism of inactivation of glyceraldehyde-3-phosphate dehydrogenase in the presence of methylglyoxal. Arch Biochem Biophys 2023; 733:109485. [PMID: 36481268 DOI: 10.1016/j.abb.2022.109485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/02/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is known to be one of the targets of methylglyoxal (MGO), a metabolite of glycolysis that increased in diabetes. However, the mechanism of GAPDH inactivation in the presence of MGO is unclear. The purpose of the work was to study the reaction of GAPDH with MGO and to identify the products of the reaction. It was shown that incubation of recombinant human GAPDH with MGO leads to irreversible inactivation of the enzyme, which is accompanied by a decrease in SH-group content by approximately 3.3 per tetramer GAPDH. MALDI-TOF MS analysis showed that the modification of GAPDH with MGO results in the oxidation of the catalytic cysteine residues (Cys152) to form cysteine-sulfinic acid. In addition, 2 arginine residues (R80 and R234) were identified that react with MGO to form hydroimidazolones. Incubation of SH-SY5Y neuroblastoma cells with MGO resulted in the inactivation of GAPDH and inhibition of glycolysis. The mechanism of GAPDH oxidation in the presence of MGO suggests the participation of superoxide anion, which is formed during the reaction of amino groups with methylglyoxal. The role of GAPDH in protection against the damaging effect of ROS in cells in the case of inefficiency of MGO removal by the GSH-dependent glyoxalase system is discussed.
Collapse
|
20
|
Rabbani N, Thornalley PJ. An Introduction to the Special Issue "Protein Glycation in Food, Nutrition, Health and Disease". Int J Mol Sci 2022; 23:13053. [PMID: 36361833 PMCID: PMC9656604 DOI: 10.3390/ijms232113053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/01/2022] [Accepted: 10/25/2022] [Indexed: 10/18/2023] Open
Abstract
On 20-24 September 2021, leading researchers in the field of glycation met online at the 14th International Symposium on the Maillard Reaction (IMARS-14), hosted by the authors of this introductory editorial, who are from Doha, Qatar [...].
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, Qatar University Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
21
|
Gibson GE, Feldman HH, Zhang S, Flowers SA, Luchsinger JA. Pharmacological thiamine levels as a therapeutic approach in Alzheimer's disease. Front Med (Lausanne) 2022; 9:1033272. [PMID: 36275801 PMCID: PMC9585656 DOI: 10.3389/fmed.2022.1033272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
of the study.
Collapse
Affiliation(s)
- Gary E. Gibson
- Weill Cornell Medicine, Brain and Mind Research Institute, Burke Neurological Institute, White Plains, NY, United States
| | - Howard H. Feldman
- Alzheimer's Disease Cooperative Study and Department of Neurosciences, University of California, San Diego, San Diego, CA, United States
| | - Sheng Zhang
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, United States
| | - Sarah A. Flowers
- Department of Neuroscience, Georgetown University, Washington, DC, United States
| | - José A. Luchsinger
- Departments of Medicine and Epidemiology, Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
22
|
Sroga GE, Stephen S, Wang B, Vashishth D. Techniques for advanced glycation end product measurements for diabetic bone disease: pitfalls and future directions. Curr Opin Endocrinol Diabetes Obes 2022; 29:333-342. [PMID: 35777968 PMCID: PMC9348815 DOI: 10.1097/med.0000000000000736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE OF REVIEW Multiple biochemical and biophysical approaches have been broadly used for detection and quantitation of posttranslational protein modifications associated with diabetic bone, yet these techniques present a variety of challenges. In this review, we discuss recent advancements and complementary roles of analytical (UPLC/UPLC-MS/MS and ELISA) and biophysical (Raman and FTIR) techniques used for characterization of glycation products, measured from bone matrix and serum, and provide recommendations regarding the selection of a technique for specific study of diabetic bone. RECENT FINDINGS Hyperglycemia and oxidative stress in diabetes contribute to the formation of a large subgroup of advanced glycation end products (AGEs) known as glycoxidation end products (AGOEs). AGEs/AGOEs have various adverse effects on bone health. Commonly, accumulation of AGEs/AGOEs leads to increased bone fragility. For example, recent studies show that carboxymethyllysine (CML) and pentosidine (PEN) are formed in bone at higher levels in certain diseases and metabolic conditions, in particular, in diabetes and aging. Detection and quantitation of AGEs/AGOEs in rare and/or precious samples is feasible because of a number of technological advancements of the past decade. SUMMARY Recent technological advancements have led to a significant improvement of several key analytical biochemistry and biophysics techniques used for detection and characterization of AGEs/AGOEs in bone and serum. Their principles and applications to skeletal tissue studies as well as limitations are discussed in this review.
Collapse
Affiliation(s)
- Grażyna E. Sroga
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Samuel Stephen
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Bowen Wang
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
23
|
Comprehensive profiling and kinetic studies of glycated lysine residues in human serum albumin. Anal Bioanal Chem 2022; 414:4861-4875. [PMID: 35538229 DOI: 10.1007/s00216-022-04108-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 01/09/2023]
Abstract
Lysine residues of proteins slowly react with glucose forming Amadori products. In hyperglycemic conditions, such as diabetes mellitus, this non-enzymatic glycation becomes more pervasive causing severe medical complications. The structure and conformation of a protein predisposes lysine sites to differing reactivity influenced by their steric availability and amino acid microenvironment. The goal of our study was to identify these sites in albumin and measure glycation affinities of lysine residues. We applied a bottom-up approach utilizing a combination of three LC-MS instruments: timsTOF, Orbitrap, and QTRAP. To prove applicability to samples of varying glycemic status, we compared in vitro glycated and non-glycated HSA, as well as diabetic and non-diabetic individual samples. The analysis of lysine glycation affinities based on peptide intensities provide a semi-quantitative approach, as the results depend on the mass spectrometry platform used. We found that glycation levels based on multiple reaction monitoring (MRM) quantitation better reflect individual glycemic status and that the glycation percentage for each site is in linear relation to all other sites. To develop an approach which more accurately reflects glycation affinity, we developed a kinetics model which uses results from stable isotope dilution HPLC-MRM methodology. Through glycation of albumin at different glucose concentrations, we determine the rate constants of glycation for every lysine residue by simultaneous comparative analysis.
Collapse
|
24
|
Wu Q, Liang Y, Kong Y, Zhang F, Feng Y, Ouyang Y, Wang C, Guo Z, Xiao J, Feng N. Role of glycated proteins in vivo: Enzymatic glycated proteins and non-enzymatic glycated proteins. Food Res Int 2022; 155:111099. [DOI: 10.1016/j.foodres.2022.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
25
|
Wu L, Fei W, Liu Z, Zhang L, Fang C, Lu H. Specific and Reversible Enrichment of Early-Stage Glycated Proteome Based on Thiazolidine Chemistry and Palladium-Mediated Cleavage. Anal Chem 2022; 94:5213-5220. [PMID: 35333042 DOI: 10.1021/acs.analchem.1c03648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Comprehensive analysis of protein glycation is important for better understanding of its formation mechanism and biological significance. The current preconcentration methods of glycated proteome mainly depend on the reversible combination of boronic acid and cis-dihydroxy group by pH adjustment, but it has inherent limitations (e.g., poor specificity and time-consuming). Herein, for the first time, a novel enrichment method for glycated peptides is proposed based on the reversible chemical reaction between aldehyde and 1,2-aminothiol groups, in which oxidized glycated peptides are captured onto the magnetic nanoparticles via thiazolidine chemistry and then released by palladium-mediated cleavage. The method is rapid, with excellent selectivity (even at a 1:1000 molar ratio of glycated peptides/nonglycated peptides) and high sensitivity (1 fmol/μL). As a good evidence, 1549 glycated peptides were identified from glycated human serum with 94.6% specificity, providing a powerful technique for high-throughput analysis of glycated peptides.
Collapse
Affiliation(s)
- Linlin Wu
- Shanghai Cancer Center and Department of Chemistry, Fudan University, Shanghai, 200032, People's Republic of China
| | - Weiwei Fei
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai, 200438, People's Republic of China
| | - Zhiyong Liu
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lei Zhang
- Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, People's Republic of China
| | - Caiyun Fang
- Shanghai Cancer Center and Department of Chemistry, Fudan University, Shanghai, 200032, People's Republic of China
| | - Haojie Lu
- Shanghai Cancer Center and Department of Chemistry, Fudan University, Shanghai, 200032, People's Republic of China.,Institutes of Biomedical Sciences and NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
26
|
Ban I, Sugawa H, Nagai R. Protein Modification with Ribose Generates Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine. Int J Mol Sci 2022; 23:ijms23031224. [PMID: 35163152 PMCID: PMC8835445 DOI: 10.3390/ijms23031224] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/12/2022] [Accepted: 01/19/2022] [Indexed: 12/28/2022] Open
Abstract
Advanced glycation end products (AGEs) are associated with diabetes and its complications. AGEs are formed by the non-enzymatic reactions of proteins and reducing sugars, such as glucose and ribose. Ribose is widely used in glycation research as it generates AGEs more rapidly than glucose. This study analyzed the AGE structures generated from ribose-modified protein by liquid chromatography-quadrupole time-of-flight mass spectrometry. Among these AGEs, Nδ-(5-hydro-5-methyl-4-imidazolone-2-yl)-ornithine (MG-H1) was the most abundant in ribose-glycated bovine serum albumin (ribated-BSA) among others, such as Nε-(carboxymethyl) lysine, Nε-(carboxyethyl) lysine, and Nω-(carboxymethyl) arginine. Surprisingly, MG-H1 was produced by ribated-BSA in a time-dependent manner, whereas methylglyoxal levels (MG) were under the detectable level. In addition, Trapa bispinosa Roxb. hot water extract (TBE) possesses several anti-oxidative compounds, such as ellagic acid, and has been reported to inhibit the formation of MG-H1 in vivo. Thus, we evaluated the inhibitory effects of TBE on MG-H1 formation using ribose- or MG-modified proteins. TBE inhibited MG-H1 formation in gelatin incubated with ribose and ribated-BSA, but not in MG-modified gelatin. Furthermore, MG-H1 formation was inhibited by diethylenetriaminepentaacetic acid. These results demonstrated that ribose reacts with proteins to generate Amadori compounds and form MG-H1 via oxidation.
Collapse
|
27
|
Corica D, Pepe G, Currò M, Aversa T, Tropeano A, Ientile R, Wasniewska M. Methods to investigate advanced glycation end-product and their application in clinical practice. Methods 2021; 203:90-102. [DOI: 10.1016/j.ymeth.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/01/2021] [Accepted: 12/16/2021] [Indexed: 12/15/2022] Open
|
28
|
Alhujaily M, Abbas H, Xue M, de la Fuente A, Rabbani N, Thornalley PJ. Studies of Glyoxalase 1-Linked Multidrug Resistance Reveal Glycolysis-Derived Reactive Metabolite, Methylglyoxal, Is a Common Contributor in Cancer Chemotherapy Targeting the Spliceosome. Front Oncol 2021; 11:748698. [PMID: 34790575 PMCID: PMC8591171 DOI: 10.3389/fonc.2021.748698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/06/2021] [Indexed: 12/24/2022] Open
Abstract
Background Tumor glycolysis is a target for cancer chemotherapy. Methylglyoxal (MG) is a reactive metabolite formed mainly as a by-product in anaerobic glycolysis, metabolized by glyoxalase 1 (Glo1) of the glyoxalase system. We investigated the role of MG and Glo1 in cancer chemotherapy related in multidrug resistance (MDR). Methods Human Glo1 was overexpressed in HEK293 cells and the effect on anticancer drug potency, drug-induced increase in MG and mechanism of cytotoxicity characterized. Drug-induced increased MG and the mechanisms driving it were investigated and the proteomic response to MG-induced cytotoxicity explored by high mass resolution proteomics of cytoplasmic and other subcellular protein extracts. Glo1 expression data of 1,040 human tumor cell lines and 7,489 tumors were examined for functional correlates and impact of cancer patient survival. Results Overexpression of Glo1 decreased cytotoxicity of antitumor drugs, impairing antiproliferative activity of alkylating agents, topoisomerase inhibitors, antitubulins, and antimetabolites. Antitumor drugs increased MG to cytotoxic levels which contributed to the cytotoxic, antiproliferative mechanism of action, consistent with Glo1-mediated MDR. This was linked to off-target effects of drugs on glycolysis and was potentiated in hypoxia. MG activated the intrinsic pathway of apoptosis, with decrease of mitochondrial and spliceosomal proteins. Spliceosomal proteins were targets of MG modification. Spliceosomal gene expression correlated positively with Glo1 in human tumor cell lines and tumors. In clinical chemotherapy of breast cancer, increased expression of Glo1 was associated with decreased patient survival, with hazard ratio (HR) = 1.82 (logrank p < 0.001, n = 683) where upper quartile survival of patients was decreased by 64% with high Glo1 expression. Conclusions We conclude that MG-mediated cytotoxicity contributes to the cancer chemotherapeutic response and targets the spliceosome. High expression of Glo1 contributes to multidrug resistance by shielding the spliceosome from MG modification and decreasing survival in the chemotherapy of breast cancer. Adjunct chemotherapy with Glo1 inhibitor may improve treatment outcomes.
Collapse
Affiliation(s)
- Muhanad Alhujaily
- College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia.,Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, United Kingdom
| | - Hafsa Abbas
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, United Kingdom
| | - Mingzhan Xue
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, United Kingdom.,Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Alberto de la Fuente
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical & Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Paul J Thornalley
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, United Kingdom.,Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
29
|
Glycyrrhizic Acid Scavenges Reactive Carbonyl Species and Attenuates Glycation-Induced Multiple Protein Modification: An In Vitro and In Silico Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7086951. [PMID: 34712386 PMCID: PMC8548169 DOI: 10.1155/2021/7086951] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/11/2021] [Accepted: 09/18/2021] [Indexed: 12/05/2022]
Abstract
The current study is aimed at studying the inhibitory effect of glycyrrhizic acid (GA) on D-ribose-mediated protein glycation via various physicochemical analyses and in silico approaches. Being a potent free radical scavenger and a triterpenoid saponin, GA plays a vital role in diminishing the oxidative stress and thus could be an effective inhibitor of the nonenzymatic glycation process. Our data showed that varying concentrations of GA inhibited the in vitro BSA-AGEs via inhibiting the formation of fructosamines, fluorescent AGEs, scavenging protein carbonyl and hydroxymethyl furfural (HMF) content, and protection against D-ribose-induced modification of BSA as evident by increased free Arg and Lys residues in GA-treated Gly-BSA samples. Moreover, GA also attenuated D-ribose-induced alterations in the secondary structure of BSA by protecting the α-helix and β-sheet conformers and amide-I band delocalization. In addition, GA attenuated the modification in β-cross amyloid structures of BSA and in silico molecular interaction study too showed strong binding of GA with higher number of Lys and Arg residues of BSA and binding energy (ΔG) of -8.8 Kcal/mol, when compared either to reference standard aminoguanidine (AG)-BSA complex (ΔG: -4.3 Kcal/mol) or D-ribose-BSA complex (ΔG: -5.2 Kcal/mol). Therefore, GA could be a new and favorable inhibitor of the nonenzymatic glycation process that ameliorates AGEs-related complications via attenuating the AGE formation and glycation-induced multiple protein modifications with a reduced risk of adverse effects on protein structure and functionality; hence, it could be investigated at further preclinical settings for the treatment and management of diabetes and age-associated complications.
Collapse
|
30
|
Heo CE, Kim M, Son MK, Hyun DG, Heo SW, Kim HI. Ion Mobility Mass Spectrometry Analysis of Oxygen Affinity-Associated Structural Changes in Hemoglobin. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:2528-2535. [PMID: 34463503 DOI: 10.1021/jasms.1c00161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hemoglobin (Hb) is a major oxygen-transporting protein with allosteric properties reflected in the structural changes that accompany binding of O2. Glycated hemoglobin (GHb), which is a minor component of human red cell hemolysate, is generated by a nonenzymatic reaction between glucose and hemoglobin. Due to the long lifetime of human erythrocytes (∼120 days), GHb is widely used as a reliable biomarker for monitoring long-term glucose control in diabetic patients. Although the structure of GHb differs from that of Hb, structural changes relating to the oxygen affinity of these proteins remain incompletely understood. In this study, the oxygen-binding kinetics of Hb and GHb are evaluated, and their structural dynamics are investigated using solution small-angle X-ray scattering (SAXS), electrospray ionization mass spectrometry equipped with ion mobility spectrometry (ESI-IM-MS), and molecular dynamic (MD) simulations to understand the impact of structural alteration on their oxygen-binding properties. Our results show that the oxygen-binding kinetics of GHb are diminished relative to those of Hb. ESI-IM-MS reveals structural differences between Hb and GHb, which indicate the preference of GHb for a more compact structure in the gas phase relative to Hb. MD simulations also reveal an enhancement of intramolecular interactions upon glycation of Hb. Therefore, the more rigid structure of GHb makes the conformational changes that facilitate oxygen capture more difficult creating a delay in the oxygen-binding process. Our multiple biophysical approaches provide a better understanding of the allosteric properties of hemoglobin that are reflected in the structural alterations accompanying oxygen binding.
Collapse
Affiliation(s)
- Chae Eun Heo
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Minji Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Myung Kook Son
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Da Gyeong Hyun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| | - Sung Woo Heo
- Inorganic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Hugh I Kim
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
- Center for Proteogenome Research, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
31
|
Sun B. The mechanics of fibrillar collagen extracellular matrix. CELL REPORTS. PHYSICAL SCIENCE 2021; 2:100515. [PMID: 34485951 PMCID: PMC8415638 DOI: 10.1016/j.xcrp.2021.100515] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
As a major component of the human body, the extracellular matrix (ECM) is a complex biopolymer network. The ECM not only hosts a plethora of biochemical interactions but also defines the physical microenvironment of cells. The physical properties of the ECM, such as its geometry and mechanics, are critical to physiological processes and diseases such as morphogenesis, wound healing, and cancer. This review provides a brief introduction to the recent progress in understanding the mechanics of ECM for researchers who are interested in learning about this relatively new subject of biophysics. This review covers the mechanics of a single ECM fiber (nanometer scale), the micromechanics of ECM (micrometer scale), and bulk rheology (greater than millimeter scale). Representative experimental measurements and basic theoretical models are introduced side by side. After discussing the physics of ECM mechanics, the review concludes by commenting on the role of ECM mechanics in healthy and tumorigenic tissues and the open questions that call for future studies at the interface of fundamental physics, engineering, and medical sciences.
Collapse
Affiliation(s)
- Bo Sun
- Department of Physics, Oregon State University, Corvallis, OR 97331, USA
- Correspondence:
| |
Collapse
|
32
|
Aleks S, Shawn C, Randie L, Kuanysh K. Quantitation of glycated albumin by isotope dilution mass spectrometry. Clin Chim Acta 2021; 521:215-222. [PMID: 34310934 DOI: 10.1016/j.cca.2021.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Glycated albumin is considered an alternative glycemic indicator in certain situations where HbA1c does not accurately reflect glycemic status. These patient cases are usually associated with decreased erythrocyte lifespan, gestational diabetes, or end-stage renal disease. The aim of our study was to develop an assay for absolute quantitation of glycated albumin based on isotope dilution liquid chromatography-mass spectrometry. METHODS The plasma samples were reduced/alkylated, spiked with isotope-labeled standards RQIKKQTALV(D8)E and RQIKK(fructosyl)QTALV(D8)E and enzymatically digested by Glu-C. The samples were analyzed on an LC-MS system. Two MRM transitions (M3+ → (b9-3H2O)2+ and M3+ → (b10-3H2O)2+ or M3+ → b92+ and M3+ → b102+) were used for each peptide, then the percentage of glycation (MS GA%) was calculated. RESULTS The comparison study demonstrated a good linear correlation between our LC-MS/MS and Lucica method with r2 = 0.95. The intra-day CV for the low HbA1c sample was 2.2%, while CV for the high HbA1c sample was 0.64%. Inter-day CV for low HbA1c sample was 5.6%, while the CV for the high HbA1c sample was 5.7%. We found the LLOQ to be 0.12 nmol/ml for the non-glycated and glycated peptide. No interference from hemoglobin was observed up to 500 mg/dL concentration. CONCLUSIONS This is the first implementation of isotope dilution LC-MS assay for glycated albumin with simultaneously quantitation of glycated and non-glycated peptides. The method includes a simple sample preparation and has demonstrated a good analytical performance.
Collapse
Affiliation(s)
- Shin Aleks
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Connolly Shawn
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Little Randie
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, USA
| | - Kabytaev Kuanysh
- Department of Pathology & Anatomical Sciences, School of Medicine, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
33
|
Metabolic Rewiring and the Characterization of Oncometabolites. Cancers (Basel) 2021; 13:cancers13122900. [PMID: 34200553 PMCID: PMC8229816 DOI: 10.3390/cancers13122900] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Oncometabolites are produced by cancer cells and assist the cancer to proliferate and progress. Oncometabolites occur as a result of mutated enzymes in the tumor tissue or due to hypoxia. These processes result in either the abnormal buildup of a normal metabolite or the accumulation of an unusual metabolite. Definition of the metabolic changes that occur due to these processes has been accomplished using metabolomics, which mainly uses mass spectrometry platforms to define the content of small metabolites that occur in cells, tissues, organs and organisms. The four classical oncometabolites are fumarate, succinate, (2R)-hydroxyglutarate and (2S)-hydroxyglutarate, which operate by inhibiting 2-oxoglutarate-dependent enzyme reactions that principally regulate gene expression and response to hypoxia. Metabolomics has also revealed several putative oncometabolites that include lactate, kynurenine, methylglyoxal, sarcosine, glycine, hypotaurine and (2R,3S)-dihydroxybutanoate. Metabolomics will continue to be critical for understanding the metabolic rewiring involving oncometabolite production that underpins many cancer phenotypes. Abstract The study of low-molecular-weight metabolites that exist in cells and organisms is known as metabolomics and is often conducted using mass spectrometry laboratory platforms. Definition of oncometabolites in the context of the metabolic phenotype of cancer cells has been accomplished through metabolomics. Oncometabolites result from mutations in cancer cell genes or from hypoxia-driven enzyme promiscuity. As a result, normal metabolites accumulate in cancer cells to unusually high concentrations or, alternatively, unusual metabolites are produced. The typical oncometabolites fumarate, succinate, (2R)-hydroxyglutarate and (2S)-hydroxyglutarate inhibit 2-oxoglutarate-dependent dioxygenases, such as histone demethylases and HIF prolyl-4-hydroxylases, together with DNA cytosine demethylases. As a result of the cancer cell acquiring this new metabolic phenotype, major changes in gene transcription occur and the modification of the epigenetic landscape of the cell promotes proliferation and progression of cancers. Stabilization of HIF1α through inhibition of HIF prolyl-4-hydroxylases by oncometabolites such as fumarate and succinate leads to a pseudohypoxic state that promotes inflammation, angiogenesis and metastasis. Metabolomics has additionally been employed to define the metabolic phenotype of cancer cells and patient biofluids in the search for cancer biomarkers. These efforts have led to the uncovering of the putative oncometabolites sarcosine, glycine, lactate, kynurenine, methylglyoxal, hypotaurine and (2R,3S)-dihydroxybutanoate, for which further research is required.
Collapse
|
34
|
Dicarbonyl stress, protein glycation and the unfolded protein response. Glycoconj J 2021; 38:331-340. [PMID: 33644826 PMCID: PMC8116241 DOI: 10.1007/s10719-021-09980-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 01/26/2021] [Accepted: 02/10/2021] [Indexed: 12/22/2022]
Abstract
The reactive dicarbonyl metabolite, methylglyoxal (MG), is increased in obesity and diabetes and is implicated in the development of insulin resistance, type 2 diabetes mellitus and vascular complications of diabetes. Dicarbonyl stress is the metabolic state of abnormal high MG concentration. MG is an arginine-directed glycating agent and precursor of the major advanced glycation endproduct, arginine-derived hydroimidazolone MG-H1. MG-H1 is often formed on protein surfaces and an uncharged hydrophobic residue, inducing protein structural distortion and misfolding. Recent studies indicate that dicarbonyl stress in human endothelial cells and fibroblasts in vitro induced a proteomic response consistent with activation of the unfolded protein response (UPR). The response included: increased abundance of heat shock proteins and ubiquitin ligases catalysing the removal of proteins with unshielded surface hydrophobic patches and formation of polyubiquitinated chains to encapsulate misfolded proteins; and increased low grade inflammation. Activation of the UPR is implicated in insulin resistance. An effective strategy to counter increased MG is inducing increased expression of glyoxalase-1 (Glo1). An optimized inducer of Glo1 expression, trans-resveratrol and hesperetin combination, normalized increased MG concentration, corrected insulin resistance and decreased low grade inflammation in overweight and obese subjects. We propose that dicarbonyl stress, through increased formation of MG-glycated proteins, may be an important physiological stimulus of the UPR and Glo1 inducers may provide a route to effective suppression and therapy. With further investigation and validation, this may provide key new insight into physiological activators of the UPR and association with dicarbonyl stress.
Collapse
|
35
|
Rehman S, Alouffi S, Faisal M, Qahtan AA, Alatar AA, Ahmad S. Methylglyoxal mediated glycation leads to neo-epitopes generation in fibrinogen: Role in the induction of adaptive immune response. Int J Biol Macromol 2021; 175:535-543. [PMID: 33529635 DOI: 10.1016/j.ijbiomac.2021.01.197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/12/2023]
Abstract
In diabetes mellitus, hyperglycemia mediated non-enzymatic glycosylation of proteins results in the pathogenesis of diabetes-associated secondary complications via the generation of advanced glycation end products (AGEs). The focus of this study is to reveal the immunological aspects of methylglyoxal (MG) mediated glycation of fibrinogen protein. The induced immunogenicity of modified fibrinogen is analyzed by direct binding and inhibition ELISA. Direct binding ELISA confirmed that MG glycated fibrinogen (MG-Fib) is highly immunogenic and induces a high titer of antibodies in comparison to its native analog. Cross-reactivity and antigen-binding specificity of induced antibodies were confirmed by inhibition ELISA. The enhanced affinity of immunoglobulin G (IgG) from immunized rabbits' sera and MG glycated fibrinogen is probably the aftermath of neo-epitopes generation in the native structure of protein upon modification. Thus, we deduce that under the glycative stress, MG-mediated structural alterations in fibrinogen could induce the generation of antibodies which might serve as a potential biomarker in diabetes mellitus and its associated secondary disorders.
Collapse
Affiliation(s)
- Shahnawaz Rehman
- IIRC-1, Laboratory of Glycation Biology and Metabolic Disorder, Integral University, Lucknow, Uttar Prade sh-226026, India
| | - Sultan Alouffi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia; Molecular Diagnostic & Personalized Therapeutic Unit, University of Hail, Saudi Arabia
| | - Mohammad Faisal
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed A Qahtan
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman A Alatar
- Department of Botany and Microbiology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saheem Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hail, Saudi Arabia.
| |
Collapse
|
36
|
The effects of fermentation with lactic acid bacteria on the antioxidant and anti-glycation properties of edible cyanobacteria and microalgae. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
37
|
Dicarbonyl derived post-translational modifications: chemistry bridging biology and aging-related disease. Essays Biochem 2020; 64:97-110. [PMID: 31939602 DOI: 10.1042/ebc20190057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 01/17/2023]
Abstract
In living systems, nucleophilic amino acid residues are prone to non-enzymatic post-translational modification by electrophiles. α-Dicarbonyl compounds are a special type of electrophiles that can react irreversibly with lysine, arginine, and cysteine residues via complex mechanisms to form post-translational modifications known as advanced glycation end-products (AGEs). Glyoxal, methylglyoxal, and 3-deoxyglucosone are the major endogenous dicarbonyls, with methylglyoxal being the most well-studied. There are several routes that lead to the formation of dicarbonyl compounds, most originating from glucose and glucose metabolism, such as the non-enzymatic decomposition of glycolytic intermediates and fructosyl amines. Although dicarbonyls are removed continuously mainly via the glyoxalase system, several conditions lead to an increase in dicarbonyl concentration and thereby AGE formation. AGEs have been implicated in diabetes and aging-related diseases, and for this reason the elucidation of their structure as well as protein targets is of great interest. Though the dicarbonyls and reactive protein side chains are of relatively simple nature, the structures of the adducts as well as their mechanism of formation are not that trivial. Furthermore, detection of sites of modification can be demanding and current best practices rely on either direct mass spectrometry or various methods of enrichment based on antibodies or click chemistry followed by mass spectrometry. Future research into the structure of these adducts and protein targets of dicarbonyl compounds may improve the understanding of how the mechanisms of diabetes and aging-related physiological damage occur.
Collapse
|
38
|
Al-Motawa MS, Abbas H, Wijten P, de la Fuente A, Xue M, Rabbani N, Thornalley PJ. Vulnerabilities of the SARS-CoV-2 Virus to Proteotoxicity-Opportunity for Repurposed Chemotherapy of COVID-19 Infection. Front Pharmacol 2020; 11:585408. [PMID: 33162891 PMCID: PMC7581855 DOI: 10.3389/fphar.2020.585408] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/14/2020] [Indexed: 01/06/2023] Open
Abstract
The global pandemic of COVID-19 disease caused by infection with the SARS-CoV-2 coronavirus, has produced an urgent requirement and search for improved treatments while effective vaccines are developed. A strategy for improved drug therapy is to increase levels of endogenous reactive metabolites for selective toxicity to SARS-CoV-2 by preferential damage to the viral proteome. Key reactive metabolites producing major quantitative damage to the proteome in physiological systems are: reactive oxygen species (ROS) and the reactive glycating agent methylglyoxal (MG); cysteine residues and arginine residues are their most susceptible targets, respectively. From sequenced-based prediction of the SARS-CoV-2 proteome, we found 0.8-fold enrichment or depletion of cysteine residues in functional domains of the viral proteome; whereas there was a 4.6-fold enrichment of arginine residues, suggesting SARS-CoV-2 is resistant to oxidative agents and sensitive to MG. For arginine residues of the SARS-CoV-2 coronavirus predicted to be in functional domains, we examined which are activated toward modification by MG - residues with predicted or expected low pKa by neighboring group in interactions. We found 25 such arginine residues, including 2 in the spike protein and 10 in the nucleoprotein. These sites were partially conserved in related coronaviridae: SARS-CoV and MERS. Finally, we identified drugs which increase cellular MG concentration to virucidal levels: antitumor drugs with historical antiviral activity, doxorubicin and paclitaxel. Our findings provide evidence of potential vulnerability of SARS-CoV-2 to inactivation by MG and a scientific rationale for repurposing of doxorubicin and paclitaxel for treatment of COVID-19 disease, providing efficacy and adequate therapeutic index may be established.
Collapse
Affiliation(s)
- Maryam S. Al-Motawa
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Hafsa Abbas
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, United Kingdom
| | - Patrick Wijten
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Alberto de la Fuente
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Mingzhan Xue
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, United Kingdom
| | - Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Paul J. Thornalley
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, United Kingdom
| |
Collapse
|
39
|
Ashour A, Xue M, Al-Motawa M, Thornalley PJ, Rabbani N. Glycolytic overload-driven dysfunction of periodontal ligament fibroblasts in high glucose concentration, corrected by glyoxalase 1 inducer. BMJ Open Diabetes Res Care 2020; 8:8/2/e001458. [PMID: 33115819 PMCID: PMC7594206 DOI: 10.1136/bmjdrc-2020-001458] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 09/23/2020] [Accepted: 09/26/2020] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Patients with diabetes have increased risk of periodontal disease, with increased risk of weakening of periodontal ligament and tooth loss. Periodontal ligament is produced and maintained by periodontal ligament fibroblasts (PDLFs). We hypothesized that metabolic dysfunction of PDLFs in hyperglycemia produces an accumulation of the reactive glycating agent, methylglyoxal (MG), leading to increased formation of the major advanced glycation endproduct, MG-H1 and PDLF dysfunction. The aim of this study was to assess if there is dicarbonyl stress and functional impairment of human PDLFs in primary culture in high glucose concentration-a model of hyperglycemia, to characterize the metabolic drivers of it and explore remedial intervention by the glyoxalase 1 inducer dietary supplement, trans-resveratrol and hesperetin combination (tRES-HESP). RESEARCH DESIGN AND METHODS Human PDLFs were incubated in low and high glucose concentration in vitro. Metabolic and enzymatic markers of MG and glucose control were quantified and related changes in the cytoplasmic proteome and cell function-binding to collagen-I, assessed. Reversal of PDLF dysfunction by tRES-HESP was explored. RESULTS In high glucose concentration cultures, there was a ca. twofold increase in cellular MG, cellular protein MG-H1 content and decreased attachment of PDLFs to collagen-I. This was driven by increased hexokinase-2 linked glucose metabolism and related increased MG formation. Proteomics analysis revealed increased abundance of chaperonins, heat shock proteins (HSPs), Golgi-to-endoplasmic reticulum transport and ubiquitin E3 ligases involved in misfolded protein degradation in high glucose concentration, consistent with activation of the unfolded protein response by increased misfolded MG-modified proteins. PDLF dysfunction was corrected by tRES-HESP. CONCLUSIONS Increased hexokinase-2 linked glucose metabolism produces dicarbonyl stress, increased MG-modified protein, activation of the unfolded protein response and functional impairment of PDLFs in high glucose concentration. tRES-HESP resolves this at source by correcting increased glucose metabolism and may be of benefit in prevention of diabetic periodontal disease.
Collapse
Affiliation(s)
- Amal Ashour
- Speciality Clinics, University Dental Hospital, Taif Dental College, Taif University, Taif, Saudi Arabia
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, UK
| | - Mingzhan Xue
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Maryam Al-Motawa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Paul J Thornalley
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry, UK
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
40
|
Stolz A, Hedeland Y, Salzer L, Römer J, Heiene R, Leclercq L, Cottet H, Bergquist J, Neusüß C. Capillary Zone Electrophoresis-Top-Down Tandem Mass Spectrometry for In-Depth Characterization of Hemoglobin Proteoforms in Clinical and Veterinary Samples. Anal Chem 2020; 92:10531-10539. [PMID: 32628011 DOI: 10.1021/acs.analchem.0c01350] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hemoglobin (Hb) constitutes an important protein in clinical diagnostics-both in humans and animals. Among the high number of sequence variants, some can cause severe diseases. Moreover, chemical modifications such as glycation and carbamylation serve as important biomarkers for conditions such as diabetes and kidney diseases. In clinical routine analysis of glycated Hb, sequence variants or other Hb proteoforms can cause interference, resulting in wrong quantification results. We present a versatile and flexible capillary zone electrophoresis-mass spectrometry screening method for Hb proteoforms including sequence variants and modified species extracted from dried blood spot (DBS) samples with virtually no sample preparation. High separation power was achieved by application of a 5-layers successive multiple ionic polymer layers-coated capillary, enabling separation of positional isomers of glycated α- and β-chains on the intact level. Quantification of glycated Hb was in good correlation with the results obtained in a clinical routine method. Identification and characterization of known and unknown proteoforms was performed by fragmentation of intact precursor ions. N-Terminal and lysine glycation could be identified on the α- and β-chain, respectively. The versatility of the method was demonstrated by application to dog and cat DBS samples. We discovered a putative new sequence variant of the β-chain in dog (T38 → A). The presented method enables separation, characterization, and quantification of intact proteoforms, including positional isomers of glycated species in a single run. Combined with the simple sample preparation, our method represents a valuable tool to be used for deeper characterization of clinical and veterinary samples.
Collapse
Affiliation(s)
- Alexander Stolz
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430 Aalen, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Ylva Hedeland
- Department of Medical Sciences, Clinical Chemistry, , Uppsala University Hospital, SE-751 24 Uppsala, Sweden
| | - Liesa Salzer
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430 Aalen, Germany
| | - Jennifer Römer
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430 Aalen, Germany.,Institute of Analytical Chemistry, Chemo-and Biosensors,University of Regensburg, 93053 Regensburg, Germany
| | | | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, Beethovenstraße 1, 34090 Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, Beethovenstraße 1, 34090 Montpellier, France
| | - Jonas Bergquist
- Department of Chemistry -Biomedical Center, Analytical Chemistry, Uppsala University, SE-751 24 Uppsala, Sweden
| | - Christian Neusüß
- Department of Chemistry, Aalen University, Beethovenstraße 1, 73430 Aalen, Germany
| |
Collapse
|
41
|
Gahoual R, Bolbach G, Ould-Melha I, Clodic G, François YN, Scherman D, Mignet N, Houzé P. Kinetic and structural characterization of therapeutic albumin chemical functionalization using complementary mass spectrometry techniques. J Pharm Biomed Anal 2020; 185:113242. [DOI: 10.1016/j.jpba.2020.113242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 01/06/2023]
|
42
|
Nabi R, Alvi SS, Shah MS, Ahmad S, Faisal M, Alatar AA, Khan MS. A biochemical & biophysical study on in-vitro anti-glycating potential of iridin against d-Ribose modified BSA. Arch Biochem Biophys 2020; 686:108373. [DOI: 10.1016/j.abb.2020.108373] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 12/15/2022]
|
43
|
Rabbani N, Al-Motawa M, Thornalley PJ. Protein Glycation in Plants-An Under-Researched Field with Much Still to Discover. Int J Mol Sci 2020; 21:ijms21113942. [PMID: 32486308 PMCID: PMC7312737 DOI: 10.3390/ijms21113942] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/27/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022] Open
Abstract
Recent research has identified glycation as a non-enzymatic post-translational modification of proteins in plants with a potential contributory role to the functional impairment of the plant proteome. Reducing sugars with a free aldehyde or ketone group such as glucose, fructose and galactose react with the N-terminal and lysine side chain amino groups of proteins. A common early-stage glycation adduct formed from glucose is Nε-fructosyl-lysine (FL). Saccharide-derived reactive dicarbonyls are arginine residue-directed glycating agents, forming advanced glycation endproducts (AGEs). A dominant dicarbonyl is methylglyoxal—formed mainly by the trace-level degradation of triosephosphates, including through the Calvin cycle of photosynthesis. Methylglyoxal forms the major quantitative AGE, hydroimidazolone MG-H1. Glucose and methylglyoxal concentrations in plants change with the developmental stage, senescence, light and dark cycles and also likely biotic and abiotic stresses. Proteomics analysis indicates that there is an enrichment of the amino acid residue targets of glycation, arginine and lysine residues, in predicted functional sites of the plant proteome, suggesting the susceptibility of proteins to functional inactivation by glycation. In this review, we give a brief introduction to glycation, glycating agents and glycation adducts in plants. We consider dicarbonyl stress, the functional vulnerability of the plant proteome to arginine-directed glycation and the likely role of methylglyoxal-mediated glycation in the activation of the unfolded protein response in plants. The latter is linked to the recent suggestion of protein glycation in sugar signaling in plant metabolism. The overexpression of glyoxalase 1, which suppresses glycation by methylglyoxal and glyoxal, produced plants resistant to high salinity, drought, extreme temperature and other stresses. Further research to decrease protein glycation in plants may lead to improved plant growth and assist the breeding of plant varieties resistant to environmental stress and senescence—including plants of commercial ornamental and crop cultivation value.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| | - Maryam Al-Motawa
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Paul J. Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar;
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Correspondence: (N.R.); (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.)
| |
Collapse
|
44
|
O’Grady KL, Khosla S, Farr JN, Bondar OP, Atkinson EJ, Achenbach SJ, Eckhardt BA, Thicke BS, Tweed AJ, Volkman TL, Drake MT, Hines JM, Singh RJ. Development and Application of Mass Spectroscopy Assays for Nε-(1-Carboxymethyl)-L-Lysine and Pentosidine in Renal Failure and Diabetes. J Appl Lab Med 2020; 5:558-568. [PMID: 32445362 PMCID: PMC7192546 DOI: 10.1093/jalm/jfaa023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/19/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Advanced glycation end products (AGEs) are formed via the nonenzymatic glycation of sugars with amino acids. Two AGEs, Nε-(1-carboxymethyl)-L-Lysine (CML) and pentosidine, have been observed to be elevated in subjects suffering from a multitude of chronic disease states, and accumulation of these compounds may be related to the pathophysiology of disease progression and aging. METHODS We describe here the development and validation of a specific and reproducible LC-MS/MS method to quantify CML and pentosidine in human serum with lower limits of quantitation of 75 ng/mL and 5 ng/mL, respectively. The analyte calibration curve exhibited excellent linearity at a range of 0-10 900 ng/mL for CML and 0-800 ng/mL for pentosidine. High-low linearity of 5 serum pairs was assessed, with a mean recovery of 103% (range 94-116%) for CML, and 104% (range 97-116%) for pentosidine. RESULTS Serum concentrations of CML and pentosidine were quantified in 30 control and 30 subjects with chronic renal insufficiency. A significant increase in both analytes was observed in renal failure compared to control subjects (2.1-fold and 8.4-fold, respectively; P < 0.001 for both). In a separate cohort of 49 control versus 95 subjects with type 2 diabetes mellitus (T2DM), serum CML but not serum pentosidine, was significantly elevated in the T2DM patients, and CML was also correlated with glycemic control, as assessed by hemoglobin A1c (r = 0.34, P < 0.001). CONCLUSIONS These mass spectroscopy-based assays for serum CML and pentosidine should be useful in accurately evaluating circulating levels of these key AGEs in various disease states.
Collapse
Affiliation(s)
| | - Sundeep Khosla
- Mayo Clinic College of Medicine, Rochester, MN
- Address correspondence to: S.K. at College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. Fax: 507-293-3853; e-mail . R.J.S. at College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. Fax 507-293-3853; e-mail
| | | | | | | | | | | | | | | | | | | | | | - Ravinder J Singh
- Mayo Clinic College of Medicine, Rochester, MN
- Address correspondence to: S.K. at College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. Fax: 507-293-3853; e-mail . R.J.S. at College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905. Fax 507-293-3853; e-mail
| |
Collapse
|
45
|
Nandi SK, Nahomi RB, Rankenberg J, Glomb MA, Nagaraj RH. Glycation-mediated inter-protein cross-linking is promoted by chaperone-client complexes of α-crystallin: Implications for lens aging and presbyopia. J Biol Chem 2020; 295:5701-5716. [PMID: 32184356 PMCID: PMC7186181 DOI: 10.1074/jbc.ra120.012604] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/12/2020] [Indexed: 12/16/2022] Open
Abstract
Lens proteins become increasingly cross-linked through nondisulfide linkages during aging and cataract formation. One mechanism that has been implicated in this cross-linking is glycation through formation of advanced glycation end products (AGEs). Here, we found an age-associated increase in stiffness in human lenses that was directly correlated with levels of protein-cross-linking AGEs. α-Crystallin in the lens binds to other proteins and prevents their denaturation and aggregation through its chaperone-like activity. Using a FRET-based assay, we examined the stability of the αA-crystallin-γD-crystallin complex for up to 12 days and observed that this complex is stable in PBS and upon incubation with human lens-epithelial cell lysate or lens homogenate. Addition of 2 mm ATP to the lysate or homogenate did not decrease the stability of the complex. We also generated complexes of human αA-crystallin or αB-crystallin with alcohol dehydrogenase or citrate synthase by applying thermal stress. Upon glycation under physiological conditions, the chaperone-client complexes underwent greater extents of cross-linking than did uncomplexed protein mixtures. LC-MS/MS analyses revealed that the levels of cross-linking AGEs were significantly higher in the glycated chaperone-client complexes than in glycated but uncomplexed protein mixtures. Mouse lenses subjected to thermal stress followed by glycation lost resilience more extensively than lenses subjected to thermal stress or glycation alone, and this loss was accompanied by higher protein cross-linking and higher cross-linking AGE levels. These results uncover a protein cross-linking mechanism in the lens and suggest that AGE-mediated cross-linking of α-crystallin-client complexes could contribute to lens aging and presbyopia.
Collapse
Affiliation(s)
- Sandip K Nandi
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Rooban B Nahomi
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Johanna Rankenberg
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado 80045
| | - Marcus A Glomb
- Institute of Chemistry-Food Chemistry, Martin-Luther-University Halle-Wittenberg, 06120 Halle/Saale, Germany
| | - Ram H Nagaraj
- Sue Anschutz-Rodgers Eye Center and Department of Ophthalmology, School of Medicine, University of Colorado, Aurora, Colorado 80045; Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Aurora, Colorado 80045.
| |
Collapse
|
46
|
Bansode S, Bashtanova U, Li R, Clark J, Müller KH, Puszkarska A, Goldberga I, Chetwood HH, Reid DG, Colwell LJ, Skepper JN, Shanahan CM, Schitter G, Mesquida P, Duer MJ. Glycation changes molecular organization and charge distribution in type I collagen fibrils. Sci Rep 2020; 10:3397. [PMID: 32099005 PMCID: PMC7042214 DOI: 10.1038/s41598-020-60250-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/27/2020] [Indexed: 02/06/2023] Open
Abstract
Collagen fibrils are central to the molecular organization of the extracellular matrix (ECM) and to defining the cellular microenvironment. Glycation of collagen fibrils is known to impact on cell adhesion and migration in the context of cancer and in model studies, glycation of collagen molecules has been shown to affect the binding of other ECM components to collagen. Here we use TEM to show that ribose-5-phosphate (R5P) glycation of collagen fibrils - potentially important in the microenvironment of actively dividing cells, such as cancer cells - disrupts the longitudinal ordering of the molecules in collagen fibrils and, using KFM and FLiM, that R5P-glycated collagen fibrils have a more negative surface charge than unglycated fibrils. Altered molecular arrangement can be expected to impact on the accessibility of cell adhesion sites and altered fibril surface charge on the integrity of the extracellular matrix structure surrounding glycated collagen fibrils. Both effects are highly relevant for cell adhesion and migration within the tumour microenvironment.
Collapse
Affiliation(s)
- Sneha Bansode
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Uliana Bashtanova
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Rui Li
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | - Karin H Müller
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Anna Puszkarska
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ieva Goldberga
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Holly H Chetwood
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - David G Reid
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Lucy J Colwell
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Jeremy N Skepper
- Cambridge Advanced Imaging Centre, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Catherine M Shanahan
- BHF Centre of Research Excellence, Cardiovascular Division, James Black Centre King's College London, 125 Coldharbour Lane, London, SE5 9NU, UK
| | - Georg Schitter
- Automation and Control Institute (ACIN), TU Wien, Gusshausstrasse 27-29, A-1040, Vienna, Austria
| | - Patrick Mesquida
- Automation and Control Institute (ACIN), TU Wien, Gusshausstrasse 27-29, A-1040, Vienna, Austria.
- Department of Physics, King's College London, Strand, London, WC2R 2LS, UK.
| | - Melinda J Duer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
47
|
Keating CL, Kuhn E, Bals J, Cocco AR, Yousif AS, Matysiak C, Sangesland M, Ronsard L, Smoot M, Moreno TB, Okonkwo V, Setliff I, Georgiev I, Balazs AB, Carr SA, Lingwood D. Spontaneous Glycan Reattachment Following N-Glycanase Treatment of Influenza and HIV Vaccine Antigens. J Proteome Res 2020; 19:733-743. [PMID: 31913636 DOI: 10.1021/acs.jproteome.9b00620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In cells, asparagine/N-linked glycans are added to glycoproteins cotranslationally, in an attachment process that supports proper folding of the nascent polypeptide. We found that following pruning of N-glycan by the amidase PNGase F, the principal influenza vaccine antigen and major viral spike protein hemagglutinin (HA) spontaneously reattached N-glycan to its de-N-glycosylated positions when the amidase was removed from solution. This reaction, which we term N-glycanation, was confirmed by site-specific analysis of HA glycoforms by mass spectrometry prior to PNGase F exposure, during exposure to PNGase F, and after amidase removal. Iterative rounds of de-N-glycosylation followed by N-glycanation could be repeated at least three times and were observed for other viral glycoproteins/vaccine antigens, including the envelope glycoprotein (Env) from HIV. Covalent N-glycan reattachment was nonenzymatic as it occurred in the presence of metal ions that inhibit PNGase F activity. Rather, N-glycanation relied on a noncovalent assembly between protein and glycan, formed in the presence of the amidase, where linearization of the glycoprotein prevented this retention and subsequent N-glycanation. This reaction suggests that under certain experimental conditions, some glycoproteins can organize self-glycan addition, highlighting a remarkable self-assembly principle that may prove useful for re-engineering therapeutic glycoproteins such as influenza HA or HIV Env, where glycan sequence and structure can markedly affect bioactivity and vaccine efficacy.
Collapse
Affiliation(s)
- Celina L Keating
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Eric Kuhn
- The Broad Institute of The Massachusetts Institute of Technology and Harvard University , 415 Main Street , Cambridge , Massachusetts 02142 , United States of America
| | - Julia Bals
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Alexandra R Cocco
- The Broad Institute of The Massachusetts Institute of Technology and Harvard University , 415 Main Street , Cambridge , Massachusetts 02142 , United States of America
| | - Ashraf S Yousif
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Colette Matysiak
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Maya Sangesland
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Larance Ronsard
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Matthew Smoot
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Thalia Bracamonte Moreno
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Vintus Okonkwo
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Ian Setliff
- Program in Chemical & Physical Biology , Vanderbilt University Medical Center , 340 Light Hall , Nashville 37232-0301 , United States of America.,Vanderbilt Vaccine Center , Vanderbilt University , 2213 Garland Avenue , Nashville , Tennessee 37232-0417 , United States of America
| | - Ivelin Georgiev
- Program in Chemical & Physical Biology , Vanderbilt University Medical Center , 340 Light Hall , Nashville 37232-0301 , United States of America.,Vanderbilt Vaccine Center , Vanderbilt University , 2213 Garland Avenue , Nashville , Tennessee 37232-0417 , United States of America.,Department of Pathology, Microbiology, and Immunology , Vanderbilt University Medical Center , C-3322 Medical Center North , Nashville , Tennessee 37232-2561 , United States of America.,Department of Electrical Engineering and Computer Science , Vanderbilt University , 2301 Vanderbilt Place , Nashville , Tennessee 37235-1826 , United States of America
| | - Alejandro B Balazs
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| | - Steven A Carr
- The Broad Institute of The Massachusetts Institute of Technology and Harvard University , 415 Main Street , Cambridge , Massachusetts 02142 , United States of America
| | - Daniel Lingwood
- The Ragon Institute of Massachusetts General Hospital , The Massachusetts Institute of Technology and Harvard University , 400 Technology Square , Cambridge , Massachusetts 02139 , United States of America
| |
Collapse
|
48
|
Polykretis P, Luchinat E, Boscaro F, Banci L. Methylglyoxal interaction with superoxide dismutase 1. Redox Biol 2020; 30:101421. [PMID: 31931282 PMCID: PMC6957824 DOI: 10.1016/j.redox.2019.101421] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/13/2019] [Accepted: 12/29/2019] [Indexed: 01/08/2023] Open
Abstract
Methylglyoxal (MG) is a highly reactive aldehyde spontaneously formed in human cells mainly as a by-product of glycolysis. Such endogenous metabolite reacts with proteins, nucleotides and lipids forming advanced glycation end-products (AGEs). MG binds to arginine, lysine and cysteine residues of proteins causing the formation of stable adducts that can interfere with protein function. Among the proteins affected by glycation, MG has been found to react with superoxide dismutase 1 (SOD1), a fundamental anti-oxidant enzyme that is abundantly expressed in neurons. Considering the high neuronal susceptibility to MG-induced oxidative stress, we sought to investigate by mass spectrometry and NMR spectroscopy which are the structural modifications induced on SOD1 by the reaction with MG. We show that MG reacts preferentially with the disulfide-reduced, demetallated form of SOD1, gradually causing its unfolding, and to a lesser extent, with the intermediate state of maturation – the reduced, zinc-bound homodimer – causing its gradual monomerization. These results suggest that MG could impair the correct maturation of SOD1 in vivo, thus both increasing cellular oxidative stress and promoting the cytotoxic misfolding and aggregation process of SOD1. MG forms stable adducts with the immature forms of SOD1. MG causes the unfolding of the apo-SOD1SH form. MG causes the monomerization of the E,Zn-SOD1SH form. In both forms, arginine 143 is more prone to interact with MG. The structural modifications caused by MG impair the correct maturation of SOD1.
Collapse
Affiliation(s)
- Panagis Polykretis
- Interuniversity Consortium for Magnetic Resonance of Metallo Proteins (CIRMMP), via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Enrico Luchinat
- Magnetic Resonance Center - CERM, University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, viale Morgagni 50, 50134, Florence, Italy
| | - Francesca Boscaro
- Mass Spectrometry Center (CISM), University of Florence, via U. Schiff 6, 50019, Sesto Fiorentino, Florence, Italy
| | - Lucia Banci
- Magnetic Resonance Center - CERM, University of Florence, via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy; Department of Chemistry, University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
49
|
Analysis of Chemically Labile Glycation Adducts in Seed Proteins: Case Study of Methylglyoxal-Derived Hydroimidazolone 1 (MG-H1). Int J Mol Sci 2019; 20:ijms20153659. [PMID: 31357424 PMCID: PMC6695671 DOI: 10.3390/ijms20153659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/22/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Seeds represent the major source of food protein, impacting on both human nutrition and animal feeding. Therefore, seed quality needs to be appropriately addressed in the context of viability and food safety. Indeed, long-term and inappropriate storage of seeds might result in enhancement of protein glycation, which might affect their quality and longevity. Glycation of seed proteins can be probed by exhaustive acid hydrolysis and quantification of the glycation adduct Nɛ-(carboxymethyl)lysine (CML) by liquid chromatography-mass spectrometry (LC-MS). This approach, however, does not allow analysis of thermally and chemically labile glycation adducts, like glyoxal-, methylglyoxal- and 3-deoxyglucosone-derived hydroimidazolones. Although enzymatic hydrolysis might be a good solution in this context, it requires aqueous conditions, which cannot ensure reconstitution of seed protein isolates. Because of this, the complete profiles of seed advanced glycation end products (AGEs) are not characterized so far. Therefore, here we propose the approach, giving access to quantitative solubilization of seed proteins in presence of sodium dodecyl sulfate (SDS) and their quantitative enzymatic hydrolysis prior to removal of SDS by reversed phase solid phase extraction (RP-SPE). Using methylglyoxal-derived hydroimidazolone 1 (MG-H1) as a case example, we demonstrate the applicability of this method for reliable and sensitive LC-MS-based quantification of chemically labile AGEs and its compatibility with bioassays.
Collapse
|
50
|
Activation of the unfolded protein response in high glucose treated endothelial cells is mediated by methylglyoxal. Sci Rep 2019; 9:7889. [PMID: 31133647 PMCID: PMC6536510 DOI: 10.1038/s41598-019-44358-1] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 11/21/2018] [Indexed: 12/31/2022] Open
Abstract
Metabolic dysfunction of endothelial cells in hyperglycemia contributes to the development of vascular complications of diabetes where increased reactive glycating agent, methylglyoxal (MG), is involved. We assessed if increased MG glycation induced proteotoxic stress, identifying related metabolic drivers and protein targets. Human aortal endothelial cells (HAECs) were incubated in high glucose concentration (20 mM versus 5 mM control) in vitro for 3–6 days. Flux of glucose metabolism, MG formation and glycation and changes in cytosolic protein abundances, MG modification and proteotoxic responses were assessed. Similar studies were performed with human microvascular endothelial HMEC-1 cells where similar outcomes were observed. HAECs exposed to high glucose concentration showed increased cellular concentration of MG (2.27 ± 0.21 versus 1.28 ± 0.03 pmol/106 cells, P < 0.01) and formation of MG-modified proteins (24.0 ± 3.7 versus 14.1 ± 3.2 pmol/106 cells/day; P < 0.001). In proteomics analysis, high glucose concentration increased proteins of the heat shock response – indicating activation of the unfolded protein response (UPR) with downstream inflammatory and pro-thrombotic responses. Proteins susceptible to MG modification were enriched in protein folding, protein synthesis, serine/threonine kinase signalling, glycolysis and gluconeogenesis. MG was increased in high glucose by increased flux of MG formation linked to increased glucose metabolism mediated by proteolytic stabilisation and increase of hexokinase-2 (HK-2); later potentiated by proteolytic down regulation of glyoxalase 1 (Glo1) - the major enzyme of MG metabolism. Silencing of Glo1, selectively increasing MG, activated the UPR similarly. Silencing of HK-2 prevented increased glucose metabolism and MG formation. trans-Resveratrol and hesperetin combination (tRES-HESP) corrected increased MG and glucose metabolism by increasing expression of Glo1 and decreasing expression of HK-2. Increased MG glycation activates the UPR in endothelial cells and thereby may contribute to endothelial cell dysfunction in diabetic vascular disease where tRES-HESP may provide effective therapy.
Collapse
|