1
|
Zheng Q, Wang T, Wang S, Chen Z, Jia X, Yang H, Chen H, Sun X, Wang K, Zhang L, Fu F. The anti-inflammatory effects of saponins from natural herbs. Pharmacol Ther 2025; 269:108827. [PMID: 40015518 DOI: 10.1016/j.pharmthera.2025.108827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 11/20/2024] [Accepted: 02/20/2025] [Indexed: 03/01/2025]
Abstract
Inflammation is a protective mechanism that also starts the healing process. However, inflammatory reaction may cause severe tissue damage. The increased influx of phagocytic leukocytes may produce excessive amount of reactive oxygen species, which leads to additional cell injury. Inflammatory response activates the leukocytes and thus induces tissue damage and prolongs inflammation. The inflammation-induced activation of the complement system may also contribute to cell injury. Non-steroidal anti-inflammatory drugs (NSAIDs) and glucocorticoids are chief agents for treating inflammation associated with the diseases. However, the unwanted side effects of NSAIDs (e.g., gastrointestinal disturbances, skin reactions, adverse renal effects, cardiovascular side effects) and glucocorticoids (e.g., suppression of immune system, Cushing's syndrome, osteoporosis, hyperglycemia) limit their use in patients. Natural herbs are important sources of anti-inflammatory drugs. The ingredients extracted from natural herbs display anti-inflammatory effects to work through multiple pathways with lower risk of adverse reaction. At present, the main anti-inflammatory natural agents include saponins, flavonoids, alkaloids, polysaccharides, and so on. The present article will review the anti-inflammatory effects of saponins including escin, ginsenosides, glycyrrhizin, astragaloside, Panax notoginseng saponins, saikosaponin, platycodin, timosaponin, ophiopogonin D, dioscin, senegenin.
Collapse
Affiliation(s)
- Qinpin Zheng
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Tian Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Sensen Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Zhuoxi Chen
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Xue Jia
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Hui Yang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Huijin Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China
| | - Xin Sun
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Kejun Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China
| | - Leiming Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, Shandong, China.
| | - Fenghua Fu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, China.
| |
Collapse
|
2
|
Li J, Huang J, Ai G, Zheng X, Chen B, Gong S, Lu X, Su Z, Chen J, Xie Q, Li Y, Yan F. The Protective Effects of Modified Dachaihu Decoction against LPS-induced Acute Lung Injury via Modulating PI3K/Akt Signalling Pathway. Comb Chem High Throughput Screen 2025; 28:755-767. [PMID: 40326256 DOI: 10.2174/0113862073282311240226113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/04/2024] [Accepted: 02/13/2024] [Indexed: 05/07/2025]
Abstract
BACKGROUND Modified Dachaihu decoction (MDD) is a herbal prescription that has shown promising therapeutic benefits in ameliorating pulmonary diseases in clinical practice. However, the detailed mechanisms remain unclear. OBJECTIVE This study aimed to elucidate the lung-protective effects of MDD against acute lung injury (ALI) and the involvement of underlying mechanisms. METHODS High-performance liquid chromatography (HPLC) was performed to identify the main active ingredients of MDD. Network pharmacological method was adapted to explore the potential mechanisms. Mice were orally administered MDD (11.25, 22.5, and 45 g/kg) once daily for 7 days. H&E staining was performed to evaluate histological changes in the lungs. Levels of inflammatory cytokines and oxidative stress markers were measured to determine the extent of lung injury. Total protein content in bronchoalveolar lavage fluid (BALF) and lung wet/dry weight ratio were measured to assess the severity of pulmonary edema. TUNEL staining and immunohistochemistry analysis were performed to detect apoptosis. RT-qPCR and western blotting were performed to validate the mechanisms involved. RESULTS About 10 main active ingredients of MDD were identified. Notably, treatment with MDD resulted in a remarkable reduction in total protein content in BALF and lung W/D weight ratio, as well as substantial mitigation of the inflammatory response and oxidative stress. Mechanistically, the PI3K/Akt signalling pathway was activated. Moreover, MDD pretreatment downregulated p53 and caspase-9 mRNA expression and decreased the Bax/Bcl-2 ratio to ameliorate lung apoptosis. CONCLUSIONS MDD exhibited pronounced therapeutic effects via attenuating inflammatory response, oxidative stress, and apoptosis. These therapeutic effects could be attributed to the synergistic effect of the main active ingredients and are believed to be associated with the activation of the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Jincan Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jiechun Huang
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- Li Ke and Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, PR China
| | - Gaoxiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xiaohong Zheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Baoyi Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Shiting Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Xiaowei Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Ziren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Jiannan Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Qingfeng Xie
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- Li Ke and Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yucui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Fang Yan
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
- Li Ke and Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, PR China
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, PR China
| |
Collapse
|
3
|
Yang S, Zhou S, Wang W, Cao L, Xue T, Xu J, Lv K, Huang M. A novel STAT3 CCD inhibitor for suppressing macrophage activation and lipopolysaccharide-induced acute lung injury. Int Immunopharmacol 2024; 143:113523. [PMID: 39476563 DOI: 10.1016/j.intimp.2024.113523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 10/17/2024] [Accepted: 10/25/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Signal transducer and activator of transcription 3 (STAT3) has a crucial role in inflammation in lipopolysaccharide (LPS)-induced acute lung injury (ALI). The current study aimed at developing a novel STAT3 coiled-coil domain (CCD) inhibitor for suppression of inflammatory response in LPS-induced ALI. METHOD Molecular docking and binding affinity were proceeded and determined that K134 bond to STAT3 CCD. Then K134 [(E)-N'-(1-(2,4-dihydroxyphenyl)ethylidene)-2-(o-tolyloxy)acetohydrazide] was applied to RAW264.7 macrophages for further ex vivo investigation of possible mechanism. The intratracheal injection of LPS-induced ALI model of C57BL/6j mice was established for evaluating therapeutic effect of K134 on ALI and inflammation in vivo. iNOS and pro-inflammatory cytokines, including TNF-α, IL-1β and IL-6, in BALF of LPS-induced ALI were also determined. RESULTS Molecular docking results disclosed that Asn175 and Gln202 were involved in K134 binding to STAT3 CCD and its binding affinity was at 4.68 μM. Moreover, further tests showed that K134 blunted activation and the subsequent STAT3 phosphorylation in LPS-treated macrophages. Also, K134 (30 mg/kg) alleviated LPS-induced lung injury and blocked STAT3 phosphorylation in lung. Further, K134 decreased iNOS, pro-inflammatory cytokines, inflammatory cell infiltration and NO production of LPS-induced ALI. Preliminary safety evaluation indicated that K134 had a favorable safety profile at the dose of 30 mg/kg. CONCLUSIONS We identified a novel inhibitor of STAT3 CCD, K134, which markedly attenuated LPS-induced ALI inflammation by targeting STAT3 phosphorylation. This supports a possible future use of K134 in treating inflammatory diseases involving activation of STAT3-mediated pathways.
Collapse
Affiliation(s)
- Shangze Yang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Sheng Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Wang
- Department of Pathology, Qinghai Provincial People's Hospital, Xining 810000, China
| | - Liyue Cao
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China
| | - Tiezheng Xue
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jiaxi Xu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Kai Lv
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Min Huang
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
4
|
Xu W, Lv Q, Yang F, Wei W, Wang J, Chen X, Liu Y, Zhang Z. Effects of Bacillus coagulans on kidney injury caused by Klebsiella pneumoniae in rabbits. Res Vet Sci 2024; 181:105465. [PMID: 39577341 DOI: 10.1016/j.rvsc.2024.105465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Klebsiella pneumoniae (KP) is a zoonotic conditionally pathogenic bacterium with a high prevalence of infection. It often induces purulent inflammation of the rabbit lungs, kidneys and other tissues, with high morbidity and mortality. Bacillus coagulans (BC) has the ability to regulate the balance of host intestinal flora and improve host immunity. However, the mechanism of the protective effect of BC on KP-induced kidney injury in rabbits is not clear. To explore this, we randomly divided fifty 35-day-old Eyplus rabbits into five groups: control, KP, low-dose BC (LBC), medium-dose BC (MBC) and high-dose BC (HBC). On the 1st day of the experiment, rabbits in LBC, MBC and HBC groups were fed diets containing 1 × 106 CFU/g, 5 × 106 CFU/g and 1 × 107 CFU/g BC, respectively, and rabbits in CK and KP groups were fed basal diets. On the 8th day, each rabbit in the KP, LBC, MBC and HBC groups was infused with 4 mL of 1 × 1011 CFU/mL KP bacterial solution, and the CK group was infused with the same amount of sterilised saline for a total of 7 days. Rabbit kidney tissues were collected on the 15th d. HE staining was used to observe the pathological changes of rabbit kidney tissues, oxidative stress-related indexes were detected by biochemical kits, and the content of inflammatory factors and apoptosis-related factors in kidney tissues were detected by ELISA. The results showed that KP disrupts the normal structure of the kidney, induces oxidative stress and inflammatory responses, and mediates apoptosis by regulating the levels of Bcl-2 family proteins. BC pretreatment significantly reduced kidney structural damage, oxidative stress, inflammatory response, and apoptosis in rabbits. To alleviate KP-induced kidney injury by increasing the activity of antioxidant enzymes and the content of anti-apoptotic proteins. Compared with the LBC group and the HBC group, the remission effect was more pronounced in the MBC group. Therefore, in this study, the effect of 5 × 106 CFU/g BC was more significant.
Collapse
Affiliation(s)
- Wenjing Xu
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023 Luoyang, PR China
| | - Qiongxia Lv
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023 Luoyang, PR China
| | - Fan Yang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023 Luoyang, PR China
| | - Wenjuan Wei
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023 Luoyang, PR China
| | - Jianing Wang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023 Luoyang, PR China
| | - Xiaoguang Chen
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023 Luoyang, PR China
| | - Yumei Liu
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023 Luoyang, PR China
| | - Ziqiang Zhang
- College of Animal Science and Technology, Henan University of Science and Technology, No.263, Kaiyuan Avenue, 471023 Luoyang, PR China.
| |
Collapse
|
5
|
Sun XH, Chai YH, Bai XT, Li HX, Xi YM. Pharmacology, medical uses, and clinical translational challenges of Saikosaponin A: A review. Heliyon 2024; 10:e40427. [PMID: 39641011 PMCID: PMC11617869 DOI: 10.1016/j.heliyon.2024.e40427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024] Open
Abstract
Saikosaponin A (SSA), the primary active monomer derived from the Radix bupleuri, demonstrates a diverse array of pharmacological activities, including anti-inflammatory, antitumor, analgesic, anti-fibrotic, antidepressant, and immune-modulating properties. Despite its potential therapeutic impact on various human diseases, comprehensive studies exploring SSA's efficacy in these contexts remain limited. This review synthesizes the current research landscape regarding SSA's therapeutic applications across different diseases, highlighting critical insights to overcome existing limitations and clinical challenges. The findings underscore the importance of further investigations into SSA's mechanisms of action, facilitating the development of targeted therapeutic strategies and their translation into clinical practice.
Collapse
Affiliation(s)
- Xiao-Hong Sun
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Yi-Hong Chai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Xiao-Teng Bai
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Hong-Xing Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730000, China
| | - Ya-Ming Xi
- Division of Hematology, The First Hospital of Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
6
|
Yue M, Shang W, Zhang J, Chen R, Wei L, Wang H, Meng M, Zhang M, Liu Q. The polysaccharide from purple sweet potato (Ipomoea batatas (L.) Lam) alleviates lipopolysaccharide-induced acute lung injury in mice via the VIP/cAMP/PKA/AQPs signaling pathway. Int J Biol Macromol 2024; 282:137428. [PMID: 39522908 DOI: 10.1016/j.ijbiomac.2024.137428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 10/15/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The polysaccharide (PSP) from purple sweet potato has great potential for regulating apoptosis, but its regulatory role in acute lung injury (ALI) is unknown. METHODS The objective of this study was to investigate the protective effect of PSP on lipopolysaccharide (LPS)-induced ALI in mice and lung epithelial A549 cells and its mechanism. Moreover, subacute toxicity evaluation of PSP was carried out on ICR mice. RESULTS The results showed that compared with the ALI group, PSP significantly reduced the total protein content, wet-to-dry (W/D) ratio, the number of neutrophils, lymphocytes, and monocytes. Moreover, PSP was able to reduce cell apoptosis, the levels of macrophage inflammatory protein-2 (MIP-2), intercellular adhesion molecule-1 (ICAM-1), tumor necrosis factor-α (TNF-α), malondialdehyde (MDA) and myeloperoxidase (MPO) and increase the level of superoxide (SOD). In addition, PSP could up-regulate the levels of VIP, cAMP, p-PKA/PKA and AQP1 in mice and A549 cells. And PSP exhibited no apparent adverse effects on the mice. CONCLUSIONS PSP had a protective effect on LPS-induced ALI in mice and lung epithelial A549 cells, which may be related to the inflammatory response and via VIP/cAMP/PKA/AQPs signaling pathway. Thus, PSP may be a promising pharmacologic agent for ALI therapy.
Collapse
Affiliation(s)
- Maokui Yue
- Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Wenli Shang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Junli Zhang
- Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Ran Chen
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - Li Wei
- Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China
| | - HaiDong Wang
- Shandong First Medical University, No.2, Yingsheng East Road, Taian 271000, China
| | - Meng Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, China
| | - Min Zhang
- Emergency Medicine, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China.
| | - Qinghua Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Shandong First Medical University, No. 366. Taishan Road, Taian 271000, China.
| |
Collapse
|
7
|
Tang J, Liu Y, Wu Y, Li S, Zhang D, Wang H, Wang W, Song X, Li Y. Saponins as potential novel NLRP3 inflammasome inhibitors for inflammatory disorders. Arch Pharm Res 2024; 47:757-792. [PMID: 39549164 DOI: 10.1007/s12272-024-01517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/28/2024] [Indexed: 11/18/2024]
Abstract
Nucleotide-binding domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) is a downstream protein from the pattern recognition receptor family that forms the NLRP3 inflammasome. The NLRP3 inflammasome releases caspase-1, IL-1β, and IL-18, contributing to inflammatory responses associated with diabetes mellitus, arthritis, and ischemia-reperfusion injury. Recent studies suggest that specific saponin monomers and extracts from traditional Chinese medicines can inhibit inflammatory responses and related pathways, including the production of inflammatory factors. MCC950 is one of the most influential and specific NLRP3 inhibitors. Comparative molecular docking studies have identified 22 of the 37 saponin components as more robust binders to NLRP3 than MCC950. Dioscin, polyphyllin H, and saikosaponin-a have the highest binding affinities and potential NLRP3 inhibitors, offering a theoretical basis for developing novel anti-inflammatory therapies.
Collapse
Affiliation(s)
- Jiamei Tang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Yaxiao Liu
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ying Wu
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Shixing Li
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dongdong Zhang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Haifang Wang
- Shaanxi Province Key Laboratory of Integrated Traditional Chinese and Western Medicine for the Prevention and Treatment of Cardiovascular Diseases, Xianyang, 712046, China
| | - Wei Wang
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Xiaomei Song
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Yuze Li
- Shaanxi Key Laboratory of Research and Application of "Taibai Qi Yao", School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
8
|
Eliyatkın NÖ, İşlek A, Durmaz S, Ayyıldız F, Rahman Ö. Can adalimumab prevent from acute effects of lipopolysaccharide induced renal injury in rats? Acta Cir Bras 2024; 39:e394624. [PMID: 39230094 PMCID: PMC11368208 DOI: 10.1590/acb394624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 06/08/2024] [Indexed: 09/05/2024] Open
Abstract
PURPOSE Lipopolysaccharides is well-known in the acute renal injury process. It causes widespread activation of inflammatory cascades. Tumor necrosis factor (TNF)-α and interleukin (Il)-6 are essential proinflammatory cytokines that can induce the production of other cytokines in host response. Adalimumab suppresses TNF-α, IL-1β, and IL-6. We aimed to evaluate whether adalimumab would prevent the toxicity of lipopolysaccharide on the rat renal tissue. METHODS Adult female Wistar rats were divided into four groups. To the control group, only intraperitoneal saline injection procedure was carried out. For adalimumab group, adalimumab was injected at a dose for two days. For lipopolysaccharide group, animals were injected with lipopolysaccharide (a dose). For lipopolysaccharide-adalimumab group, animals were given adalimumab treatment before the injection of lipopolysaccharide. Histopathological changes and immunohistochemical analysis for TNF-α and IL-6 were determined. RESULTS The pathological changes and immunohistochemical staining for TNF-α or IL-6 were similar for control and adalimumab groups (p > 0.05). The lipopolysaccharide group had significantly higher distorted features in the renal tissues (p < 0.001), and also significantly prominent immunohistochemical staining for TNF-α or IL-6 (0.003), compared to the control group. No severe pathological feature was detected in the lipopolysaccharide-adalimumab group, but moderate necrosis was found in all cases (p = 0.003). TNF-α staining and IL-6 staining in the lipopolysaccharide group was found to significantly prominent compared to lipopolysaccharide-adalimumab group (p = 0.013). CONCLUSIONS Because of its anti-inflammatory property, adalimumab pretreatment may have protective effects on experimental kidney injury. Adalimumab could be considered as a protective agent to acute effects of lipopolysaccharide induced renal injury.
Collapse
Affiliation(s)
| | - Akif İşlek
- Acıbadem Eskişehir Hospital – Department of Otorhinolaryngology – Eskisehir – Turkey
| | - Selim Durmaz
- Aydın Adnan Menderes University – Faculty of Medicine – Department of Cardiovascular Surgery – Aydın – Turkey
| | - Fevzi Ayyıldız
- Aydın Adnan Menderes University – Faculty of Medicine – Department of Cardiovascular Surgery – Aydın – Turkey
| | - Ömer Rahman
- Burdur State Hospital – Department of Cardiovascular Surgery – Burdur – Turkey
| |
Collapse
|
9
|
Li TQ, Liu Y, Feng C, Bai J, Wang ZR, Zhang XY, Wang XX. Saikosaponin A attenuates osteoclastogenesis and bone loss by inducing ferroptosis. Front Mol Biosci 2024; 11:1390257. [PMID: 39114369 PMCID: PMC11303733 DOI: 10.3389/fmolb.2024.1390257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/15/2024] [Indexed: 08/10/2024] Open
Abstract
To alleviate bone loss, most current drugs target osteoclasts. Saikosaponin A (Ssa), a triterpene saponin derived from Bupleurum falcatum (also known as Radix bupleuri), has immunoregulatory, neuromodulatory, antiviral, anticancer, anti-convulsant, anti-inflammatory, and anti-proliferative effects. Recently, modulation of bone homeostasis was shown to involve ferroptosis. Herein, we aimed to determine Ssa's inhibitory effects on osteoclastogenesis and differentiation, whether ferroptosis is involved, and the underlying mechanisms. Tartrate-resistant acid phosphatase (TRAP) staining, F-actin staining, and pit formation assays were conducted to confirm Ssa-mediated inhibition of RANKL-induced osteoclastogenesis in vitro. Ssa could promote osteoclast ferroptosis and increase mitochondrial damage by promoting lipid peroxidation, as measured by iron quantification, FerroOrange staining, Dichloro-dihydro-fluorescein diacetate, MitoSOX, malondialdehyde, glutathione, and boron-dipyrromethene 581/591 C11 assays. Pathway analysis showed that Ssa can promote osteoclasts ferroptosis by inhibiting the Nrf2/SCL7A11/GPX4 axis. Notably, we found that the ferroptosis inhibitor ferrostatin-1 and the Nrf2 activator tert-Butylhydroquinone reversed the inhibitory effects of Ssa on RANKL-induced osteoclastogenesis. In vivo, micro-computed tomography, hematoxylin and eosin staining, TRAP staining, enzyme-linked immunosorbent assays, and immunofluorescence confirmed that in rats with periodontitis induced by lipopolysaccharide, treatment with Ssa reduced alveolar bone resorption dose-dependently. The results suggested Ssa as a promising drug to treat osteolytic diseases.
Collapse
Affiliation(s)
- Tian-Qi Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Yan Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Chong Feng
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Jin Bai
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Zi-Rou Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiang-Yu Zhang
- School and Hospital of Stomatology, Tianjin Medical University, Tianjin, China
| | - Xin-Xing Wang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| |
Collapse
|
10
|
Ma Y, Zhao Y, Luo M, Jiang Q, Liu S, Jia Q, Bai Z, Wu F, Xie J. Advancements and challenges in pharmacokinetic and pharmacodynamic research on the traditional Chinese medicine saponins: a comprehensive review. Front Pharmacol 2024; 15:1393409. [PMID: 38774213 PMCID: PMC11106373 DOI: 10.3389/fphar.2024.1393409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/12/2024] [Indexed: 05/24/2024] Open
Abstract
Recent research on traditional Chinese medicine (TCM) saponin pharmacokinetics has revealed transformative breakthroughs and challenges. The multicomponent nature of TCM makes it difficult to select representative indicators for pharmacokinetic studies. The clinical application of saponins is limited by their low bioavailability and short half-life, resulting in fluctuating plasma concentrations. Future directions should focus on novel saponin compounds utilizing colon-specific delivery and osmotic pump systems to enhance oral bioavailability. Optimizing drug combinations, such as ginsenosides with aspirin, shows therapeutic potential. Rigorous clinical validation is essential for practical applications. This review emphasizes a transformative era in saponin research, highlighting the need for clinical validation. TCM saponin pharmacokinetics, guided by traditional principles, are in development, utilizing multidisciplinary approaches for a comprehensive understanding. This research provides a theoretical basis for new clinical drugs and supports rational clinical medication.
Collapse
Affiliation(s)
- Yuhan Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yongxia Zhao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Mingxia Luo
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qin Jiang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Sha Liu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Qi Jia
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Zhixun Bai
- Organ Transplant Center, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Faming Wu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jian Xie
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- School of Preclinical Medicine, Zunyi Medical University, Zunyi, China
| |
Collapse
|
11
|
Wang F, Xiao L, Zhang H, Wang Y, Zhong L, Feng X, Liu J, Gong X. Systemic meta-analysis: apigenin's effects on lung inflammation and oxidative stress. J Asthma 2024; 61:271-281. [PMID: 37851868 DOI: 10.1080/02770903.2023.2272804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/28/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
OBJECTIVE This study aimed to investigate the potential anti-inflammatory and antioxidant effects of apigenin in rats with acute lung injury (ALI). We also examined changes in levels of inflammatory and antioxidant factors after apigenin treatment in a rat model of ALI.Methods: We searched several databases, including PubMed, Scopus, EMBASE, Web of Science, ProQuest, and GoogleScholar, to retrieve relevant articles for our systematic review and meta-analysis.Five studies with 226 rat models of ALI were included in this study. We investigated inflammatory factors and oxidative stress with the corresponding 95% confidence interval in three groups: 1. Group1 (control vs. ALI), 2. Group2 (ALI vs. apigenin10), and 3. Group3 (ALI vs. apigenin20). RESULTS Estimating the correlation and 95% confidence intervals for the inflammatory agents and oxidative stress in the intervention group (ALI), compared with that in the control group, respectively (correlation: 0.194; 95% confidence intervals, 0.101-0.282, p value = .001, z-value= 4.08) and (correlation: 0.099; 95% confidence intervals, 0.016-0.182, p value = .020, z value= 2.325). Estimating the correlation and 95% confidence intervals for the inflammatory agents and oxidative stress in the intervention group (apigenin 10 mg/kg), compared with that in the control group (ALI), respectively (correlation: 0.476; 95% confidence intervals, 0.391-0.553, p value = .001, z-value= 9.678) and (correlation: 0.415; 95% confidence intervals, 0.313-0.508, p value= .001, z-value= 7.349). CONCLUSION Apigenin may have potential anti-inflammatory and antioxidant effects in rat models of ALI. However, the efficacy of apigenin as a therapeutic strategy requires further investigation through prospective controlled randomized trials.
Collapse
Affiliation(s)
- Fangfang Wang
- Department of Nursing, The Fifth People's Hospital of Ganzhou, Ganzhou, China
| | - Lianghua Xiao
- Department of Nephrology, The Fifth People's Hospital of Ganzhou, Ganzhou, China
| | - Huahua Zhang
- Department of Nursing, The Fifth People's Hospital of Ganzhou, Ganzhou, China
| | - Yan Wang
- Department of Gastroenterology, The Fifth People's Hospital of Ganzhou, Ganzhou, China
| | - Lin Zhong
- Department of Nephrology, The Fifth People's Hospital of Ganzhou, Ganzhou, China
| | - Xinwei Feng
- Department of Gastroenterology, The Fifth People's Hospital of Ganzhou, Ganzhou, China
| | - Jianping Liu
- Department of Nursing, The Fifth People's Hospital of Ganzhou, Ganzhou, China
| | - Xiangwen Gong
- Department of Respiratory and Critical Care Medicine, The Fifth People's Hospital of Ganzhou, Ganzhou, China
| |
Collapse
|
12
|
Wen T, Liu X, Pang T, Li M, Jiao G, Fan X, Tang J, Zhang C, Wang Z, Yue X, Chen W, Zhang F. The Efficacy of Chaihu-Guizhi-Ganjiang Decoction on Chronic Non-Atrophic Gastritis with Gallbladder Heat and Spleen Cold Syndrome and Its Metabolomic Analysis: An Observational Controlled Before-After Clinical Trial. Drug Des Devel Ther 2024; 18:881-897. [PMID: 38529263 PMCID: PMC10962469 DOI: 10.2147/dddt.s446336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/09/2024] [Indexed: 03/27/2024] Open
Abstract
Purpose The aim of this study was to verify the effectiveness and explore the mechanism of Chaihu-Guizhi-Ganjiang decoction (CGGD) in the treatment of chronic non-atrophic gastritis (CNAG) with gallbladder heat and spleen cold syndrome (GHSC) by metabolomics based on UHPLC-Q-TOF/MS. Patients and Methods An observational controlled before-after study was conducted to verify the effectiveness of CGGD in the treatment of CNAG with GHSC from January to June 2023, enrolling 27 patients, who took CGGD for 28 days. 30 healthy volunteers were enrolled as the controls. The efficacy was evaluated by comparing the traditional Chinese medicine (TCM) syndrome and CNAG scores, and clinical parameters before and after treatment. The plasma levels of hormones related to gastrointestinal function were collected by ELISA. The mechanisms of CGGD in the treatment of CNAG with GHSC were explored using a metabolomic approach based on UHPLC-Q-TOF/MS. Results Patients treated with CGGD experienced a statistically significant improvement in TCM syndrome and CNAG scores (p < 0.01). CGGD treatment evoked the concentration alteration of 15 biomarkers, which were enriched in the glycerophospholipid metabolism, and branched-chain amino acids biosynthesis pathways. Moreover, CGGD treatment attenuated the abnormalities of the gastrointestinal hormone levels and significantly increased the pepsinogen level. Conclusion It was the first time that this clinical trial presented detailed data on the clinical parameters that demonstrated the effectiveness of CGGD in the treatment of CNAG with GHSC patients. This study also provided supportive evidence that CNAG with GHSC patients were associated with disturbed branched-chain amino acid metabolism and glycerophospholipid levels, suggesting that CNAG treatment based on TCM syndrome scores was reasonable and also provided a potential pharmacological mechanism of action of CGGD.
Collapse
Affiliation(s)
- Tao Wen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Xuan Liu
- Oncology-Department, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, People’s Republic of China
| | - Tao Pang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Mingming Li
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Guangyang Jiao
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiangcheng Fan
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Jigui Tang
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Ci’an Zhang
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Zhipeng Wang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Xiaoqiang Yue
- Department of Traditional Chinese Medicine, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Wansheng Chen
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
- The SATCM Key Laboratory for New Resources & Quality Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, People’s Republic of China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Naval Medical University, Shanghai, People’s Republic of China
- Shanghai Key Laboratory for Pharmaceutical Metabolite Research, Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Qin Z, Xie L, Li W, Wang C, Li Y. New Insights into Mechanisms Traditional Chinese Medicine for Allergic Rhinitis by Regulating Inflammatory and Oxidative Stress Pathways. J Asthma Allergy 2024; 17:97-112. [PMID: 38405022 PMCID: PMC10888064 DOI: 10.2147/jaa.s444923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/23/2024] [Indexed: 02/27/2024] Open
Abstract
Allergy rhinitis (AR) is becoming more common and has serious medical and societal consequences. Sneezing, paroxysmal nasal blockage, nasal itching, mucosal edema, coughing, and rhinorrhea are symptoms of this type I allergic immunological illness. Immunoglobulin E-mediated inflammation is the cause of it. Because AR is prone to recurrent attacks, extended medication therapy may impair its effectiveness. In addition to negatively affecting the patients' physical health, this can also negatively impact their mental health. During AR development, there are inflammatory and oxidative stress responses that are linked to problems in a number of signal transduction pathways. By using the terms "allergic rhinitis", "traditional Chinese medicine", "inflammation", and "oxidative stress", we screened for pertinent research published over the previous five years in databases like PubMed. We saw that NF-KB, TLR, IL-33/ST2, PI3K/AKT, MAPK, and Nrf2 are some of the most important inflammatory and oxidative stress pathways in AR. Studies have revealed that antioxidant and anti-inflammatory therapy reduced the risk of AR and was therapeutic; however, the impact of the therapy varies widely. The Chinese medical system places a high value on traditional Chinese medicine (TCM), which has been there for virtually all of China's 5000-year history. By influencing signaling pathways related to inflammation and oxidative stress, Chinese herbal medicine and its constituent compounds have been shown to prevent allergic rhinitis. This review will focus on this evidence and provide references for clinical treatment and scientific research applications.
Collapse
Affiliation(s)
- Zhu Qin
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Liangzhen Xie
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Wentao Li
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Chao Wang
- Department of Otolaryngology, Graduate School of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| | - Yan Li
- Department of Otolaryngology, First Affiliated Hospital of Heilongjiang University of Traditional Chinese Medicine, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
14
|
Xu R, Zhang J, Hu X, Xu P, Huang S, Cui S, Guo Y, Yang H, Chen X, Jiang C. Yi-shen-hua-shi granules modulate immune and inflammatory damage via the ALG3/PPARγ/NF-κB pathway in the treatment of immunoglobulin a nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117204. [PMID: 37757993 DOI: 10.1016/j.jep.2023.117204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/02/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Controversy persists regarding the treatment of immunoglobulin A nephropathy (IgAN), thereby highlighting the demand for safer more effective therapeutic drugs. Although supplementary treatment using Yi-Shen-Hua-Shi (YSHS) granules has distinct advantages with respect to improving renal function in IgAN, a lack of clarity regarding the underlying mechanisms limits their clinical application. AIM OF THE STUDY In this study, we aimed to elucidate the therapeutic mechanisms underlying the efficacy of YSHS granules in the treatment of IgAN. MATERIALS AND METHODS A rat model of IgAN was established based on lipopolysaccharide, carbon tetrachloride, and bovine serum albumin induction. In order to evaluate the effects of YSHS granules, we performed a range of techniques, including immunofluorescence assays, hematoxylin and eosin staining, and flow cytometry, to assess inflammation, immunity, and other relevant factors. Direct data-independent acquisition-mass spectrometry (DIA-MS) analysis and parallel reaction monitoring (PRM) were used for functional characterization and quantitative validation of differentially expressed proteins (DEPs), and Western blot analysis is used to identify downstream proteins associated with DEPs. RESULTS Compared with the model group, the levels of proteinuria, urine red blood cells, serum creatinine, blood urea nitrogen, low-density lipoprotein-cholesterol, triglycerides, and pathological kidney damage were reduced in the YSHS group. A high dose of YSHS granules was found to raise the levels of CD8 T cells and reduce the CD4/CD8 ratio in the peripheral serum. To examine the mechanisms underlying the therapeutic effects YSHS granules, we performed direct DIA-MS analysis to identify proteins that were differentially expressed among the model, YSHS, and control groups. A total of 29 proteins were identified as being commonly expressed in all three groups. Further KEGG and protein-protein interaction (PPI) network analysis revealed that YSHS granules can contribute to the regulation of N-glycosylation-associated proteins, such as ALG3 and STT3A, in rats with IgAN. Detected changes in the expression of ALG3 and STT3A were consistent with the PRM results. We also established that the administration of YSHS granules can contribute to regulation of the ALG3-associated PPAR-γ/NF-κB signaling pathway. CONCLUSIONS Our findings in this study provide evidence to indicate the efficacy of YSHS granules in the treatment of IgAN, the putative underlying mechanisms of which involve the modulation of N-glycosylation, mediated via the PPAR-γ/NF-κB pathway.
Collapse
Affiliation(s)
- Rongjia Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Jiajia Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| | - Xingge Hu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Penghao Xu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shiqi Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Shiyan Cui
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuxin Guo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Hongtao Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Xiangmei Chen
- Department of Nephrology, Chinese PLA General Hospital, Chinese PLA Institute of Nephrology, State Key Laboratory of Kidney Diseases, National Clinical Research Center of Kidney Diseases, Beijing, China
| | - Chen Jiang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China.
| |
Collapse
|
15
|
Zhao N, Liu C, Tian X, Yang J, Wang T. Acute brain injury increases pulmonary capillary permeability via sympathetic activation-mediated high fluid shear stress and destruction of the endothelial glycocalyx layer. Exp Cell Res 2024; 434:113873. [PMID: 38092346 DOI: 10.1016/j.yexcr.2023.113873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/31/2023]
Abstract
Neurogenic pulmonary edema secondary to acute brain injury (ABI) is a common and fatal disease condition. However, the pathophysiology of brain-lung interactions is incompletely understood. This study aims to investigate whether sympathetic activation-mediated high fluid shear stress after ABI would damage pulmonary endothelial glycocalyx thus leading to increased pulmonary capillary permeability. The tricuspid annular plane systolic excursion (TAPSE) was detected in a rat model of controlled cortical impact (CCI) and CCI + transection of the cervical sympathetic trunk (TCST). Changes in pulmonary capillary permeability were assessed by analyzing the Evans blue, measuring the dry/wet weight ratio of the lungs and altering protein levels in the bronchoalveolar lavage fluid (BALF). The parallel-plate flow chamber system was used to simulate the fluid shear stress in vitro. Western blotting and immunofluorescence staining were used to determine the expression levels of hyaluronan-binding protein (CEMIP), syndecan-1 and tight junction proteins (TJPs, including claudin-5 and occludin). TCST could restrain cardiac overdrive and sympathetic activation in a rat model of CCI. Compared to the CCI group, the CCI + TCST group showed a reduction of CEMPI (which degrades hyaluronic acid), along with an increase of syndecan-1 and TJPs. CCI + TCST group presented decreasing pulmonary capillary permeability. In vitro, high shear stress (HSS) increased the expression of CEMIP and reduced syndecan-1 and TJPs, which was coordinated with the results in vivo. Our findings show that sympathetic activation-mediated high fluid shear stress after ABI would damage pulmonary endothelial glycocalyx thus leading to increased pulmonary capillary permeability.
Collapse
Affiliation(s)
- Na Zhao
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chao Liu
- Department of Interventional Neuroradiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xinxin Tian
- Department of Pathogens, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Juan Yang
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Tianen Wang
- Department of Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
16
|
Zhou Y, Li QX, Liao ZZ, Liu Y, Ouyang Y, Jiang WJ, Tang MT, Hu JF, Zhang W. Anti-inflammatory effect and component analysis of Chaihu Qingwen granules. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116763. [PMID: 37315646 DOI: 10.1016/j.jep.2023.116763] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As prevalent acute respiratory condition in clinical practice, acute lung injury has a quick start and severe symptoms which can harm patients physically. Chaihu Qingwen granules (CHQW) is a classic formula for the treatment of respiratory diseases. Clinical observation shows that CHQW has good efficacy in treating colds, coughs, and fevers. AIM OF THE STUDY The aim of this study was to investigate the anti-inflammatory effect of CHQW on lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in rats and to explore its potential mechanism, as well as to clarify its substance composition. MATERIALS AND METHODS Male SD rats were randomly divided into the blank group, the model group, the ibuprofen group, the Lianhua Qingwen capsule group and the CHQW group (2, 4 and 8 g/kg, respectively). The LPS-induced acute lung injury (ALI) model in rats was established after pre-administration. The histopathological changes in the lung and the levels of inflammatory factors in bronchoalveolar lavage fluid (BALF) and serum of ALI rats were observed. The inflammation-related proteins toll-like receptor 4 (TLR4), inhibitory kappa B alpha (IκBα), phospho-IκBα (p-IκBα), nuclear-factor-kappa B (NF-κB), and NLR family pyrin domain containing 3(NLRP3) expression levels were measured by western blotting analysis and immunohistochemical analysis. The chemical composition of CHQW was identified by liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-Q-TOF-MS). RESULTS CHQW significantly ameliorated lung tissue pathological injury in LPS-induced ALI rats and decreased the release of inflammatory cytokines (interleukin-1β, interleukin-17 and tumor necrosis factor-α) in BALF and serum. In addition, CHQW decreased the expression of TLR4, p-IκBα and NF-κB proteins, increased the level of IκBα, regulated the TLR4/NF-κB signaling pathway, and inhibited the activation of NLRP3. The chemical components of CHQW were analyzed by LC-Q-TOF-MS, and a total of 48 components were identified by combining information from the literature, mainly flavonoids, organic acids, lignans, iridoids and phenylethanoid glycosides. CONCLUSION The results of this study showed that the pretreatment of CHQW had a strong protective effect on LPS-induced ALI in rats, reducing lung tissue lesions and decreasing inflammatory cytokines released in BALF and serum. The protective mechanism of CHQW may be related to the inhibition of the TLR4/NF-κB signaling pathway and NLRP3 activation. The main active ingredients of CHQW are flavonoids, organic acids, lignans, iridoids and phenylethanoid glycosides.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Qing-Xian Li
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Zheng-Zheng Liao
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ying Ouyang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Wen-Jing Jiang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Meng-Ting Tang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Jin-Fang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Wei Zhang
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
17
|
Zhao L, Jin L, Yang B. Saikosaponin A alleviates Staphylococcus aureus-induced mastitis in mice by inhibiting ferroptosis via SIRT1/Nrf2 pathway. J Cell Mol Med 2023; 27:3443-3450. [PMID: 37644785 PMCID: PMC10660613 DOI: 10.1111/jcmm.17914] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023] Open
Abstract
Mastitis is a common and serious bacterial infection of the mammary gland. Saikosaponin A (SSA) is a triterpenoid saponin isolated from Bupleurum falcatum that has the ability to treat various diseases. However, little is known about the role of SSA in achieving mastitis remission. Here, we found that SSA alleviated Staphylococcus aureus (S. aureus)-induced mastitis by attenuating inflammation and maintaining blood-milk barrier integrity. Furthermore, S. aureus activated nuclear factor kappa B (NF-κB) pathway by upregulated p-p65 and p-IκB. S. aureus also induced ferroptosis in mammary gland in mice, mainly characterized by excessive iron accumulation, mitochondrial morphological changes and impaired antioxidant production. However, S. aureus-induced NF-κB activation and ferroptosis were prevented by SSA. Moreover, SAA could upregulate the expression of SIRT1, Nrf2, HO-1 and GPX4. And the inhibitory effects of SAA on inflammation and ferroptosis were reversed by SIRT1 inhibitor EX-527. In conclusion, SAA protected S. aureus-induced mastitis through suppressing inflammation and ferroptosis by activating SIRT1/Nrf2 pathway.
Collapse
Affiliation(s)
- Lihua Zhao
- Department of Breast SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Lei Jin
- Department of AnesthesiologyChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| | - Bin Yang
- Department of Breast SurgeryChina‐Japan Union Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
18
|
Ma X, Zhang M, Xia W, Song Y. Antitumor mechanism of Saikosaponin A in the Xiaoying Sanjie Decoction for treatment of anaplastic thyroid cancer by network pharmacology analysis and experiments in vitro and in vivo. Fitoterapia 2023; 170:105665. [PMID: 37673277 DOI: 10.1016/j.fitote.2023.105665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/29/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
Effective therapies for anaplastic thyroid cancer (ATC) are still limited due to its dedifferentiated phenotype and high invasiveness. Xiaoying Sanjie Decoction (XYSJD), a clinically empirical Chinese medicine compound, has shown positive effects for ATC treatment and recovery. However, the pharmacological mechanisms of effective active compound in XYSJD remain unclear. In this study, we aimed at elucidating the antitumor mechanism of the active compound and identifying the kernel molecular mechanisms of XYSJD against ATC. Firstly, the main chemical constituents of XYSJD were identified by ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-QTOF-MS). Then we used network pharmacology and ClusterONE algorithm to analyze the possible targets and pathways of the prescription and active compound Saikosaponin A (SSA). Seven core targets, including P2RY12, PDK1, PPP1CC, PPP2CA, TBK1, ITGB1 and ITGB6, which may be involved in the anti-tumor activity of XYSJD were screened. Finally, using cell biology, molecular biology and experimental zoology techniques, we investigated the mechanism of active compound SSA in the treatment of ATC. The results of qRT-PCR indicated that these seven nuclear targets might play an important role in SSA, the active compound of XYSJD. The combined data provide preliminary study of the pharmacological mechanisms of SSA in XYSJD. SSA may be a promising potential therapeutic and chemopreventive candidate for ATC.
Collapse
Affiliation(s)
- Xiaokun Ma
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Miao Zhang
- Central Laboratory, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yanan Song
- Central Laboratory, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
19
|
Yu H, Lv M, Zhang S, Zou K, Qian Y, Lv S. Combination therapy with budesonide and acetylcysteine alleviates LPS-induced acute lung injury via the miR-381/NLRP3 molecular axis. PLoS One 2023; 18:e0289818. [PMID: 37556466 PMCID: PMC10411794 DOI: 10.1371/journal.pone.0289818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/27/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) usually has a high morbidity and mortality rate, but the current treatment is relatively scarce. Both budesonide (Bud) and N-acetylcysteine (NAC) exhibit protective effects in ALI, so we further investigated whether they have a synergistic effect on ALI when used together. METHODS Establishment of a rat model of ALI with Lipopolysaccharide (LPS). Bud and NAC were administered by nebulized inhalation alone or in combination. Subsequently, HE staining was performed to observe the pathological changes in lungs of rat. Evans blue staining was implemented to assess alveolar permeability, and the pulmonary edema was assessed by measuring the ratio of wet to dry weight of the lung. Moreover, a TUNEL kit was served to test apoptosis in lung tissues. Western blot and immunohistochemistry were analyzed for expression of scorch-related proteins and NLRP3 in lung tissue, respectively. ELISA was implemented to detect inflammatory factor levels in BALF. and RT-qPCR was utilized to assess the expression level of miR-381. After stable transfection of miR-381 inhibitor or OE-NLRP3 in BEAS-2B treated with LPS, Bud and NAC, miR-381 expression was assessed by RT-qPCR, scorch death-related protein expression was measured by western blot, cell proliferation/viability was assayed by CCK-8, apoptosis was measured by flow cytometry, and ELISA was implemented to assess inflammatory factor levels. Furthermore, the Dual-luciferase assay was used to verify the targeting relationship. RESULTS Bud and NAC treatment alone or in combination with nebulized inhalation attenuated the increased alveolar permeability, pulmonary edema, inflammatory response and scorching in LPS-induced ALI rats, and combined treatment with Bud and NAC was the most effective. In addition, combined treatment with Bud and NAC upregulated miR-381 expression and inhibited NLRP3 expression in cellular models and LPS-induced ALI rats. Transfection of the miR-381 inhibitor and OE-NLRP3 partially reversed the protective effects of Bud and NAC combination treatment on BEAS-2B cell proliferation inhibition, apoptosis, focal death and the inflammatory response. CONCLUSION Combined Bud and NAC nebulization therapy alleviates LPS-induced ALI by modulating the miR-381/NLRP3 molecular axis.
Collapse
Affiliation(s)
- Huimin Yu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Meifen Lv
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Shiying Zhang
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Kaiwen Zou
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Yan Qian
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| | - Shaokun Lv
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, Yunnan, China
| |
Collapse
|
20
|
Zhou X, Zeng M, Huang F, Qin G, Song Z, Liu F. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12601-5. [PMID: 37272939 DOI: 10.1007/s00253-023-12601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
With the widespread use of antibiotic drugs worldwide and the global increase in the number of immunodeficient patients, fungal infections have become a serious threat to global public health security. Moreover, the evolution of fungal resistance to existing antifungal drugs is on the rise. To address these issues, the development of new antifungal drugs or fungal inhibitors needs to be targeted urgently. Plant secondary metabolites are characterized by a wide variety of chemical structures, low price, high availability, high antimicrobial activity, and few side effects. Therefore, plant secondary metabolites may be important resources for the identification and development of novel antifungal drugs. However, there are few studies to summarize those contents. In this review, the antifungal modes of action of plant secondary metabolites toward different types of fungi and fungal infections are covered, as well as highlighting immunomodulatory effects on the human body. This review of the literature should lay the foundation for research into new antifungal drugs and the discovery of new targets. KEY POINTS: • Immunocompromised patients who are infected the drug-resistant fungi are increasing. • Plant secondary metabolites toward various fungal targets are covered. • Plant secondary metabolites with immunomodulatory effect are verified in vivo.
Collapse
Affiliation(s)
- Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
21
|
Huang M, Yan Y, Deng Z, Zhou L, She M, Yang Y, Zhang M, Wang D. Saikosaponin A and D attenuate skeletal muscle atrophy in chronic kidney disease by reducing oxidative stress through activation of PI3K/AKT/Nrf2 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154766. [PMID: 37002971 DOI: 10.1016/j.phymed.2023.154766] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Skeletal muscle atrophy in chronic kidney disease (CKD) leads to a decline in quality of life and increased risk of morbidity and mortality. We have obtained evidence that oxidative stress is essential in the progression of CKD-related muscle atrophy. Whether Saikosaponin A and D, two emerging antioxidants extracted from Bupleurum chinense DC, alleviate muscle atrophy remains to be further studied. The purpose of this study was to investigate the effects and mechanisms of these two components on CKD complicated with muscle atrophy. METHODS In this research, muscle dystrophy model was established using 5/6 nephrectomized mice in vivo and in vitro with Dexamethasone (Dex)-managed C2C12 myotubes. RESULTS The results of RNA-sequencing showed that exposure to Dex affected the antioxidant activity, catalytic activity and enzyme regulator activity of C2C12 cells. According to KEGG analysis, the largest numbers of differentially expressed genes detected were enriched in the PI3K/AKT pathway. In vivo, Saikosaponin A and D remain renal function, cross-section size, fiber-type composition and anti-inflammatory ability. These two components suppressed the expression of MuRF-1 and enhanced the expression of MyoD and Dystrophin. In addition, Saikosaponin A and D maintained redox balance by increasing the activities of antioxidant enzymes while inhibiting the excessive accumulation of reactive oxygen species. Furthermore, Saikosaponin A and D stimulated PI3K/AKT and its downstream Nrf2 pathway in CKD mice. The effects of Saikosaponin A and D on increasing the inner diameter of C2C12 myotube, reducing oxidative stress and enhancing expression of p-AKT, p-mTOR, p70S6K, Nrf2 and HO-1 proteins were observed in vitro. Importantly, we verified that these protective effects could be significantly reversed by inhibiting PI3K and knocking out Nrf2. CONCLUSIONS In summary, Saikosaponin A and D improve CKD-induced muscle atrophy by reducing oxidative stress through the PI3K/AKT/Nrf2 pathway.
Collapse
Affiliation(s)
- Minna Huang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Yan Yan
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Zihao Deng
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510000, China
| | - Lingli Zhou
- The First Clinical Medical College, Southern Medical University, Guangzhou, 510000, China
| | - Meiling She
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Yajun Yang
- Department of Pharmacology, Guangdong Key Laboratory for R&D of Natural Drug, Guangdong Medical University, Zhanjiang,524000, China
| | - Meng Zhang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China
| | - Dongtao Wang
- Department of Traditional Chinese Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, China; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
22
|
Yin P, Han X, Yu L, Zhou H, Yang J, Chen Y, Zhang T, Wan H. Pharmacokinetic analysis for simultaneous quantification of Saikosaponin A- paeoniflorin in normal and poststroke depression rats: A comparative study. J Pharm Biomed Anal 2023; 233:115485. [PMID: 37267872 DOI: 10.1016/j.jpba.2023.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
Bupleurum and Paeonia are common compatibilities for the treatment of depression, most of which are used in classical prescriptions. The main active ingredients saikosaponin A (SSA) and paeoniflorin (PF) have significant therapeutic effects on poststroke depression (PSD). However, the pharmacokinetic (PK) behavior based on the combination of the two components has not been reported in rats. The aim of this study was to compare the pharmacokinetic characteristics of combined administration of SSA and PF in normal and PSD rats. Plasma samples were collected after SSA and PF were injected into the rat tail vein, and plasma pretreatments were analyzed by HPLC. Based on the concentration levels of SSA and PF in plasma, Drug and Statistics 3.2.6 (DAS 3.2.6) software was used to establish the blood drug concentration model. PK data showed that compared with the normal rats, the values of related parameters t1/2α, AUC(0-t), AUC(0-∞) were decreased in diseased rats, while the values of CL1 was increased. These findings suggest that PSD can significantly affect the PK parameters of SSA-PF. This study established a PK model to explore the time-effect relationship, in order to provide experimental and theoretical support for clinical application.
Collapse
Affiliation(s)
- Ping Yin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Xi Han
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Li Yu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Huifen Zhou
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Jiehong Yang
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ying Chen
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
23
|
Teng L, Guo X, Ma Y, Xu L, Wei J, Xiao P. A comprehensive review on traditional and modern research of the genus Bupleurum (Bupleurum L., Apiaceae) in recent 10 years. JOURNAL OF ETHNOPHARMACOLOGY 2023; 306:116129. [PMID: 36638855 DOI: 10.1016/j.jep.2022.116129] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/10/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The genus Bupleurum (family Apiaceae), comprising approximately 248 accepted species, is widely distributed and used in China, Japan, India, Central Asia, North Africa and some European countries as traditional herbal medicines. Certain species have been reported to have significant therapeutic effects in fever, inflammatory disorders, cancer, gastric ulcer, virus infection and other diseases. AIM OF THE REVIEW we performed a comprehensive review of the ten-year research progress in phytochemistry, pharmacology, toxicity, along with bibliometrics research of the genus Bupleurum, aiming to identify knowledge gaps for future research. MATERIALS AND METHODS All the literatures are retrieved from library and electronic sources including Web of Science, PubMed, Elsevier, Google Scholar, CNKI and Baidu Scholar. These papers cover studies of the traditional use, phytochemistry, pharmacology, and toxicology of the genus Bupleurum. RESULTS There is a long history of using the genus Bupleurum in traditional herbal medicine that dated back to over 2000 years ago. Twenty-five species and 8 varieties with 3 variants within this genus have been reported to be effective to treat fever, pain, liver disease, inflammation, thoracolumbar pain, irregular menstruation and rectal prolapse. The main phytochemicals found in these plants are triterpene saponins, volatile oil, flavonoid, lignans, and polysaccharides. Many of these compounds have also been shown to have anti-inflammatory, anti-tumor, antimicrobial, immunoregulation, neuroregulation, hepatoprotective and antidiabetic activities. Meanwhile, improper usage of Bupleurum may induce cytotoxic effects, and polyacetylenes may be the main poisonous compounds. CONCLUSIONS This article summarized recent findings about Bupleurum research from many different aspects. While a small number of Bupleurum species have been investigated through modern pharmacology methods, there are still major knowledge gaps due to inadequate studies and ambiguous findings. Future research could focus on more specific phytochemistry studies combined with mechanistic analysis to provide better guidance to utilize Bupleurum as medicinal resources.
Collapse
Affiliation(s)
- Lili Teng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Xinwei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Yuzhi Ma
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Lijia Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| | - Peigen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100193, PR China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, 100193, PR China.
| |
Collapse
|
24
|
Bak SB, Song YR, Bae SJ, Lee WY, Kim YW. Integrative approach to uncover antioxidant properties of Bupleuri Radix and its active compounds: Multiscale interactome-level analysis with experimental validation. Free Radic Biol Med 2023; 199:141-153. [PMID: 36841364 DOI: 10.1016/j.freeradbiomed.2023.02.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
Acute and chronic liver disease are global problems with high morbidity and mortality. Bupleuri Radix (BR) is an herbal medicine that has been prescribed empirically in traditional Asian medicine to modulate liver metabolism. However, its active compounds and therapeutic mechanisms remain unclear. Here, we integrated a network-based approach and experimental validation to elucidate BR's therapeutic potential in treating oxidative liver injury. Our approach incorporated data collection and network construction utilizing bioinformatics tools, and identified active compounds and key mechanisms based on the multiscale interactome. The proposed mechanisms were validated using an in vitro oxidative stress model and an in vivo carbon tetrachloride-induced model. We found that BR ameliorated the oxidative hepatic damage by acting on multiple proteins (STAT3, TNF, and BCL2) and signaling pathways (AMPK and Hippo signaling pathways). Subsequent in vitro experiments confirmed that BR significantly inhibited oxidative stress and mitochondrial damage. We further validated the effect of BR on the AMPK and Hippo-YAP pathways; a key mechanism for the antioxidant properties of BR. We prioritized the active compounds in BR based on a multiscale interactome-based approach, and further experiments revealed that saikosaponin A was a key active compound involved in hepatocyte protection (EC50 = 50 μM), similar to the result using metformin and 5-aminoimidazole-4-carboxamide ribonucleotide. Histochemistry and blood biochemistry established that BR significantly inhibited carbon tetrachloride-induced oxidative tissue damage in mice. Thus, BR can be used to develop novel therapeutics for oxidative liver injury. Moreover, we suggest a novel strategy to prioritize and validate the active compounds and key mechanisms of herbal medicine based on the multiscale interactome.
Collapse
Affiliation(s)
- Seon Been Bak
- School of Korean Medicine, Dongguk University, Gyeonju, 38066, South Korea
| | - Yu Rim Song
- School of Korean Medicine, Dongguk University, Gyeonju, 38066, South Korea
| | - Su-Jin Bae
- School of Korean Medicine, Dongguk University, Gyeonju, 38066, South Korea
| | - Won-Yung Lee
- School of Korean Medicine, Dongguk University, Gyeonju, 38066, South Korea.
| | - Young Woo Kim
- School of Korean Medicine, Dongguk University, Gyeonju, 38066, South Korea; Department of Computer Science and Engineering, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
25
|
Li R, Ren T, Zeng J, Xu H. ALCAM Deficiency Alleviates LPS-Induced Acute Lung Injury by Inhibiting Inflammatory Response. Inflammation 2023; 46:688-699. [PMID: 36418761 DOI: 10.1007/s10753-022-01765-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
Abstract
We investigated the effects and underlying mechanisms of activated leukocyte adhesion molecule (ALCAM) on acute lung injury (ALI) by using lipopolysaccharide (LPS)-induced ALI animal model and LPS-induced inflammation in vitro. In LPS-stimulated mice, ALCAM deficiency relieved lung injury, which manifested as reduced pathological changes in the lung tissue, reduced pulmonary edema, and reduced vascular permeability. Furthermore, we demonstrated that ALCAM deficiency reduced the infiltration of inflammatory cells, including neutrophil, eosinophil, and macrophages; the release of inflammatory cytokines, including IL-1β, IL-6, TNF-α, and COX2; and reduced the protein level of TLR4/NF-κB pathway (TLR4, MyD88, p-IkBɑ, and p-NF-κB p65). We also demonstrated that ALCAM deficiency reduced the expression of oxidative stress-related proteins (Nrf-2, HO-1, and NQO-1) and endoplasmic reticulum stress-related proteins (CHOP, GRP78, ATF-6, and p-eIF2ɑ). In addition, in LPS-induced inflammation in vitro, ALCAM overexpression promoted inflammatory response, oxidative stress, and ER stress. We established that ALCAM deficiency can suppress the ALI process by reducing inflammatory response, oxidative stress, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Ruirui Li
- Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, No. 107, Shibei 2Nd Road, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Tao Ren
- Three Departments of Cardiology, The First Affiliated Hospital of Shihezi University School of Medicine, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China
| | - Jianqiong Zeng
- Cardiovascular Surgery CCU, Foshan First People's Hospital, Foshan, 528000, Guangdong, People's Republic of China
| | - Hang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University School of Medicine, No. 107, Shibei 2Nd Road, Shihezi, 832008, Xinjiang Uygur Autonomous Region, People's Republic of China.
| |
Collapse
|
26
|
Deng F, Hu JJ, Lin ZB, Sun QS, Min Y, Zhao BC, Huang ZB, Zhang WJ, Huang WK, Liu WF, Li C, Liu KX. Gut microbe-derived milnacipran enhances tolerance to gut ischemia/reperfusion injury. Cell Rep Med 2023; 4:100979. [PMID: 36948152 PMCID: PMC10040455 DOI: 10.1016/j.xcrm.2023.100979] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/02/2022] [Accepted: 02/23/2023] [Indexed: 03/24/2023]
Abstract
There are significant differences in the susceptibility of populations to intestinal ischemia/reperfusion (I/R), but the underlying mechanisms remain elusive. Here, we show that mice exhibit significant differences in susceptibility to I/R-induced enterogenic sepsis. Notably, the milnacipran (MC) content in the enterogenic-sepsis-tolerant mice is significantly higher. We also reveal that the pre-operative fecal MC content in cardiopulmonary bypass patients, including those with intestinal I/R injury, is associated with susceptibility to post-operative gastrointestinal injury. We reveal that MC attenuates mouse I/R injury in wild-type mice but not in intestinal epithelial aryl hydrocarbon receptor (AHR) gene conditional knockout mice (AHRflox/flox) or IL-22 gene deletion mice (IL-22-/-). Collectively, our results suggest that gut microbiota affects susceptibility to I/R-induced enterogenic sepsis and that gut microbiota-derived MC plays a pivotal role in tolerance to intestinal I/R in an AHR/ILC3/IL-22 signaling-dependent manner, revealing the pathological mechanism, potential prevention and treatment drugs, and treatment strategies for intestinal I/R.
Collapse
Affiliation(s)
- Fan Deng
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jing-Juan Hu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ze-Bin Lin
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qi-Shun Sun
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yue Min
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Bing-Cheng Zhao
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhi-Bin Huang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wen-Juan Zhang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wen-Kao Huang
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei-Feng Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Cai Li
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ke-Xuan Liu
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
27
|
Chen Y, Liu H, Tian Y, Luo Z, Ran J, Miao Z, Zhang Q, Yin G, Xie Q. Fexofenadine protects against lipopolysaccharide-induced acute lung injury by targeting cytosolic phospholipase A2. Int Immunopharmacol 2023; 116:109637. [PMID: 36764283 DOI: 10.1016/j.intimp.2022.109637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 02/11/2023]
Abstract
OBJECTIVE Acute lung injury (ALI) causes acute respiratory distress syndrome, with a high mortality rate of 40%, with currently available pharmacological treatments. Cytosolic phospholipase A2 (cPLA2) plays a critical role in the lipopolysaccharide (LPS)-induced pathology of ALI. This study assessed the therapeutic effects of fexofenadine (FFD), an on-market small-molecule drug that can target cPLA2 in LPS-induced ALI. METHODS Primary macrophages obtained from the bone marrow of wild-type and cPLA2 knockout mice and the alveolar macrophage cell line, MHS were used to test the inhibitory effect of FFD on the cPLA2/ERK/p65 signaling pathway, NF-κB p65 translocation, and cytokine and chemokine production. An LPS-induced ALI mouse model was used to assess the treatment effects of FFD. Flow cytometry detected subsets of macrophages and neutrophils. cPLA2 activity and downstream hydrolysates were detected. Treatment with a cPLA2 inhibitor or NF-κB p65 inhibitor confirmed that FFD functioned through the cPLA2/ERK/p65 signaling pathway by targeting cPLA2. RESULTS FFD reduced the infiltration of macrophages and neutrophils, decreased the protein secretion in bronchoalveolar lavage fluid, and reduced the production of TNFα, IL-1β, IL-6, MCP-1, and IL-8 in the lung, bronchoalveolar lavage fluid, and sera of LPS-induced ALI mice. FFD inhibited cPLA2 activity, suppressed the cPLA2/ERK/p65 signaling pathway, inhibited translocation of p65, and decreased the production of cytokines, chemokines, and downstream hydrolysates of cPLA2, arachidonic acid, and leukotriene B4. CONCLUSION FFD inhibits the cPLA2/ERK/p65 signaling pathway by targeting cPLA2. Therefore, FFD is promising as a therapeutic against cPLA2-involved diseases, particularly ALI.
Collapse
Affiliation(s)
- Yuehong Chen
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Huan Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yunru Tian
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhongling Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jingjing Ran
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhiyong Miao
- Laboratory of Human Diseases and Immunotherapies, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Geng Yin
- Department of General Practice, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Qibing Xie
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
28
|
Yang J, Chen X. SIRT6 attenuates LPS-induced inflammation and apoptosis of lung epithelial cells in acute lung injury through ACE2/STAT3/PIM1 signaling. Immun Inflamm Dis 2023; 11:e809. [PMID: 36988243 PMCID: PMC10022422 DOI: 10.1002/iid3.809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/10/2023] [Accepted: 02/18/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND Acute lung injury (ALI) is a severe and fatal respiratory disease. SIRT6 exerts pivotal activities in the process of lung diseases, but whether SIRT6 impacts ALI has not been covered. METHODS Lentivirus recombinant expressing vector SIRT6 gene (Lent-SIRT6) was constructed in mice, and there were control, lipopolysaccharide (LPS), LPS + Vehicle, and LPS + Lent SIRT6 groups. RT-qPCR and western blot detected SIRT6 expression in lung tissues. HE staining observed pathological alternations in lung tissues. Wet-to-dry ratio of the lungs was then measured. The cell count of bronchoalveolar lavage fluid (BALF) was evaluated. Serum inflammation was examined with enzyme-linked immunosorbent assay, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL), and western blot were to measure apoptosis. Western blot tested the expression of ACE2/STAT3/PIM1 signaling-associated factors. At the cellular level, LPS was used to induce lung epithelial cells BEAS-2B to establish cell injury models. SIRT6 was overexpressed and ACE2 expression was inhibited by cell transfection, and the mechanism of SIRT6 in LPS-induced lung injury model was further explored by Cell Counting Kit-8 (CCK-8), western blot, quantitative reverse-transcription polymerase chain reaction, TUNEL, and other techniques. RESULTS The results of animal experiments showed that SIRT6 overexpression could reduce LPS-induced lung pathological injury, pulmonary edema, and BALF cell ratio and attenuate LPS-induced inflammatory response and cell apoptosis. In the above process, ACE2, STAT3, p-STAT3, and PIM1 expression were affected. In cell experiments, SIRT6 expression was reduced in LPS-induced BEAS-2B cells. Inhibition of ACE2 expression could reverse the inhibitory effect of SIRT6 overexpression on ACE2/STAT3/PIM1 pathway, and cellular inflammatory response and apoptosis. CONCLUSION SIRT6 eased LPS-evoked inflammation and apoptosis of lung epithelial cells in ALI through ACE2/STAT3/PIM1 signaling.
Collapse
Affiliation(s)
- Juan Yang
- Department of Pediatric, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xing Chen
- Department of Pediatric, Shandong Provincial HospitalShandong UniversityJinanShandongChina
| |
Collapse
|
29
|
Gao Y, Dai W, Ouyang Z, Shen M, Shi X. Dendrimer-Mediated Intracellular Delivery of Fibronectin Guides Macrophage Polarization to Alleviate Acute Lung Injury. Biomacromolecules 2023; 24:886-895. [PMID: 36668816 DOI: 10.1021/acs.biomac.2c01318] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Fibronectin (FN) is an essential glycoprotein in the extracellular matrix with favorable biological functions for potential applications in various biomedical fields including wound healing, regenerative medicine, tissue engineering, as well as diagnosis and treatment of cancer and inflammatory diseases. Herein, we aim to explore the influence of intracellular FN delivery on macrophage functions and its possible therapeutic applications. We prepared phenylboronic acid (PBA)-functionalized generation 5 (G5) poly(amidoamine) dendrimers (G5.NH2-PBA) as a nanocarrier to load FN, and reveal that the obtained dendrimers enable efficient intracellular delivery of FN at an optimized dendrimer-to-FN weight ratio of 8, which guides macrophages toward anti-inflammatory M2 phenotype polarization. Studies on action mechanisms show that the dendrimer-mediated FN intracellular delivery acts strongly on suppressing the nuclear factor-κB pathway, leading to reduced pro-inflammatory cytokine secretion and enhanced reactive oxygen species depletion in lipopolysaccharide (LPS)-activated macrophages. Further investigation in vivo using an LPS-induced mouse model of acute lung injury (ALI) shows that the dendrimer-mediated FN delivery can effectively alleviate the ALI symptoms through alleviation of lung inflammation and oxidation stress. Our work suggests a general approach to using dendrimers for mediating intracellular delivery of FN, thereby offering many opportunities to explore the biological functions of FN for different therapeutic applications toward inflammation-associated diseases.
Collapse
Affiliation(s)
- Yue Gao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Waicong Dai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Zhijun Ouyang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Mingwu Shen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China
| | - Xiangyang Shi
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Biological Science and Medical Engineering, Donghua University, Shanghai 201620, China.,CQM─Centro de Química da Madeira, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
30
|
Rische CH, Thames AN, Krier-Burris RA, O’Sullivan JA, Bochner BS, Scott EA. Drug delivery targets and strategies to address mast cell diseases. Expert Opin Drug Deliv 2023; 20:205-222. [PMID: 36629456 PMCID: PMC9928520 DOI: 10.1080/17425247.2023.2166926] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Current and developing mast cell therapeutics are reliant on small molecule drugs and biologics, but few are truly selective for mast cells. Most have cellular and disease-specific limitations that require innovation to overcome longstanding challenges to selectively targeting and modulating mast cell behavior. This review is designed to serve as a frame of reference for new approaches that utilize nanotechnology or combine different drugs to increase mast cell selectivity and therapeutic efficacy. AREAS COVERED Mast cell diseases include allergy and related conditions as well as malignancies. Here, we discuss the targets of existing and developing therapies used to treat these disease pathologies, classifying them into cell surface, intracellular, and extracellular categories. For each target discussed, we discuss drugs that are either the current standard of care, under development, or have indications for potential use. Finally, we discuss how novel technologies and tools can be used to take existing therapeutics to a new level of selectivity and potency against mast cells. EXPERT OPINION There are many broadly and very few selectively targeted therapeutics for mast cells in allergy and malignant disease. Combining existing targeting strategies with technology like nanoparticles will provide novel platforms to treat mast cell disease more selectively.
Collapse
Affiliation(s)
- Clayton H. Rische
- Northwestern University McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Ariel N. Thames
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
- Northwestern University McCormick School of Engineering, Department of Chemical and Biological Engineering, Evanston, IL, USA
| | - Rebecca A. Krier-Burris
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Jeremy A. O’Sullivan
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Bruce S. Bochner
- Northwestern University Feinberg School of Medicine, Division of Allergy and Immunology, Chicago, IL, USA
| | - Evan A. Scott
- Northwestern University McCormick School of Engineering, Department of Biomedical Engineering, Evanston, IL, USA
- Northwestern University Feinberg School of Medicine, Department of Microbiolgy-Immunology, Chicago, IL, USA
| |
Collapse
|
31
|
Mieres-Castro D, Mora-Poblete F. Saponins: Research Progress and Their Potential Role in the Post-COVID-19 Pandemic Era. Pharmaceutics 2023; 15:pharmaceutics15020348. [PMID: 36839670 PMCID: PMC9964560 DOI: 10.3390/pharmaceutics15020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In the post-COVID-19 pandemic era, the new global situation and the limited therapeutic management of the disease make it necessary to take urgent measures in more effective therapies and drug development in order to counteract the negative global impacts caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new infectious variants. In this context, plant-derived saponins-glycoside-type compounds constituted from a triterpene or steroidal aglycone and one or more sugar residues-may offer fewer side effects and promising beneficial pharmacological activities. This can then be used for the development of potential therapeutic agents against COVID-19, either as a therapy or as a complement to conventional pharmacological strategies for the treatment of the disease and its prevention. The main objective of this review was to examine the primary and current evidence in regard to the therapeutic potential of plant-derived saponins against the COVID-19 disease. Further, the aim was to also focus on those studies that highlight the potential use of saponins as a treatment against SARS-CoV-2. Saponins are antiviral agents that inhibit different pharmacological targets of the virus, as well as exhibit anti-inflammatory and antithrombotic activity in relieving symptoms and clinical complications related to the disease. In addition, saponins also possess immunostimulatory effects, which improve the efficacy and safety of vaccines for prolonging immunogenicity against SARS-CoV-2 and its infectious variants.
Collapse
|
32
|
Peng D, Chen Y, Sun Y, Zhang Z, Cui N, Zhang W, Qi Y, Zeng Y, Hu B, Yang B, Wang Q, Kuang H. Saikosaponin A and Its Epimers Alleviate LPS-Induced Acute Lung Injury in Mice. Molecules 2023; 28:molecules28030967. [PMID: 36770631 PMCID: PMC9919285 DOI: 10.3390/molecules28030967] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
The purpose of this work was to illustrate the effect of processing with vinegar on saikosaponins of Bupleurum chinense DC. (BC) and the protective effects of saikosaponin A (SSA), saikosaponin b1 (SSb1), saikosaponin b2 (SSb2), and saikosaponin D (SSD) in lipopolysaccharide (LPS)-induced acute lung injury (ALI) mice. We comprehensively evaluated the anti-inflammatory effects and potential mechanisms of SSA, SSb1, SSb2, and SSD through an LPS-induced ALI model using intratracheal injection. The results showed that SSA, SSb1, SSb2, and SSD significantly decreased pulmonary edema; reduced the levels of IL-6, TNF-α, and IL-1β in serum and lung tissues; alleviated pulmonary pathological damage; and decreased the levels of the IL-6, TNF-α, and IL-1β genes and the expression of NF-κB/TLR4-related proteins. Interestingly, they were similar in structure, but SSb2 had a better anti-inflammatory effect at the same dose, according to a principal component analysis. These findings indicated that it may not have been comprehensive to only use SSA and SSD as indicators to evaluate the quality of BC, especially as the contents of SSb1 and SSb2 in vinegar-processed BC were significantly increased.
Collapse
Affiliation(s)
- Donghui Peng
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Yuchan Chen
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Yanping Sun
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Zhihong Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Na Cui
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Wensen Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Ying Qi
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, Science and Technology Department of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou 510006, China
| | - Yuanning Zeng
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, Science and Technology Department of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou 510006, China
| | - Bin Hu
- National Engineering Research Center for Modernization of Traditional Chinese Medicine-Hakka Medical Resources Branch, School of Pharmacy, Gannan Medical University, No. 1, Medical College Road, Ganzhou 341004, China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
| | - Qiuhong Wang
- Guangdong Engineering Technology Research Center for Standardized Processing of Chinese Materia Medica, Science and Technology Department of Guangdong Province, Guangdong Pharmaceutical University, No. 280, Waihuan East Road, Guangzhou 510006, China
- Correspondence: (Q.W.); (H.K.)
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Harbin 150040, China
- Correspondence: (Q.W.); (H.K.)
| |
Collapse
|
33
|
Tang Y, Sun M, Liu Z. Phytochemicals with protective effects against acute pancreatitis: a review of recent literature. PHARMACEUTICAL BIOLOGY 2022; 60:479-490. [PMID: 35180016 PMCID: PMC8865097 DOI: 10.1080/13880209.2022.2039723] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
CONTEXT Acute pancreatitis (AP) is an acute abdominal inflammatory disease with episodes ranging from mild to fulminant symptoms which could include necrosis, systemic inflammation and multiple organ dysfunction. Increasing experimental evidence demonstrates that specific bioactive ingredients from natural plants have a favourable therapeutic effect on AP. OBJECTIVE The objective of this review is to summarize the protective effects and potential mechanisms of action of phytochemicals on the attenuation of AP. METHODS Experimental studies in vivo or in vitro between January 2016 and June 2021 were sought in PubMed and Web of Science using the following search terms: ('phytochemicals' OR 'medicinal plant' OR 'traditional medicine') AND ('pancreatitis' OR 'pancreatic damage' OR 'pancreatic injury'). Data concerning the basic characteristics of phytochemicals, therapeutic dose and potential molecular mechanisms related to AP were extracted in this study. RESULTS A total of 30 phytochemicals with potential therapeutic effects were reviewed and summarized systematically. According to their molecular pathways in AP, the underlying mechanisms of the phytochemicals were illustrated in detail. DISCUSSION AND CONCLUSIONS The phytochemicals with anti-inflammatory and antioxidant abilities may be efficient candidate drugs for AP treatment. Importantly, more preclinical investigations are needed to illustrate the efficacy of future phytochemicals.
Collapse
Affiliation(s)
- Yao Tang
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mingli Sun
- School of Kinesiology, Shenyang Sport University, Shenyang, China
| | - Zhenning Liu
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- CONTACT Zhenning Liu Department of Emergency Medicine, Shengjing Hospital of China Medical University, No. 36, Sanhao Street, Heping District, Shenyang City, China
| |
Collapse
|
34
|
Li Y, Wang SM, Li X, Lv CJ, Peng LY, Yu XF, Song YJ, Wang CJ. Pterostilbene pre-treatment reduces LPS-induced acute lung injury through activating NR4A1. PHARMACEUTICAL BIOLOGY 2022; 60:394-403. [PMID: 35271397 PMCID: PMC8920364 DOI: 10.1080/13880209.2022.2034893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 01/05/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
CONTEXT Pterostilbene (PTE), a common polyphenol compound, exerts an anti-inflammatory effect in many diseases, including acute lung injury (ALI). OBJECTIVE This study explores the potential mechanism of PTE pre-treatment against lipopolysaccharide (LPS)-induced ALI. MATERIALS AND METHODS Sixty Sprague-Dawley rats were divided into control, ALI, 10 mg/kg PTE + LPS, 20 mg/kg PTE + LPS, and 40 mg/kg PTE + LPS groups. At 24 h before LPS instillation, PTE was administered orally. At 2 h before LPS instillation, PTE was again administered orally. After 24 h of LPS treatment, the rats were euthanized. The levels of inflammatory cells and inflammatory factors in the bronchoalveolar lavage fluid (BALF), the expression of nuclear receptor subfamily 4 group A member 1 (NR4A1), and the nuclear factor (NF)-κB pathway-related protein levels were detected. NR4A1 agonist was used to further investigate the mechanism of PTE pre-treatment. RESULTS After PTE pre-treatment, the LPS induced inflammation was controlled and the survival rate was increased to 100% from 70% after LPS treatment 24 h. For lung injury score, it decreased to 1.5 from 3.5 after treating 40 mg/kg PTE. Compared with the control group, the expression of NR4A1 in the ALI group was decreased by 20-40%. However, the 40 mg/kg PTE pre-treatment increased the NR4A1 expression by 20-40% in the lung tissue. The results obtained with pre-treatment NR4A1 agonist were similar to those obtained by pre-treatment 40 mg/kg PTE. CONCLUSIONS PTE pre-treatment might represent an appropriate therapeutic target and strategy for preventing ALI induced by LPS.
Collapse
Affiliation(s)
- Ying Li
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Shu-Min Wang
- Department of Emergency, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Xing Li
- Department of Station Intergrate Service, Yantai Central Blood, Yantai, Shandong, China
| | - Chang-Jun Lv
- Binzhou Medical University, Yantai, Shandong, China
| | - Ling-Yun Peng
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Xiao-Feng Yu
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Ying-Jian Song
- Department of Thoracic Surgery, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| | - Cong-Jie Wang
- Pulmonary and Critical Care Medicine, Yantai Yuhuangding Hospital, Yantai, Shandong, China
| |
Collapse
|
35
|
Mu L, Zhu L, Feng Y, Chen N, Wang F, He L, Cheng J. Nephropathy 1st inhibits renal fibrosis by activating the PPARγ signaling pathway. Front Pharmacol 2022; 13:992421. [PMID: 36339588 PMCID: PMC9635840 DOI: 10.3389/fphar.2022.992421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Renal fibrosis is a manifestation of kidney injury. Nephropathy 1st is a traditional Chinese herbal medicine that has been used as a therapy for kidney disease, but the underlying mechanisms remain elusive. The aim of this study was to investigate the role and underlying mechanisms of Nephropathy 1st on the progression of kidney disease. In the present study, unilateral ureteral obstruction was performed to establish the renal fibrosis rat model. By hematoxylin–eosin staining and immunohistochemical staining analysis, the severity of renal fibrosis was evaluated in vivo. Serum creatinine (CREA) and urea nitrogen (BUN) were measured by ELISA. The expression levels of Col-I, FN, PPARγ, and Klotho were measured by Western blot in rat NRK-49F cells and in fibrotic rats. GW9662 was used to inhibit PPARγ signaling. Metabonomic analysis showed metabolic differences among groups. Nephropathy 1st administration alleviated the progression of rat renal fibrosis and reduced serum creatinine (Scr) and BUN levels. Mechanistically, Nephropathy 1st promoted the expression of PPARγ and thus activated PPARγ signaling, thereby reducing the pro-fibrotic phenotypes of fibroblasts. The therapeutic effect of Nephropathy 1st was abrogated by the PPARγ inhibitor GW9662. Moreover, Nephropathy 1st normalized the dysregulated lipid metabolism in renal fibrosis rats. In conclusion, Nephropathy 1st alleviates renal fibrosis development in a PPARγ-dependent manner.
Collapse
Affiliation(s)
- Linjie Mu
- Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Liting Zhu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuan Feng
- Suzhou Wujiang District Hospital of Traditional Chinese Medicine (Suzhou Wujiang District Second People’s Hospital), Suzhou, China
| | - Nianzhao Chen
- Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Feng Wang
- Zhejiang Chinese Medical University Affiliated Wenzhou Hospital of Traditional Chinese Medicine, Wenzhou, Zhejiang, China
| | - Lijuan He
- Xi’an TCM Hospital of Encephalopathy, Xi’an, Shanxi, China
- *Correspondence: Jinguo Cheng, ; Lijuan He,
| | - Jinguo Cheng
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- *Correspondence: Jinguo Cheng, ; Lijuan He,
| |
Collapse
|
36
|
Zhao M, Xiao L, Linghu KG, Zhao G, Chen Q, Shen L, Dar P, Chen M, Hu Y, Zhang J, Yu H. Comprehensive comparison on the anti-inflammation and GC-MS-based metabolomics discrimination between Bupleuri chinense DC. and B. scorzonerifolium Willd. Front Pharmacol 2022; 13:1005011. [PMID: 36188603 PMCID: PMC9521629 DOI: 10.3389/fphar.2022.1005011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 12/02/2022] Open
Abstract
Bupleuri Radix (BR) is a traditional Chinese medicine and widely used for cold and fever, influenza, inflammation, hepatitis and menstrual diseases. Two authentic medicinal plants of Bupleuri chinense DC. (Beichaihu, BCH) and B. scorzonerifolium Willd. (Nanchiahu, NCH) are recommended by the current Chinese Pharmacopoeia for BR. In the present study, the comparative investigations on the anti-inflammatory effects and gas chromatography-mass spectrometry (GC-MS)-based metabolomics for the species discrimination of BCH and NCH were conducted and reported. The in vitro evaluations indicated that the supercritical fluid extracts (SFEs) (IC50 of 6.39 ± 0.52 and 1.32 ± 0.05 mg (herb)/mL for BCH and NCH) were determined to be more potent than those of the hydro-distillation extracts (HDEs) (IC50 of 203.90 ± 8.08 and 32.32 ± 2.27 mg (herb)/mL for BCH and NCH) against LPS-induced inflammation in RAW264.7 macrophages. The higher anti-inflammatory effects of NCH were associated to its different chemical compositions to the BCH as characterized by the GC-MS analysis. Furthermore, based on the metabolomics and deep chemometric approaches, a minimum combination containing 15 chemical markers was optimized from the identified components and successfully applied for the species discrimination of BCH and NCH. This study not only helps to comparative understand BCH and NCH both in phytochemistry and pharmacology, but also provides the potential chemical markers for improvement of methods for the quality control of BCH and NCH.
Collapse
Affiliation(s)
- Mingming Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Linxuan Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Ke-Gang Linghu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Guanding Zhao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Qiling Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Liyu Shen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Parsa Dar
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
| | - Yuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- *Correspondence: Jinming Zhang, ; Hua Yu,
| | - Hua Yu
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao, Macao SAR, China
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, Macao SAR, China
- *Correspondence: Jinming Zhang, ; Hua Yu,
| |
Collapse
|
37
|
Liu X, Zhang P, Song X, Cui H, Shen W. PPARγ Mediates Protective Effect against Hepatic Ischemia/Reperfusion Injury via NF-κB Pathway. J INVEST SURG 2022; 35:1648-1659. [PMID: 35732295 DOI: 10.1080/08941939.2022.2090033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
BACKGROUND Hepatic ischemia/reperfusion injury (HIRI) is an unavoidable complication in liver surgery, however its pathological process is still unclear. Therefore, in this study, the role and mechanism of peroxisome proliferator-activated receptor gamma (PPARγ) was investigated in HIRI. MATERIALS AND METHODS We constructed mice models with HIRI and L02 cell models insulted hypoxia/re-oxygenation (H/R). PPARγ agonist rosiglitazone was administered prior to HIRI in mice and PPARγ-siRNA was to H/R treatment in L02 cells. Liver injury was measured by serum ALT, AST and LDH levels and performing H&E staining; the inflammatory injury was reflected by inflammatory markers IL-1β, IL-6 and TNF-α, which were assayed by Real-time PCR and Western blotting, MPO activity was determined using commercial kits; oxidative stress injury was evaluated by iNOS, MDA, SOD and GSH-PX levels; apoptosis was detected by cleaved-Caspase-3, TUNEL staining and flow cytometry; NF-κB signaling activation was reflected by phosphorylation of IκBα (p-IκBα) and nuclear translocation of NF-κB p65. RESULTS The level of PPARγ expression was obviously down-regulated both in mice liver subjected to IRI and in L02 cells to H/R. Overexpression of PPARγ presented protective effect on HIRI by reducing serum levels of aminotransferase and hepatic necrosis, inhibiting inflammation and apoptosis and alleviating oxidative stress in vivo. But PPARγ-siRNA aggravate H/R insult by promoting inflammation and apoptosis in vitro. Mechanistically, the NF-κB pathway activity was increased with PPARγ down-regulation by PPARγ-siRNA. Importantly, inhibition of NF-κB signaling abolished PPARγ knockdown-mediated hepatic injury. CONCLUSIONS PPARγ present protective effects on HIRI by attenuating liver injury, inflammatory response, oxidative stress and apoptosis in vivo and in vitro, and its mechanism may be related to down-regulation of NF-κB signaling.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Ping Zhang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xianqing Song
- Department of General Surgery, Ningbo Fourth Hospital, Ningbo, Zhejiang, China
| | - Hengguan Cui
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Weixing Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| |
Collapse
|
38
|
Fu HY, Hu ZS, Dong XT, Zhou RB, Du HY. Gelsolin Attenuates Lipopolysaccharide-Induced Acute Lung Injury in Rats by Modulating TLR4/Myd88/NF-κB Signaling Pathway. INT J PHARMACOL 2022. [DOI: 10.3923/ijp.2022.511.521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
39
|
Saikosaponin D alleviates DOX-induced cardiac injury in vivo and in vitro. J Cardiovasc Pharmacol 2021; 79:558-567. [PMID: 34983912 DOI: 10.1097/fjc.0000000000001206] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023]
Abstract
ABSTRACT As a highly efficient anticancer agent, Doxorubicin (DOX) is used for various cancers' treatment, but DOX-induced oxidative damages contribute to a degenerative irreversible cardiac toxicity. Saikosaponin D (SSD), which is a triterpenoid saponin with many biological activities including anti-inflammatory effects and antioxidant properties, provides protection against pathologic cardiac remodeling and fibrosis. In present study, we investigated the work of SSD for DOX-induced cardiotoxicity and the involved mechanisms. We observed that DOX injection induced cardiac injury, malfunction and decreased survival rate. Besides, DOX treatment increased lactate dehydrogenase (LDH) leakage, cardiomyocyte apoptosis, myocardium fibrosis and decrease of cardiomyocytes' sizes. Meanwhile, all the effects were notably attenuated by SSD treatment. In vitro, we found that 1μM SSD could enhance the proliferation of H9c2 cells, and inhibit DOX-induced apoptosis. It was found that the levels of MDA and reactive oxygen species (ROS) were significantly reduced by improving the activities of the endogenous antioxidative enzymes including catalase (CAT), and glutathione peroxidase (GSH-Px). Furthermore, SSD treatment could downregulate the DOX-induced p38 phosphorylation. Our results suggested that SSD efficiently protected the cardiomyocytes from DOX-induced cardiotoxicity by inhibiting the excessive oxidative stress via p38 MAPK signaling pathway.
Collapse
|
40
|
Shen Y, Zhao S, Hua M. Long non-coding RNA LINC01194 promotes the inflammatory response and apoptosis of LPS-treated MLE 12 cells through the miR-203a-3p /MIP-2 axis. Can J Physiol Pharmacol 2021; 100:402-411. [PMID: 34855515 DOI: 10.1139/cjpp-2021-0255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acute lung injury (ALI) induced by bacteria LPS is characterized by the upregulation of the apoptosis rate of tissue cells and aggravation of inflammatory response. Although many studies have focused on the pathogenesis of this disease, its mechanism remains unknown. This study examined the regulatory role of long non-coding RNA (lncRNA) LINC01194 in the progression of ALI through various bioinformatics analyses and experimental work, including ELISA assay, dual-luciferase reporter assay, biotinylated RNA pull-down assay, and western blot analysis. The result showed that the LINC01194 was overexpressed in the ALI-induced mice model. We observed a significant upregulation of LINC01194 in LPS-treated Mouse lung epithelial type II cells (MLE-12 cells) after 24 hrs of induction. Bioinformatics analysis, Elisa assay, qRT-PCR analysis, Biotinylated RNA pull-down assay, apoptosis test, and western blot analysis demonstrated that the LINC01194 could act as a miR-203a-3p sponge to activate the inflammatory response in LPS-induced ALI model through post-transcriptional upregulation of MIP-2. We showed that LINC01194 regulates the inflammatory response and apoptosis of LPS-induced mice and MLE-12 cells via the miR-203a-3p/MIP-2 axis. LINC01194 could be a potential biomarker for early diagnosis and the treatment of ALI.
Collapse
Affiliation(s)
- Yuyao Shen
- the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Department of Respiratory Medicine, Yantai, China;
| | | | - Minglei Hua
- Xincheng Branch of Zaozhuang Municipal Hospital, Zaozhuang, China;
| |
Collapse
|
41
|
Zhou Y, Liu J, Jiang C, Chen J, Feng X, Chen W, Zhang J, Dong H, Zhang W. A traditional herbal formula, Deng-Shi-Qing-Mai-Tang, regulates TLR4/NF-κB signaling pathway to reduce inflammatory response in PM2.5-induced lung injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153665. [PMID: 34403878 DOI: 10.1016/j.phymed.2021.153665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Studies revealed that particulate matter 2.5 (PM2.5) enters the lung through the respiratory tract and can damage lung tissue resulting in lung injury primarily via imbalance between pro-inflammatory and anti-inflammatory responses. Moreover, TLR4/NF-κB signaling pathways are reported to play a role in PM2.5-induced inflammation and lung injury, which is closely related to the inflammatory responses. Therefore, the traditional herbal formula, Deng-Shi-Qing-Mai-Tang (DSQMT), has been applied to improve patients' clinical symptoms with lung injury induced by PM2.5. It can reduce inflammatory reactions in lung injury and relieve cough and phlegm. However, the underlying mechanism of DSQMT treatment is still exclusive. PURPOSE To clarify the preventive and therapeutic effects of DSQMT on PM2.5-induced lung injury and explore its underlying mechanism. STUDY DESIGN PM2.5-induced lung injury rat model was established, and DSQMT was administered. METHODS First, PM2.5 was collected, and PM2.5 suspension was prepared. Then, a rat model with PM2.5-induced lung injury was established, and the effects of DSQMT were evaluated in vivo. Finally, the roles of DSQMT in inhibiting the TLR4/NF-κB signaling pathway were investigated in vitro using the NR8383 cell line via Western blot analysis, real-time PCR, electrophoretic mobility shift assay (EMSA), and immunofluorescence staining, respectively and analyzed. RESULTS We found that DSQMT significantly attenuated pathological lung tissue damage and inflammatory responses in PM2.5-induced lung injury. We also found that after PM2.5 stimulation in vitro, DSQMT regulates the expression of TLR4, MyD88, IKK, IκB-α, NF-κB p65 in the TLR4/NF-κB signaling pathway. It also constrains activated NF-κB entry into the nucleus and further limits its binding to target DNA. In addition, we revealed that DSQMT down-regulated interleukin (IL)-1β, IL-6, IL-10, THF-α, NO, PGE2 to reduce the inflammatory response. CONCLUSION We demonstrated that DSQMT has preventive and therapeutic effects on PM2.5-induced lung injury by down-regulation of the TLR4/NF-κB signaling pathway. Therefore, the efficacy of traditional Chinese medicine (TCM) in PM2.5 lung injury can be taken into consideration and may be improved in the future through further researches.
Collapse
Affiliation(s)
- You Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, Guangdong, China
| | - Jianbo Liu
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Cheng Jiang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiaming Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xilian Feng
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Weiyan Chen
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiechun Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hongzhen Dong
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Wei Zhang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
42
|
Zhu L, Wei M, Yang N, Li X. Glycyrrhizic acid alleviates the meconium-induced acute lung injury in neonatal rats by inhibiting oxidative stress through mediating the Keap1/Nrf2/HO-1 signal pathway. Bioengineered 2021; 12:2616-2626. [PMID: 34499011 PMCID: PMC8806485 DOI: 10.1080/21655979.2021.1937445] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Meconium aspiration syndrome (MAS) is a disease closely related to inflammation and oxidative stress. Glycyrrhizic acid (GA) is a triterpenoid isolated from licorice with multiple bioprotective properties. In the present study, impacts of GA against MAS rats, as well as the potential mechanism, will be investigated. MAS model was established on newborn rats, followed by the treatment of 12.5, 25, and 50 mg/kg GA. The wet/dry weight ratio of lung tissues was calculated. The production of IL-6, IL-1β, TNF-α, malonaldehyde (MDA), superoxide dismutase (SOD), glutathione (GSH) was measured using ELISA assay. HE staining was used to evaluate the pathological state of lung tissues and TUNEL assay was used to detect the apoptotic state. The protein expression of Nrf2, Keap1, HO-1, Bcl-2, Bax, and cleaved-Caspase3 was measured by Western blotting assay. The elevated W/D ratio, release of inflammatory factors, lung injury score, and apoptotic index, as well as the activated oxidative stress and suppressed Keap1/Nrf2/HO-1 pathway, in MAS rats were significantly alleviated by GA. After introducing the inhibitor of Nrf2, ML385, the protective property of GA on the pathological state, apoptotic index, and oxidative stress in MAS rats was pronouncedly abolished. Taken together, glycyrrhizin alleviated GAH in rats by suppressing Keap1/Nrf2/HO-1 signaling mediated oxidative stress.
Collapse
Affiliation(s)
- Linhan Zhu
- Pediatric Department, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Meichen Wei
- Pediatric Department, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Nan Yang
- Pediatric Department, Beijing Friendship Hospital, Capital Medical University, Beijing China
| | - Xuehua Li
- Pediatric Department, Beijing Friendship Hospital, Capital Medical University, Beijing China
| |
Collapse
|
43
|
Shaukat A, Shaukat I, Rajput SA, Shukat R, Hanif S, Jiang K, Zhang T, Akhtar M, Shaukat I, Ma X, Liu J, Shaukat S, Umar T, Akhtar M, Yang L, Deng G. Ginsenoside Rb1 protects from Staphylococcus aureus-induced oxidative damage and apoptosis through endoplasmic reticulum-stress and death receptor-mediated pathways. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 219:112353. [PMID: 34034046 DOI: 10.1016/j.ecoenv.2021.112353] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Acute lung injury (ALI) is acute uncontrolled inflammation of lung tissue that leads to high fatality both in human and animals. Staphylococcus aureus (S. aureus) could be an opportunistic, versatile bacterial etiology of ALI. Ginsenoside Rb1 (Rb1) is extracted from the Panax ginseng, which displays a wide range of biological and pharmacological effects. However, protective effects of Rb1 in S. aureus-induced ALI though endoplasmic reticulum (ER) stress and death receptor-mediated pathways have not yet been reported. Therefore, present study was planned with the aims to investigate the antioxidant and anti-apoptotic properties of Rb1 through regulation of ER stress as well as death receptor-mediated pathways in ALI induced by S. aureus in mice. In this study, four groups of healthy Kunming mice (n = 48) were used. The S. aureus (80 µl; 1 ×107 CFU/10 µl) was administered intranasally to establish mice model of ALI. After 24 h of onset of S. aureus-induced ALI, the mice were injected thrice with Rb1 (40 mg/kg) intraperitoneally six hours apart. Histopathology, enzyme linked immunosorbent assay (ELISA), real time quantitative polymerase chain reaction (RT-qPCR), Immunohistochemistry and western blotting assay were employed in the current study. Our results suggested that Rb1 administration save lungs from pulmonary injury by reducing wet to dry (W/D) ratio, protein levels, total cells, neutrophilic count, reactive oxygen species (ROS), myeloperoxidase (MPO), malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (Gpx)1 depletion. Meanwhile, Rb1 therapy ameliorated histopathology alteration of lung tissue and pro-inflammatory cytokines secretion. The gene expression of ER stress marker (PERK, AFT-6, IRE1 and CHOP) were upregulated markedly (P < .05) in S. aureus-instilled groups, which was reduced by Rb1 administration that is reveled from the result findings of the RT-qPCR and immunoblot assay. The results of immunohistochemistry for CHOP indicated the increased expression in S. aureus groups which in turn ameliorated by Rb1 treatment. The mRNA expression demonstrated that death receptor-associated genes (FasL, Fas, FADD and caspase-8) showed up-regulation in S. aureus group. The similar findings were observed for the protein expression of caspase-8, FADD and Fas. Rb1 treatment markedly (P < .05) reversed protein and mRNA expression levels of these death receptor-associated genes when compared to the S. aureus group. Taken together, Rb1 attenuated S. aureus-induced oxidative damage via the ER stress-mediated pathway and apoptosis through death receptor-mediated pathway. Conclusively, our findings provide an insight into preventive mechanism of Rb1 in ALI caused by S. aureus and hence proven a scientific baseline for the therapeutic application of Rb1.
Collapse
Affiliation(s)
- Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Irfan Shaukat
- Faculty of medicine, University of Lorraine, Nancy, France
| | - Shahid Ali Rajput
- College of Animal Science, South China Agricultural University Guangzhou, China
| | - Rizwan Shukat
- Faculty of Food, Nutrition & Home Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Sana Hanif
- Department of Physics, University of Gujrat, Gujrat, Pakistan
| | - Kangfeng Jiang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China; College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| | - Tao Zhang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Akhtar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Imran Shaukat
- Department of Physics, University of Agriculture, Faisalabad, Pakistan
| | - Xiaofei Ma
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Junfeng Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shadab Shaukat
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Talha Umar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Masood Akhtar
- Department of Pathobiology, Faculty of Veterinary Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Liguo Yang
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China.
| | - Ganzhen Deng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
44
|
陈 加, 刘 华. [2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-d-glucoside alleviates lipopolysaccharide-induced acute lung injury in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1101-1106. [PMID: 34308863 PMCID: PMC8329684 DOI: 10.12122/j.issn.1673-4254.2021.07.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Indexed: 12/08/2022]
Abstract
OBJECTIVE To observe the protective effect of 2, 3, 5, 4'-tetrahydroxystilbene-2-O-β-d-glucoside (TSG) against lipopolysaccharide (LPS)-induced acute lung injury (ALI) in rats and explore the underlying mechanism. METHODS Thirty-six SD rats were randomized equally into 4 groups: the normal control group, ALI model group, and low- and high-dose TSG groups (treated with 50 and 100 mg/kg TSG via intragastric administration, respectively). In all but the normal control group, the rats were subjected to tail vein injection of LPS to induced ALI. The rats were euthanized at 6 h after the injection for pathological examination of the lungs. The wet/dry weight ratio (W/D) of the lungs were calculated, and superoxide dismutase (SOD) activity and malondialdehyde (MDA) content in the lung tissues and serum levels of TNF-α and IL-6 were determined. Western blotting was performed to detect the levels of NF-κB p65 in the lungs. RESULTS Compared with those in LPS group, the TSGtreated rats showed significantly milder lung pathologies (P < 0.001) and had lower serum TNF-α and IL-6 levels (P < 0.001) and W/D of the lung tissues (P < 0.001), higher SOD activity (P < 0.001) and lower MDA content in the lungs (P < 0.001), and significantly lower expression of NF-κB p65 in the lungs (P < 0.001). None of these indices showed significant differences between the lowand high-dose TSG treatment groups (P>0.05). CONCLUSIONS TSG can ameliorate LPS-induced ALI in rats possibly by suppressing the NF-κB pathway to improve the antioxidant capacity and decrease the release of inflammatory factors.
Collapse
Affiliation(s)
- 加宝 陈
- />广东药科大学附属第一医院全科医学科,广东 广州 510030Department of General Practice, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510030, China
| | - 华 刘
- />广东药科大学附属第一医院全科医学科,广东 广州 510030Department of General Practice, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510030, China
- 刘华,教授,主任医师,硕士生导师,E-mail:
| |
Collapse
|
45
|
Herbal Active Ingredients: Potential for the Prevention and Treatment of Acute Lung Injury. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5543185. [PMID: 34258266 PMCID: PMC8245226 DOI: 10.1155/2021/5543185] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Acute lung injury (ALI) is a life-threatening clinical syndrome with high morbidity and mortality. The main pathological features of ALI are increased alveolar-capillary membrane permeability, edema, uncontrolled migration of neutrophils to the lungs, and diffuse alveolar damage, resulting in acute hypoxemic respiratory failure. Glucocorticoids, aspirin, and other anti-inflammatory drugs are commonly used to treat ALI. Respiratory supports, such as a ventilator, are used to alleviate hypoxemia. Many treatment methods are available, but they cannot significantly ameliorate the quality of life of patients with ALI and reduce mortality rates. Herbal active ingredients, such as flavonoids, terpenoids, saponins, alkaloids, and quinonoids, exhibit advantages for ALI prevention and treatment, but the underlying mechanism needs further study. This paper summarizes the role of herbal active ingredients in anti-ALI therapy and progresses in the understanding of their mechanisms. The work also provides some references and insights for the discovery and development of novel drugs for ALI prevention and treatment.
Collapse
|
46
|
Song Y, Sun H, Gao S, Tang K, Zhao Y, Xie G, Gao H. Saikosaponin a attenuates lead-induced kidney injury through activating Nrf2 signaling pathway. Comp Biochem Physiol C Toxicol Pharmacol 2021; 242:108945. [PMID: 33278595 DOI: 10.1016/j.cbpc.2020.108945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/19/2022]
Abstract
Saikosaponin a (SSa), a triterpene saponin extracted from Bupleurumfalcatum L., has been reported to have anti-inflammatory activity. In the present study, we investigated the effects of SSa on lead-induced kidney injury in common carp. Kidney histological changes were detected by H&E staining. The levels of TNF-α, IL-1β, MPO, MDA, GSH, and SOD activity were also measured. Furthermore, the NF-κB and Nrf2 signaling pathways were tested by western blot analysis. The results showed that lead-induced kidney histological change was attenuated by SSa. Lead-induced TNF-α, IL-1β, MPO, and MDA production were also suppressed by SSa. Meanwhile, lead could decrease GSH level and SOD activity and the decreases were inhibited by SSa. Furthermore, we found SSa significantly inhibited lead-induced NF-κB translocation. In addition, the expression of Nrf2 and HO-1 were increased by the treatment of SSa and Keap1 expression was decreased by SSa. In conclusion, this study indicated that SSa inhibited lead-induced kidney injury in carp through suppressing inflammatory and oxidative responses, and the mechanism may be involved in the inhibition of NF-κB and activation of Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Yanyan Song
- Department of Nephrology, The Second hospital of Jilin University, Changchun 130021, China
| | - Haowen Sun
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Siyuan Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Ke Tang
- Department of Electrical Diagnosis, The Second hospital of Jilin University, Changchun 130021, China
| | - Yao Zhao
- Department of Bone and Joint Surgery, The First hospital of Jilin University, Changchun 130021, China
| | - Guanghong Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Hang Gao
- Department of Bone and Joint Surgery, The First hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
47
|
Gan DL, Yao Y, Su HW, Huang YY, Shi JF, Liu XB, Xiang MX. Volatile Oil of Platycladus Orientalis (L.) Franco Leaves Exerts Strong Anti-inflammatory Effects via Inhibiting the IκB/NF-κB Pathway. Curr Med Sci 2021; 41:180-186. [PMID: 33582924 DOI: 10.1007/s11596-020-2301-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/20/2020] [Indexed: 01/16/2023]
Abstract
This study was designed to investigate the anti-inflammatory effects of volatile oil of Platycladus orientalis (L.) Franco leaves (VOPF) and the underlying molecular mechanisms by using the non-infectious inflammation rat models and infectious inflammation mouse models. Ear swelling and intraperitoneal capillary permeability in mice, and carrageenan-induced toe swelling and cotton ball-induced granuloma in rats were used to reveal anti-inflammatory effects of VOPF. Moreover, the lipopolysaccharide (LPS)-induced mouse model of acute lung injury was used to explore the anti-inflammatory mechanism of VOPF. The results showed that VOPF could significantly inhibit auricular swelling, intraperitoneal capillary permeability in mice, and reduce granuloma swelling and paw swelling in rats. Furthermore, it significantly alleviated the pathological damage of the lung tissue. In addition, VOPF could reduce the contents of IL-1β and TNF-α and increase the content of IL-10 in the serum. It had little effect on the expression of p65 but reduced the phosphorylation level of p65 and IκB in NF-κB pathway. In conclusion, VOPF has anti-inflammatory effects and the mechanisms involve the down-regulation of the phosphorylation levels of p65 and IκB and blockage of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Da-Li Gan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yan Yao
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Han-Wen Su
- Department of Laboratory Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu-Ying Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jun-Feng Shi
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiong-Biao Liu
- Department of Dermatology, Tianmen First People's Hospital, Tianmen, 431700, China.
| | - Mei-Xian Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
48
|
Jin H, Zhao Z, Lan Q, Zhou H, Mai Z, Wang Y, Ding X, Zhang W, Pi J, Evans CE, Liu X. Nasal Delivery of Hesperidin/Chitosan Nanoparticles Suppresses Cytokine Storm Syndrome in a Mouse Model of Acute Lung Injury. Front Pharmacol 2021; 11:592238. [PMID: 33584267 PMCID: PMC7873598 DOI: 10.3389/fphar.2020.592238] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
The cytokine storm or cytokine storm syndrome (CSS) is associated with high mortality in patients with acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), for example following sepsis or infectious diseases including COVID-19. However, there are no effective treatments for CSS-associated ALI or ALI/ARDS. Thus, there remains an urgent need to develop effective drugs and therapeutic strategies against CSS and ALI/ARDS. Nasal and inhaled drug delivery methods represent a promising strategy in the treatment of inflammatory lung disease as a result of their ability to improve drug delivery to lungs. Improving the nasal mucosa absorption of poorly water-soluble drugs with poor mucosa bioavailability to a therapeutically effective level is another promising strategy in the fight against ALI/ARDS. Here, chitosan nanoparticles loaded with hesperidin (HPD/NPs) were developed for nasal delivery of the anti-inflammatory HPD compound to inflammatory lungs. In vitro and in vivo, HPD/NPs exhibited enhanced cellular uptake in the inflammatory microenvironment compared with free HPD. In a mouse model of inflammatory lung disease, the HPD/NPs markedly inhibited lung injury as evidenced by reduced inflammatory cytokine levels and suppressed vascular permeability compared with free HPD. Collectively, our study demonstrates that nasal delivery of HPD/NPs suppresses CSS and ALI/ARDS in a murine model of inflammatory lung disease, and that nanoparticle-based treatment strategies with anti-inflammatory effects could be used to reduce CSS and ALI in patients with inflammatory lung injury.
Collapse
Affiliation(s)
- Hua Jin
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Zuguo Zhao
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Qian Lan
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Haotong Zhou
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Zesen Mai
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Yuan Wang
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Xiaowen Ding
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Wenting Zhang
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| | - Jiang Pi
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, United States
| | - Colin E Evans
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Xinguang Liu
- College of Pharmacy, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, China
| |
Collapse
|
49
|
He YQ, Zhou CC, Yu LY, Wang L, Deng JL, Tao YL, Zhang F, Chen WS. Natural product derived phytochemicals in managing acute lung injury by multiple mechanisms. Pharmacol Res 2021; 163:105224. [PMID: 33007416 PMCID: PMC7522693 DOI: 10.1016/j.phrs.2020.105224] [Citation(s) in RCA: 243] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Acute lung injury (ALI) and its more severe form, acute respiratory distress syndrome (ARDS) as common life-threatening lung diseases with high mortality rates are mostly associated with acute and severe inflammation in lungs. With increasing in-depth studies of ALI/ARDS, significant breakthroughs have been made, however, there are still no effective pharmacological therapies for treatment of ALI/ARDS. Especially, the novel coronavirus pneumonia (COVID-19) is ravaging the globe, and causes severe respiratory distress syndrome. Therefore, developing new drugs for therapy of ALI/ARDS is in great demand, which might also be helpful for treatment of COVID-19. Natural compounds have always inspired drug development, and numerous natural products have shown potential therapeutic effects on ALI/ARDS. Therefore, this review focuses on the potential therapeutic effects of natural compounds on ALI and the underlying mechanisms. Overall, the review discusses 159 compounds and summarizes more than 400 references to present the protective effects of natural compounds against ALI and the underlying mechanism.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Lu-Yao Yu
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liang Wang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiu-Ling Deng
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yu-Long Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
50
|
Zhang P, Lai X, Zhu MH, Long M, Liu XL, Wang ZX, Zhang Y, Guo RJ, Dong J, Lu Q, Sun P, Fang C, Zhao M. Saikosaponin A, a Triterpene Saponin, Suppresses Angiogenesis and Tumor Growth by Blocking VEGFR2-Mediated Signaling Pathway. Front Pharmacol 2021; 12:713200. [PMID: 34776948 PMCID: PMC8588445 DOI: 10.3389/fphar.2021.713200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/03/2021] [Indexed: 11/13/2022] Open
Abstract
Saikosaponin A (SSA), a main triterpenoid saponin component from Radix Bupleurum, has been revealed to have a variety of pharmacological activities. However, whether SSA can inhibit angiogenesis, a key step in solid tumor progression, remains unknown. In this study, we demonstrated that SSA could powerfully suppress the proliferation, migration, and tube formation of human umbilical vein endothelial cells. SSA also significantly inhibited angiogenesis in the models of the chick embryo chorioallantoic membrane and Matrigel plugs. Moreover, SSA was found to inhibit tumor growth in both orthotopic 4T1 breast cancer and subcutaneous HCT-15 colorectal tumor by the inhibition of tumor angiogenesis. Western blot assay indicated the antiangiogenic mechanism of SSA in the suppression of the protein phosphorylation of VEGFR2 and the downstream protein kinase including PLCγ1, FAK, Src, and Akt. In summary, SSA can suppress angiogenesis and tumor growth by blocking the VEGFR2-mediated signaling pathway.
Collapse
Affiliation(s)
- Pan Zhang
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xing Lai
- Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Mao-Hua Zhu
- Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Mei Long
- Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Xue-Liang Liu
- Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Zi-Xiang Wang
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yifan Zhang
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Run-Jie Guo
- Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Dong
- Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Qin Lu
- Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Peng Sun
- Department of General Surgery, Tongren Hospital, SJTU-SM, Shanghai, China
| | - Chao Fang
- Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai, China
| | - Mei Zhao
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China.,Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|