1
|
Xing A, Wang F, Liu J, Zhang Y, He J, Zhao B, Sun B. The prospect and underlying mechanisms of Chinese medicine in treating periodontitis. Chin J Nat Med 2025; 23:269-285. [PMID: 40122658 DOI: 10.1016/s1875-5364(25)60842-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/18/2024] [Accepted: 07/13/2024] [Indexed: 03/25/2025]
Abstract
Inflammation represents a critical immune response triggered by cellular activities and inflammatory mediators following tissue damage. It plays a central role in the pathological progression of diverse diseases, including psychiatric disorders, cancer, and immunological conditions, rendering it an essential target for therapeutic intervention. Periodontitis, a prevalent oral inflammatory disease, is a leading cause of tooth loss and poses significant health challenges globally. Traditionally, inflammatory diseases such as periodontitis have been treated with systemic administration of synthetic chemicals. However, recent years have witnessed challenges, including drug resistance and microbial dysbiosis associated with these treatments. In contrast, natural products derived from Chinese medicine offer numerous benefits, such as high safety profiles, minimal side effects, innovative pharmacological mechanisms, ease of extraction, and multiple targets, rendering them viable alternatives to conventional antibiotics for treating inflammatory conditions. Numerous effective anti-inflammatory natural products have been identified in traditional Chinese medicine (TCM), including alkaloids, flavonoids, terpenoids, lignans, and other natural products that exhibit inhibitory effects on inflammation and are potential therapeutic agents. Several studies have confirmed the substantial anti-inflammatory and immunomodulatory properties of these compounds. This comprehensive review examines the literature on the anti-inflammatory effects of TCM-derived natural products from databases such as PubMed, Web of Science, and CNKI, focusing on terms like "inflammation", "periodontitis", "pharmacology", and "traditional Chinese medicine". The analysis systematically summarizes the molecular pharmacology, chemical composition, and biological activities of these compounds in inflammatory responses, alongside their mechanisms of action. This research seeks to deepen understanding of the mechanisms and biological activities of herbal extracts in managing inflammatory diseases, potentially leading to the development of promising new anti-inflammatory drug candidates. Future applications could extend to the treatment of various inflammatory conditions, including periodontitis.
Collapse
Affiliation(s)
- Aili Xing
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Feng Wang
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Jinzhong Liu
- Preventive Dentistry, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Yuan Zhang
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Jingya He
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China
| | - Bin Zhao
- Periodontics, Hospital of Stomatologyl, Jilin University, Changchun 130021, China.
| | - Bin Sun
- Oral and Maxillofacial Surgery, Hospital of Stomatologyl, Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Sun C, Xu Y, Xu G, Ji X, Jiang P, He Y. Active fractions from Jingfang Baidu Powder alleviate Klebsiella-induced Pneumonia by inhibiting TLR4/Myd88-ERK signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118067. [PMID: 38636574 DOI: 10.1016/j.jep.2024.118067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/04/2024] [Accepted: 03/15/2024] [Indexed: 04/20/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jingfang Baidu Powder (JFBDP) is a classic traditional Chinese medicine prescription. Although Jingfang Baidu powder obtained a general consensus on clinical efficacy in treating pneumonia, there were many Chinese herbal drugs in formula, complex components, and large oral dosage, which brings certain obstacles to clinical application. AIM OF THE STUDY Therefore, screening of the active fraction that exerts anti-pneumonia helps improve the pharmaceutical preparation, improve the treatment compliance of patients, and further contribute to the clinical application, and the screening of the new active ingredients with anti-pneumonia. The histopathological observation, real-time quantitative PCR, western blotting, and immunofluorescence were applied to evaluate the anti-pneumonia efficacy of active fractions from JFBDP. RESULTS Three fractions from JFBDP inhibit the gene expression of IL-1β, IL-10, CCL3, CCL5, and CCL22 in lung tissue infected by Klebsiella at various degrees, and presented a good dose-response relationship. JF50 showed stronger anti-inflammatory effects among three fractions including JF30, JF50, and JF75. Besides, JF50 significantly reduced the protein expression of TLR4 and Myd88 in lung tissue infected with Klebsiella, and it also significantly inhibited p-ERK and p-NF-κB p65. JF50 significantly inhibits the protein expression of Caspase 3, Caspase 8, and Caspase 9 in lung tissue infected with Klebsiella at the dose of 25 mg/kg and 50 mg/kg. CONCLUSION JF50 improves lung pathological damage in Klebsiella pneumonia mice by inhibiting the TLR4/Myd88/NF-κB-ERK signaling pathway, and inhibiting apoptosis of lung tissue cells. These findings provide a reference for further exploring the active substance basis of Jingfang Baidu Powder in treating bacterial pneumonia.
Collapse
Affiliation(s)
- Chuanbo Sun
- College of Biotechnology and Pharmaceutical Engineering of West Anhui University, Lu'an, 237012, China.
| | - Yuting Xu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Guangpei Xu
- College of Biotechnology and Pharmaceutical Engineering of West Anhui University, Lu'an, 237012, China.
| | - Xu Ji
- Anhui Province Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei, 230001, China.
| | - Ping Jiang
- College of Biotechnology and Pharmaceutical Engineering of West Anhui University, Lu'an, 237012, China.
| | - Yanfei He
- College of Biotechnology and Pharmaceutical Engineering of West Anhui University, Lu'an, 237012, China.
| |
Collapse
|
3
|
Xiong B, Yang C, Yang X, Luo S, Li S, Chen C, He K, Nie L, Li P, Li S, Huang H, Liu J, Zhang Z, Xie Y, Zou L, Yang X. Arctigenin derivative A-1 ameliorates motor dysfunction and pathological manifestations in SOD1 G93A transgenic mice via the AMPK/SIRT1/PGC-1α and AMPK/SIRT1/IL-1β/NF-κB pathways. CNS Neurosci Ther 2024; 30:e14692. [PMID: 38872258 PMCID: PMC11176200 DOI: 10.1111/cns.14692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/15/2024] [Accepted: 03/10/2024] [Indexed: 06/15/2024] Open
Abstract
AIM Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative disease characterized by progressive death of upper and lower motor neurons, leading to generalized muscle atrophy, paralysis, and even death. Mitochondrial damage and neuroinflammation play key roles in the pathogenesis of ALS. In the present study, the efficacy of A-1, a derivative of arctigenin with AMP-activated protein kinase (AMPK) and silent information regulator 1 (SIRT1) activation for ALS, was investigated. METHODS A-1 at 33.3 mg/kg was administrated in SOD1G93A transgenic mice orally from the 13th week for a 6-week treatment period. Motor ability was assessed before terminal anesthesia. Muscle atrophy and fibrosis, motor neurons, astrocytes, and microglia in the spinal cord were evaluated by H&E, Masson, Sirius Red, Nissl, and immunohistochemistry staining. Protein expression was detected with proteomics analysis, Western blotting, and ELISA. Mitochondrial adenosine triphosphate (ATP) and malondialdehyde (MDA) levels were measured using an assay kit. RESULTS A-1 administration in SOD1G93A mice enhanced mobility, decreased skeletal muscle atrophy and fibrosis, mitigated loss of spinal motor neurons, and reduced glial activation. Additionally, A-1 treatment improved mitochondrial function, evidenced by elevated ATP levels and increased expression of key mitochondrial-related proteins. The A-1 treatment group showed decreased levels of IL-1β, pIκBα/IκBα, and pNF-κB/NF-κB. CONCLUSIONS A-1 treatment reduced motor neuron loss, improved gastrocnemius atrophy, and delayed ALS progression through the AMPK/SIRT1/PGC-1α pathway, which promotes mitochondrial biogenesis. Furthermore, the AMPK/SIRT1/IL-1β/NF-κB pathway exerted neuroprotective effects by reducing neuroinflammation. These findings suggest A-1 as a promising therapeutic approach for ALS.
Collapse
Affiliation(s)
- Bocheng Xiong
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Chao Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Xiao Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Song Luo
- Department of NeurologyThe First Affiliated Hospital of Bengbu Medical UniversityBengbuChina
- Department of NeurologyShenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdongChina
| | - Shangming Li
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Chongyang Chen
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Kaiwu He
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Lulin Nie
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Peimao Li
- Medical LaboratoryShenzhen Prevention and Treatment Center for Occupational DiseasesShenzhenChina
| | - Shupeng Li
- State Key Laboratory of OncogenomicsSchool of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate SchoolShenzhenChina
| | - Haiyan Huang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Jianjun Liu
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| | - Zaijun Zhang
- Institute of New Drug Research, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of ChinaJinan UniversityGuangzhouChina
| | - Yongmei Xie
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for BiotherapySichuan UniversityChengduChina
| | - Liangyu Zou
- Department of NeurologyShenzhen People’s Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), ShenzhenGuangdongChina
| | - Xifei Yang
- Shenzhen Key Laboratory of Modern Toxicology, Shenzhen Medical Key Discipline of Health Toxicology (2020‐2024)Shenzhen Center for Disease Control and PreventionShenzhenChina
| |
Collapse
|
4
|
Li Z, Zheng Y, Liu K, Liang Y, Lu J, Li Q, Zhao B, Liu X, Li X. Lignans as multi-targeted natural products in neurodegenerative diseases and depression: Recent perspectives. Phytother Res 2023; 37:5599-5621. [PMID: 37669911 DOI: 10.1002/ptr.8003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/09/2023] [Accepted: 08/19/2023] [Indexed: 09/07/2023]
Abstract
As the global population ages, the treatment of neurodegenerative diseases is becoming more and more important. There is an urgent need to discover novel drugs that are effective in treating neurological diseases. In recent years, natural products and their biological activities have gained widespread attention. Lignans are a class of metabolites extensively present in Chinese herbal medicine and possess good pharmacological effects. Latest studies have demonstrated their neuroprotective pharmacological activity in preventing acute/chronic neurodegenerative diseases and depression. In this review, the pharmacological effects of these disorders, the pharmacokinetics, safety, and clinical trials of lignans were summarized according to the scientific literature. These results proved that lignans mainly exert antioxidant and anti-inflammatory activities. Anti-apoptosis, regulation of nervous system functions, and modulation of synaptic signals are also potential effects. Despite the substantial evidence of the neuroprotective potential of lignans, it is not sufficient to support their use in the clinical management. Our study suggests that lignans can be used as prospective agents for the treatment of neurodegenerative diseases and depression, with a view to informing their further development and utilization.
Collapse
Affiliation(s)
- Zhibei Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Zheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Kai Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Youdan Liang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bolin Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xing Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
5
|
Wang G, Ge L, Liu T, Zheng Z, Chen L. The therapeutic potential of arctigenin against multiple human diseases: A mechanistic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 110:154647. [PMID: 36628833 DOI: 10.1016/j.phymed.2023.154647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/21/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Arctigenin (ATG), a dibenzyl butyrolactone lignan compound, is one of the major bioactive components from the medicinal plant Arctium lappa. ATG possesses remarkable therapeutic potential against a wide range of human diseases, such as cancers, immune disorders and chronical diseases. The molecular mechanisms behind the biological effects of ATG have been intensively studied. PURPOSE This review aims to systematically summarize the updated knowledge of the proteins and signaling pathways behind the curative property of ATG, and further analyze the potential connections between them. METHOD SciFinder, Pubmed, Web of Science and Cochrane Library databases were queried for publications reporting the therapeutic properties of ATG. "Arctigenin", "disease", "cancer", "inflammation", "organ damage", "infection", "toxicity" and "pharmacokinetics" were used as the searching titles. RESULT 625 publications were identified and 95 met the inclusion criteria and exclusion criteria. 42 studies described the molecular mechanisms implicated in ATG treatments. Several proteins including phosphodiesterase subtype 4D (PDE4D), estrogen receptor (ER) β, protein phosphatase 2A (PP2A), phosphoinositide 3-kinase (PI3K) and transmembrane protein 16A (TMEM16A) are targeted by ATG in different settings. The frequently described signaling pathways are TLR4/NF-κB, PI3K/AKT/mTOR, AMP-activated protein kinase (AMPK) and nuclear factor erythroid 2-related factor 2 (Nrf-2) signalings. CONCLUSION Inhibition of PI3K/AKT pathway and activation of AMPK signaling play the pivotal roles in the therapeutic effects of ATG. PI3K/AKT and AMPK signaling widely link to other signaling pathways, modulating various biological processes such as anti-inflammation, anti-oxidative stress, anti-fibrosis, anti-ER stress, anti-steatosis and pro-apoptosis, which constitute the curative mechanisms of ATG against multiple human diseases.
Collapse
Affiliation(s)
- Guanming Wang
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China.
| | - Li Ge
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Tongyu Liu
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China
| | - Zhihui Zheng
- School of Nursing, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
| | - Lijun Chen
- Department of Gynecology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
6
|
Yosri N, Alsharif SM, Xiao J, Musharraf SG, Zhao C, Saeed A, Gao R, Said NS, Di Minno A, Daglia M, Guo Z, Khalifa SAM, El-Seedi HR. Arctium lappa (Burdock): Insights from ethnopharmacology potential, chemical constituents, clinical studies, pharmacological utility and nanomedicine. Biomed Pharmacother 2023; 158:114104. [PMID: 36516694 DOI: 10.1016/j.biopha.2022.114104] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Arctium lappa L. is a medicinal edible homologous plant, commonly known as burdock or bardana, which belongs to the Asteraceae family. It is widely distributed throughout Northern Asia, Europe, and North America and has been utilized for hundreds of years. The roots, fruits, seeds, and leaves of A. lappa have been extensively used in traditional Chinese Medicine (TCM). A. lappa has attracted a great deal of attention due to its possession of highly recognized bioactive metabolites with significant therapeutic potential. Numerous pharmacological effects have been demonstrated in vitro and in vivo by A. lappa and its bioactive metabolites, including antimicrobial, anti-obesity, antioxidant, anticancer, anti-inflammatory, anti-diabetic, anti-allergic, antiviral, gastroprotective, hepatoprotective, and neuroprotective activities. Additionally, A. lappa has demonstrated considerable clinical efficacies and valuable applications in nanomedicine. Collectively, this review covers the properties of A. lappa and its bioactive metabolites, ethnopharmacology aspects, pharmacological effects, clinical trials, and applications in the field of nanomedicine. Hence, a significant attention should be paid to clinical trials and industrial applications of this plant with particular emphasis, on drug discovery and nanotechnology.
Collapse
Affiliation(s)
- Nermeen Yosri
- Chemistry Department of Medicinal and Aromatic Plants, Research Institute of Medicinal and Aromatic Plants (RIMAP), Beni-Suef University, Beni-Suef 62514, Egypt
| | - Sultan M Alsharif
- Biology Department, Faculty of Science, Taibah University, Al Madinah 887, Saudi Arabia
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo, Vigo, Spain
| | - Syed G Musharraf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Aamer Saeed
- Chemistry Department, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ruichang Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Noha S Said
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt
| | - Alessandro Di Minno
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; CEINGE-Biotecnologie Avanzate, Naples 80131, Italy
| | - Maria Daglia
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shaden A M Khalifa
- Department of Molecular Biosciences, Stockholm University, The Wenner-GrenInstitute, SE-106 91 Stockholm, Sweden
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32512, Egypt; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China; Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE 751 24 Uppsala, Sweden; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu Education Department), Zhenjiang 212013, China.
| |
Collapse
|
7
|
Wu D, Jin L, Huang X, Deng H, Shen QK, Quan ZS, Zhang C, Guo HY. Arctigenin: pharmacology, total synthesis, and progress in structure modification. J Enzyme Inhib Med Chem 2022; 37:2452-2477. [PMID: 36093586 PMCID: PMC9481144 DOI: 10.1080/14756366.2022.2115035] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Arctium lappa L. is a prevalent medicinal herb and a health supplement that is commonly used in Asia. Over the last few decades, the bioactive component arctigenin has attracted the attention of researchers because of its anti-inflammatory, antioxidant, immunomodulatory, multiple sclerosis fighting, antitumor, and anti-leukemia properties. After summarising the research and literature on arctigenin, this study outlines the current status of research on pharmacological activity, total synthesis, and structural modification of arctigenin. The purpose of this study is to assist academics in obtaining a more comprehensive understanding of the research progress on arctigenin and to provide constructive suggestions for further investigation of this useful molecule.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Lili Jin
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xing Huang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Qing-kun Shen
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Zhe-shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Changhao Zhang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hong-Yan Guo
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affifiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
8
|
Abdul Khaliq H, Alhouayek M, Quetin-Leclercq J, Muccioli GG. 5'AMP-activated protein kinase: an emerging target of phytochemicals to treat chronic inflammatory diseases. Crit Rev Food Sci Nutr 2022; 64:4763-4788. [PMID: 36450301 DOI: 10.1080/10408398.2022.2145264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Inflammation is a defensive response of the organism to traumatic, infectious, toxic, ischemic, and autoimmune injury. Inflammatory mediators are released to effectively eliminate the inflammatory trigger and restore homeostasis. However, failure of these processes can lead to chronic inflammatory conditions and diseases such as inflammatory bowel diseases, rheumatoid arthritis, inflammatory lung diseases, atherosclerosis, and neurodegenerative diseases. The cure of chronic inflammatory diseases remains challenging as current therapies have various limitations, such as pronounced side effects, progressive loss of efficacy, and high cost especially for biologics. In this context, phytochemicals (such as alkaloids, flavonoids, lignans, phenolic acids, saponins, terpenoids, and other classes) are considered as an interesting alternative approach. Among the numerous targets of phytochemicals, AMP-activated protein kinase (AMPK) can be considered as an interesting target in the context of inflammation. AMPK regulates inflammatory response by inhibiting inflammatory pathways (NF-κB, JAK/STAT, and MAPK) and regulating several other processes of the inflammatory response (oxidative stress, autophagy, and apoptosis). In this review, we summarize and discuss the studies focusing on phytochemicals that showed beneficial effects by blocking different inflammatory pathways implicating AMPK activation in chronic inflammatory disease models. We also highlight elements to consider when investigating AMPK in the context of phytochemicals.
Collapse
Affiliation(s)
- Hafiz Abdul Khaliq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
- Department of Pharmacognosy, Faculty of Pharmacy, Bahauddin Zakariya University, Multan, Pakistan
| | - Mireille Alhouayek
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| |
Collapse
|
9
|
Qinwufeng G, Jiacheng L, Xiaoling L, Tingru C, Yunyang W, Yanlong Y. Jiu-Wei-Yong-An Formula suppresses JAK1/STAT3 and MAPK signaling alleviates atopic dermatitis-like skin lesions. JOURNAL OF ETHNOPHARMACOLOGY 2022; 295:115428. [PMID: 35659915 DOI: 10.1016/j.jep.2022.115428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/17/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Jiu-Wei-Yong-An (JWYA) formula is a traditional Chinese medicine (TCM) prescription used to treat atopic dermatitis (AD) in the clinic. JWYA is considered to have anti-inflammatory and antipruritic properties. However, the mechanism of JWYA remains unclear. AIM OF THE STUDY This study aimed to investigate the effect of JWYA on an experimental mouse AD model. MATERIALS AND METHODS Mice were sensitized with 2,4-dinitrochlorobenzene (DNCB) and intragastrically administered with JWYA for 14 days. The therapeutic effect was assessed using a grade four dermatitis score, skin moisture, thickness measurements, and a mouse behavior tests. H&E and toluidine blue staining were used to observe epidermal inflammatory thickening and mast cells in mouse skin lesions. Serum IgE levels and skin TNF-α and IL-4 levels were determined using ELISAs. The TNF-α, IL-1β, IL-4, IL-13, IL-31, IL-33, and IFN-γ mRNA expression levels in skin lesions were detected using qPCR. Network pharmacology analysis based on serum active components was performed to elucidate the mechanism, and the results were verified by Western blotting. Finally, we tested the binding affinity between the active ingredients of JWYA and JAK1 via molecular docking. RESULTS JWYA improved the skin lesions of AD mice, relieved itching and reduced skin thickening. Additionally, JWYA decreased the serum IgE level and the levels of TNF-α, IL-1β, IL-4, IL-13, IL-31, IL-33, and IFN-γ in skin. Moreover, JWYA inhibited the activation of JAK1/STAT3 and MAPK (p38, ERK, and JNK) signaling. Molecular docking showed that kaempferol, luteolin, and forsythin have high affinity for JAK1. CONCLUSIONS JWYA alleviates AD-like skin lesions and inhibited inflammation and skin itch. The effect of JWYA is attributed to blocking the JAK1/STAT3 and MAPK signaling pathways. We suggest that JWYA may be an alternative therapy for the treatment of AD.
Collapse
Affiliation(s)
- Gu Qinwufeng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Lin Jiacheng
- Central Laboratory, ShuGuang Hospital Affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Lu Xiaoling
- College of Basic Medical Sciences, Department of Biochemistry and Molecular Biology, Naval Medical University, Shanghai, China
| | - Chen Tingru
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Wu Yunyang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China
| | - Yang Yanlong
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China; Department of Traditional Chinese Medicine, Naval Medical University, Shanghai, China.
| |
Collapse
|
10
|
Yuan Q, Wu Y, Wang G, Zhou X, Dong X, Lou Z, Li S, Wang D. Preventive effects of arctigenin from Arctium lappa L against LPS-induced neuroinflammation and cognitive impairments in mice. Metab Brain Dis 2022; 37:2039-2052. [PMID: 35731324 DOI: 10.1007/s11011-022-01031-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 01/19/2023]
Abstract
Arctigenin (Arc) is a phenylpropanoid dibenzylbutyrolactone lignan in Arctium lappa L, which has been widely applied as a traditional Chinese herbal medicine for treating inflammation. In the present study, we explored the neuroprotective effect and the potential mechanisms of arctigenin against LPS-evoked neuroinflammation, neurodegeneration, and memory impairments in the mice hippocampus. Daily administration of arctigenin (50 mg/kg per day, i.g.) for 28 days revealed noticeable improvements in spatial learning and memory deficits after exposure to LPS treatment. Arctigenin prevented LPS-induced neuronal/synaptic injury and inhibited the increases in Abeta (Aβ) generation and the levels of amyloid precursor protein (APP) and β-site amyloid precursor protein cleavage enzyme 1 (BACE1). Moreover, arctigenin treatment also suppressed glial activation and reduced the production of proinflammatory cytokines. In LPS-treated BV-2 microglial cells and mice, activation of the TLR4 mediated NF-κB signaling pathway was significantly suppressed by arctigenin administration. Mechanistically, arctigenin reduced the LPS-induced interaction of adiponectin receptor 1 (AdipoR1) with TLR4 and its coreceptor CD14 and inhibited the TLR4-mediated downstream inflammatory response. The outcomes of the current study indicate that arctigenin mitigates LPS-induced apoptotic neurodegeneration, amyloidogenesis and neuroinflammation as well as cognitive impairments, and suggest that arctigenin may be a potential therapeutic candidate for neuroinflammation/neurodegeneration-related diseases.
Collapse
Affiliation(s)
- Quan Yuan
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China
| | - Yiran Wu
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China
| | - Gang Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China
| | - Xiang Zhou
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China
| | - Xiaohui Dong
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China
| | - Zihan Lou
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China
| | - Sanqiang Li
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China
| | - Dongmei Wang
- School of Basic Medical Sciences, Henan University of Science and Technology, No. 263, Kaiyuan Avenue, Luolong District, Luoyang, 471023, China.
| |
Collapse
|
11
|
Identification of phosphodiesterase-4 as the therapeutic target of arctigenin in alleviating psoriatic skin inflammation. J Adv Res 2021; 33:241-251. [PMID: 34603793 PMCID: PMC8463927 DOI: 10.1016/j.jare.2021.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 11/04/2020] [Accepted: 02/18/2021] [Indexed: 01/02/2023] Open
Abstract
Introduction Arctigenin, derived from Arctium lappa L., has multiple pharmacological activities, including immunoregulatory, anti-diabetic, anti-tumor, and neuroprotective effects. Nevertheless, the potential therapeutic target of arctigenin in modulating inflammation remains undefined. Objectives In the present study, we identified that arctigenin was a phosphodiesterase-4 (PDE4) selective inhibitor for the first time. Further investigations were performed to fully uncover the effects and mechanism of arctigenin on experimental murine psoriasis model. Methods Crystal structure determination, PDEs enzyme assay, and isothermal titration calorimetry were included to illustrate the binding specialty, inhibitory effects, and selectivity of arctigenin on PDE4D. The anti-inflammatory effects were conducted in LPS-activated human peripheral blood mononuclear cells (PBMCs) and RAW264.7 cells. Imiquimod-induced murine psoriasis was performed to uncover the therapeutic effects and mechanism of arctigenin in vivo. Results Arctigenin could bind to the catalytic domain of PDE4D via formation of hydrogen bonds as well as π-π stacking interactions between the dibenzyl butyrolactone of arctigenin and several residues of PDE4D. Accordingly, arctigenin showed prominent anti-inflammation in human PBMCs and murine RAW264.7 cells. PDE4 inhibition by arctigenin resulted in elevation of intracellular cyclic adenosine monophosphate (cAMP) and phosphorylation of cAMP-response element binding protein (CREB), which were largely blocked through intervention of protein kinase A (PKA) activity by H89 treatment or reduction of protein expression by siRNA transfection. Moreover, we first identified that a topical application of arctigenin ameliorated experimental psoriatic manifestations in imiquimod-induced murine psoriasis model by decreasing adhesion and chemotaxis of several inflammatory cells. Further proteomics analysis revealed that arctigenin could rectify the immune dysfunction and hyperactivation of keratinocytes in the inflamed skin microenvironments, which might be largely related to the expression of Keratins. Conclusion The research provided credible clew that inhibition of PDE4 by arctigenin might function as the potential therapeutic approach for the treatment of psoriasis.
Collapse
|
12
|
Liu CY, Zhou Y, Chen T, Lei JC, Jiang XJ. AMPK/SIRT1 Pathway is Involved in Arctigenin-Mediated Protective Effects Against Myocardial Ischemia-Reperfusion Injury. Front Pharmacol 2021; 11:616813. [PMID: 33574759 PMCID: PMC7870703 DOI: 10.3389/fphar.2020.616813] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Arctigenin, one of the active ingredients extracted from Great Burdock (Arctium lappa) Achene, has been found to relieve myocardial infarction injury. However, the specific mechanism of Arctigenin against myocardial infarction remains largely unknown. Here, both acute myocardial ischemia-reperfusion injury (AMI/R) rat model and oxygen glucose deprivation (OGD)-induced myocardial cell injury model were constructed to explore the underlying role of AMPK/SIRT1 pathway in Arctigenin-mediated effects. The experimental data in our study demonstrated that Arctigenin ameliorated OGD-mediated cardiomyocytes apoptosis, inflammation and oxidative stress in a dose-dependent manner. Besides, Arctigenin activated AMPK/SIRT1 pathway and downregulated NF-κB phosphorylation in OGD-treated cardiomyocytes, while inhibiting AMPK or SIRT1 by the Compound C (an AMPK inhibitor) or SIRT1-IN-1 (a SIRT1 inhibitor) significantly attenuated Arctigenin-exerted protective effects on cardiomyocytes. In the animal experiments, Arctigenin improved the heart functions and decreased infarct size of the AMI/R-rats, accompanied with downregulated oxidative stress, inflammation and apoptotic levels in the heart tissues. What's more, Arctigenin enhanced the AMPK/SIRT1 pathway and repressed NF-κB pathway activation. Taken together, our data indicated that Arctigenin reduced cardiomyocytes apoptosis against AMI/R-induced oxidative stress and inflammation at least via AMPK/SIRT1 pathway.
Collapse
Affiliation(s)
- Cheng-Yin Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yi Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Tao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing-Chao Lei
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xue-Jun Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China.,Cardiovascular Research Institute, Wuhan University, Wuhan, China.,Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
13
|
Tang S, Zhou W, Zhong X, Xu J, Huang H, Zheng X, Zhang J, Yang S, Shang P, Tang Q, Liu H. Arctigenin prevents the progression of osteoarthritis by targeting PI3K/Akt/NF-κB axis: In vitro and in vivo studies. J Cell Mol Med 2020; 24:4183-4193. [PMID: 32090454 PMCID: PMC7171400 DOI: 10.1111/jcmm.15079] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/03/2020] [Accepted: 02/03/2020] [Indexed: 12/15/2022] Open
Abstract
Osteoarthritis (OA), which is principally featured by progressive joint metabolic imbalance and subsequent degeneration of articular cartilage, is a common chronic joint disease. Arctigenin (ATG), a dietary phyto-oestrogen, has been described to have potent anti-inflammatory effects. Nevertheless, its protective effects on OA have not been clearly established. The target of our following study is to evaluate the protective effects of ATG on IL-1β-induced human OA chondrocytes and mouse OA model. Our results revealed that the ATG pre-treatment effectively decreases the level of pro-inflammatory mediators, such as prostaglandin E2 (PGE2), nitrous oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), IL-6 and tumour necrosis factor alpha (TNF-α) in IL-1β-induced human chondrocytes. In addition, ATG protects against the degradation of extracellular matrix (ECM) under the stimulation of IL-1β and the possible mechanism might be connected with the inactivation of phosphatidylinositol-3-kinase (PI3K)/Akt/nuclear factor-kappa B (NF-κB) axis. Furthermore, a powerful binding capacity between ATG and PI3K was also uncovered in our molecular docking research. Meanwhile, ATG may act as a protector on the mouse OA model. Collectively, all these findings suggest that ATG could be utilized as a promising therapeutic agent for the treatment of OA.
Collapse
Affiliation(s)
- Shangkun Tang
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Weijun Zhou
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Xinyang Zhong
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jianchen Xu
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Huasong Huang
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Xinnan Zheng
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Jingkang Zhang
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Shuyue Yang
- Department of Clinical Medicine, Second Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Ping Shang
- Department of Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qian Tang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haixiao Liu
- Department of Orthopaedic Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Ding Z, Zhong R, Xia T, Yang Y, Xing N, Wang W, Wang Y, Yang B, Sun X, Shu Z. Advances in research into the mechanisms of Chinese Materia Medica against acute lung injury. Biomed Pharmacother 2019; 122:109706. [PMID: 31918277 DOI: 10.1016/j.biopha.2019.109706] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/30/2019] [Accepted: 11/24/2019] [Indexed: 12/13/2022] Open
Abstract
Acute lung injury (ALI) is a common and serious disease. Numerous treatment options are available but they do not improve quality of life or reduce mortality for ALI patients. Here, we review the treatments for ALI to provide basic data for ALI drug therapy research and development. Chinese Materia Medica (CMM) has long been the traditional clinical approach in China for the treatment of ALI and it has proven efficacy. The continued study of CMM has disclosed new potential therapeutic ingredients for ALI. However, few reviews summarize the currently available CMM-based anti-ALI drugs. Therefore, the systematic analysis of research progress in anti-ALI CMM is of great academic and clinical value. The aim of the present review is to describe CMM-based research progress in ALI treatment. Data were compiled by electronic retrieval (CNKI, SciFinder, PubMeds, Google Scholar, Web of Science) and from articles, patents and ethnopharmacological literature in university libraries were systematically studied. This review introduces progress in research on the etiology and mechanisms of ALI, the anti-ALI theory and modes of action in traditional Chinese medicine (TCM), anti-ALI active constituents of CMM, research progress in experimental methods of CMM anti-ALI, the anti-ALI molecular mechanisms of CMM, the anti-ALI efficacy of CMM formulae, and the potential toxicity of CMM and the antidotes for it. Scholars have investigated the anti-ALI molecular mechanism of CMM from various direction and have made substantial progress. This research explored the above aspects, enriched the anti-ALI theory of CMM and established the clinical significance and developmental prospects of ALI treatment by CMM. Because of the high frequency of drugs such as glucocorticoids or antibiotics, Western medicine lacks the advantages of CMM in terms of overall anti-ALI efficacy. In the future, the development of CMM-based anti-ALI therapies will become a major trend in the field of ALI drug development. Successful clinical safety and efficacy validations will promote and encourage the use of CMM. It provides fundamental theoretical support for the discovery and use of CMM resources through the comprehensive analysis of various anti-ALI CMM report databases.
Collapse
Affiliation(s)
- Zihe Ding
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Renxing Zhong
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Tianyi Xia
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yanni Yang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Na Xing
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wujing Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yi Wang
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Bingyou Yang
- College of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zunpeng Shu
- Guangdong Standardized Processing Engineering Technology Research Center of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Department of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China.
| |
Collapse
|
15
|
Nie Y, Wang Z, Chai G, Xiong Y, Li B, Zhang H, Xin R, Qian X, Tang Z, Wu J, Zhao P. Dehydrocostus Lactone Suppresses LPS-induced Acute Lung Injury and Macrophage Activation through NF-κB Signaling Pathway Mediated by p38 MAPK and Akt. Molecules 2019; 24:molecules24081510. [PMID: 30999647 PMCID: PMC6514677 DOI: 10.3390/molecules24081510] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/15/2019] [Accepted: 04/15/2019] [Indexed: 01/10/2023] Open
Abstract
Acute lung injury (ALI) is a severe clinical disease marked by dysregulated inflammation response and has a high rate of morbidity and mortality. Macrophages, which play diverse roles in the inflammatory response, are becoming therapeutic targets in ALI. In this study we investigated the effects of dehydrocostus lactone (DHL), a natural sesquiterpene, on macrophage activation and LPS-induced ALI. The macrophage cell line RAW264.7 and primary lung macrophages were incubated with DHL (0, 3, 5, 10 and 30 μmol/L) for 0.5 h and then challenged with LPS (100 ng/mL) for up to 8 hours. C57BL/6 mice were intratracheally injected with LPS (5 mg/kg) to induce acute lung injury (ALI) and then treated with a range of DHL doses intraperitoneally (5 to 20 mg/kg). The results showed that DHL inhibited LPS-induced production of proinflammatory mediators such as iNOS, NO, and cytokines including TNF-α, IL-6, IL-1β, and IL-12 p35 by suppressing the activity of NF-κB via p38 MAPK/MK2 and Akt signaling pathway in macrophages. The in vivo results revealed that DHL significantly attenuated LPS-induced pathological injury and reduced cytokines expression in the lung. NF-κB, p38 MAPK/MK2 and Akt signaling molecules were also involved in the anti-inflammatory effect. Collectively, our findings suggested that DHL is a promising agent for alleviating LPS-induced ALI.
Collapse
Affiliation(s)
- Yunjuan Nie
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Zhongxuan Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Gaoshang Chai
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Yue Xiong
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Boyu Li
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Hui Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Ruiting Xin
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Xiaohang Qian
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Zihan Tang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Jiajun Wu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Peng Zhao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
16
|
Jiang WL, Han X, Zhang YF, Xia QQ, Zhang JM, Wang F. Arctigenin prevents monocrotaline-induced pulmonary arterial hypertension in rats. RSC Adv 2019; 9:552-559. [PMID: 35521617 PMCID: PMC9059326 DOI: 10.1039/c8ra07892k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/19/2018] [Indexed: 12/21/2022] Open
Abstract
The hallmark features of the development of pulmonary arterial hypertension (PAH) include the proliferation of pulmonary vascular smooth muscle cells, oxidative stress, inflammation, and pulmonary artery remodeling. Arctigenin is a bioactive component of Arctium lappa that exerts anti-inflammatory and antiproliferative effects in several diseases; however, its effects on pulmonary arteries are still unclear. This study aimed to investigate the efficacy of arctigenin to prevent PAH. Rats injected with monocrotaline (MCT) progressively developed PAH. Arctigenin treatment (50 mg per kg per day, intra-peritoneally) ameliorated right ventricular systolic pressure and pulmonary arterial remodeling, decreased the expression of inflammatory cytokines, and limited the proliferation of pulmonary vascular smooth muscle cells in lungs. Mechanistically, arctigenin effectively inhibited the MCT-induced elevation of NLRP3, caspase-1, and interleukin 1-beta expression in the lungs. These results indicate that arctigenin ameliorates MCT-induced PAH, at least in part, through exerting its anti-inflammatory, antioxidant, and antiproliferative effects, which inhibit the NLRP3 inflammasome signal pathway in rats. Arctigenin ameliorates monocrotaline-induced pulmonary arterial hypertension, at least in part, through exerting its anti-inflammatory, antioxidant, and antiproliferative effects, which inhibit the NLRP3 inflammasome signal pathway in rats.![]()
Collapse
Affiliation(s)
- Wei-Long Jiang
- Department of Respiration
- Jiangyin Hospital of Traditional Chinese Medicine
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine
- Wuxi City
- China
| | - Xiao Han
- Department of Cardiology
- Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences
- Shanghai 201800
- China
| | - Yu-Feng Zhang
- Department of Respiration
- Jiangyin Hospital of Traditional Chinese Medicine
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine
- Wuxi City
- China
| | - Qing-Qing Xia
- Department of Respiration
- Jiangyin Hospital of Traditional Chinese Medicine
- Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine
- Wuxi City
- China
| | - Jia-Ming Zhang
- Department of Emergency
- Wuxi People's Hospital Affiliated to Nanjing Medical University
- Wuxi City
- China
| | - Feng Wang
- Department of Neurology
- Shanghai General Hospital Affiliated to Shanghai Jiaotong University
- Shanghai 200080
- China
| |
Collapse
|
17
|
Repeated arctigenin treatment produces antidepressant- and anxiolytic-like effects in mice. Brain Res Bull 2018; 146:79-86. [PMID: 30597190 DOI: 10.1016/j.brainresbull.2018.12.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 01/11/2023]
Abstract
Depression is the root of various diseases. It is one of the most debilitating conditions globally. Antidepressant drugs are usually the first-line of depression treatment. Arctigenin (ARC), one of active ingredient of Arctium lappa L, has been found to exert neuroprotective, anti-decrepitude, and anti-inflammatory activities. Thus, the aim of this study was to investigate the potential antidepressant- and anxiolytic-like effects of ARC using acute and chronic mild stress (CMS) mice model. ICR mice model received acute stress or chronic mild stress assessed by open field test (OFT), novelty suppressed feeding (NSF), sucrose preference test (SPT), forced-swimming test (FST), and tail suspension test (TST). After the final test, blood was collected to detect the serum levels of angiogenin (ANG), thrombopoietin (TPO), and vascular endothelial growth factor (VEGF) by enzyme-linked immunosorbent assay (ELISA). The behavioral results showed that repeated ARC (10, 30 mg/kg) administration significantly relieved the antidepressant- and anxiolytic-like effects. And repeated ARC administration at the dose of 10 and 30 mg/kg could significantly block depressive- and anxiety-like behaviors caused by CMS. Finally, ELISA results showed that ARC administration increased the serum levels of angiogenin (ANG), thrombopoietin (TPO), and vascular endothelial growth factor (VEGF). Results showed that chronic ARC administration produces antidepressant- and anxiolytic-like effects, which provides direct evidence for the first time that ARC may be a novel strategy for the treatment of depression and even stress-related disorders. The present data supports further exploration for developing ARC administration as a novel therapeutic strategy for depression and even stress-related disorders.
Collapse
|
18
|
Arctigenin Ameliorates Inflammation by Regulating Accumulation and Functional Activity of MDSCs in Endotoxin Shock. Inflammation 2018; 41:2090-2100. [DOI: 10.1007/s10753-018-0852-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Feng Q, Yao J, Zhou G, Xia W, Lyu J, Li X, Zhao T, Zhang G, Zhao N, Yang J. Quantitative Proteomic Analysis Reveals That Arctigenin Alleviates Concanavalin A-Induced Hepatitis Through Suppressing Immune System and Regulating Autophagy. Front Immunol 2018; 9:1881. [PMID: 30177931 PMCID: PMC6109684 DOI: 10.3389/fimmu.2018.01881] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 07/30/2018] [Indexed: 12/24/2022] Open
Abstract
Concanavalin A-induced autoimmune hepatitis is a well-established experimental model for immune-mediated liver injury. It has been widely used in the therapeutic studies of immune hepatitis. The in-depth analysis of dysregulated proteins from comparative proteomic results indicated that the activation of immune system resulted in the deregulation of autophagy. Follow-up studies validated that some immune related proteins, including Stat1, Pkr, Atg7, and Adrm1, were indeed upregulated. The accumulations of LC3B-II and p62 were confirmed by immunohistochemistry and Western blot analyses. Arctigenin pretreatment significantly alleviated the liver injury, as evidenced by biochemical and histopathological investigations, whose protective effects were comparable with Prednisone acetate and Cyclosporin A. Arctigenin pretreatment decreased the levels of IL-6 and IFN-γ, but increased the ones of IL-10. Next, the quantitative proteomic analysis demonstrated that ARC pretreatment suppressed the activation of immune system through the inhibition of IFN-γ signaling, when it downregulated the protein expressions of Stat1, P-Stat1, Pkr, P-Pkr, Bnip3, Beclin1, Atg7, LC3B, Adrm1, and p62. Meanwhile, Arctigenin pretreatment also reduced the gene expressions of Stat1, Pkr, and Atg7. These results suggested that Arctigenin alleviated autophagy as well as apoptosis through inhibiting IFN-γ/IL-6/Stat1 pathway and IL-6/Bnip3 pathway. In summary, the comparative proteomic analysis revealed that the activation of immune system led to Concanavalin A-induced hepatitis. Both autophagy and apoptosis had important clinical implications for the treatment of immune hepatitis. Arctigenin might exert great therapeutic potential in immune-mediated liver injury.
Collapse
Affiliation(s)
- Qin Feng
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jingchun Yao
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Ge Zhou
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenkai Xia
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Jingang Lyu
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Xin Li
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Tao Zhao
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Guimin Zhang
- Center for New Drug Pharmacological Research of Lunan Pharmaceutical Group, State Key Laboratory, Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China.,School of Pharmacy, Linyi University, Linyi, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Shimadzu Biomedical Research Laboratory, Shanghai, China
| | - Jie Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
20
|
Yang W, Liu W, Yu W, Fei D, Meng X, Yang S, Meng S, Zhao M. Angptl2 deficiency attenuates paraquat (PQ)-induced lung injury in mice by altering inflammation, oxidative stress and fibrosis through NF-κB pathway. Biochem Biophys Res Commun 2018; 503:94-101. [PMID: 29852175 DOI: 10.1016/j.bbrc.2018.05.186] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/28/2018] [Indexed: 12/13/2022]
Abstract
Paraquat (PQ) is one of the most extensively used herbicides, possessing high toxicity for humans and animals. The lung is the main target organ by the poisoning of PQ resulting in acute lung injury. Nonetheless, molecular mechanisms underlying PQ-induced lung injury remain unclear. Here, we ask if angiopoietin-like protein 2 (Angptl2), a pro-inflammatory protein, contributes to inflammation that accelerates acute lung injury. The results indicated that abundant Angptl2 expression was observed in lung tissues of PQ-treated mice. Histological analysis revealed that PQ-induced histological changes were alleviated by Angptl2 knockout (Angptl2-/-). Angptl2-/- in PQ-treated mice attenuated acute lung injury progression by reducing the number of total cells, total leukocytes, neutrophils and macrophages in bronchoalveolar lavage fluid (BALF) and reducing inflammatory response through the inactivation of nuclear factor kappa B (NF-κB) pathway. Angptl2-/- reduced oxidative stress in PQ-treated mice, as evidenced by the enhanced superoxide dismutase (SOD) activity and reduced malondialdehyde (MDA) levels in serum or lung tissue samples, which was accompanied with increased expressions of nuclear respiratory factor 2 (Nrf-2), heme oxygenase-1 (HO-1) and NAD(P)H:quinone oxidoreductase 1 (NQO-1). PQ-induced fibrosis was also improved in Angptl2-/- mice by decreasing pulmonary transforming growth factor (TGF)-β1 expressions. In vitro, we found that Angptl2 knockdown-suppressed inflammation, oxidative stress and fibrosis was restored by increasing NF-κB activation in PQ-incubated A549 cells; however, the results above were significantly reversed by inactivating NF-κB using its inhibitor, Bay 11-7085 or LY2409881. Therefore, Angptl2 could provide therapeutic effects on PQ-induced acute lung injury through inhibiting inflammation, oxidative stress and fibrosis by regulating NF-κB pathway.
Collapse
Affiliation(s)
- Wei Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China
| | - Wen Liu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China; Department of General Surgery, Xinxiang Medical University, No. 601, New Yan Road, Xinxiang 453000, China
| | - Wei Yu
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China
| | - Dongsheng Fei
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China
| | - Xianglin Meng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China
| | - Songlin Yang
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China
| | - Shishuai Meng
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China
| | - Mingyan Zhao
- Department of Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, No. 23, YouZheng Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
21
|
Gao Q, Yang M, Zuo Z. Overview of the anti-inflammatory effects, pharmacokinetic properties and clinical efficacies of arctigenin and arctiin from Arctium lappa L. Acta Pharmacol Sin 2018; 39:787-801. [PMID: 29698388 DOI: 10.1038/aps.2018.32] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/07/2018] [Indexed: 12/11/2022]
Abstract
Arctigenin (AR) and its glycoside, arctiin, are two major active ingredients of Arctium lappa L (A lappa), a popular medicinal herb and health supplement frequently used in Asia. In the past several decades, bioactive components from A lappa have attracted the attention of researchers due to their promising therapeutic effects. In the current article, we aimed to provide an overview of the pharmacology of AR and arctiin, focusing on their anti-inflammatory effects, pharmacokinetics properties and clinical efficacies. Compared to acrtiin, AR was reported as the most potent bioactive component of A lappa in the majority of studies. AR exhibits potent anti-inflammatory activities by inhibiting inducible nitric oxide synthase (iNOS) via modulation of several cytokines. Due to its potent anti-inflammatory effects, AR may serve as a potential therapeutic compound against both acute inflammation and various chronic diseases. However, pharmacokinetic studies demonstrated the extensive glucuronidation and hydrolysis of AR in liver, intestine and plasma, which might hinder its in vivo and clinical efficacy after oral administration. Based on the reviewed pharmacological and pharmacokinetic characteristics of AR, further pharmacokinetic and pharmacodynamic studies of AR via alternative administration routes are suggested to promote its ability to serve as a therapeutic agent as well as an ideal bioactive marker for A lappa.
Collapse
|
22
|
Protostemonine effectively attenuates lipopolysaccharide-induced acute lung injury in mice. Acta Pharmacol Sin 2018; 39:85-96. [PMID: 29047459 DOI: 10.1038/aps.2017.131] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
Abstract
Protostemonine (PSN) is the main anti-inflammatory alkaloid extracted from the roots of Stemona sessilifolia (known as "Baibu" in traditional Chinese medicine). Here, we reported the inhibitory effects of PSN on lipopolysaccharide (LPS)-induced macrophage activation in vitro and LPS-induced acute lung injury in mice. Macrophage cell line RAW264.7 cells and mouse bone marrow-derived macrophages (BMDMs) were treated with PSN (1, 3, 10, 30 and 100 μmol/L) for 0.5 h and then challenged with LPS (0.1 μg/mL) for 24 h. Pretreatment with PSN significantly inhibited LPS-induced phosphorylation of MAPKs and AKT, iNOS expression and NO production in the macrophages. C57BL/6 mice were intratracheally injected with LPS (5 mg/kg) to induce acute lung injury (ALI). The mice were subsequently treated with PSN (10 mg/kg, ip) at 4 and 24 h after LPS challenge. PSN administration significantly attenuated LPS-induced inflammatory cell infiltration, reduced pro-inflammatory cytokine (TNF-α, IL-1β and IL-6) production and eliminated LPS-mediated lung edema. Furthermore, PSN administration significantly inhibited LPS-induced pulmonary MPO activity. Meanwhile, LPS-induced phosphorylation of p38 MAPK, iNOS expression and NO production in the lungs were also suppressed. The results demonstrate that PSN effectively attenuates LPS-induced inflammatory responses in vitro and in vivo; the beneficial effects are associated with the decreased phosphorylation of MAPK and AKT and the reduced expression of pro-inflammatory mediators, such as iNOS, NO and cytokines. These data suggest that PSN may be a potential therapeutic agent in the treatment of ALI.
Collapse
|
23
|
Pesce M, Tatangelo R, La Fratta I, Rizzuto A, Campagna G, Turli C, Ferrone A, Franceschelli S, Speranza L, Verrocchio MC, De Lutiis MA, Felaco M, Grilli A. Memory Training Program Decreases the Circulating Level of Cortisol and Pro-inflammatory Cytokines in Healthy Older Adults. Front Mol Neurosci 2017; 10:233. [PMID: 28790890 PMCID: PMC5522887 DOI: 10.3389/fnmol.2017.00233] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/06/2017] [Indexed: 12/31/2022] Open
Abstract
Aging cognitive decline has been associated to impairment of the Hypothalamus Pituitary Adrenals (HPA) axis activity and a higher level of the systemic inflammation. However, little is known about the molecules driving this process at peripheral level. In addition, the cognitive function is to some extent modifiable with Memory Training (MT) programs, even among older adults and beyond. The study aims to evaluate whether MT could contribute to ameliorate cognitive performance and modulate the HPA axis activity as well the low level inflammation in the aging phenotype. Whether the phosphatase WIP-1, a negative regulator for inflammation, is involved in this process was also investigated. We recruited 31 young adults (19-28, years of age) and 62 older adults aged over 60. Thirty-two older adults were submitted to 6-months of MT program (EG), and 28 older adults were no treated and used as Control Group (CG). Global cognitive functioning (MMSE score), verbal and visual memory, and attention were assessed at baseline (T0) and after 6-months (T1). At the same time, plasmatic level of Cortisol (C), IL-1β, IL-18, IL-6, and the expression of WIP-1 mRNA and protein in ex vivo Peripheral Blood Mononuclear Cells were analyzed in young adults at T0, as well in older adults at T0 and T1. Together, the results suggest that MT improves the global cognitive functionality, verbal and visual memory, as well as the level of attention. At the same time we observed a decrease of the plasmatic level of C, of the cytokines, and an increase of the expression of mRNA and protein of WIP-1. The analysis of correlations highlighted that the level of the mRNA of WIP-1 was positively associated to the MMSE score, and negatively to the C and cytokine levels. In conclusion, we purpose the MT as tool that could help support successful aging through the improving of memory, attention and global cognitive function performance. Furthermore, this approach could participate to maintain lower the peripheral levels of the C and pro-inflammatory cytokines. The WIP-1 as a potential new target of the pathophysiology of aging is theorized.
Collapse
Affiliation(s)
| | - Raffaella Tatangelo
- School of Medicine and Health Science, University G. D’AnnunzioChieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cui Q, Hou Y, Wang Y, Li X, Liu Y, Ma X, Wang Z, Wang W, Tao J, Wang Q, Jiang M, Chen D, Feng X, Bai G. Biodistribution of arctigenin-loaded nanoparticles designed for multimodal imaging. J Nanobiotechnology 2017; 15:27. [PMID: 28388905 PMCID: PMC5383946 DOI: 10.1186/s12951-017-0263-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Tracking targets of natural products is one of the most challenging issues in fields ranging from pharmacognosy to biomedicine. It is widely recognized that the biocompatible nanoparticle (NP) could function as a "key" that opens the target "lock". RESULTS We report a functionalized poly-lysine NP technique that can monitor the target protein of arctigenin (ATG) in vivo non-invasively. The NPs were synthesized, and their morphologies and surface chemical properties were characterized by transmission electron microscopy (TEM), laser particle size analysis and atomic force microscopy (AFM). In addition, we studied the localization of ATG at the level of the cell and the whole animal (zebrafish and mice). We demonstrated that fluorescent NPs could be ideal carriers in the development of a feasible method for target identification. The distributions of the target proteins were found to be consistent with the pharmacological action of ATG at the cellular and whole-organism levels. CONCLUSIONS The results indicated that functionalized poly-lysine NPs could be valuable in the multimodal imaging of arctigenin.
Collapse
Affiliation(s)
- Qingxin Cui
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yuanyuan Hou
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Yanan Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300071 China
| | - Xu Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Physiology, School of Medicine, Nankai University, Tianjin, 300071 China
| | - Yang Liu
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Xiaoyao Ma
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Zengyong Wang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Weiya Wang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Jin Tao
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Qian Wang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Min Jiang
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 People’s Republic of China
| | - Dongyan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Physiology, School of Medicine, Nankai University, Tianjin, 300071 China
| | - Xizeng Feng
- State Key Laboratory of Medicinal Chemical Biology, College of Life Science, Nankai University, Tianjin, 300071 China
| | - Gang Bai
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300071 People’s Republic of China
| |
Collapse
|
25
|
Bittencourt-Mernak MI, Pinheiro NM, Santana FPR, Guerreiro MP, Saraiva-Romanholo BM, Grecco SS, Caperuto LC, Felizardo RJF, Câmara NOS, Tibério IFLC, Martins MA, Lago JHG, Prado CM. Prophylactic and therapeutic treatment with the flavonone sakuranetin ameliorates LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2016; 312:L217-L230. [PMID: 27881407 DOI: 10.1152/ajplung.00444.2015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 10/27/2016] [Accepted: 11/22/2016] [Indexed: 01/03/2023] Open
Abstract
Sakuranetin is the main isolate flavonoid from Baccharis retusa (Asteraceae) leaves and exhibits anti-inflammatory and antioxidative activities. Acute respiratory distress syndrome is an acute failure of the respiratory system for which effective treatment is urgently necessary. This study investigated the preventive and therapeutic effects of sakuranetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Animals were treated with intranasal sakuranetin 30 min before or 6 h after instillation of LPS. Twenty-four hours after ALI was induced, lung function, inflammation, macrophages population markers, collagen fiber deposition, the extent of oxidative stress, and the expression of matrix metalloprotease-9 (MMP-9), tissue inhibitor of MMP-9 (TIMP-1) and NF-κB were evaluated. The animals began to show lung alterations 6 h after LPS instillation, and these changes persisted until 24 h after LPS administration. Preventive and therapeutic treatment with sakuranetin reduced the neutrophils in the peripheral blood and in the bronchial alveolar lavage. Sakuranetin treatment also reduced macrophage populations, particularly that of M1-like macrophages. In addition, sakurnaetin treatment reduced keratinocyte-derived chemokines (IL-8 homolog) and NF-κB levels, collagen fiber formation, MMM-9 and TIMP-1-positive cells, and oxidative stress in lung tissues compared with LPS animals treated with vehicle. Finally, sakuranetin treatment also reduced total protein, and the levels of TNF-α and IL-1β in the lung. This study shows that sakuranetin prevented and reduced pulmonary inflammation induced by LPS. Because sakuranetin modulates oxidative stress, the NF-κB pathway, and lung function, it may constitute a novel therapeutic candidate to prevent and treat ALI.
Collapse
Affiliation(s)
| | - Nathalia M Pinheiro
- Medicine Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Marina P Guerreiro
- Biological Science Department, Federal University of São Paulo, Diadema, Brazil
| | - Beatriz M Saraiva-Romanholo
- Medicine Department, School of Medicine, University of São Paulo, São Paulo, Brazil.,University City of São Paulo (UNICID), São Paulo, Brazil.,Institute of Medical Assistance to the State Public Servant of São Paulo (IAMSPE), São Paulo, Brazil
| | - Simone S Grecco
- Earth and Exact Science, Federal University of Brazil, São Paulo, Brazil
| | - Luciana C Caperuto
- Biological Science Department, Federal University of São Paulo, Diadema, Brazil
| | - Raphael J F Felizardo
- Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo, Brazil
| | - Niels O S Câmara
- Medicine Department, School of Medicine, University of São Paulo, São Paulo, Brazil.,Department of Medicine, Nephrology Division, Federal University of São Paulo, São Paulo, Brazil.,Immunology Department, Biological Science Institute, University of São Paulo, São Paulo, Brazil; and
| | | | - Mílton A Martins
- Medicine Department, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | | - Carla M Prado
- Biological Science Department, Federal University of São Paulo, Diadema, Brazil; .,Medicine Department, School of Medicine, University of São Paulo, São Paulo, Brazil.,Bioscience Department, Federal University of São Paulo, Santos, Brazil
| |
Collapse
|
26
|
Barabutis N, Verin A, Catravas JD. Regulation of pulmonary endothelial barrier function by kinases. Am J Physiol Lung Cell Mol Physiol 2016; 311:L832-L845. [PMID: 27663990 DOI: 10.1152/ajplung.00233.2016] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/15/2016] [Indexed: 12/15/2022] Open
Abstract
The pulmonary endothelium is the target of continuous physiological and pathological stimuli that affect its crucial barrier function. The regulation, defense, and repair of endothelial barrier function require complex biochemical processes. This review examines the role of endothelial phosphorylating enzymes, kinases, a class with profound, interdigitating influences on endothelial permeability and lung function.
Collapse
Affiliation(s)
- Nektarios Barabutis
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, Georgia; and
| | - John D Catravas
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, Virginia, .,School of Medical Diagnostic and Translational Sciences, College of Health Sciences, Old Dominion University, Norfolk, Virginia
| |
Collapse
|
27
|
Han YH, Kee JY, Park J, Kim HL, Jeong MY, Kim DS, Jeon YD, Jung Y, Youn DH, Kang J, So HS, Park R, Lee JH, Shin S, Kim SJ, Um JY, Hong SH. Arctigenin Inhibits Adipogenesis by Inducing AMPK Activation and Reduces Weight Gain in High-Fat Diet-Induced Obese Mice. J Cell Biochem 2016; 117:2067-77. [PMID: 26852013 DOI: 10.1002/jcb.25509] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 02/04/2016] [Indexed: 01/03/2023]
Abstract
Although arctigenin (ARC) has been reported to have some pharmacological effects such as anti-inflammation, anti-cancer, and antioxidant, there have been no reports on the anti-obesity effect of ARC. The aim of this study is to investigate whether ARC has an anti-obesity effect and mediates the AMP-activated protein kinase (AMPK) pathway. We investigated the anti-adipogenic effect of ARC using 3T3-L1 pre-adipocytes and human adipose tissue-derived mesenchymal stem cells (hAMSCs). In high-fat diet (HFD)-induced obese mice, whether ARC can inhibit weight gain was investigated. We found that ARC reduced weight gain, fat pad weight, and triglycerides in HFD-induced obese mice. ARC also inhibited the expression of peroxisome proliferator-activated receptor gamma (PPARγ) and CCAAT/enhancer-binding protein alpha (C/EBPα) in in vitro and in vivo. Furthermore, ARC induced the AMPK activation resulting in down-modulation of adipogenesis-related factors including PPARγ, C/EBPα, fatty acid synthase, adipocyte fatty acid-binding protein, and lipoprotein lipase. This study demonstrates that ARC can reduce key adipogenic factors by activating the AMPK in vitro and in vivo and suggests a therapeutic implication of ARC for obesity treatment. J. Cell. Biochem. 117: 2067-2077, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yo-Han Han
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Ji-Ye Kee
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Jinbong Park
- Department of Pharmacology, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hye-Lin Kim
- Department of Pharmacology, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Mi-Young Jeong
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea.,Department of Pharmacology, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Dae-Seung Kim
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Yong-Deok Jeon
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Yunu Jung
- Department of Pharmacology, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Dong-Hyun Youn
- Department of Pharmacology, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - JongWook Kang
- Department of Pharmacology, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Hong-Seob So
- Center for Metabolic Function Regulation, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Raekil Park
- Center for Metabolic Function Regulation, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Jong-Hyun Lee
- College of Pharmacy, Dongduk Women's University, 60 Hwarang-ro 13-gil, Seongbuk-gu, Seoul, 02748, Republic of Korea
| | - Soyoung Shin
- Department of Pharmacy, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| | - Su-Jin Kim
- Department of Cosmeceutical Science, Daegu Hanny University, 1 Haanydaero, Gyeongsan-si, Gyeongsangbuk-Do, 38610, Republic of Korea
| | - Jae-Young Um
- Department of Pharmacology, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Seung-Heon Hong
- Department of Oriental Pharmacy, Wonkwang-Oriental Medicines Research Institute, College of Pharmacy, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk, 54538, Republic of Korea
| |
Collapse
|
28
|
Arctigenin Protects against Lipopolysaccharide-Induced Pulmonary Oxidative Stress and Inflammation in a Mouse Model via Suppression of MAPK, HO-1, and iNOS Signaling. Inflammation 2016; 38:1406-14. [PMID: 25616905 PMCID: PMC7102291 DOI: 10.1007/s10753-015-0115-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Arctigenin, a bioactive component of Arctium lappa (Nubang), has anti-inflammatory activity. Here, we investigated the effects of arctigenin on lipopolysaccharide (LPS)-induced acute lung injury. Mice were divided into four groups: control, LPS, LPS + DMSO, and LPS + Arctigenin. Mice in the LPS + Arctigenin group were injected intraperitoneally with 50 mg/kg of arctigenin 1 h before an intratracheal administration of LPS (5 mg/kg). Lung tissues and bronchoalveolar lavage fluids (BALFs) were collected. Histological changes of the lung were analyzed by hematoxylin and eosin staining. Arctigenin decreased LPS-induced acute lung inflammation, infiltration of inflammatory cells into BALF, and production of pro-inflammatory cytokines. Moreover, arctigenin pretreatment reduced the malondialdehyde level and increased superoxide dismutase and catalase activities and glutathione peroxidase/glutathione disulfide ratio in the lung. Mechanically, arctigenin significantly reduced the production of nitric oxygen and inducible nitric oxygen synthase (iNOS) expression, enhanced the expression of heme oxygenase-1, and decreased the phosphorylation of mitogen-activated protein kinases (MAPKs). Arctigenin has anti-inflammatory and antioxidative effects on LPS-induced acute lung injury, which are associated with modulation of MAPK, HO-1, and iNOS signaling.
Collapse
|
29
|
Mehta D, Ravindran K, Kuebler WM. Novel regulators of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol 2014; 307:L924-35. [PMID: 25381026 PMCID: PMC4269690 DOI: 10.1152/ajplung.00318.2014] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 12/15/2022] Open
Abstract
Endothelial barrier function is an essential and tightly regulated process that ensures proper compartmentalization of the vascular and interstitial space, while allowing for the diffusive exchange of small molecules and the controlled trafficking of macromolecules and immune cells. Failure to control endothelial barrier integrity results in excessive leakage of fluid and proteins from the vasculature that can rapidly become fatal in scenarios such as sepsis or the acute respiratory distress syndrome. Here, we highlight recent advances in our understanding on the regulation of endothelial permeability, with a specific focus on the endothelial glycocalyx and endothelial scaffolds, regulatory intracellular signaling cascades, as well as triggers and mediators that either disrupt or enhance endothelial barrier integrity, and provide our perspective as to areas of seeming controversy and knowledge gaps, respectively.
Collapse
Affiliation(s)
- Dolly Mehta
- Department of Pharmacology and Center for Lung and Vascular Biology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois;
| | - Krishnan Ravindran
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | | |
Collapse
|
30
|
Jeong YH, Park JS, Kim DH, Kim HS. Arctigenin Increases Hemeoxygenase-1 Gene Expression by Modulating PI3K/AKT Signaling Pathway in Rat Primary Astrocytes. Biomol Ther (Seoul) 2014; 22:497-502. [PMID: 25489416 PMCID: PMC4256028 DOI: 10.4062/biomolther.2014.121] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/04/2014] [Accepted: 11/05/2014] [Indexed: 12/30/2022] Open
Abstract
In the present study, we found that the natural compound arctigenin inhibited hydrogen peroxide-induced reactive oxygen species (ROS) production in rat primary astrocytes. Since hemeoxygenase-1 (HO-1) plays a critical role as an antioxidant defense factor in the brain, we examined the effect of arctigenin on HO-1 expression in rat primary astrocytes. We found that arctigenin increased HO-1 mRNA and protein levels. Arctigenin also increases the nuclear translocation and DNA binding of Nrf2/c-Jun to the antioxidant response element (ARE) on HO-1 promoter. In addition, arctigenin increased ARE-mediated transcriptional activities in rat primary astrocytes. Further mechanistic studies revealed that arctigenin increased the phosphorylation of AKT, a downstream substrate of phosphatidylinositol 3-kinase (PI3K). Treatment of cells with a PI3K-specific inhibitor, LY294002, suppressed the HO-1 expression, Nrf2 DNA binding and ARE-mediated transcriptional activities in arctigenin-treated astrocyte cells. The results collectively suggest that PI3K/AKT signaling pathway is at least partly involved in HO-1 expression by arctigenin via modulation of Nrf2/ARE axis in rat primary astrocytes.
Collapse
Affiliation(s)
- Yeon-Hui Jeong
- Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University Medical School, Seoul 158-710
| | - Jin-Sun Park
- Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University Medical School, Seoul 158-710
| | - Dong-Hyun Kim
- Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Hee-Sun Kim
- Department of Molecular Medicine, Tissue Injury Defense Research Center, Ewha Womans University Medical School, Seoul 158-710
| |
Collapse
|