1
|
Alur V, Vastrad B, Raju V, Vastrad C, Kotturshetti S. The identification of key genes and pathways in polycystic ovary syndrome by bioinformatics analysis of next-generation sequencing data. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2024; 29:53. [DOI: 10.1186/s43043-024-00212-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 11/17/2024] [Indexed: 01/02/2025] Open
Abstract
Abstract
Background
Polycystic ovary syndrome (PCOS) is a reproductive endocrine disorder. The specific molecular mechanism of PCOS remains unclear. The aim of this study was to apply a bioinformatics approach to reveal related pathways or genes involved in the development of PCOS.
Methods
The next-generation sequencing (NGS) dataset GSE199225 was downloaded from the gene expression omnibus (GEO) database and NGS dataset analyzed is obtained from in vitro culture of PCOS patients’ muscle cells and muscle cells of healthy lean control women. Differentially expressed gene (DEG) analysis was performed using DESeq2. The g:Profiler was utilized to analyze the gene ontology (GO) and REACTOME pathways of the differentially expressed genes. A protein–protein interaction (PPI) network was constructed and module analysis was performed using HiPPIE and cytoscape. The miRNA-hub gene regulatory network and TF-hub gene regulatory network were constructed. The hub genes were validated by using receiver operating characteristic (ROC) curve analysis.
Results
We have identified 957 DEG in total, including 478 upregulated genes and 479 downregulated gene. GO terms and REACTOME pathways illustrated that DEG were significantly enriched in regulation of molecular function, developmental process, interferon signaling and platelet activation, signaling, and aggregation. The top 5 upregulated hub genes including HSPA5, PLK1, RIN3, DBN1, and CCDC85B and top 5 downregulated hub genes including DISC1, AR, MTUS2, LYN, and TCF4 might be associated with PCOS. The hub gens of HSPA5 and KMT2A, together with corresponding predicted miRNAs (e.g., hsa-mir-34b-5p and hsa-mir-378a-5p), and HSPA5 and TCF4 together with corresponding predicted TF (e.g., RCOR3 and TEAD4) were found to be significantly correlated with PCOS.
Conclusions
These study uses of bioinformatics analysis of NGS data to obtain hub genes and key signaling pathways related to PCOS and its associated complications. Also provides novel ideas for finding biomarkers and treatment methods for PCOS and its associated complications.
Collapse
|
2
|
Valentine Y, Nikolajczyk BS. T cells in obesity-associated inflammation: The devil is in the details. Immunol Rev 2024; 324:25-41. [PMID: 38767210 PMCID: PMC11694249 DOI: 10.1111/imr.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Obesity presents a significant health challenge, affecting 41% of adults and 19.7% of children in the United States. One of the associated health challenges of obesity is chronic low-grade inflammation. In both mice and humans, T cells in circulation and in the adipose tissue play a pivotal role in obesity-associated inflammation. Changes in the numbers and frequency of specific CD4+ Th subsets and their contribution to inflammation through cytokine production indicate declining metabolic health, that is, insulin resistance and T2D. While some Th subset alterations are consistent between mice and humans with obesity, some changes mainly characterize male mice, whereas female mice often resist obesity and inflammation. However, protection from obesity and inflammation is not observed in human females, who can develop obesity-related T-cell inflammation akin to males. The decline in female sex hormones after menopause is also implicated in promoting obesity and inflammation. Age is a second underappreciated factor for defining and regulating obesity-associated inflammation toward translating basic science findings to the clinic. Weight loss in mice and humans, in parallel with these other factors, does not resolve obesity-associated inflammation. Instead, inflammation persists amid modest changes in CD4+ T cell frequencies, highlighting the need for further research into resolving changes in T-cell function after weight loss. How lingering inflammation after weight loss affecting the common struggle to maintain lower weight is unknown. Semaglutide, a newly popular pharmaceutical used for treating T2D and reversing obesity, holds promise for alleviating obesity-associated health complications, yet its impact on T-cell-mediated inflammation remains unexplored. Further work in this area could significantly contribute to the scientific understanding of the impacts of weight loss and sex/hormones in obesity and obesity-associated metabolic decline.
Collapse
Affiliation(s)
- Yolander Valentine
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
| | - Barbara S. Nikolajczyk
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, Kentucky, USA
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, Kentucky, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, USA
- Barnstable Brown Diabetes and Obesity Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
3
|
Huang J, Zhou X, Dong B, Tan H, Li Q, Zhang J, Su H, Sun X. Obesity-related asthma and its relationship with microbiota. Front Cell Infect Microbiol 2024; 13:1303899. [PMID: 38292857 PMCID: PMC10825962 DOI: 10.3389/fcimb.2023.1303899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Obesity and asthma are global public health problems. Obesity-related asthma is a special phenotype of asthma with a complex pathogenesis. Its occurrence and development are related to mechanical compression, inflammatory response, metabolic regulation, gene regulation, and vitamin D deficiency. Different treatment strategies used in the process of weight loss have a beneficial impact on asthma. Alterations in gut and airway microbial community structure and their metabolites may also contribute to obesity-related asthma. The role of the Th17/Treg balance in the gut microbiota regulating the immune responses and host metabolism is important. Therapeutic measures associated with the gut microbiota variety may contribute to improving chronic inflammation associated with obesity by regulating the Th17/Treg balance. An early reduction in microbial diversity can predict the development of asthma and lead to allergy through an imbalance of Th2/Th1 responses. Short-chain fatty acids (SCFAs) regulate the differentiation and activation of regulatory T cells, thereby regulating immune homeostasis in the lung to suppress allergic inflammation and weight gain. Therefore, clarifying the microbial mechanism of obesity-related asthma has important guiding significance for clinical treatment. In this review, we used the following terms: "asthma and obesity" and "obesity-related asthma", combining "phenotype", "airway inflammation" and "lung function", and reviewed the characteristics and pathogenesis of obesity-related asthma, the relationship between the gut and airway microbiota and obesity-related asthma, and the current treatment measures for the disease.
Collapse
Affiliation(s)
- Jinli Huang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Xuehua Zhou
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Bo Dong
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Hong Tan
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Qiuhong Li
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Juan Zhang
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Hui Su
- Department of Geriatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| | - Xin Sun
- Department of Pediatrics, Xijing Hospital, the Fourth Military Medical University, Xi’an, China
| |
Collapse
|
4
|
Aziz C, Morales A, Pinto W, Fanchini V, Dell Aquila L, Sangaleti C, Elias R, Dalboni M. Evaluation of IL-6, FoxP3 Treg lymphocytes, intestinal barrier biomarkers and the use of synbiotics in obese adolescents: a pilot study. Front Pediatr 2023; 11:1215793. [PMID: 37859769 PMCID: PMC10583575 DOI: 10.3389/fped.2023.1215793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Aim This prospective pilot study evaluated inflammatory and intestinal barrier biomarkers and the effects of a synbiotic in obese adolescents. Methods Eighteen obese and 20 eutrophic adolescents were evaluated for body composition using bioimpedance analysis (BIA), body mass index (BMI), IL-6 and lipopolysaccharide (LPS) serum levels, CD4 and FoxP3 Treg lymphocytes and monocytes. Synbiotic supplementation for 60 days was also evaluated for these parameters only in obese adolescents. Results We observed an increase in CD4 lymphocyte (18.0 ± 12.4 vs. 8.9 ± 7.5; p < 0.01), IL-6 (0.30 ± 0.06 vs. 0.20 ± 0.06; p = 0.02) and LPS (0.18 ± 0.15 vs. 0.08 ± 0.05; p < 0.01) levels in obese compared to eutrophic adolescents. After synbiotic supplementation, FoxP3 Treg lymphocytes increased (14.0 ± 6.7 vs. 9.9 ± 5.4; p = 0.02) in obese adolescents. Conclusions Obese adolescents presented a state of microinflammation and intestinal barrier breakdown, and synbiotic supplementation increased the expression of FoxP3 Treg lymphocytes, an anti-inflammatory regulator. Whether the increase in FoxP3 Treg lymphocytes may have an impact on inflammation and outcomes in obese adolescents deserves further evaluation.
Collapse
Affiliation(s)
- Cylmara Aziz
- Department of Postgraduate Studies in Medicine, Universidade Nove de Julho, São Paulo, Brazil
| | - Armando Morales
- Department of Postgraduate Studies in Medicine, Universidade Nove de Julho, São Paulo, Brazil
| | - Walter Pinto
- Department of Postgraduate Studies in Medicine, Universidade Nove de Julho, São Paulo, Brazil
| | - Vanessa Fanchini
- Department of Postgraduate Studies in Medicine, Universidade Nove de Julho, São Paulo, Brazil
| | - Luis Dell Aquila
- Department of Postgraduate Studies in Medicine, Universidade Nove de Julho, São Paulo, Brazil
| | - Carine Sangaleti
- Department of Postgraduate Studies in Nanosciences and Biosciences, Universidade Estadual do Centro Oeste, Guarapuava, Brazil
| | - Rosilene Elias
- Department of Postgraduate Studies in Medicine, Universidade Nove de Julho, São Paulo, Brazil
| | - Maria Dalboni
- Department of Postgraduate Studies in Medicine, Universidade Nove de Julho, São Paulo, Brazil
| |
Collapse
|
5
|
Arroyo-Jousse V, Borzutzky A, Bono MR, Casanello P. Maternal obesity is associated with a higher number of regulatory-T-cells in newborns without affecting suppression. Am J Reprod Immunol 2023; 89:e13687. [PMID: 36757025 DOI: 10.1111/aji.13687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Maternal obesity (MO) is associated with a higher risk of immune-mediated diseases in the offspring and higher leptin levels in cord blood (CB). This study evaluates the number and function of lymphocyte subtypes in CB related to MO and its relationship with leptin concentration and leptin receptor expression. METHODS Pregnant women with (n = 32) or without obesity (n = 41) were enrolled at delivery. Cord blood mononuclear cells were separated with Ficoll-Hypaque. B and CD4+, regulatory and effector T cells were quantified by Flow Cytometry. Cord blood leptin concentration was measured by ELISA, and the leptin receptor (sLepR) on Treg cells was determined by Flow Cytometry. RESULTS MO was associated with higher numbers of CD4+, Treg and effector T cells in the CB of their offspring, without differences in the suppressive function of Tregs. Female offspring had a higher number of these cells and a higher cord leptin concentration. Tregs expressed higher levels of sLepR than effector T cells, without differences between groups. CONCLUSIONS MO is associated with changes in the newborn's immune profile, more evident in female newborns with higher leptin concentrations. More studies are needed to identify the mechanisms by which the high levels of cord leptin in the newborn of women with obesity could affect the offspring's immune system.
Collapse
Affiliation(s)
| | - Arturo Borzutzky
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Rosa Bono
- Department of Immunology, Faculty of Science, Universidad de Chile, Santiago, Chile
| | - Paola Casanello
- Department of Neonatology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Obstetrics, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
6
|
Elsebai MF, Habib ESE. Blood pH and COVID-19. Arch Pharm (Weinheim) 2023; 356:e2200558. [PMID: 36690587 DOI: 10.1002/ardp.202200558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/31/2022] [Accepted: 01/02/2023] [Indexed: 01/25/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is a worldwide war. Raising the blood pH might be a crucial strategy to chase COVID-19. The human blood is slightly alkaline, which is essential for cell metabolism, normal physiology, and balanced immunity since all of these biological processes are pH-dependent. Varieties of physiologic derangements occur when the blood pH is disrupted. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) proliferates in acidic blood that magnifies the severity of COVID-19. On the other side, blood acidemia is linked to increased morbidity and mortality because of its complications on immunity, especially in the elderly and in critical diseases such as cancer, musculoskeletal degradation, renal, cardiac, and pulmonary disorders, which result in many pathological disorders such as osteomalacia, and disturbing the hematopoiesis. Additionally, acidemia of the blood facilitates viral infection and progression. Thus, correcting the acid-base balance might be a crucial strategy for the treatment of COVID-19, which might be attributed to the distraction of the viral spike protein to its cognate receptor angiotensin-converting enzyme 2 and supporting the over-taxed immunity.
Collapse
Affiliation(s)
- Mahmoud Fahmi Elsebai
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - El-Sayed E Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| |
Collapse
|
7
|
Bryant N, Muehling LM. T-cell responses in asthma exacerbations. Ann Allergy Asthma Immunol 2022; 129:709-718. [PMID: 35918022 PMCID: PMC9987567 DOI: 10.1016/j.anai.2022.07.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Asthma is a chronic lung disease comprising multiple endotypes and characterized by periodic exacerbations. A diverse array of T cells has been found to contribute to all endotypes of asthma in pathogenic and regulatory roles. Here, we review the contributions of CD4+, CD8+, and unconventional T cells in allergic and nonallergic asthma. DATA SOURCES Review of published literature pertaining to conventional and unconventional T-cell types in asthma. STUDY SELECTIONS Recent peer-reviewed articles pertaining to T cells in asthma, with additional peer-reviewed studies for context. RESULTS Much research in asthma has focused on the roles of CD4+ TH cells. Roles for TH2 cells in promoting allergic asthma pathogenesis have been well-described, and the recent description of pathogenic TH2A cells provides additional insight into these responses. Other TH types, notably TH1 and TH17, have been linked to neutrophilic and steroid-resistant asthma phenotypes. Beyond CD4+ T cells, CD8+ Tc2 cells are also strongly associated with allergic asthma. An emerging area for study is unconventional T-cell types, including γδT, invariant natural killer T, and mucosal-associated invariant T cells. Although data in asthma remain limited for these cells, their ability to bridge innate and adaptive responses likely makes them key players in asthma. A number of asthma therapies target T-cell responses, and, although data are limited, they seem to modulate T-cell populations. CONCLUSION Given the diversity and heterogeneity of asthma and T-cell responses, there remain many rich avenues for research to better understand the pathogenesis of asthma. Despite the breadth of T cells in asthma, approved therapeutics remain limited to TH2 networks.
Collapse
Affiliation(s)
- Naomi Bryant
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Lyndsey M Muehling
- Department of Medicine, University of Virginia School of Medicine, Charlottesville, Virginia.
| |
Collapse
|
8
|
Elsebai MF, Albalawi MA. Essential Oils and COVID-19. Molecules 2022; 27:molecules27227893. [PMID: 36431995 PMCID: PMC9696513 DOI: 10.3390/molecules27227893] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022] Open
Abstract
Herbal products are a major source of herbal medicines and other medicines. Essential oils have shown various pharmacological activities, such as antiviral activity, and therefore are proposed to have potential activity against SARS-CoV-2. Due to their lipophilicity, essential oils can easily penetrate the viral membrane and cause the viral membrane to rupture. In addition, crude essential oils usually have many active constituents that can act on different parts of the virus including its cell entry, translation, transcription, and assembly. They have further beneficial pharmacological effects on the host's respiratory system, including anti-inflammatory, immune regulation, bronchiectasis, and mucolytics. This review reported potential essential oils which could be promising drugs for COVID-19 eradication. Essential oils have many advantages because they are promising volatile antiviral molecules, making them potential drug targets for the prevention and treatment of COVID-19, whether used alone or in combination with other chemotherapeutic drugs. The aim of the current review is to shed light on the potential essential oils against enveloped viruses and their proposed activity against SARS-CoV-2 which is also an enveloped virus. The objectives were to present all data reflecting the promising activities of diverse essential oils against enveloped viruses and how they could contribute to the eradication of COVID disease, especially in indoor places. The data collected for the current review were obtained through the SciFinder database, Google scholar, PubMed, and Mendeley database. The data of the current review focused on the most common essential oils which are available in the pharmaceutical market and showed noticeable activities against enveloped viruses such as HSV and influenza.
Collapse
Affiliation(s)
- Mahmoud Fahmi Elsebai
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence: or ; Tel.: +20-1557290900; Fax: +20-50-2247496
| | | |
Collapse
|
9
|
Systemic hypereosinophilic syndromes: when autoimmunity is Th2 mediated. Curr Opin Allergy Clin Immunol 2021; 20:175-180. [PMID: 31985544 DOI: 10.1097/aci.0000000000000614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW Clinical conditions associated with hypereosinophilia represent a field of particular interest, taking into account the epidemiological impact of the different primary and secondary forms. In addition to a classical Th1 response, also Th2 cells can be involved in the pathogenesis of autoimmune diseases, among them eosinophilic forms such as eosinophilic granulomatosis with polyangiitis. RECENT FINDINGS In patients with severe asthma, recent evidence highlights the role of pathogenic autoantibodies against autologous eosinophil proteins (e.g. eosinophil peroxidase) suggest the role of autoimmune mechanisms, particularly in patients in which asthma is included in eosinophilic vasculitis with antineutrophilic autoantibody positivity. Is now evident that in addition to Th2 cells, also type 2 innate lymphoid cells and Th1/Th17 cells play a central role in the pathogenesis of hypereosinophilic syndrome. SUMMARY The definition of cellular and molecular mechanisms and the critical role of specific cytokines involved in the pathogenesis of hypereosinophilic syndrome open the way to new therapeutic strategies by using biological agents targeting these specific factors.
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW Pediatric obese asthma is a complex disease that remains poorly understood. The increasing worldwide incidence of both asthma and obesity over the last few decades, their current high prevalence and the challenges in treating obese asthmatic patients all highlight the importance of a better understanding of the pathophysiological mechanisms in obese asthma. While it is well established that patients with obesity are at an increased risk of developing asthma, the mechanisms by which obesity drives the onset of asthma, and modifies existing asthma, remain unclear. Here, we will focus on mechanisms by which obesity alters immune function in asthma. RECENT FINDINGS Lung parenchyma has an altered structure in some pediatric obese asthmatics, known as dysanapsis. Central adiposity is linked to reduced pulmonary function and a better predictor of asthma risk in children than BMI. Obesity in young children is associated with an increased risk of developing asthma, as well as early puberty, and hormonal alterations are implicated in obese asthma. Obesity and asthma each yield immunometabolic dysregulation separately and we are learning more about alterations in these pathways in pediatric obese asthma and the potential impact of bariatric surgery on those processes. SUMMARY The recent progress in clarifying the connections between childhood obesity and asthma and their combined impacts on immune function moves us closer to the goals of improved understanding of the pathophysiological mechanisms underpinning obese asthma and improved therapeutic target selection. However, this common inflammatory disease remains understudied, especially in children, and much remains to be learned.
Collapse
Affiliation(s)
- Ceire Hay
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
| | - Sarah E. Henrickson
- Children’s Hospital of Philadelphia, Department of Pediatrics, Division of Allergy Immunology, Philadelphia, PA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
11
|
Heindel JJ, Belcher S, Flaws JA, Prins GS, Ho SM, Mao J, Patisaul HB, Ricke W, Rosenfeld CS, Soto AM, Vom Saal FS, Zoeller RT. Data integration, analysis, and interpretation of eight academic CLARITY-BPA studies. Reprod Toxicol 2020; 98:29-60. [PMID: 32682780 PMCID: PMC7365109 DOI: 10.1016/j.reprotox.2020.05.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/03/2020] [Accepted: 05/25/2020] [Indexed: 12/12/2022]
Abstract
"Consortium Linking Academic and Regulatory Insights on BPA Toxicity" (CLARITY-BPA) was a comprehensive "industry-standard" Good Laboratory Practice (GLP)-compliant 2-year chronic exposure study of bisphenol A (BPA) toxicity that was supplemented by hypothesis-driven independent investigator-initiated studies. The investigator-initiated studies were focused on integrating disease-associated, molecular, and physiological endpoints previously found by academic scientists into an industry standard guideline-compliant toxicity study. Thus, the goal of this collaboration was to provide a more comprehensive dataset upon which to base safety standards and to determine whether industry-standard tests are as sensitive and predictive as molecular and disease-associated endpoints. The goal of this report is to integrate the findings from the investigator-initiated studies into a comprehensive overview of the observed impacts of BPA across the multiple organs and systems analyzed. For each organ system, we provide the rationale for the study, an overview of methodology, and summarize major findings. We then compare the results of the CLARITY-BPA studies across organ systems with the results of previous peer-reviewed studies from independent labs. Finally, we discuss potential influences that contributed to differences between studies. Developmental exposure to BPA can lead to adverse effects in multiple organs systems, including the brain, prostate gland, urinary tract, ovary, mammary gland, and heart. As published previously, many effects were at the lowest dose tested, 2.5μg/kg /day, and many of the responses were non-monotonic. Because the low dose of BPA affected endpoints in the same animals across organs evaluated in different labs, we conclude that these are biologically - and toxicologically - relevant.
Collapse
Affiliation(s)
- Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies Commonweal, Bolinas, CA 94924, United States.
| | - Scott Belcher
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL 61802, United States
| | - Gail S Prins
- Department of Urology, College of Medicine, University of Illinois at Chicago, Chicago IL 60612, United States
| | - Shuk-Mei Ho
- Department of Environmental Health, University of Cincinnati, Cincinnati OH 45267, United States; Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Jiude Mao
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Heather B Patisaul
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - William Ricke
- Department of Urology, University of Wisconsin, Madison WI 53705, United States
| | - Cheryl S Rosenfeld
- Biomedical Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, United States
| | - Ana M Soto
- Tufts University, Boston, MA 02111, United States
| | - Frederick S Vom Saal
- Department of Biology, University of Missouri, Columbia, MO 65211, United States
| | - R Thomas Zoeller
- Department of Biology, University of Massachusetts, Amherst, MA 01003, United States
| |
Collapse
|
12
|
Donma MM, Donma O. The effects of allium sativum on immunity within the scope of COVID-19 infection. Med Hypotheses 2020; 144:109934. [PMID: 32512493 PMCID: PMC7265825 DOI: 10.1016/j.mehy.2020.109934] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 05/29/2020] [Indexed: 01/08/2023]
Abstract
The severity of coronavirus disease 2019 (COVID-19) infection is quite variable and the manifestations varies from asymptomatic disease to severe acute respiratory infection. Fever, dry cough, dyspnea, myalgia, fatigue, loss of appetite, olfactory and gustatory dysfunctions are the most prevalent general symptoms. Decreased immune system cells such as suppressed regulatory T cells, cytotoxic and helper T cells, natural killer cells, monocytes/macrophages and increased proinflammatory cytokines are the characteristic features. Compounds derived from Allium sativum (garlic) have the potential to decrease the expression of proinflammatory cytokines and to reverse the immunological abnormalities to more acceptable levels. Allium sativum is suggested as a beneficial preventive measure before being infected with SARS-CoV-2 virus. Allium sativum is a functional food well-known for its immunomodulatory, antimicrobial, antiinflammatory, antimutagenic, antitumor properties. Its antiviral efficiency was also demonstrated. Some constituents of this plant were found to be active against protozoan parasites. Within this context, it appears to reverse most immune system dysfunctions observed in patients with COVID-19 infection. The relations among immune system parameters, leptin, leptin receptor, adenosin mono phosphate-activated protein kinase, peroxisome proliferator activated receptor-gamma have also been interpreted. Leptin's role in boosting proinflammatory cytokines and in appetite decreasing suggest the possible beneficial effect of decreasing the concentration of this proinflammatory adipose tissue hormone in relieving some symptoms detected during COVID-19 infection. In conclusion, Allium sativum may be an acceptable preventive measure against COVID-19 infection to boost immune system cells and to repress the production and secretion of proinflammatory cytokines as well as an adipose tissue derived hormone leptin having the proinflammatory nature.
Collapse
Affiliation(s)
- Mustafa Metin Donma
- Tekirdag Namik Kemal University, Medical Faculty, Department of Pediatrics, Tekirdag, Turkey.
| | - Orkide Donma
- Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Department of Medical Biochemistry, Istanbul, Turkey
| |
Collapse
|
13
|
Pagel J, Twisselmann N, Rausch TK, Waschina S, Hartz A, Steinbeis M, Olbertz J, Nagel K, Steinmetz A, Faust K, Demmert M, Göpel W, Herting E, Rupp J, Härtel C. Increased Regulatory T Cells Precede the Development of Bronchopulmonary Dysplasia in Preterm Infants. Front Immunol 2020; 11:565257. [PMID: 33101284 PMCID: PMC7554370 DOI: 10.3389/fimmu.2020.565257] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Regulatory T cells (Tregs) are important for the ontogenetic control of immune activation and tissue damage in preterm infants. However, the role of Tregs for the development of bronchopulmonary dysplasia (BPD) is yet unclear. The aim of our study was to characterize CD4+ CD25+ forkhead box protein 3 (FoxP3)+ Tregs in peripheral blood of well-phenotyped preterm infants (n = 382; 23 + 0 – 36 + 6 weeks of gestational age) with a focus on the first 28 days of life and the clinical endpoint BPD (supplemental oxygen for longer than 28 days of age). In a subgroup of preterm infants, we characterized the immunological phenotype of Tregs (n = 23). The suppressive function of Tregs on CD4+CD25- T cells was compared in preterm, term and adult blood. We observed that extreme prematurity was associated with increased Treg frequencies which peaked in the second week of life. Independent of gestational age, increased Treg frequencies were noted to precede the development of BPD. The phenotype of preterm infant Tregs largely differed from adult Tregs and displayed an overall naïve Treg population (CD45RA+/HLA-DR-/Helios+), especially in the first days of life. On day 7 of life, a more activated Treg phenotype pattern (CCR6+, HLA-DR+, and Ki-67+) was observed. Tregs of preterm neonates had a higher immunosuppressive capacity against CD4+CD25- T cells compared to the Treg compartment of term neonates and adults. In conclusion, our data suggest increased frequencies and functions of Tregs in preterm neonates which display a distinct phenotype with dynamic changes in the first weeks of life. Hence, the continued abundance of Tregs may contribute to sustained inflammation preceding the development of BPD. Functional analyses are needed in order to elucidate whether Tregs have potential as future target for diagnostics and therapeutics.
Collapse
Affiliation(s)
- Julia Pagel
- Department of Pediatrics, University of Lübeck, Lübeck, Germany.,Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany.,Department of Pediatrics, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | - Tanja K Rausch
- Department of Pediatrics, University of Lübeck, Lübeck, Germany.,Department of Medical Biometry and Statistics, University of Lübeck, Lübeck, Germany
| | - Silvio Waschina
- Research Group Medical Systems Biology, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Annika Hartz
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | | | | | - Kathrin Nagel
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Alena Steinmetz
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Kirstin Faust
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Martin Demmert
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Wolfgang Göpel
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Egbert Herting
- Department of Pediatrics, University of Lübeck, Lübeck, Germany
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany
| | - Christoph Härtel
- Department of Pediatrics, University of Lübeck, Lübeck, Germany.,German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Lübeck, Germany.,University Children's Hospital, University of Würzburg, Würzburg, Germany.,PRIMAL (Priming Immunity at the Beginning of Life) Consortium, Lübeck, Germany
| |
Collapse
|
14
|
Abstract
BACKGROUND The role(s) of inflammation in obesity-associated cognitive decline in overweight or obese populations is not completely understood. OBJECTIVE To investigate the profile of plasma inflammatory cytokines in overweight and obese Chinese individuals and to assess the relationship between inflammation and cognitive function. METHODS We evaluated the cognitive domains of 282 Chinese adults, aged 35 to 64 years, using the Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA). The participants were classified into three groups according to their body mass index. Inflammatory cytokines were determined by immune turbidimetric analysis and enzyme-linked immunosorbent assay. Data were analyzed using covariance and partial correlation analyses after adjusting for gender, age, education level, hypertension, and hyperlipemia. RESULTS The total MoCA scores of the overweight and obese groups were significantly lower than that of the control group. The obese group displayed a significantly higher level of tumor necrosis factor-α than the overweight and control groups and a significantly higher level of transforming growth factor-β than the control group. The overweight group displayed a significantly higher interleukin-4 level than the control and obese groups. After adjusting for confounding factors, however, we found no significant correlation between the level of plasma inflammatory cytokines and MMSE or MoCA total score. CONCLUSIONS Compared to normal-weight Chinese participants, overweight and obese Chinese participants revealed significant differences in their inflammatory cytokines profile; however, the inflammatory cytokine levels did not correlate with the significantly lower cognitive scores observed in the overweight and obese groups.
Collapse
|
15
|
Eisenberg SR, Jelalian E, Farrow M, Kopel SJ, Vehse N, Mitchell P, Dunsiger S, Koinis-Mitchell D. Perceptions of Asthma and Exercise, and Associations With Weight Status and Asthma Morbidity in Urban Children. Acad Pediatr 2020; 20:55-62. [PMID: 31301420 DOI: 10.1016/j.acap.2019.07.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/14/2019] [Accepted: 07/04/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Given the high prevalence of asthma and obesity in minority children, there is a need to identify targets for intervention to decrease the impact of these conditions on children's functioning in this high-risk group. OBJECTIVE To examine in urban children with persistent asthma, 1) differences in asthma indicators (eg, FEV1% predicted) by weight status, and by ethnic group/weight status, 2) caregivers' fears about their child's asthma by weight status, and by ethnic group/weight status, and 3) the proportion of children who qualified for exercise-induced bronchospasm (EIB) via exercise challenge test among those whose caregivers endorse exercise as a trigger for asthma. METHODS In this sample of urban children (aged 7-9; N = 147), subjective measures included child/caregiver daily report of asthma symptoms and caregiver fears about their child's asthma. Objective lung function was measured twice daily via handheld spirometer and EIB was confirmed via exercise challenge test. RESULTS In the overall sample, a greater proportion of normal-weight children reported asthma symptoms compared to overweight/obese children. Caregiver fears about asthma were more prevalent among Latino caregivers. Non-Latino White children whose caregivers were afraid their child may die when having asthma reported more days with asthma symptoms. Very few children had confirmed EIB compared to the proportion of caregivers who endorsed exercise as a dangerous trigger for asthma. CONCLUSIONS Caregiver fear about asthma and misperceptions of exercise as a dangerous trigger for asthma should be addressed during health care visits with families of children with asthma and interventions including urban children with asthma.
Collapse
Affiliation(s)
- Staci R Eisenberg
- Bradley/Hasbro Children's Research Center (SR Eisenberg, E Jelalian, SJ Kopel, P Mitchell, S Dunsiger, and D Koinis-Mitchell), Providence, RI; Alpert Medical School (SR Eisenberg, E Jelalian, SJ Kopel, S Dunsiger, and D Koinis-Mitchell), Brown University, Providence, RI; Department of Pediatrics (SR Eisenberg, E Jelalian, M Farrow, P Mitchell, and D Koinis-Mitchell), Hasbro Children's Hospital/Rhode Island Hospital, Providence, RI
| | - Elissa Jelalian
- Bradley/Hasbro Children's Research Center (SR Eisenberg, E Jelalian, SJ Kopel, P Mitchell, S Dunsiger, and D Koinis-Mitchell), Providence, RI; Alpert Medical School (SR Eisenberg, E Jelalian, SJ Kopel, S Dunsiger, and D Koinis-Mitchell), Brown University, Providence, RI; Department of Pediatrics (SR Eisenberg, E Jelalian, M Farrow, P Mitchell, and D Koinis-Mitchell), Hasbro Children's Hospital/Rhode Island Hospital, Providence, RI
| | - Michael Farrow
- Department of Pediatrics (SR Eisenberg, E Jelalian, M Farrow, P Mitchell, and D Koinis-Mitchell), Hasbro Children's Hospital/Rhode Island Hospital, Providence, RI
| | - Sheryl J Kopel
- Bradley/Hasbro Children's Research Center (SR Eisenberg, E Jelalian, SJ Kopel, P Mitchell, S Dunsiger, and D Koinis-Mitchell), Providence, RI; Alpert Medical School (SR Eisenberg, E Jelalian, SJ Kopel, S Dunsiger, and D Koinis-Mitchell), Brown University, Providence, RI
| | - Nico Vehse
- University of Massachusetts Medical School (N Vehse), Worcester, MA
| | - Patricia Mitchell
- Bradley/Hasbro Children's Research Center (SR Eisenberg, E Jelalian, SJ Kopel, P Mitchell, S Dunsiger, and D Koinis-Mitchell), Providence, RI; Department of Pediatrics (SR Eisenberg, E Jelalian, M Farrow, P Mitchell, and D Koinis-Mitchell), Hasbro Children's Hospital/Rhode Island Hospital, Providence, RI
| | - Shira Dunsiger
- Bradley/Hasbro Children's Research Center (SR Eisenberg, E Jelalian, SJ Kopel, P Mitchell, S Dunsiger, and D Koinis-Mitchell), Providence, RI; Alpert Medical School (SR Eisenberg, E Jelalian, SJ Kopel, S Dunsiger, and D Koinis-Mitchell), Brown University, Providence, RI
| | - Daphne Koinis-Mitchell
- Bradley/Hasbro Children's Research Center (SR Eisenberg, E Jelalian, SJ Kopel, P Mitchell, S Dunsiger, and D Koinis-Mitchell), Providence, RI; Alpert Medical School (SR Eisenberg, E Jelalian, SJ Kopel, S Dunsiger, and D Koinis-Mitchell), Brown University, Providence, RI; Department of Pediatrics (SR Eisenberg, E Jelalian, M Farrow, P Mitchell, and D Koinis-Mitchell), Hasbro Children's Hospital/Rhode Island Hospital, Providence, RI.
| |
Collapse
|
16
|
Microbial Insights into Asthmatic Immunopathology. A Forward-Looking Synthesis and Commentary. Ann Am Thorac Soc 2018; 14:S316-S325. [PMID: 29161080 DOI: 10.1513/annalsats.201707-534aw] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Asthma is an aberrant inflammatory condition of the airways affecting approximately 1 in 10 children in affluent countries. An increasing body of evidence suggests that microbial exposures during a "critical window" of development in early life play a central role in determining future asthma susceptibility. However, like the disease itself, considerable heterogeneity exists among studies in which researchers have investigated the associations between particular microbial taxa and asthma immunology. As our understanding of asthmatic pathology evolves to enable clearer definition of asthma endotypes, it will be important to consider the impact of various environmental factors on each endotype. Given the strong evidence in support of the hypothesis that early-life microbial exposures predict later disease states such as asthma, consideration of these endotypes when establishing experimental outcomes in epidemiological studies could allow for increased precision when determining exposure-outcome associations and engaging in more focused follow-up mechanistic investigations.
Collapse
|
17
|
Cohen RI, Ye X, Ramdeo R, Liu SF. The number and function of T regulatory cells in obese atopic female asthmatics. J Asthma 2018; 56:303-310. [PMID: 29641274 DOI: 10.1080/02770903.2018.1452935] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND Mechanisms underlying the association between asthma and obesity remain poorly understood. Obesity appears to be a risk factor for asthma, and obese asthmatics fare poorly compared to lean asthmatics. OBJECTIVES To explore the possibility that reduced regulatory T cell (Treg) number and function contribute to the obesity-asthma association. We concentrated on obese females with childhood-onset asthma, since Treg may be involved in this phenotype. METHODS We recruited 64 women (ages 18-50) into four groups: lean (BMI 18-25 kg/m2) controls (n = 17) and asthmatics (n = 13), and obese (BMI ≥ 35 kg/m2) controls (n = 17) and asthmatics (n = 17). Asthmatics had atopy and childhood-diagnosed asthma. We assessed lung function, asthma control and quality of life. Peripheral blood CD4+/CD25+/FoxP3+ Treg cells were identified and counted by flow cytometry and expressed as % total CD4+ T cells. We assessed Treg cell function by the ability of CD4+/CD25+ Treg cells to suppress autologous CD4+/CD25- responder T cell (Tresp) proliferation and measured as % suppression of Tresp cell proliferation. RESULTS Obese asthmatics had worse lung function, asthma control, and quality of life compared to lean asthmatics. Compared to lean or obese control groups, the number of Treg cells in the obese asthmatics was approximately 1.58- or 1.73-fold higher. The ability of Treg cells from obese-asthmatics to suppress Tresp cell proliferation was reduced. CONCLUSIONS Obese, atopic women with childhood diagnosed asthma demonstrate increased Treg cell number and mildly decreased Treg cell function. Our data do not support the view that reduced Treg cell number contributes to this obese-asthma phenotype.
Collapse
Affiliation(s)
- Rubin I Cohen
- a Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine , Hofstra Northwell School of Medicine , New Hyde Park , NY , USA
| | - Xiobing Ye
- a Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine , Hofstra Northwell School of Medicine , New Hyde Park , NY , USA.,b Feinstein Institute for Medical Research, Pulmonary Research Laboratory, Northwell Health , Manhasset , NY , USA
| | - Ramona Ramdeo
- a Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine , Hofstra Northwell School of Medicine , New Hyde Park , NY , USA
| | - Shu Fang Liu
- a Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine , Hofstra Northwell School of Medicine , New Hyde Park , NY , USA.,b Feinstein Institute for Medical Research, Pulmonary Research Laboratory, Northwell Health , Manhasset , NY , USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Glucocorticosteroids (GCSs) remain the cornerstone of therapy for treating the inflammatory component of asthma. Clinical response to GCS is heterogeneous, varying both within asthma 'endotypes', as well as the same individual. Different factors and micro-environment can alter the canonical GCS-induced signalling pathways leading to reduced efficacy, collectively termed as GCS subsensitivity, which includes the entire spectrum of steroid insensitivity and steroid resistance. RECENT FINDINGS In the past, steroid subsensitivity has been associated with dysregulated expression of glucocorticoid-receptor isoforms, neutrophilic inflammation and Th17 cytokines, oxidative stress-inducing factors and their downstream effect on histone deacetylase activities and gene expression. The review highlights recent observations, such as GCS-induced dysregulation of key transcription factors involved in host defence, role of airway infections altering expression of critical regulatory elements like the noncoding microRNAs, and the importance of interleukin (IL)-10 in reinstating steroid response in key immune cells. Further, emerging concepts of autoimmunity triggered because of delayed resolution of eosinophilic inflammation (due to GCS subsensitivity) and observed lymphopenia (plausibly a side-effect of continued GCS use) are discussed. SUMMARY This review bridges concepts that have been known, and those under current investigation, providing both molecular and clinical insights to aid therapeutic strategies for optimal management of asthmatics with varying degree of steroid subsensitivity and disease severity, with particular emphasis on the PI3 kinase pathways.
Collapse
|
19
|
Wiest M, Upchurch K, Yin W, Ellis J, Xue Y, Lanier B, Millard M, Joo H, Oh S. Clinical implications of CD4 + T cell subsets in adult atopic asthma patients. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2018; 14:7. [PMID: 29507584 PMCID: PMC5833086 DOI: 10.1186/s13223-018-0231-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/22/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND T cells play a central role in chronic inflammation in asthma. However, the roles of individual subsets of T cells in the pathology of asthma in patients remain to be better understood. METHODS We investigated the potential signatures of T cell subset phenotypes in asthma using fresh whole blood from adult atopic asthma patients (n = 43) and non-asthmatic control subjects (n = 22). We further assessed their potential clinical implications by correlating asthma severity. RESULTS We report four major features of CD4+ T cells in the blood of atopic asthma patients. First, patients had a profound increase of CCR7+ memory CD4+ T cells, but not CCR7- memory CD4+ T cells. Second, an increase in CCR4+ CD4+ T cells in patients was mainly attributed to the increase of CCR7+ memory CD4+ T cells. Accordingly, the frequency of CCR4+CCR7+ memory CD4+ T cells correlated with asthma severity. Current common asthma therapeutics (including corticosteroids) were not able to affect the frequency of CCR4+CCR7+ memory CD4+ T cell subsets. Third, patients had an increase of Tregs, as assessed by measuring CD25, Foxp3, IL-10 and CTLA-4 expression. However, asthma severity was inversely correlated only with the frequency of CTLA-4+ CD4+ T cells. Lastly, patients and control subjects have similar frequencies of CD4+ T cells that express CCR5, CCR6, CXCR3, CXCR5, CD11a, or α4 integrin. However, the frequency of α4+ CD4+ T cells in patients correlated with asthma severity. CONCLUSIONS CCR4+CCR7+ memory, but not CCR4+CCR7- memory, α4+, and CTLA4+ CD4+ T cells in patients show significant clinical implications in atopic asthma. Current common therapeutics cannot alter the frequency of such CD4+ T cell subsets in adult atopic asthma patients.
Collapse
Affiliation(s)
- Matthew Wiest
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| | - Katherine Upchurch
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| | - Wenjie Yin
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| | - Jerome Ellis
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
| | - Yaming Xue
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
| | | | - Mark Millard
- Martha Foster Lung Care Center, Baylor University Medical Center, Dallas, TX USA
| | - HyeMee Joo
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| | - SangKon Oh
- Baylor Institute for Immunology Research, 3434 Live Oak St., Dallas, TX 75204 USA
- Institute for Biomedical Studies, Baylor University, Waco, TX USA
| |
Collapse
|
20
|
Chaves Filho AJM, Lima CNC, Vasconcelos SMM, de Lucena DF, Maes M, Macedo D. IDO chronic immune activation and tryptophan metabolic pathway: A potential pathophysiological link between depression and obesity. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:234-249. [PMID: 28595944 DOI: 10.1016/j.pnpbp.2017.04.035] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022]
Abstract
Obesity and depression are among the most pressing health problems in the contemporary world. Obesity and depression share a bidirectional relationship, whereby each condition increases the risk of the other. By inference, shared pathways may underpin the comorbidity between obesity and depression. Activation of cell-mediated immunity (CMI) is a key factor in the pathophysiology of depression. CMI cytokines, including IFN-γ, TNFα and IL-1β, induce the catabolism of tryptophan (TRY) by stimulating indoleamine 2,3-dioxygenase (IDO) resulting in the synthesis of kynurenine (KYN) and other tryptophan catabolites (TRYCATs). In the CNS, TRYCATs have been related to oxidative damage, inflammation, mitochondrial dysfunction, cytotoxicity, excitotoxicity, neurotoxicity and lowered neuroplasticity. The pathophysiology of obesity is also associated with a state of aberrant inflammation that activates aryl hydrocarbon receptor (AHR), a pathway involved in the detection of intracellular or environmental changes as well as with increases in the production of TRYCATs, being KYN an agonists of AHR. Both AHR and TRYCATS are involved in obesity and related metabolic disorders. These changes in the TRYCAT pathway may contribute to the onset of neuropsychiatric symptoms in obesity. This paper reviews the role of immune activation, IDO stimulation and increased TRYCAT production in the pathophysiology of depression and obesity. Here we suggest that increased synthesis of detrimental TRYCATs is implicated in comorbid obesity and depression and is a new drug target to treat both diseases.
Collapse
Affiliation(s)
- Adriano José Maia Chaves Filho
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Camila Nayane Carvalho Lima
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Silvânia Maria Mendes Vasconcelos
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Michael Maes
- Impact Strategic Research Center, Deakin University, Geelong, Australia; Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Health Sciences Graduate Program, Health Sciences Center, State University of Londrina, Londrina, Brazil
| | - Danielle Macedo
- Neuropsychopharmacology Laboratory, Drug Research and Development Center, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
21
|
Mukherjee M, Nair P. Autoimmune Responses in Severe Asthma. ALLERGY, ASTHMA & IMMUNOLOGY RESEARCH 2018; 10:428-447. [PMID: 30088364 PMCID: PMC6082822 DOI: 10.4168/aair.2018.10.5.428] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/29/2018] [Accepted: 02/13/2018] [Indexed: 12/11/2022]
Abstract
Asthma and autoimmune diseases both result from a dysregulated immune system, and have been conventionally considered to have mutually exclusive pathogenesis. Autoimmunity is believed to be an exaggerated Th1 response, while asthma with a Th2 underpinning is congruent with the well-accepted Th1/Th2 paradigm. The hypothesis of autoimmune involvement in asthma has received much recent interest, particularly in the adult late-onset non-atopic patients (the “intrinsic asthma”). Over the past decades, circulating autoantibodies against diverse self-targets (beta-2-adrenergic receptors, epithelial antigens, nuclear antigens, etc.) have been reported and subsequently dismissed to be epiphenomena resulting from a chronic inflammatory condition, primarily due to lack of evidence of causality/pathomechanism. Recent evidence of ‘granulomas’ in the lung biopsies of severe asthmatics, detection of pathogenic sputum autoantibodies against autologous eosinophil proteins (e.g., eosinophil peroxidase) and inadequate response to monoclonal antibody therapies (e.g., subcutaneous mepolizumab) in patients with evidence of airway autoantibodies suggest that the role of autoimmune mechanisms be revisited. In this review, we have gathered available reports of autoimmune responses in the lungs, reviewed the evidence in the context of immunogenic tissue-response and danger-associated molecular patterns, and constructed the possibility of an autoimmune-associated pathomechanism that may contribute to the severity of asthma.
Collapse
Affiliation(s)
- Manali Mukherjee
- Division of Respirology, Department of Medicine, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Canada
| | - Parameswaran Nair
- Division of Respirology, Department of Medicine, St. Joseph's Healthcare Hamilton, McMaster University, Hamilton, Canada.
| |
Collapse
|
22
|
Obesity and Asthma: A Missing Link. Int J Mol Sci 2017; 18:ijms18071490. [PMID: 28696379 PMCID: PMC5535980 DOI: 10.3390/ijms18071490] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 07/03/2017] [Accepted: 07/08/2017] [Indexed: 12/20/2022] Open
Abstract
Obesity and asthma are two chronic conditions that affect millions of people. Genetic and lifestyle factors such as diet, physical activity, and early exposure to micro-organisms are important factors that may contribute to the escalating prevalence of both conditions. The prevalence of asthma is higher in obese individuals. Recently, two major phenotypes of asthma with obesity have been described: one phenotype of early-onset asthma that is aggravated by obesity, and a second phenotype of later-onset asthma that predominantly affects women. Systemic inflammation and mechanical effect, both due to the expansion of the adipose tissue, have been proposed as the main reasons for the association between obesity and asthma. However, the mechanisms involved are not yet fully understood. Moreover, it has also been suggested that insulin resistance syndrome can have a role in the association between these conditions. The intestinal microbiota is an important factor in the development of the immune system, and can be considered a link between obesity and asthma. In the obese state, higher lipopolysaccharide (LPS) serum levels as a consequence of a microbiota dysbiosis have been found. In addition, changes in microbiota composition result in a modification of carbohydrate fermentation capacity, therefore modifying short chain fatty acid (SCFA) levels. The main objective of this review is to summarize the principal findings that link obesity and asthma.
Collapse
|