1
|
Choi G, Bessman NJ. Iron at the crossroads of host-microbiome interactions in health and disease. Nat Microbiol 2025:10.1038/s41564-025-02001-y. [PMID: 40399686 DOI: 10.1038/s41564-025-02001-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/31/2025] [Indexed: 05/23/2025]
Abstract
Iron is an essential dietary micronutrient for both humans and microorganisms. Disruption of iron homeostasis is closely linked, as both a cause and an effect, to the development and progression of gut microbiota dysbiosis and multiple diseases. Iron absorption in humans is impacted by diverse environmental factors, including diet, medication and microbiota-derived molecules. Accordingly, treatment outcomes for iron-associated diseases may depend on an individual patient's microbiome. Here we describe various iron acquisition strategies used by the host, commensal microorganisms and pathogens to benefit or outcompete each other in the complex gut environment. We further explore recently discovered microbial species and metabolites modulating host iron absorption, which represent potential effectors of disease and therapeutic targets. Finally, we discuss the need for mechanistic studies on iron-host-microbiome interactions that can affect disease and treatment outcomes, with the ultimate aim of supporting the development of microbiome-based personalized medicine.
Collapse
Affiliation(s)
- Garam Choi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Nicholas J Bessman
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA.
- Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
2
|
Bąkowski W, Śmiechowicz J, Lemańska-Perek A, Dragan B, Goździk W, Adamik B. Hemolysis and Its Clinical Implications in Septic Patients with Acute Respiratory Failure. J Clin Med 2025; 14:3493. [PMID: 40429487 PMCID: PMC12112430 DOI: 10.3390/jcm14103493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Hemolysis during sepsis may be driven by patient-specific factors, including the intensity of the inflammatory response and the etiology of infection, as well as treatment-related factors, such as the use of extracorporeal life-support devices. Methods: We evaluated the incidence of hemolysis-reflected by decreased plasma levels of haptoglobin and hemopexin-in a cohort of septic patients with acute respiratory failure (n = 50) admitted to the intensive care unit (ICU). Results: Hemolysis was observed in 60% of patients. Its incidence was significantly higher among those with septic shock (86%) and those receiving extracorporeal membrane oxygenation (ECMO) therapy (81%). While continuous renal replacement therapy (CRRT) alone did not increase the incidence of hemolysis, its combination with ECMO was associated with hemolysis in 100% of those treated. Logistic regression analysis identified low haptoglobin levels (odds ratio [OR] 27.1), advanced age (OR 1.2), and stage 3 acute kidney injury (OR 22.2) as significant predictors of mortality. Conclusions: These findings highlight the clinical relevance of monitoring hemolysis in septic patients. Given the routine availability of haptoglobin and hemopexin assays in most hospital laboratories, these biomarkers offer practical and accessible tools for the detection and monitoring of hemolysis in critically ill patients.
Collapse
Affiliation(s)
- Wojciech Bąkowski
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (J.Ś.); (B.D.); (W.G.)
| | - Jakub Śmiechowicz
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (J.Ś.); (B.D.); (W.G.)
| | - Anna Lemańska-Perek
- Department of Chemistry and Immunochemistry, Wroclaw Medical University, M. Sklodowskiej-Curie 48/50, 50-369 Wroclaw, Poland;
| | - Barbara Dragan
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (J.Ś.); (B.D.); (W.G.)
| | - Waldemar Goździk
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (J.Ś.); (B.D.); (W.G.)
| | - Barbara Adamik
- Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland; (J.Ś.); (B.D.); (W.G.)
| |
Collapse
|
3
|
Dumjahn L, Wein P, Molloy EM, Scherlach K, Trottmann F, Meisinger PR, Judd LM, Pidot SJ, Stinear TP, Richter I, Hertweck C. Dual-use virulence factors of the opportunistic pathogen Chromobacterium haemolyticum mediate hemolysis and colonization. mBio 2025; 16:e0360524. [PMID: 40178269 PMCID: PMC12077216 DOI: 10.1128/mbio.03605-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/04/2025] [Indexed: 04/05/2025] Open
Abstract
Chromobacterium haemolyticum is an environmental bacterium that can cause severe and fatal opportunistic infections in humans and animals. Although C. haemolyticum is characterized by its strong β-hemolytic activity, the molecular basis of this phenotype has remained elusive over the more than 15 years since the species was first described. Herein, we report a family of cyclic lipodepsipeptides, the jagaricins, that are responsible for the potent hemolytic activity of C. haemolyticum. Comparative genomics of C. haemolyticum strains revealed a completely conserved gene locus (hml) encoding a nonribosomal peptide synthetase. Metabolic profiling of C. haemolyticum DSM 19808 identified a suite of cyclic lipodepsipeptides as the products, with the three main congeners (jagaricin A-C) being elucidated by a combination of tandem mass spectrometry, chemical derivatization, and nuclear magnetic resonance spectroscopy. Significantly, a C. haemolyticum hml deletion mutant is devoid of hemolytic activity. Moreover, purified jagaricins are hemolytic at low micromolar concentrations in an erythrocyte lysis assay. Further bioassays demonstrated that the cyclic lipodepsipeptides are crucial for the biofilm-forming and swarming behavior of C. haemolyticum. Matrix-assisted laser desorption ionization mass spectrometry imaging showed that primarily jagaricin B and C are involved in these processes in vitro. Our data shed light on the bioactivities of jagaricins, specialized metabolites that likely contribute to both successful niche colonization and the virulence potential of C. haemolyticum.IMPORTANCEDespite the rising incidence of Chromobacterium haemolyticum as a serious opportunistic pathogen, there is limited information on whether the competitive traits that ensure its survival in its freshwater niche also influence host infection. We reveal that C. haemolyticum produces specialized metabolites that not only cause its pronounced hemolytic phenotype but are also crucial for biofilm formation and swarming motility. These results exemplify a case of coincidental evolution, wherein the selective pressures encountered in a primary environmental niche drive the evolution of a trait impacting virulence. This knowledge provides a foundation for the development of antivirulence therapies against the emerging pathogen C. haemolyticum.
Collapse
Affiliation(s)
- Leo Dumjahn
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Philipp Wein
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Evelyn M. Molloy
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Philippe R. Meisinger
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Louise M. Judd
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, Melbourne, Australia
| | - Ingrid Richter
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
4
|
Jang BH, Jung SH, Kwon S, Park SJ, Kang JH. Red Blood Cell-Induced Bacterial Margination Improves Microbial Hemoadsorption on Engineered Cell-Depleted Thrombi, Restoring Severe Bacteremia in Rats. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417498. [PMID: 40285645 DOI: 10.1002/advs.202417498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/14/2025] [Indexed: 04/29/2025]
Abstract
Extracorporeal hemoadsorption for treating bacteremia has exhibited limited success due to the lack of a clear strategy for effectively bringing bacterial cells into contact with the surface and universal bacteria-capturing substances. Here, a novel extracorporeal device is reported that can eliminate various intact bacteria from whole blood, employing microfluidic bacterial margination and engineered cell-depleted thrombus (CDT) presenting bacterial adhesin receptors. The critical strain rate of red blood cells (RBCs) (0.83 × 10-2) and the flow path height within about 300 µm required for RBC axial migration in the flows are found. The subsequent RBC-bacteria collisions induced bacterial margination, facilitating their effective capture on the CDT surface on the channel wall. Fibrinogen and fibronectin in CDT are found to primarily contribute to capturing various bacteria. The extracorporeal CDT filters (eCDTF), which integrate all these principles, demonstrate significant depletion of major antibiotic-resistant and human fecal bacteria from the whole blood in vitro. Remarkable reductions in bacterial load and inflammatory markers in the rats lethally infected with methicillin-resistant Staphylococcus aureus are further confirmed, resulting in the restoration from bacteremia following extracorporeal treatment. The demonstration may propose a new design principle for hemoadsorption devices and elucidate the limited success of conventional treatments.
Collapse
Affiliation(s)
- Bong Hwan Jang
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Su Hyun Jung
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Seyong Kwon
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Sung Jin Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| | - Joo H Kang
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST gil 50, Ulsan, 44919, Republic of Korea
| |
Collapse
|
5
|
Gafar MA, Omolo CA, Ibrahim UH, Elamin G, Tageldin A, Elhassan E, Ismail EA, Mackraj I, Govender T. Hyaluronic acid-silybin conjugate for the preparation of multifunctional, biomimetic, vancomycin-loaded self-assembled polymersomes against bacterial sepsis. Int J Biol Macromol 2025; 299:140152. [PMID: 39855529 DOI: 10.1016/j.ijbiomac.2025.140152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Sepsis, a life-threatening disruption, remains a significant global healthcare challenge that urgently needs novel strategies to improve management. This study aimed to develop multifunctional vancomycin-loaded polymersomes (VCM-HA-SIL-Ps) using a novel hyaluronic acid-silybin (HA-SIL) conjugate to target the TLR inflammatory pathway and enhance VCM's efficacy against bacterial sepsis. HA-SIL was synthesized and characterized by FT-IR, UV-Vis spectroscopy, and 1H NMR. The biomimetic properties of HA-SIL were confirmed via in silico (-73.35 kcal/mol) and in vitro (dissociation constant = 2.872 μM) binding affinity studies against TLR2. VCM-HA-SIL-Ps exhibited appropriate physicochemical properties, biocompatibility, and stability. VCM-HA-SIL-Ps sustained VCM release for 48 h, achieving 73.38 % cumulative release. In vitro antibacterial studies showed that VCM-HA-SIL-Ps had superior minimum inhibitory concentration against sensitive and resistant Staphylococcus aureus and faster bacterial killing, compared to free VCM. Additionally, VCM-HA-SIL-Ps demonstrated excellent DPPH radicals scavenging and effective anti-inflammatory activity on bacterial toxin-stimulated cells. Finally, in a mouse model of MRSA-induced sepsis, VCM-HA-SIL-Ps achieved 100 % bacterial eradication, significantly reduced pro-inflammatory markers (IL-6, TNF-α, IL-1β by 2.9-, 1.8-, and 5-fold, respectively), and minimized organ damage. Collectively, these findings demonstrate the potential of HA-SIL as a novel multifunctional adjuvant for effective antibiotic delivery against bacterial sepsis.
Collapse
Affiliation(s)
- Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, P. O. Box 1996, Sudan
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ghazi Elamin
- Department of Pharmaceutical Chemistry, College of Pharmacy, Karary University, Khartoum, PO Box 11111, Sudan
| | - Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Irene Mackraj
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
6
|
Karthikeyan B, James RI, Daniel J, Kumar R S, Varughese BT, Manoj D, Arakkal AL, Johnson LR. Utility of biomarkers in the postmortem diagnosis of fatal Anaphylaxis: A scoping review. Leg Med (Tokyo) 2025; 74:102610. [PMID: 40163933 DOI: 10.1016/j.legalmed.2025.102610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/25/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Diagnosing anaphylactic deaths is a challenging task for forensic pathologists. Although serum tryptase is considered to be a reliable biomarker, there are limitations to it. Thus, there is an urgent need to explore various other potential biomarkers which could be of diagnostic value, along with Tryptase, to diagnose anaphylactic shock at autopsy. AIM We want to systematically review the accuracy of newer postmortem biomarkers for anaphylaxis, such as chymase or eosinophilic cationic protein. Before embarking on this project, we intend to assess the feasibility of conducting systematic reviews on this topic. and identify any deficiencies in the existing literature to guide research priorities. METHODOLOGY We followed PRISMA guidelines and conducted the search in four databases, namely Medline, Scopus, EBSCO-CINAHL, and TRIP. Rayyan AI software was used to screen the articles. RESULTS A total of 6112 articles were retrieved from the search, and 5079 articles were screened after removing duplicates. Only 25 articles were finally available as per our inclusion criteria. Studies pertaining to post-mortem tryptase levels were found in large numbers, with two recently done systematic reviews on this topic. The number of studies available on other newer biomarkers was too few. More clinical studies are needed before a meta-analysis can be done. Hence, we could perform only a narrative review on the topic. DISCUSSION There is a scarcity of literature with definite cutoff levels for markers other than Tryptase. Based on the available studies, it is not possible to do diagnostic accuracy reviews at the moment. Hence, we narrate the usefulness of biomarkers like Immunoglobulin E, Chymase, Carboxypeptidase A3, Diamine Oxidase, Histamine and Eosinophilic Cationic Protein. CONCLUSION Based on the available evidence, serum tryptase is recognized as the primary biomarker for the postmortem diagnosis of anaphylactic death, with elevated levels strongly indicating anaphylaxis. Additionally, serum IgE, particularly allergen-specific IgE, is a valuable complementary biomarker. Further research is needed to understand the performance of other biomarkers.
Collapse
Affiliation(s)
- Bharath Karthikeyan
- Department of Pulmonary Medicine, Christian Medical College Vellore, Tamil Nadu, India
| | - Ranjit Immanuel James
- Department of Forensic Medicine & Toxicology, Christian Medical College Vellore, Tamil Nadu, India.
| | - Jefferson Daniel
- Department of Pulmonary Medicine, Christian Medical College Vellore, Tamil Nadu, India
| | - Senthil Kumar R
- Department of Forensic Medicine, Post-Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Benjy Tom Varughese
- Department of Forensic Medicine & Toxicology, Christian Medical College Vellore, Tamil Nadu, India
| | - Daniel Manoj
- Department of Forensic Medicine & Toxicology, Christian Medical College Vellore, Tamil Nadu, India
| | - Antony L Arakkal
- Department of Forensic Medicine & Toxicology, Christian Medical College Vellore, Tamil Nadu, India
| | - Latif Rajesh Johnson
- Department of Forensic Medicine & Toxicology, Christian Medical College Vellore, Tamil Nadu, India
| |
Collapse
|
7
|
Yu ZH, Tian GX, Wang YD, Liu TY, Shi P, Ying JY, Chen WM, Zhou YF, Lu GP, Zhang CY. The effect of GM-CSF and predictors of treatment outcome in pediatric septic shock patients. Ital J Pediatr 2025; 51:25. [PMID: 39901277 PMCID: PMC11792208 DOI: 10.1186/s13052-025-01863-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 01/12/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Pediatric septic shock is a critical condition associated with high mortality rates, largely due to sepsis-induced immunosuppression. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been explored as a therapeutic intervention to counteract this immunosuppression. Despite its potential, the efficacy of GM-CSF in pediatric septic shock has not been clearly established. This study aims to investigate the impact of GM-CSF administration on survival rates and to identify key predictors of treatment outcomes in pediatric septic shock patients. METHODS We conducted a retrospective cohort study at the Pediatric Intensive Care Unit (PICU) of Children's Hospital of Fudan University, Shanghai, from January 1, 2019, to December 31, 2023. The study included pediatric patients diagnosed with septic shock, analyzing their demographic data, GM-CSF and adjunctive therapies, laboratory results, and clinical outcomes. We employed univariate and multivariate logistic regression models to assess the influence of GM-CSF on 28-day mortality and identify significant predictors of treatment outcomes. RESULTS The study included 200 pediatric patients, with 66 receiving GM-CSF treatment and 134 not treated with GM-CSF. The initial comparison showed a higher 28-day mortality in the GM-CSF group (59.1%) compared to the non-GM-CSF group (35.1%, P = 0.001). Notably, after adjustment for confounding factors, multivariate analysis revealed that the effect of GM-CSF treatment on 28-day mortality among pediatric septic shock patients did not reach statistical significance, with an odds ratio (OR) of 0.472 and a 95% confidence interval (CI) ranging from 0.153 to 1.457 (P = 0.192). However, the analysis indicated a potential trend suggesting that GM-CSF treatment may contribute to a reduction in 28-day mortality. In addition, significant predictors of treatment outcomes included hematopoietic stem cell transplantation (HSCT), lactic acid (LAC) levels, hospital-acquired septic shock (HASS), red blood cell (RBC) count, and platelet (PLT) count. CONCLUSIONS GM-CSF treatment may benefit pediatric septic shock patients, especially those with higher lactic acid, and lower RBC and platelet counts. These factors, which are significant predictors of outcomes, should be monitored during therapy.
Collapse
Affiliation(s)
- Zhen-Hao Yu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Gui-Xiang Tian
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yao-Dong Wang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Ting-Yan Liu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Peng Shi
- Clinical Research Unit, Children's Hospital of Fudan University, Shanghai, China
| | - Jia-Yun Ying
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Wei-Ming Chen
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
| | - Yu-Feng Zhou
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China
- Institute of Pediatrics, Children's Hospital of Fudan University, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Guo-Ping Lu
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China.
- School of Public Health & Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, China.
- Pediatric Intensive Care Unit, Anhui Provincial Children's Hospital, Hefei, China.
| | - Cai-Yan Zhang
- Department of Critical Care Medicine, Children's Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Yu L, Zou S, Zhou Q, Cheng B, Jin J. A superior tool for predicting sepsis in SAH patients: The nomogram outperforms SOFA score. PLoS One 2025; 20:e0316029. [PMID: 39847548 PMCID: PMC11756775 DOI: 10.1371/journal.pone.0316029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 12/03/2024] [Indexed: 01/25/2025] Open
Abstract
OBJECTIVE This study aimed to develop and validate a nomogram to predict the risk of sepsis in non-traumatic subarachnoid hemorrhage (SAH) patients using data from the MIMIC-IV database. METHODS A total of 803 SAH patients meeting the inclusion criteria were randomly divided into a training set (563 cases) and a validation set (240 cases). Independent prognostic factors were identified through forward stepwise logistic regression, and a nomogram was created based on these factors. The discriminative ability of the nomogram was assessed using the area under the receiver operating characteristic curve (AUC) and compared with the SOFA score. The model's consistency was evaluated using the C-index, and the improvement in performance over the SOFA score was calculated using integrated discrimination improvement (IDI) and net reclassification improvement (NRI). RESULTS Five independent predictive factors were identified through LASSO regression analysis: mechanical ventilation, hyperlipidemia, temperature, white blood cell count, and red blood cell count. The AUC of the nomogram in the training and validation sets were 0.854 and 0.824, respectively, both higher than the SOFA score. NRI and IDI results indicated that the nomogram outperformed the SOFA score in identifying sepsis risk. Calibration curves and the Hosmer-Lemeshow test demonstrated good calibration of the nomogram. Decision curve analysis showed that the nomogram had higher net benefit in clinical application. CONCLUSION The nomogram developed in this study performed excellently in predicting the risk of sepsis in SAH patients, surpassing the traditional SOFA scoring system, and has significant clinical application value.
Collapse
Affiliation(s)
- Lei Yu
- Jinan University, Guangzhou, China
- Department of Intensive Care Unit, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Shan Zou
- Department of Intensive Care Unit, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Qingshan Zhou
- Department of Intensive Care Unit, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Beibei Cheng
- Department of Intensive Care Unit, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jun Jin
- Jinan University, Guangzhou, China
- Department of Intensive Care Unit, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
9
|
Sheng S, Li A, Zhang C, Liu X, Zhou W, Shen T, Ma Q, Ma S, Zhu F. Association between hemoglobin and in-hospital mortality in critically ill patients with sepsis: evidence from two large databases. BMC Infect Dis 2024; 24:1450. [PMID: 39702030 PMCID: PMC11660889 DOI: 10.1186/s12879-024-10335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The relationship between baseline hemoglobin levels and in-hospital mortality in septic patients remains unclear. This study aimed to clarify this association in critically ill patients with sepsis. METHODS Patients with sepsis were retrospectively identified from the Medical Information Mart for Intensive Care-IV (MIMIC-IV 2.2) and eICU Collaborative Research Database (eICU-CRD). Multivariate logistic regression analysis and restricted cubic spline regression were used to investigate the association between hemoglobin and the risk of in-hospital mortality. Additionally, a two-part linear regression model was used to determine threshold effects. Stratified analyses were also performed. RESULTS A total of 21,946 patients from MIMIC-IV and 15,495 patients from eICU-CRD were included in the study. In-hospital mortality was 14.95% in MIMIC-IV and 17.40% in eICU-CRD. Multivariate logistic regression showed that hemoglobin was significantly and nonlinearly associated with the risk of in-hospital mortality after adjusting for other covariates. Furthermore, we found a nonlinear association between hemoglobin and in-hospital mortality, with mortality plateauing at 10.2 g/dL. The risk of mortality decreased with increasing hemoglobin levels below 10.2 g/dL but increased when hemoglobin levels exceeded 10.2 g/dL. These findings were validated in the eICU-CRD dataset. CONCLUSIONS A nonlinear correlation between hemoglobin levels and in-hospital mortality was observed in patients with sepsis, with a threshold of 10.2 g/DL. These findings suggested that hemoglobin levels below or above the threshold may be associated with worse outcomes, warranting further investigation in prospective studies.
Collapse
Affiliation(s)
- Shuyue Sheng
- Department of Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Andong Li
- School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi, 214122, China
| | - Changjing Zhang
- Department of Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Xiaobin Liu
- Department of Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Wei Zhou
- Department of Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Tuo Shen
- Department of Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Qimin Ma
- Department of Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China
| | - Shaolin Ma
- Department of Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| | - Feng Zhu
- Department of Critical Care Medicine, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
| |
Collapse
|
10
|
Wu YK, Chung HW, Chen YT, Chen HC, Chen IH, Su WL. Association of LVV-Hemorphin-7 with Sepsis and Shock: Roles of Cathepsin D and G in Hemoglobin Metabolism in a Prospective ICU Cohort Study. Biomedicines 2024; 12:2789. [PMID: 39767696 PMCID: PMC11673980 DOI: 10.3390/biomedicines12122789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Sepsis is a leading cause of mortality in intensive care units (ICUs). Cell-free hemoglobin (CFH) released during sepsis interacts with lysosomal enzymes from neutrophils and macrophages. This study aims to examine the association of LVV-hemorphin-7 (LVV-H7), cathepsin D, and cathepsin G with sepsis and shock in ICU patients. METHODS A prospective observational cohort study was conducted in the medical ICU of a tertiary referral hospital in Taiwan. The patients with an acute increasing sequential organ failure assessment (SOFA) score ≥ 2 between 2022 and 2023. Blood samples from 40 healthy controls were obtained from the hospital biobank. CFH metabolites, including LVV-H7 and lysosomal enzyme cathepsin D and cathepsin G, were compared between the sepsis (definite and probable) and non-sepsis (possible sepsis) groups. Multivariate logistic regression analyzed factors associated with sepsis and shock. RESULTS Among 120 patients, 75 were classified as septic and 45 as non-septic. Significant differences were observed in CFH, cathepsin D, cathepsin G, and LVV-H7 levels between sepsis and non-sepsis groups. LVV-H7 was a significant predictor for sepsis (adjusted OR [aOR] 1.009, 95% CI 1.005-1.013; p < 0.001) and shock (aOR 1.005, 95% CI 1.002-1.008; p < 0.05). Cathepsin G predicted non-shock (aOR 0.917, 95% CI 0.848-0.991; p < 0.05), while cathepsin D predicted septic shock (aOR 1.001, 95% CI 1.000-1.002; p < 0.05). CONCLUSIONS LVV-H7, cathepsin D, and cathepsin G are associated with the classification of sepsis and shock episodes in critically ill patients with elevated SOFA scores.
Collapse
Affiliation(s)
- Yao-Kuang Wu
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
| | - Hsueh-Wen Chung
- Department of Nursing, College of Nursing, National Yang Ming Chiao Tung University, Taipei City 112, Taiwan;
| | - Yi-Ting Chen
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970, Taiwan
| | - Hsing-Chun Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi County 622, Taiwan; (H.-C.C.); (I.-H.C.)
| | - I-Hung Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi County 622, Taiwan; (H.-C.C.); (I.-H.C.)
| | - Wen-Lin Su
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan;
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan;
| |
Collapse
|
11
|
Meng H, Guo L, Pan Y, Kong B, Shuai W, Huang H. Machine learning based clinical prediction model for 1-year mortality in Sepsis patients with atrial fibrillation. Heliyon 2024; 10:e38730. [PMID: 39524803 PMCID: PMC11544070 DOI: 10.1016/j.heliyon.2024.e38730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background Atrial fibrillation (AF) emerges as a pivotal risk determinant for unfavorable outcomes in septic patients. Despite its recognized role, the enduring impact of AF on sepsis prognosis remains ambiguous. This investigation seeks to elucidate the connection between AF and both short and long-term outcomes in sepsis patients. Additionally, it aims to formulate a prognostic model for 1-year mortality utilizing pertinent clinical variables. Methods A retrospective analysis encompassed sepsis patients admitted to Beth Israel Deacon Medical Center's intensive care unit. The evaluation encompassed the prevalence of AF and its influence on hospitalization duration, stays in the Intensive Care Unit (ICU), and mortality rates at distinct intervals. Propensity score matching was implemented to mitigate confounding factors. Machine learning techniques, including the Least Absolute Selection and Shrinkage Operator (LASSO) regression and random forest, were deployed for model development. Results AF exhibited a correlation with heightened mortality rates at 7 days, 28 days, and 1 year. The resultant predictive model demonstrated superior efficacy compared to prevailing clinical critical illness scores in forecasting mortality risk. Crucial predictors in the model included variables such as RDW, weight, age, BUN, lactate, temperature, MCHC, MBP, ALP, and hemoglobin. Conclusions AF emerges as a substantial peril for adverse outcomes in sepsis patients. The risk model, encompassing pertinent clinical variables, outperformed existing clinical critical illness scores in mortality prediction. This model furnishes valuable insights for risk stratification, augmenting prognostic precision in sepsis patients with concomitant AF.
Collapse
Affiliation(s)
- Hong Meng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, PR China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Liang Guo
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, PR China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Yucheng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, PR China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, PR China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, PR China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, PR China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, PR China
- Hubei Key Laboratory of Cardiology, Wuhan, 430060, Hubei, PR China
- Cardiovascular Research Institute of Wuhan University, Wuhan, 430060, Hubei, PR China
| |
Collapse
|
12
|
Raz A, Gubi H, Cohen A, Patolsky F. Transdermal Minimally Invasive Optical Multiplex Detection of Protein Biomarkers by Nanopillars Array-Embedded Microneedles. ACS NANO 2024; 18:30848-30862. [PMID: 39463189 PMCID: PMC11544710 DOI: 10.1021/acsnano.4c11612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Biomarkers detection has become essential in medical diagnostics and early detection of life-threatening diseases. Modern-day medicine relies heavily on painful and invasive tests, with the extraction of large volumes of venous blood being the most common tool of biomarker detection. These tests are time-consuming, complex, expensive and require multiple sample manipulations and trained staff. The application of "intradermal" biosensors utilizing microneedles as minimally invasive sensing elements for capillary blood biomarkers detection has gained extensive interest in the past few years as a central point-of-care (POC) detection platform. Herein, we present a diagnosis paradigm based on vertically aligned nanopillar array-embedded microneedles sampling-and-detection elements for the direct optical detection and quantification of biomarkers in capillary blood. We present here a demonstration of the simple fabrication route for the creation of a multidetection-zone silicon nanopillar array, embedded in microneedle elements, followed by their area-selective chemical modification, toward the multiplex intradermal biomarkers detection. The utilization of the rapid and specific antibody-antigen binding, combined with the intrinsically large sensing area created by the nanopillar array, enables the simultaneous efficient ultrafast and highly sensitive intradermal capillary blood sampling and detection of protein biomarkers of clinical relevance, without requiring the extraction of blood samples for the ex vivo biomarkers analysis. Through preliminary in vitro and in vivo experiments, the direct intradermal in-skin blood extraction-free platform has demonstrated excellent sensitivity (low pM) and specificity for the accurate multiplex detection of protein biomarkers in capillary blood.
Collapse
Affiliation(s)
- Adva Raz
- Department
of Materials Science and Engineering, The Iby and Aladar Fleischman
Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Hila Gubi
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adam Cohen
- Department
of Materials Science and Engineering, The Iby and Aladar Fleischman
Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
| | - Fernando Patolsky
- Department
of Materials Science and Engineering, The Iby and Aladar Fleischman
Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- School
of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
13
|
Elhassan E, Omolo CA, Gafar MA, Kiruri LW, Ibrahim UH, Ismail EA, Devnarain N, Govender T. Disease-Inspired Design of Biomimetic Tannic Acid-Based Hybrid Nanocarriers for Enhancing the Treatment of Bacterial-Induced Sepsis. Mol Pharm 2024; 21:4924-4946. [PMID: 39214595 DOI: 10.1021/acs.molpharmaceut.4c00048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
This study explored the development of novel biomimetic tannic acid-based hybrid nanocarriers (HNs) for targeted delivery of ciprofloxacin (CIP-loaded TAH-NPs) against bacterial-induced sepsis. The prepared CIP-loaded TAH-NPs exhibited appropriate physicochemical characteristics and demonstrated biocompatibility and nonhemolytic properties. Computational simulations and microscale thermophoresis studies validated the strong binding affinity of tannic acid (TA) and its nanoformulation to human Toll-like receptor 4, surpassing that of the natural substrate lipopolysaccharide (LPS), suggesting a potential competitive inhibition against LPS-induced inflammatory responses. CIP released from TAH-NPs displayed a sustained release profile over 72 h. The in vitro antibacterial activity studies revealed that CIP-loaded TAH-NPs exhibited enhanced antibacterial efficacy and efflux pump inhibitory activity. Specifically, they showed a 3-fold increase in biofilm eradication activity against MRSA and a 2-fold increase against P. aeruginosa compared to bare CIP. Time-killing assays demonstrated complete bacterial clearance within 8 h of treatment with CIP-loaded TAH-NPs. In vitro DPPH scavenging and anti-inflammatory investigations confirmed the ability of the prepared hybrid nanosystem to neutralize reactive oxygen species (ROS) and modulate LPS-induced inflammatory responses. Collectively, these results suggest that CIP-loaded TAH-NPs may serve as an innovative nanocarrier for the effective and targeted delivery of antibiotics against bacterial-induced sepsis.
Collapse
Affiliation(s)
- Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P.O. Box 14634-00800, Nairobi 00800, Kenya
| | - Mohammed Ali Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum 11111, Sudan
| | - Lucy W Kiruri
- Department of Chemistry, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4300, South Africa
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag Durban X54001, South Africa
| |
Collapse
|
14
|
Kim YH, Lee DH, Seo HS, Eun SH, Lee DS, Choi YK, Lee SH, Kim TY. Genome-based taxonomic identification and safety assessment of an Enterococcus strain isolated from a homemade dairy product. Int Microbiol 2024; 27:1513-1525. [PMID: 38466360 DOI: 10.1007/s10123-024-00496-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/13/2024]
Abstract
The aim of this study was to explore the taxonomic identification and evaluate the safety of a bacterium, Enterococcus lactis IDCC 2105, isolated from homemade cheese in Korea, using whole genome sequence (WGS) analysis. It sought to identify the species level of this Enterococcus spp., assess its antibiotic resistance, and evaluate its virulence potential. WGS analysis confirmed the bacterial strain IDCC 2105 as E. lactis and identified genes responsible for resistance to erythromycin and clindamycin, specifically msrC, and eatAv, which are chromosomally located, indicating a minimal risk for horizontal gene transfer. The absence of plasmids in E. lactis IDCC 2105 further diminishes the likelihood of resistance gene dissemination. Additionally, our investigation into seven virulence factors, including hemolysis, platelet aggregation, biofilm formation, hyaluronidase, gelatinase, ammonia production, and β-glucuronidase activity, revealed no detectable virulence traits. Although bioinformatic analysis suggested the presence of collagen adhesion genes acm and scm, these were not corroborated by phenotypic virulence assays. Based on these findings, E. lactis IDCC 2105 presents as a safe strain for potential applications, contributing valuable information on its taxonomy, antibiotic resistance profile, and lack of virulence factors, supporting its use in food products.
Collapse
Affiliation(s)
- Young-Hoo Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | | | - Han Sol Seo
- Yunovia Co., Ltd, Hwaseong, 18449, South Korea
| | | | - Do Sup Lee
- Yunovia Co., Ltd, Hwaseong, 18449, South Korea
| | | | - Sang Hyun Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Tae-Yoon Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
15
|
Tanaka T, Fujino K, Tsujita Y, Matsumoto Y, Fujino M, Miyatake H, Mizumura N, Kato T, Shimizu J, Kishimoto T, Shiomi N. THE IMPACT OF SCHISTOCYTE DETECTION ON MORTALITY AND ORGAN FAILURE IN PATIENTS WITH SEPSIS. Shock 2024; 62:539-546. [PMID: 39158562 DOI: 10.1097/shk.0000000000002440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
ABSTRACT Purpose : This study aimed to investigate the presence of schistocytes in patients with sepsis and its association with mortality and organ failure. Methods : We conducted a retrospective observational study at Shiga University of Medical Science Hospital, Japan, from January 2015 to April 2021. This study included patients diagnosed with sepsis or septic shock. Schistocytes were identified through daily hematological examinations. Moreover, data on mortality rates and organ failure based on Sequential Organ Failure Assessment scores were systematically collected and analyzed. Results : Schistocytes were detected in 41 of the 330 patients with sepsis. The presence of schistocytes was associated with significantly high 90-day and 1-year mortality rates (48.7% and 68.2%, respectively; P < 0.001). Patients with schistocytes exhibited higher Sequential Organ Failure Assessment scores, particularly in the coagulation and renal components, indicating more severe organ failure than that observed in patients without schistocytes. These findings persisted even after adjusting for confounding factors, such as age, sex, and baseline comorbidities. Additionally, we observed that patients with schistocytes required frequent red blood cells, further highlighting the severity of their conditions. Conclusion : Schistocytes are significantly associated with increased long-term mortality and organ failure in patients with sepsis. Their detection may provide crucial insights into disease severity, guide targeted therapeutic strategies, and potentially improve the long-term outcomes of sepsis management.
Collapse
Affiliation(s)
- Tomoki Tanaka
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Kazunori Fujino
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yasuyuki Tsujita
- Department of Critical and Intensive Care Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Yugo Matsumoto
- Shiga University of Medical Science Emergency and Intensive Care Unit, Otsu, Japan
| | - Mitsuhiro Fujino
- Shiga University of Medical Science Emergency and Intensive Care Unit, Otsu, Japan
| | - Hidemitsu Miyatake
- Shiga University of Medical Science Emergency and Intensive Care Unit, Otsu, Japan
| | - Naoto Mizumura
- Shiga University of Medical Science Emergency and Intensive Care Unit, Otsu, Japan
| | - Takayuki Kato
- Shiga University of Medical Science Emergency and Intensive Care Unit, Otsu, Japan
| | - Junji Shimizu
- Shiga University of Medical Science Emergency and Intensive Care Unit, Otsu, Japan
| | - Takuma Kishimoto
- Shiga University of Medical Science Emergency and Intensive Care Unit, Otsu, Japan
| | | |
Collapse
|
16
|
Liu X, Li Y, Jia J, Wang H, Xi Y, Sun A, Wang L, Deng X, Chen Z, Fan Y. Analysis of non-physiological shear stress-induced red blood cell trauma across different clinical support conditions of the blood pump. Med Biol Eng Comput 2024; 62:3209-3223. [PMID: 38802609 DOI: 10.1007/s11517-024-03121-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
Systematic research into device-induced red blood cell (RBC) damage beyond hemolysis, including correlations between hemolysis and RBC-derived extracellular vesicles, remains limited. This study investigated non-physiological shear stress-induced RBC damage and changes in related biochemical indicators under two blood pump clinical support conditions. Pressure heads of 100 and 350 mmHg, numerical simulation methods, and two in vitro loops were utilized to analyze the shear stress and changes in RBC morphology, hemolysis, biochemistry, metabolism, and oxidative stress. The blood pump created higher shear stress in the 350-mmHg condition than in the 100-mmHg condition. With prolonged blood pump operation, plasma-free hemoglobin and cholesterol increased, whereas plasma glucose and nitric oxide decreased in both loops. Notably, plasma iron and triglyceride concentrations increased only in the 350-mmHg condition. The RBC count and morphology, plasma lactic dehydrogenase, and oxidative stress across loops did not differ significantly. Plasma extracellular vesicles, including RBC-derived microparticles, increased significantly at 600 min in both loops. Hemolysis correlated with plasma triglyceride, cholesterol, glucose, and nitric oxide levels. Shear stress, but not oxidative stress, was the main cause of RBC damage. Hemolysis alone inadequately reflects overall blood pump-induced RBC damage, suggesting the need for additional biomarkers for comprehensive assessments.
Collapse
Affiliation(s)
- Xinyu Liu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yuan Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jinze Jia
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Hongyu Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Yifeng Xi
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Anqiang Sun
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Lizhen Wang
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Xiaoyan Deng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zengsheng Chen
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Room 223, Building 5, No.37 Xueyuan Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
17
|
Qiao T, Tu X. A practical predictive model to predict 30-day mortality in neonatal sepsis. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20231561. [PMID: 39166657 PMCID: PMC11329242 DOI: 10.1590/1806-9282.20231561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 03/24/2024] [Indexed: 08/23/2024]
Abstract
OBJECTIVE Neonatal sepsis is a serious disease that needs timely and immediate medical attention. So far, there is no specific prognostic biomarkers or model for dependable predict outcomes in neonatal sepsis. The aim of this study was to establish a predictive model based on readily available laboratory data to assess 30-day mortality in neonatal sepsis. METHODS Neonates with sepsis were recruited between January 2019 and December 2022. The admission information was obtained from the medical record retrospectively. Univariate or multivariate analysis was utilized to identify independent risk factors. The receiver operating characteristic curve was drawn to check the performance of the predictive model. RESULTS A total of 195 patients were recruited. There was a big difference between the two groups in the levels of hemoglobin and prothrombin time. Multivariate analysis confirmed that hemoglobin>133 g/L (hazard ratio: 0.351, p=0.042) and prothrombin time >16.6 s (hazard ratio: 4.140, p=0.005) were independent risk markers of 30-day mortality. Based on these results, a predictive model with the highest area under the curve (0.756) was built. CONCLUSION We established a predictive model that can objectively and accurately predict individualized risk of 30-day mortality. The predictive model should help clinicians to improve individual treatment, make clinical decisions, and guide follow-up management strategies.
Collapse
Affiliation(s)
- Tengfei Qiao
- Nanjing Lishui District Hospital of Traditional Chinese Medicine, Department of Laboratory Medicine - Nanjing, China
| | - Xiangwen Tu
- GanZhou Women and Children's Health Care Hospital, Department of Laboratory Medicine - Ganzhou, China
| |
Collapse
|
18
|
Stuart CM, Jacob C, Varatharaj A, Howard S, Chouhan JK, Teeling JL, Galea I. Mild Systemic Inflammation Increases Erythrocyte Fragility. Int J Mol Sci 2024; 25:7027. [PMID: 39000133 PMCID: PMC11241827 DOI: 10.3390/ijms25137027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/15/2024] [Accepted: 06/23/2024] [Indexed: 07/16/2024] Open
Abstract
There is growing evidence that inflammation impairs erythrocyte structure and function. We assessed the impact of mild systemic inflammation on erythrocyte fragility in three different settings. In order to investigate causation, erythrocyte osmotic fragility was measured in mice challenged with a live attenuated bacterial strain to induce low-grade systemic inflammation; a significant increase in erythrocyte osmotic fragility was observed. To gather evidence that systemic inflammation is associated with erythrocyte fragility in humans, two observational studies were conducted. First, using a retrospective study design, the relationship between reticulocyte-based surrogate markers of haemolysis and high-sensitivity C-reactive protein was investigated in 9292 healthy participants of the UK Biobank project. Secondly, we prospectively assessed the relationship between systemic inflammation (measured by the urinary neopterin/creatinine ratio) and erythrocyte osmotic fragility in a mixed population (n = 54) of healthy volunteers and individuals with long-term medical conditions. Both human studies were in keeping with a relationship between inflammation and erythrocyte fragility. Taken together, we conclude that mild systemic inflammation increases erythrocyte fragility and may contribute to haemolysis. Further research is needed to assess the molecular underpinnings of this pathway and the clinical implications in inflammatory conditions.
Collapse
Affiliation(s)
- Charlotte M. Stuart
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Carmen Jacob
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| | - Aravinthan Varatharaj
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| | - Sarah Howard
- Biological Sciences, Faculty of Life Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Joe K. Chouhan
- Biological Sciences, Faculty of Life Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Jessica L. Teeling
- Biological Sciences, Faculty of Life Sciences, University of Southampton, Southampton SO16 6YD, UK
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton SO16 6YD, UK
| |
Collapse
|
19
|
Kasper R, Rodriguez-Alfonso A, Ständker L, Wiese S, Schneider EM. Major endothelial damage markers identified from hemadsorption filters derived from treated patients with septic shock - endoplasmic reticulum stress and bikunin may play a role. Front Immunol 2024; 15:1359097. [PMID: 38698864 PMCID: PMC11063272 DOI: 10.3389/fimmu.2024.1359097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Introduction In septic patients the damage of the endothelial barrier is decisive leading to circulatory septic shock with disseminated vascular coagulation, edema and multiorgan failure. Hemadsorption therapy leads to rapid resolution of clinical symptoms. We propose that the isolation of proteins adsorbed to hemadsorption devices contributes to the identification of mediators responsible for endothelial barrier dysfunction. Material and methods Plasma materials enriched to hemadsorption filters (CytoSorb®) after therapy of patients in septic shock were fractionated and functionally characterized for their effect on cell integrity, viability, proliferation and ROS formation by human endothelial cells. Fractions were further studied for their contents of oxidized nucleic acids as well as peptides and proteins by mass spectrometry. Results Individual fractions exhibited a strong effect on endothelial cell viability, the endothelial layer morphology, and ROS formation. Fractions with high amounts of DNA and oxidized DNA correlated with ROS formation in the target endothelium. In addition, defined proteins such as defensins (HNP-1), SAA1, CXCL7, and the peptide bikunin were linked to the strongest additive effects in endothelial damage. Conclusion Our results indicate that hemadsorption is efficient to transiently remove strong endothelial damage mediators from the blood of patients with septic shock, which explains a rapid clinical improvement of inflammation and endothelial function. The current work indicates that a combination of stressors leads to the most detrimental effects. Oxidized ssDNA, likely derived from mitochondria, SAA1, the chemokine CXCL7 and the human neutrophil peptide alpha-defensin 1 (HNP-1) were unique for their significant negative effect on endothelial cell viability. However, the strongest damage effect occurred, when, bikunin - cleaved off from alpha-1-microglobulin was present in high relative amounts (>65%) of protein contents in the most active fraction. Thus, a relevant combination of stressors appears to be removed by hemadsorption therapy which results in fulminant and rapid, though only transient, clinical restitution.
Collapse
Affiliation(s)
- Robin Kasper
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| | - Armando Rodriguez-Alfonso
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
- Core Unit Mass Spectrometry and Proteomics (CUMP), Ulm University, Ulm, Germany
| | - Ludger Ständker
- Core Facility Functional Peptidomics, Ulm University Medical Center, Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics (CUMP), Ulm University, Ulm, Germany
| | - E. Marion Schneider
- Clinic of Anesthesiology and Intensive Care Medicine, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
20
|
Wei Y, Ren X, Yuan Z, Hong J, Wang T, Chen W, Xu Y, Ding J, Lin J, Jiang W, Zhang P, Wu Q. Trauma diagnostic-related target proteins and their detection techniques. Expert Rev Mol Med 2024; 26:e7. [PMID: 38602081 PMCID: PMC11062145 DOI: 10.1017/erm.2024.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 04/12/2024]
Abstract
Trauma is a significant health issue that not only leads to immediate death in many cases but also causes severe complications, such as sepsis, thrombosis, haemorrhage, acute respiratory distress syndrome and traumatic brain injury, among trauma patients. Target protein identification technology is a vital technique in the field of biomedical research, enabling the study of biomolecular interactions, drug discovery and disease treatment. It plays a crucial role in identifying key protein targets associated with specific diseases or biological processes, facilitating further research, drug design and the development of treatment strategies. The application of target protein technology in biomarker detection enables the timely identification of newly emerging infections and complications in trauma patients, facilitating expeditious medical interventions and leading to reduced post-trauma mortality rates and improved patient prognoses. This review provides an overview of the current applications of target protein identification technology in trauma-related complications and provides a brief overview of the current target protein identification technology, with the aim of reducing post-trauma mortality, improving diagnostic efficiency and prognostic outcomes for patients.
Collapse
Affiliation(s)
- YiLiu Wei
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, 350004 Fuzhou, China
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350004 Fuzhou, China
| | - Xiaohan Ren
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Zhitao Yuan
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Jie Hong
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, 350004 Fuzhou, China
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350004 Fuzhou, China
| | - Tao Wang
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Weizhi Chen
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, 350004 Fuzhou, China
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350004 Fuzhou, China
| | - Yuqing Xu
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Jinwang Ding
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Jun Lin
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Wenqian Jiang
- Institute of Applied Genomics, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, 350108 Fuzhou, China
| | - Peng Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200127 Shanghai, China
| | - Qiaoyi Wu
- Department of Trauma Center & Emergency Surgery, The First Affiliated Hospital of Fujian Medical University, 350004 Fuzhou, China
- Department of Trauma Center and Emergency Surgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, 350004 Fuzhou, China
| |
Collapse
|
21
|
Saqr AHA, Kamali C, Brunnbauer P, Haep N, Koch P, Hillebrandt KH, Keshi E, Moosburner S, Mohr R, Raschzok N, Pratschke J, Krenzien F. Optimized protocol for quantification of extracellular nicotinamide adenine dinucleotide: evaluating clinical parameters and pre-analytical factors for translational research. Front Med (Lausanne) 2024; 10:1278641. [PMID: 38259852 PMCID: PMC10800990 DOI: 10.3389/fmed.2023.1278641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/14/2023] [Indexed: 01/24/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+), a coenzyme for more than 500 enzymes, plays a central role in energy production, metabolism, cellular signaling, and DNA repair. Until recently, NAD+ was primarily considered to be an intracellular molecule (iNAD+), however, its extracellular species (eNAD+) has recently been discovered and has since been associated with a multitude of pathological conditions. Therefore, accurate quantification of eNAD+ in bodily fluids such as plasma is paramount to answer important research questions. In order to create a clinically meaningful and reliable quantitation method, we analyzed the relationship of cell lysis, routine clinical laboratory parameters, blood collection techniques, and pre-analytical processing steps with measured plasma eNAD+ concentrations. Initially, NAD+ levels were assessed both intracellularly and extracellularly. Intriguingly, the concentration of eNAD+ in plasma was found to be approximately 500 times lower than iNAD+ in peripheral blood mononuclear cells (0.253 ± 0.02 μM vs. 131.8 ± 27.4 μM, p = 0.007, respectively). This stark contrast suggests that cellular damage or cell lysis could potentially affect the levels of eNAD+ in plasma. However, systemic lactate dehydrogenase in patient plasma, a marker of cell damage, did not significantly correlate with eNAD+ (n = 33; r = -0.397; p = 0.102). Furthermore, eNAD+ was negatively correlated with increasing c-reactive protein (CRP, n = 33; r = -0.451; p = 0.020), while eNAD+ was positively correlated with increasing hemoglobin (n = 33; r = 0.482; p = 0.005). Next, variations in blood drawing, sample handling and pre-analytical processes were examined. Sample storage durations at 4°C (0-120 min), temperature (0° to 25°C), cannula sizes for blood collection and tourniquet times (0 - 120 s) had no statistically significant effect on eNAD+ (p > 0.05). On the other hand, prolonged centrifugation (> 5 min) and a faster braking mode of the centrifuge rotor (< 4 min) resulted in a significant decrease in eNAD+ levels (p < 0.05). Taken together, CRP and hemoglobin appeared to be mildly correlated with eNAD+ levels whereas cell damage was not correlated significantly to eNAD+ levels. The blood drawing trial did not show any influence on eNAD+, in contrast, the preanalytical steps need to be standardized for accurate eNAD+ measurement. This work paves the way towards robust eNAD+ measurements, for use in future clinical and translational research, and provides an optimized hands-on protocol for reliable eNAD+ quantification in plasma.
Collapse
Affiliation(s)
- Al-Hussein Ahmed Saqr
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Can Kamali
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Philipp Brunnbauer
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Nils Haep
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Pia Koch
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Karl-Herbert Hillebrandt
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Eriselda Keshi
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Simon Moosburner
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum and Campus Charité Mitte, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Nathanael Raschzok
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Johann Pratschke
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Krenzien
- Department of Surgery, Campus Charité Mitte and Campus Virchow-Klinikum, Charité – Universitätsmedizin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
22
|
Grange C, Lux F, Brichart T, David L, Couturier A, Leaf DE, Allaouchiche B, Tillement O. Iron as an emerging therapeutic target in critically ill patients. Crit Care 2023; 27:475. [PMID: 38049866 PMCID: PMC10694984 DOI: 10.1186/s13054-023-04759-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/24/2023] [Indexed: 12/06/2023] Open
Abstract
The multiple roles of iron in the body have been known for decades, particularly its involvement in iron overload diseases such as hemochromatosis. More recently, compelling evidence has emerged regarding the critical role of non-transferrin bound iron (NTBI), also known as catalytic iron, in the care of critically ill patients in intensive care units (ICUs). These trace amounts of iron constitute a small percentage of the serum iron, yet they are heavily implicated in the exacerbation of diseases, primarily by catalyzing the formation of reactive oxygen species, which promote oxidative stress. Additionally, catalytic iron activates macrophages and facilitates the growth of pathogens. This review aims to shed light on this underappreciated phenomenon and explore the various common sources of NTBI in ICU patients, which lead to transient iron dysregulation during acute phases of disease. Iron serves as the linchpin of a vicious cycle in many ICU pathologies that are often multifactorial. The clinical evidence showing its detrimental impact on patient outcomes will be outlined in the major ICU pathologies. Finally, different therapeutic strategies will be reviewed, including the targeting of proteins involved in iron metabolism, conventional chelation therapy, and the combination of renal replacement therapy with chelation therapy.
Collapse
Affiliation(s)
- Coralie Grange
- MexBrain, 13 Avenue Albert Einstein, Villeurbanne, France
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France
| | - François Lux
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France.
- Institut Universitaire de France (IUF), 75231, Paris, France.
| | | | - Laurent David
- Institut National des Sciences Appliquées, CNRS UMR 5223, Ingénierie des Matériaux Polymères, Univ Claude Bernard Lyon 1, Université Jean Monnet, 15 bd Latarjet, 69622, Villeurbanne, France
| | - Aymeric Couturier
- MexBrain, 13 Avenue Albert Einstein, Villeurbanne, France
- Nephrology, American Hospital of Paris, Paris, France
| | - David E Leaf
- Division of Renal Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bernard Allaouchiche
- University of Lyon, University Lyon I Claude Bernard, APCSe VetAgro Sup UP, 2021. A10, Marcy L'Étoile, France
| | - Olivier Tillement
- Institut Lumière-Matière, UMR 5306, Université Claude Bernard Lyon1-CNRS, Villeurbanne Cedex, France
| |
Collapse
|
23
|
Li Y, Chen R, Wang C, Deng J, Luo S. Double-edged functions of hemopexin in hematological related diseases: from basic mechanisms to clinical application. Front Immunol 2023; 14:1274333. [PMID: 38022615 PMCID: PMC10653390 DOI: 10.3389/fimmu.2023.1274333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/19/2023] [Indexed: 12/01/2023] Open
Abstract
It is now understood that hemolysis and the subsequent release of heme into circulation play a critical role in driving the progression of various diseases. Hemopexin (HPX), a heme-binding protein with the highest affinity for heme in plasma, serves as an effective antagonist against heme toxicity resulting from severe acute or chronic hemolysis. In the present study, changes in HPX concentration were characterized at different stages of hemolytic diseases, underscoring its potential as a biomarker for assessing disease progression and prognosis. In many heme overload-driven conditions, such as sickle cell disease, transfusion-induced hemolysis, and sepsis, endogenous HPX levels are often insufficient to provide protection. Consequently, there is growing interest in developing HPX therapeutics to mitigate toxic heme exposure. Strategies include HPX supplementation when endogenous levels are depleted and enhancing HPX's functionality through modifications, offering a potent defense against heme toxicity. It is worth noting that HPX may also exert deleterious effects under certain circumstances. This review aims to provide a comprehensive overview of HPX's roles in the progression and prognosis of hematological diseases. It highlights HPX-based clinical therapies for different hematological disorders, discusses advancements in HPX production and modification technologies, and offers a theoretical basis for the clinical application of HPX.
Collapse
Affiliation(s)
| | | | | | - Jun Deng
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Zong R, Ruan H, Liu C, Fan S, Li J. Bacteria and Bacterial Components as Natural Bio-Nanocarriers for Drug and Gene Delivery Systems in Cancer Therapy. Pharmaceutics 2023; 15:2490. [PMID: 37896250 PMCID: PMC10610331 DOI: 10.3390/pharmaceutics15102490] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Bacteria and bacterial components possess multifunctional properties, making them attractive natural bio-nanocarriers for cancer diagnosis and targeted treatment. The inherent tropic and motile nature of bacteria allows them to grow and colonize in hypoxic tumor microenvironments more readily than conventional therapeutic agents and other nanomedicines. However, concerns over biosafety, limited antitumor efficiency, and unclear tumor-targeting mechanisms have restricted the clinical translation and application of natural bio-nanocarriers based on bacteria and bacterial components. Fortunately, bacterial therapies combined with engineering strategies and nanotechnology may be able to reverse a number of challenges for bacterial/bacterial component-based cancer biotherapies. Meanwhile, the combined strategies tend to enhance the versatility of bionanoplasmic nanoplatforms to improve biosafety and inhibit tumorigenesis and metastasis. This review summarizes the advantages and challenges of bacteria and bacterial components in cancer therapy, outlines combinatorial strategies for nanocarriers and bacterial/bacterial components, and discusses their clinical applications.
Collapse
Affiliation(s)
| | | | | | - Shaohua Fan
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jun Li
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| |
Collapse
|
25
|
Marcello M, Virzì GM, Marturano D, de Cal M, Marchionna N, Sgarabotto L, De Rosa S, Ronco C, Zanella M. The Cytotoxic Effect of Septic Plasma on Healthy RBCs: Is Eryptosis a New Mechanism for Sepsis? Int J Mol Sci 2023; 24:14176. [PMID: 37762478 PMCID: PMC10531772 DOI: 10.3390/ijms241814176] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Sepsis is a life-threatening multiple-organ dysfunction induced by infection and is one of the leading causes of mortality and critical illness worldwide. The pathogenesis of sepsis involves the alteration of several biochemical pathways such as immune response, coagulation, dysfunction of endothelium and tissue damage through cellular death and/or apoptosis. Recently, in vitro and in vivo studies reported changes in the morphology and in the shape of human red blood cells (RBCs) causing erythrocyte death (eryptosis) during sepsis. Characteristics of eryptosis include cell shrinkage, membrane blebbing, and surface exposure to phosphatidylserine (PS), which attract macrophages. The aim of this study was to evaluate the in vitro induction of eryptosis on healthy RBCs exposed to septic plasma at different time points. Furthermore, we preliminary investigated the in vivo levels of eryptosis in septic patients and its relationship with Endotoxin Activity Assay (EAA), mortality and other biological markers of inflammation and oxidative stress. We enrolled 16 septic patients and 16 healthy subjects (no systemic inflammation in the last 3 months) as a control group. At diagnosis, we measured Interleukin-6 (IL-6) and Myeloperoxidase (MPO). For in vitro study, healthy RBCs were exposed to the plasma of septic patients and CTR for 15 min, 1, 2, 4 and 24 h. Morphological markers of death and eryptosis were evaluated by flow cytometric analyses. The cytotoxic effect of septic plasma on RBCs was studied in vitro at 15 min, 1, 2, 4 and 24 h. Healthy RBCs incubated with plasma from septic patients went through significant morphological changes and eryptosis compared to those exposed to plasma from the control group at all time points (all, p < 0.001). IL-6 and MPO levels were significantly higher in septic patients than in controls (both, p < 0.001). The percentage of AnnexinV-binding RBCs was significantly higher in septic patients with EAA level ≥0.60 (positive EAA: 32.4%, IQR 27.6-36.2) compared to septic patients with EAA level <0.60 (negative EAA: 14.7%, IQR 5.7-30.7) (p = 0.04). Significant correlations were observed between eryptosis and EAA levels (Spearman rho2 = 0.50, p < 0.05), IL-6 (Spearman rho2 = 0.61, p < 0.05) and MPO (Spearman rho2 = 0.70, p < 0.05). In conclusion, we observed a quick and great cytotoxic effect of septic plasma on healthy RBCs and a strong correlation with other biomarkers of severity of sepsis. Based on these results, we confirmed the pathological role of eryptosis in sepsis and we hypothesized its use as a biomarker of sepsis, potentially helping physicians to face important treatment decisions.
Collapse
Affiliation(s)
- Matteo Marcello
- Department of Nephrology, Dialysis and Transplant, St Bortolo Hospital, 36100 Vicenza, Italy (M.Z.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
| | - Grazia Maria Virzì
- Department of Nephrology, Dialysis and Transplant, St Bortolo Hospital, 36100 Vicenza, Italy (M.Z.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
| | - Davide Marturano
- Department of Nephrology, Dialysis and Transplant, St Bortolo Hospital, 36100 Vicenza, Italy (M.Z.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35100 Padova, Italy
| | - Massimo de Cal
- Department of Nephrology, Dialysis and Transplant, St Bortolo Hospital, 36100 Vicenza, Italy (M.Z.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
| | - Nicola Marchionna
- Department of Nephrology, Dialysis and Transplant, St Bortolo Hospital, 36100 Vicenza, Italy (M.Z.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
| | - Luca Sgarabotto
- Department of Nephrology, Dialysis and Transplant, St Bortolo Hospital, 36100 Vicenza, Italy (M.Z.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
| | - Silvia De Rosa
- Centre for Medical Sciences-CISMed, University of Trento, Via S. Maria Maddalena 1, 38122 Trento, Italy
- Anesthesia and Intensive Care, Santa Chiara Regional Hospital, APSS, 38122 Trento, Italy
| | - Claudio Ronco
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
| | - Monica Zanella
- Department of Nephrology, Dialysis and Transplant, St Bortolo Hospital, 36100 Vicenza, Italy (M.Z.)
- IRRIV-International Renal Research Institute, 36100 Vicenza, Italy
| |
Collapse
|
26
|
Chen Y, Chen L, Meng Z, Li Y, Tang J, Liu S, Li L, Zhang P, Chen Q, Liu Y. The correlation of hemoglobin and 28-day mortality in septic patients: secondary data mining using the MIMIC-IV database. BMC Infect Dis 2023; 23:417. [PMID: 37340360 DOI: 10.1186/s12879-023-08384-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
BACKGROUND Previous studies found minimal evidence and raised controversy about the link between hemoglobin and 28-day mortality in sepsis patients. As a result, the purpose of this study was to examine the association between hemoglobin and 28-day death in sepsis patients by analyzing the Medical Intensive Care IV (MIMIC-IV) database from 2008 to 2019 at an advanced medical center in Boston, Massachusetts. METHODS We extracted 34,916 sepsis patients from the MIMIC-IV retrospective cohort database, using hemoglobin as the exposure variable and 28-day death as the outcome variable, and after adjusting for confounders (demographic indicators, Charlson co-morbidity index, SOFA score, vital signs, medication use status (glucocorticoids, vasoactive drugs, antibiotics, and immunoglobulins, etc.)), we investigated the independent effects of hemoglobin and 28-day risk of death by binary logistic regression as well as two-piecewise linear model, respectively. RESULTS Hemoglobin levels and 28-day mortality were shown to be non-linearly related.The inflection points were 104 g/L and 128 g/L, respectively. When HGB levels were between 41 and 104 g/L, there was a 10% decrease in the risk of 28-day mortality (OR: 0.90; 95% CI: 0.87 to 0.94, p-value = 0.0001). However, in the range of 104-128 g/L, we did not observe a significant association between hemoglobin and 28-day mortality (OR: 1.17; 95% CI: 1.00 to 1.35, P value = 0.0586). When HGB was in the range of 128-207 g/L, there was a 7% increase in the risk of 28-day mortality for every 1 unit increase in HGB (OR: 1.07; 95% CI: 1.01 to 1.15, P value = 0.0424). CONCLUSION In patients with sepsis, baseline hemoglobin was related to a U-shaped risk of 28-day death. When HGB was in the range of 12.8-20.7 g/dL, there was a 7% increase in the risk of 28-day mortality for every 1 unit increase in HGB.
Collapse
Affiliation(s)
- Yu Chen
- Clinical Laboratory Center, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Lu Chen
- Department of Clinical Trials Centre, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Zengping Meng
- Clinical Laboratory Center, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Yi Li
- College of Medical Laboratory, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, China
| | - Juan Tang
- College of Medical Laboratory, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, China
| | - Shaowen Liu
- College of Medical Laboratory, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, China
| | - Li Li
- Clinical Laboratory Center, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Peisheng Zhang
- Clinical Laboratory Center, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China
| | - Qian Chen
- College of Medical Laboratory, Guizhou Medical University, 9 Beijing Road, Guiyang, Guizhou, China
| | - Yongmei Liu
- Clinical Laboratory Center, The Affiliated Hospital of Guizhou Medical University, 28, Guiyi Street, Guiyang, Guizhou, China.
| |
Collapse
|
27
|
Pires IS, Berthiaume F, Palmer AF. Engineering Therapeutics to Detoxify Hemoglobin, Heme, and Iron. Annu Rev Biomed Eng 2023; 25:1-21. [PMID: 37289555 DOI: 10.1146/annurev-bioeng-081622-031203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hemolysis (i.e., red blood cell lysis) can increase circulatory levels of cell-free hemoglobin (Hb) and its degradation by-products, namely heme (h) and iron (Fe). Under homeostasis, minor increases in these three hemolytic by-products (Hb/h/Fe) are rapidly scavenged and cleared by natural plasma proteins. Under certain pathophysiological conditions, scavenging systems become overwhelmed, leading to the accumulation of Hb/h/Fe in the circulation. Unfortunately, these species cause various side effects such as vasoconstriction, hypertension, and oxidative organ damage. Therefore, various therapeutics strategies are in development, ranging from supplementation with depleted plasma scavenger proteins to engineered biomimetic protein constructs capable of scavenging multiple hemolytic species. In this review, we briefly describe hemolysis and the characteristics of the major plasma-derived protein scavengers of Hb/h/Fe. Finally, we present novel engineering approaches designed to address the toxicity of these hemolytic by-products.
Collapse
Affiliation(s)
- Ivan S Pires
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA;
| | - François Berthiaume
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA;
| |
Collapse
|
28
|
Costantini S, Belliato M, Ferrari F, Gazzaniga G, Ravasi M, Manera M, De Piero ME, Curcelli A, Cardinale A, Lorusso R. A retrospective analysis of the hemolysis occurrence during extracorporeal membrane oxygenation in a single center. Perfusion 2023; 38:609-621. [PMID: 35225087 DOI: 10.1177/02676591211073768] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Extracorporeal membrane oxygenation (ECMO)-associated hemolysis still represents a serious complication. The present study aimed to investigate those predictive factors, such as flow rates, the use of anticoagulants, and circuit connected dialysis, that might play a pivotal role in hemolysis in adult patients. METHODS This is a retrospective single-center case series of 35 consecutive adult patients undergoing veno-venous ECMO support at our center between April 2014 and February 2020. Daily plasma-free hemoglobin (pfHb) and haptoglobin (Hpt) levels were chosen as hemolysis markers and they were analyzed along with patients' characteristics, daily laboratory findings, and corresponding ECMO system variables, as well as continuous renal replacement therapy (CRRT) when administered, looking for factors influencing their trends over time. RESULTS Among the many settings related to the ECMO support, the presence of CRRT connected to the ECMO circuit has been found associated with both higher daily pfHb levels and lower Hpt levels. After correction for potential confounders, hemolysis was ascribable to circuit-related variables, in particular the membrane oxygenation dead space was associated with an Hpt reduction (B = -215.307, p = 0.004). Moreover, a reduction of ECMO blood flow by 1 L/min has been associated with a daily Hpt consumption of 93.371 mg/dL (p = 0.001). CONCLUSIONS Technical-induced hemolysis during ECMO should be monitored not only when suspected but also during quotidian management and check-ups. While considering the clinical complexity of patients on ECMO support, clinicians should not only be aware of and anticipate possible circuitry malfunctions or inadequate flow settings, but they should also take into account the effects of an ECMO circuit-connected CRRT, as an equally important key factor triggering hemolysis.
Collapse
Affiliation(s)
- Silvia Costantini
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, 19001University of Pavia, Pavia, Italy
| | - Mirko Belliato
- UOC Anestesia e Rianimazione II Cardiopolmonare, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Cardio-Thoracic Surgery Department, Heart & Vascular Centre, 199236Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands
| | - Fiorenza Ferrari
- UOC Anestesia e Rianimazione I, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giulia Gazzaniga
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, 19001University of Pavia, Pavia, Italy
| | - Marta Ravasi
- Department of Clinical-Surgical, Diagnostic and Pediatric Sciences, 19001University of Pavia, Pavia, Italy
| | - Miriam Manera
- UOC Anestesia e Rianimazione II Cardiopolmonare, 18631Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | - Antonio Curcelli
- Cardiac Anesthesia and Intensive Care ICLAS Rapallo, 18591GVM Care & Res, Rapallo, Italy
| | - Alessandra Cardinale
- Department of Statistical Sciences, 9311Sapienza University of Rome, Rome, Italy
| | - Roberto Lorusso
- Cardio-Thoracic Surgery Department, Heart & Vascular Centre, 199236Maastricht University Medical Centre (MUMC+), Maastricht, The Netherlands.,118066Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherland
| |
Collapse
|
29
|
De Simone G, Varricchio R, Ruberto TF, di Masi A, Ascenzi P. Heme Scavenging and Delivery: The Role of Human Serum Albumin. Biomolecules 2023; 13:biom13030575. [PMID: 36979511 PMCID: PMC10046553 DOI: 10.3390/biom13030575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Heme is the reactive center of several metal-based proteins that are involved in multiple biological processes. However, free heme, defined as the labile heme pool, has toxic properties that are derived from its hydrophobic nature and the Fe-atom. Therefore, the heme concentration must be tightly controlled to maintain cellular homeostasis and to avoid pathological conditions. Therefore, different systems have been developed to scavenge either Hb (i.e., haptoglobin (Hp)) or the free heme (i.e., high-density lipoproteins (HDL), low-density lipoproteins (LDL), hemopexin (Hx), and human serum albumin (HSA)). In the first seconds after heme appearance in the plasma, more than 80% of the heme binds to HDL and LDL, and only the remaining 20% binds to Hx and HSA. Then, HSA slowly removes most of the heme from HDL and LDL, and finally, heme transits to Hx, which releases it into hepatic parenchymal cells. The Hx:heme or HSA:heme complexes are internalized via endocytosis mediated by the CD91 and CD71 receptors, respectively. As heme constitutes a major iron source for pathogens, bacteria have evolved hemophores that can extract and uptake heme from host proteins, including HSA:heme. Here, the molecular mechanisms underlying heme scavenging and delivery from HSA are reviewed. Moreover, the relevance of HSA in disease states associated with increased heme plasma concentrations are discussed.
Collapse
Affiliation(s)
- Giovanna De Simone
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
| | - Romualdo Varricchio
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
| | - Tommaso Francesco Ruberto
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
| | - Alessandra di Masi
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
- Centro Linceo Interdisciplinare Beniamino Segre, Accademia Nazionale dei Lincei, 00165 Roma, Italy
| | - Paolo Ascenzi
- Department of Sciences, Section of Biomedical Sciences and Technologies, Roma Tre University, 00146 Roma, Italy
- Accademia Nazionale dei Lincei, 00165 Roma, Italy
| |
Collapse
|
30
|
Scaramellini N, Fischer D, Agarvas AR, Motta I, Muckenthaler MU, Mertens C. Interpreting Iron Homeostasis in Congenital and Acquired Disorders. Pharmaceuticals (Basel) 2023; 16:ph16030329. [PMID: 36986429 PMCID: PMC10054723 DOI: 10.3390/ph16030329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Mammalian cells require iron to satisfy their metabolic needs and to accomplish specialized functions, such as hematopoiesis, mitochondrial biogenesis, energy metabolism, or oxygen transport. Iron homeostasis is balanced by the interplay of proteins responsible for iron import, storage, and export. A misbalance of iron homeostasis may cause either iron deficiencies or iron overload diseases. The clinical work-up of iron dysregulation is highly important, as severe symptoms and pathologies may arise. Treating iron overload or iron deficiency is important to avoid cellular damage and severe symptoms and improve patient outcomes. The impressive progress made in the past years in understanding mechanisms that maintain iron homeostasis has already changed clinical practice for treating iron-related diseases and is expected to improve patient management even further in the future.
Collapse
Affiliation(s)
- Natalia Scaramellini
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milano, Italy
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Dania Fischer
- Department of Anesthesiology, Heidelberg University Hospital, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany
| | - Anand R. Agarvas
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany
| | - Irene Motta
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milano, Italy
- Unit of Medicine and Metabolic Disease, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Martina U. Muckenthaler
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Side, 69120 Heidelberg, Germany
| | - Christina Mertens
- Center for Translational Biomedical Iron Research, Department of Pediatric Oncology, Immunology, and Hematology, University of Heidelberg, INF 350, 69120 Heidelberg, Germany
- Molecular Medicine Partnership Unit, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221564582; Fax: +49-6221564580
| |
Collapse
|
31
|
Zhang R, Di C, Gao H, Zhu Y, Li C, Zhu Z, Wang Q, Wang J, Zhou F, Wang S. Identification of iron metabolism-related genes in the circulation and myocardium of patients with sepsis via applied bioinformatics analysis. Front Cardiovasc Med 2023; 10:1018422. [PMID: 36937929 PMCID: PMC10017502 DOI: 10.3389/fcvm.2023.1018422] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Background Early diagnosis of septic cardiomyopathy is essential to reduce the mortality rate of sepsis. Previous studies indicated that iron metabolism plays a vital role in sepsis-induced cardiomyopathy. Here, we aimed to identify shared iron metabolism-related genes (IMRGs) in the myocardium and blood monocytes of patients with sepsis and to determine their prognostic signature. Methods First, an applied bioinformatics-based analysis was conducted to identify shared IMRGs differentially expressed in the myocardium and peripheral blood monocytes of patients with sepsis. Second, Cytoscape was used to construct a protein-protein interaction network, and immune infiltration of the septic myocardium was assessed using single-sample gene set enrichment analysis. In addition, a prognostic prediction model for IMRGs was established by Cox regression analysis. Finally, the expression of key mRNAs in the myocardium of mice with sepsis was verified using quantitative polymerase chain reaction analysis. Results We screened common differentially expressed genes in septic myocardium and blood monocytes and identified 14 that were related to iron metabolism. We found that HBB, SLC25A37, SLC11A1, and HMOX1 strongly correlated with monocytes and neutrophils, whereas HMOX1 and SLC11A1 strongly correlated with macrophages. We then established a prognostic model (HIF1A and SLC25A37) using the common differentially expressed IMRGs. The prognostic model we established was expected to better aid in diagnosing septic cardiomyopathy. Moreover, we verified these genes using datasets and experiments and found a significant difference between the sepsis and control groups. Conclusion Common differential expression of IMRGs was identified in blood monocytes and myocardium between sepsis and control groups, among which HIF1A and SLC25A37 might predict prognosis in septic cardiomyopathy. The study may help us deeply understand the molecular mechanisms of iron metabolism and aid in the diagnosis and treatment of septic cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Junjie Wang
- *Correspondence: Junjie Wang, ; Feng Zhou, ; Sheng Wang,
| | - Feng Zhou
- *Correspondence: Junjie Wang, ; Feng Zhou, ; Sheng Wang,
| | - Sheng Wang
- *Correspondence: Junjie Wang, ; Feng Zhou, ; Sheng Wang,
| |
Collapse
|
32
|
Prema J, Kurien AA. Hemoglobin Casts in Kidney Biopsies: Etiological Spectrum. Indian J Nephrol 2023; 33:46-49. [PMID: 37197049 PMCID: PMC10185015 DOI: 10.4103/ijn.ijn_454_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/17/2021] [Accepted: 01/09/2022] [Indexed: 05/19/2023] Open
Abstract
Intravascular hemolysis, which is the destruction of red blood cells in circulation, can cause acute kidney injury as the hemoglobin released by the lysed cells is toxic to the tubular epithelial cells. We performed a retrospective analysis of 56 cases of hemoglobin cast nephropathy reported at our institution to analyze the etiological spectrum causing this rare disease. The mean patient age was 41.7 (range: 2-72 years), and the male-to-female ratio was 1.8:1. All patients presented with acute kidney injury. The etiologies include rifampicin-induced, snake bite, autoimmune hemolytic anemia, falciparum malarial infection, leptospiral infection, autoimmune hemolytic anemia, sepsis, non-steroidal anti-inflammatory drugs, ingestion of termite oil, heavy metal poisoning, wasp sting, and valvular heart disease with severe mitral regurgitation. We demonstrate a wide spectrum of conditions associated with hemoglobin casts in the kidney biopsy. Hemoglobin immunostain is required to establish the diagnosis.
Collapse
Affiliation(s)
- Jansi Prema
- Department of Pathology, Renopath, Center for Renal and Urological Pathology, Chennai, Tamil Nadu, India
| | - Anila A Kurien
- Department of Pathology, Renopath, Center for Renal and Urological Pathology, Chennai, Tamil Nadu, India
| |
Collapse
|
33
|
Nuñez-Borque E, Betancor D, Pastor-Vargas C, Fernández-Bravo S, Martin-Blazquez A, Casado-Navarro N, López-Domínguez D, Gómez-López A, Rodriguez Del Rio P, Tramón P, Beitia JM, Moreno-Aguilar C, González-de-Olano D, Goikoetxea MJ, Ibáñez-Sandín MD, Laguna JJ, Cuesta-Herranz J, Esteban V. Personalized diagnostic approach and indirect quantification of extravasation in human anaphylaxis. Allergy 2023; 78:202-213. [PMID: 35841381 PMCID: PMC10087983 DOI: 10.1111/all.15443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Anaphylaxis is the most acute and life-threatening manifestation of allergic disorders. Currently, there is a need to improve its medical management and increase the understanding of its molecular mechanisms. This study aimed to quantify the extravasation underlying human anaphylactic reactions and propose new theragnostic approaches. METHODS Molecular determinations were performed in paired serum samples obtained during the acute phase and at baseline from patients presenting with hypersensitivity reactions. These were classified according to their severity as Grades 1, 2 and 3, the two latter being considered anaphylaxis. Tryptase levels were measured by ImmunoCAP, and serum protein concentration was quantified by Bradford assay. Human serum albumin (HSA) and haemoglobin beta subunit (HBB) levels were determined by Western blot and polyacrylamide gel electrophoresis, respectively. RESULTS A total of 150 patients were included in the study. Of them, 112 had experienced anaphylaxis (83 and 29 with Grade 2 and 3 reactions, respectively). Tryptase diagnostic efficiency substantially improved when considering patients' baseline values (33%-54%) instead of the acute value threshold (21%). Serum protein concentration and HSA significantly decreased in anaphylaxis (p < .0001). HSA levels dropped with the severity of the reaction (6% and 15% for Grade 2 and 3 reactions, respectively). Furthermore, HBB levels increased during the acute phase of all hypersensitivity reactions (p < .0001). CONCLUSIONS For the first time, the extravasation underlying human anaphylaxis has been evaluated based on the severity of the reaction using HSA and protein concentration measurements. Additionally, our findings propose new diagnostic and potential therapeutic approaches for this pathological event.
Collapse
Affiliation(s)
- Emilio Nuñez-Borque
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Diana Betancor
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain.,Department of Allergy, Fundación Jiménez Díaz University Hospital, UAM, Madrid, Spain
| | | | | | | | - Natalia Casado-Navarro
- Department of Clinical Analysis, Fundación Jiménez Díaz University Hospital, UAM, Madrid, Spain
| | - David López-Domínguez
- Clinical Biostatistics Unit, IDIPHIM, Puerta de Hierro Majadahonda University Hospital, Madrid, Spain
| | - Alicia Gómez-López
- Department of Allergy, Fundación Jiménez Díaz University Hospital, UAM, Madrid, Spain
| | - Pablo Rodriguez Del Rio
- Allergy Department, Hospital Infantil Universitario Niño Jesús, Fundación HNJ, IIS-P, Madrid, Spain
| | - Paloma Tramón
- Department of Clinical Analysis, Fundación Jiménez Díaz University Hospital, UAM, Madrid, Spain
| | | | | | | | | | | | - José Julio Laguna
- Allergy Unit, Allergo-Anaesthesia Unit, Hospital Central de la Cruz Roja, Madrid, Spain.,Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| | - Javier Cuesta-Herranz
- Department of Allergy, Fundación Jiménez Díaz University Hospital, UAM, Madrid, Spain
| | - Vanesa Esteban
- Department of Allergy and Immunology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain.,Faculty of Medicine and Biomedicine, Alfonso X El Sabio University, Madrid, Spain
| |
Collapse
|
34
|
Maul TM, Herrera G. Coagulation and hemolysis complications in neonatal ECLS: Role of devices. Semin Fetal Neonatal Med 2022; 27:101405. [PMID: 36437186 DOI: 10.1016/j.siny.2022.101405] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Neonatal extracorporeal life support (ECLS) has enjoyed a long history of successful patient support for both cardiac and respiratory failure. The small size of this patient population has provided many technical challenges from cannulation to pumps and oxygenators. This is further complicated by the relatively meager commercial options for equipment owing to the relatively low utilization of neonatal ECLS compared to adults, which has exploded following the H1N1 epidemic and the availability of the polymethylpentene oxygenator. This paper focuses on the impact of equipment choices on thrombosis and hemolysis in neonatal ECLS and the underlying mechanisms behind them. Based upon the available evidence, it is clear neonatal ECLS requires careful attention to the selection and operation of all parts of the ECLS system. Practitioners should also be aware of the factors that increase blood cell fragility, which can impact decisions around equipment and subsequent operation.
Collapse
Affiliation(s)
- Timothy M Maul
- Nemours Children's Health Florida, Cardiac Center, Orlando, FL, USA; University of Pittsburgh, Department of Bioengineering, Pittsburgh, PA, USA; University of Central Florida College of Medicine, Orlando, FL, USA.
| | - Guillermo Herrera
- Children's National Hospital, 111 Michigan Ave, NW, Washington, D.C., USA.
| |
Collapse
|
35
|
Xia S, Zhang M, Liu H, Dong H, Wu N, Wiedermann CJ, Andaluz-Ojeda D, Chen H, Li N. Heme oxygenase-1 as a predictor of sepsis-induced acute kidney injury: a cross-sectional study. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1177. [PMID: 36467337 PMCID: PMC9708490 DOI: 10.21037/atm-22-4793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/07/2022] [Indexed: 09/08/2023]
Abstract
BACKGROUND Sepsis patients suffer from severe inflammation and poor prognosis. Oxidative stress and local inflammation that results from sepsis can trigger organ injury, including acute kidney injury (AKI). Previous studies have shown that heme oxygenase-1 (HO-1) is overexpressed in proximal tubular cells under oxidative stress and has significant cytoprotective and anti-inflammatory effects. Heme-induced inflammation in sepsis is antagonized by increased tissue expression of heme oxygenase-1 (HO-1), which impacts on AKI development. The investigators observed intrarenal HO-1 expression and corresponding potential increases in plasma and urinary HO-1 protein concentrations in four different AKI models. Since serum levels of HO-1 reflect HO-1 expression, we aimed to investigate whether serum HO-1 could predict the development of AKI in sepsis patient. METHODS A total of 83 sepsis patients were enrolled in this study including septic patients with AKI and sepsis patients without AKI. According to the definition of septic shock and the global kidney diagnostic criteria described in the Kidney Disease: Improving Global Outcomes (KDIGO), patients were allocated to the sepsis and septic shock groups with and without AKI, respectively. The serum levels of HO-1 were measured by enzyme-linked immunosorbent assays (ELISA). Statistical analyses were performed using SPSS software. RESULTS There were statistically significant differences between septic patients with AKI and sepsis patients without AKI in terms of Sequential Organ Failure Assessment (SOFA) score, hospitalization time, and laboratory indicators including serum HO-1, creatine kinase MB (CK-MB), troponin I (TnI), urea, myoglobin (MYO), serum creatinine (Scr), procalcitonin, and activated partial thromboplastin time. Serum levels of alkaline phosphatase (ALP), urea, MYO, Scr, procalcitonin, activated partial thromboplastin time, and prothrombin time exhibited significant differences among the four groups. The concentration of serum HO-1 was higher in sepsis-induced AKI compared with sepsis patients without AKI. Serum HO-1 levels were increased in patients with sepsis shock-induced AKI. The area under the receiver operating characteristic (ROC) curve for serum HO-1 combined with Scr was 0.885 [95% confidence interval (CI): 0.761-1.000]. CONCLUSIONS Serum HO-1 is positively correlated with sepsis-induced AKI. These findings suggest that measurement of serum HO-1 may play a diagnostic and prediction role in sepsis-induced AKI.
Collapse
Affiliation(s)
- Shilin Xia
- Clinical Laboratory of Integrative Medicine, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Meishuai Zhang
- Emergency Department, Dalian University Affiliated Xinhua Hospital, Dalian, China
| | - Han Liu
- Department of Oral Pathology, Dalian Medical University, Dalian, China
| | - Haibin Dong
- Emergency Department, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nannan Wu
- Emergency Department, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Christian J. Wiedermann
- Department of Public Health, Medical Decision Making and HTA, University of Health Sciences, Medical Informatics and Technology, Hall, Austria
| | - David Andaluz-Ojeda
- Intensive Care Unit Department, Hospital Universitario HM Sanchinarro, Hospitales Madrid, Madrid, Spain
| | - Huiqing Chen
- Emergency Department, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Nan Li
- Emergency Department, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
36
|
High-Level Expression of Cell-Surface Signaling System Hxu Enhances Pseudomonas aeruginosa Bloodstream Infection. Infect Immun 2022; 90:e0032922. [PMID: 36169312 PMCID: PMC9584290 DOI: 10.1128/iai.00329-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bloodstream infections (BSIs) caused by Pseudomonas aeruginosa are associated with a high mortality rate in the clinic. However, the fitness mechanisms responsible for the evolution of virulence factors that facilitate the dissemination of P. aeruginosa to the bloodstream are poorly understood. In this study, a transcriptomic analysis of the BSI-associated P. aeruginosa clinical isolates showed a high-level expression of cell-surface signaling (CSS) system Hxu. Whole-genome sequencing and comparative genomics of these isolates showed that a mutation in rnfE gene was responsible for the elevated expression of the Hxu-CSS pathway. Most importantly, deletion of the hxuIRA gene cluster in a laboratory strain PAO1 reduced its BSI capability while overexpression of the HxuIRA pathway promoted BSI in a murine sepsis model. We further demonstrated that multiple components in the blood plasma, including heme, hemoglobin, the heme-scavenging proteins haptoglobin, and hemopexin, as well as the iron-delivery protein transferrin, could activate the Hxu system. Together, these studies suggested that the Hxu-CSS system was an important signal transduction pathway contributing to the adaptive pathogenesis of P. aeruginosa in BSI.
Collapse
|
37
|
Nishibori M. Novel aspects of sepsis pathophysiology: NETs, plasma glycoproteins, endotheliopathy and COVID-19. J Pharmacol Sci 2022; 150:9-20. [PMID: 35926948 PMCID: PMC9197787 DOI: 10.1016/j.jphs.2022.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, sepsis was newly defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Sepsis remains one of the crucial medical problems to be solved worldwide. Although the world health organization has made sepsis a global health priority, there remain no specific and effective therapy for sepsis so far. Indeed, over the previous decades almost all attempts to develop novel drugs have failed. This may be partly ascribable to the multifactorial complexity of the septic cascade and the resultant difficulties of identifying drug targets. In addition, there might still be missing links among dysregulated host responses in vital organs. In this review article, recent advances in understanding of the complex pathophysiology of sepsis are summarized, with a focus on neutrophil extracellular traps (NETs), the significant role of NETs in thrombosis/embolism, and the functional roles of plasma proteins, histidine-rich glycoprotein (HRG) and inter-alpha-inhibitor proteins (IAIPs). The specific plasma proteins that are markedly decreased in the acute phase of sepsis may play important roles in the regulation of blood cells, vascular endothelial cells and coagulation. The accumulating evidence may provide us with insights into a novel aspect of the pathophysiology of sepsis and septic ARDS, including that in COVID-19.
Collapse
Affiliation(s)
- M Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| |
Collapse
|
38
|
Ousaka D, Nishibori M. Is hemolysis a novel therapeutic target in COVID-19? Front Immunol 2022; 13:956671. [PMID: 36059481 PMCID: PMC9438449 DOI: 10.3389/fimmu.2022.956671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/26/2022] [Indexed: 12/15/2022] Open
Affiliation(s)
- Daiki Ousaka
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Masahiro Nishibori
- Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
- *Correspondence: Masahiro Nishibori,
| |
Collapse
|
39
|
Kim DH, Kim SA, Jo YM, Seo H, Kim GY, Cheon SW, Yang SH, Jeon CO, Han NS. Probiotic potential of Tetragenococcus halophilus EFEL7002 isolated from Korean soy Meju. BMC Microbiol 2022; 22:149. [PMID: 35668352 PMCID: PMC9169274 DOI: 10.1186/s12866-022-02561-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Probiotic starters can improve the flavor profile, texture, and health-promoting properties of fermented foods. Tetragenococcus halophilus is a halophilic lactic acid bacterium that is a candidate starter for high-salt fermented foods. However, the species is known to produce biogenic amines, which are associated with neurotoxicity. Here, we report a probiotic starter strain of T. halophilus, EFEL7002, that is suitable for use in high-salt fermentation. RESULTS EFEL7002 was isolated from Korean meju (fermented soybean) and identified as T. halophilus, with 99.85% similarity. The strain is safe for use in food as it is a non-hemolytic and non-biogenic amine producer. EFEL7002 is tolerant to gastrointestinal conditions and can adhere to Caco-2 cells. This strain showed antioxidant, anti-inflammatory, and protective effects against the human gut epithelial barrier. EFEL7002 grew well in media containing 0-18% NaCl showing maximum cell densities in 6% or 12% NaCl. CONCLUSIONS T. halophilus EFEL7002 can be used as a health-promoting probiotic starter culture for various salty fermented foods.
Collapse
Affiliation(s)
- Da Hye Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seul-Ah Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Yu Mi Jo
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Hee Seo
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Ga Yun Kim
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seong Won Cheon
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Su Hwi Yang
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 156-756, Republic of Korea
| | - Nam Soo Han
- Brain Korea 21 Center for Bio-Health Industry, Division of Animal, Horticultural, and Food Sciences, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
40
|
Adane T, Worku M, Tigabu A, Aynalem M. Hematological Abnormalities in Culture Positive Neonatal Sepsis. Pediatric Health Med Ther 2022; 13:217-225. [PMID: 35698626 PMCID: PMC9188337 DOI: 10.2147/phmt.s361188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/30/2022] [Indexed: 12/12/2022] Open
Abstract
Background In neonatal sepsis, anemia, leukocytosis, thrombocytopenia, and a shortened coagulation time are the most common hematologic abnormalities. However, there is inadequate information regarding the hematological abnormalities in neonatal sepsis. Thus, we aimed to determine the magnitude of hematological abnormalities in neonatal sepsis. Methods This is a cross-sectional study that included 143 neonates with culture proven sepsis aged 1–28 days from September 2020 to November 2021 at the University of Gondar Specialized Referral Hospital. The sociodemographic data was collected using a pre-tested structured questionnaire, and the clinical and laboratory data was collected using a data collection sheet. A total of 2 mL of venous blood was taken using a vacutainer collection device for the complete blood count (CBC) and blood culture analysis. A univariate and multivariate logistic regression model was used to investigate factors associated with hematological abnormalities in neonatal sepsis. Statistical significance was declared when a p-value was less than 0.05. Results The prevalence of anemia, thrombocytopenia, and leucopenia in neonatal sepsis was 49% (95% CI: 40.89–57.06), 44.7% (95% CI: 36.8–52.9), and 26.6% (95% CI: 22.01–29.40), respectively. On the other hand, leukocytosis and thrombocytosis were found in 7.7% (95% CI: 4.35–13.25) and 11.9% (95% CI: 7.56–18.21), respectively. Being female (AOR: 3.3; 95% CI: 1.20–3.82) and being aged less than 7 days (AOR: 2.44; 95% CI: 1.6–6.9) were found to be significant predictors of anemia. Conclusion The magnitude of anemia, leucopenia, and thrombocytopenia is high in neonatal sepsis. Furthermore, being female and being younger than 7 days were risk factors for anemia. Thus, the diagnosis and treatment of anemia, leucopenia, and thrombocytopenia prevents further complications in neonatal sepsis.
Collapse
Affiliation(s)
- Tiruneh Adane
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
- Correspondence: Tiruneh Adane, Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, PO Box 196, Gondar, Ethiopia, Tel +251 949914917, Email
| | - Minichil Worku
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Abiye Tigabu
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Melak Aynalem
- Department of Hematology and Immunohematology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
41
|
Lan P, Yu P, Ni J, Zhou J. Higher serum haptoglobin levels were associated with improved outcomes of patients with septic shock. Crit Care 2022; 26:131. [PMID: 35578264 PMCID: PMC9112476 DOI: 10.1186/s13054-022-04007-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 04/25/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Peng Lan
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peihao Yu
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Ni
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiancang Zhou
- Department of Critical Care Medicine, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
42
|
Hao Y, Yuan C, Deng J, Zheng W, Ji Y, Zhou Q. Injectable Self-Healing First-Aid Tissue Adhesives with Outstanding Hemostatic and Antibacterial Performances for Trauma Emergency Care. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16006-16017. [PMID: 35378035 DOI: 10.1021/acsami.2c00877] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soft-tissue trauma emergency caused by natural disasters and traffic accidents is highly prevalent, which can result in massive bleeding, pathogen infection, and even death. Although numerous tissue adhesives can bind to tissue surfaces and cover wounds, most of them still have several deficiencies, including long gelation time, poor adhesive strength, and anti-infection, making them inappropriate for use as first-aid bandages. Herein, injectable and self-healing four-arm-PEG-CHO/polyethyleneimine (PEI) tissue adhesives as liquid first-aid supplies are developed via the dynamic Schiff base reaction for trauma emergency. It is found that the prepared hydrogel adhesives exhibit short and controlled gelation time (9∼88 s), strong adhesive strength, and excellent antibacterial ability. Their hemostatic and antimicrobial performances can be tailored by the mass ratio of four-arm-PEG-CHO/PEI. Moreover, in vitro biological assays display that the developed tissue adhesives possess satisfactory cyto/hemocompatibility. Importantly, in vivo the designed adhesives show fast hemostatic capacity and excellent anti-infection as compared to commercial Prontosan gel. Thus, this work indicates that the four-arm-PEG-CHO/PEI first-aid tissue adhesives display great potential for wound emergency management.
Collapse
Affiliation(s)
- Yuanping Hao
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Changqing Yuan
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Jing Deng
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Weiping Zheng
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Yanjing Ji
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| | - Qihui Zhou
- Department of Stomatology, Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
- School of Stomatology, Qingdao University, Qingdao 266003, China
| |
Collapse
|
43
|
Dhonnar SL, More RA, Adole VA, Jagdale BS, Sadgir NV, Chobe SS. Synthesis, spectral analysis, antibacterial, antifungal, antioxidant and hemolytic activity studies of some new 2,5-disubstituted-1,3,4-oxadiazoles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
44
|
Ousaka D, Nishibori M. [A new approach to combat the sepsis including COVID-19 by accelerating detoxification of hemolysis-related DAMPs]. Nihon Yakurigaku Zasshi 2022; 157:422-425. [PMID: 36328552 DOI: 10.1254/fpj.22073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Sepsis is one of the leading cause of death worldwide. Recently, several studies suggested that free-hemoglobin and heme derived from hemolysis are important factors which may be associated with severity of septic patients including COVID-19. In other words, hemolysis-derived products enhance the inflammatory responses as damage-associated molecular patterns (DAMPs) in both intravascular and extravascular space. In addition, hemoglobin has vasoconstrictive activity by depleting nitric oxide, whereas heme or Fe2+ produce reactive oxygen species (ROS) through Fenton reaction leading to tissue injury. At present, we have no therapeutic options against sepsis-related hemolysis in clinical settings, however, there might be two therapeutic strategies in this regard. One is supplemental therapy of depleted scavenging proteins such as haptoglobin and hemopexin, the other is activation of the internal scavenging system including macrophage-CD163 pathway. These novel targets against sepsis are also critical for the next pandemic. In this review, we summarize the current issues regarding sepsis-related hemolysis including COVID-19, as well as for future perspectives.
Collapse
Affiliation(s)
- Daiki Ousaka
- Department of Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| | - Masahiro Nishibori
- Translational Research and Drug Development, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences
| |
Collapse
|
45
|
Su WL, Chan CY, Cheng CF, Shui HA, Ku HC. Erythrocyte degradation, metabolism, secretion, and communication with immune cells in the blood during sepsis: A review. Tzu Chi Med J 2022; 34:125-133. [PMID: 35465286 PMCID: PMC9020243 DOI: 10.4103/tcmj.tcmj_58_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/22/2021] [Accepted: 05/26/2021] [Indexed: 11/04/2022] Open
Abstract
Sepsis is a health issue that affects millions of people worldwide. It was assumed that erythrocytes were affected by sepsis. However, in recent years, a number of studies have shown that erythrocytes affect sepsis as well. When a pathogen invades the human body, it infects the blood and organs, causing infection and sepsis-related symptoms. Pathogens change the internal environment, increasing the levels of reactive oxygen species, influencing erythrocyte morphology, and causing erythrocyte death, i.e., eryptosis. Characteristics of eryptosis include cell shrinkage, membrane blebbing, and surface exposure of phosphatidylserine (PS). Eryptotic erythrocytes increase immune cell proliferation, and through PS, attract macrophages that remove the infected erythrocytes. Erythrocyte-degraded hemoglobin derivatives and heme deteriorate infection; however, they could also be metabolized to a series of derivatives. The result that erythrocytes play an anti-infection role during sepsis provides new perspectives for treatment. This review focuses on erythrocytes during pathogenic infection and sepsis.
Collapse
|
46
|
Dodd WS, Patel D, Lucke-Wold B, Hosaka K, Chalouhi N, Hoh BL. Adropin decreases endothelial monolayer permeability after cell-free hemoglobin exposure and reduces MCP-1-induced macrophage transmigration. Biochem Biophys Res Commun 2021; 582:105-110. [PMID: 34710824 PMCID: PMC8890595 DOI: 10.1016/j.bbrc.2021.10.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/15/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Cell-free heme-containing proteins mediate endothelial injury in a variety of disease states including subarachnoid hemorrhage and sepsis by increasing endothelial permeability. Inflammatory cells are also attracted to sites of vascular injury by monocyte chemotactic protein 1 (MCP-1) and other chemokines. We have identified a novel peptide hormone, adropin, that protects against hemoglobin-induced endothelial permeability and MCP-1-induced macrophage migration. METHODS Human microvascular endothelial cells were exposed to cell-free hemoglobin (CFH) with and without adropin treatment before measuring monolayer permeability using a FITC-dextran tracer assay. mRNA and culture media were collected for molecular studies. We also assessed the effect of adropin on macrophage movement across the endothelial monolayer using an MCP-1-induced migration assay. RESULTS CFH exposure decreases adropin expression and increases paracellular permeability of human endothelial cells. Treating cells with synthetic adropin protects against the increased permeability observed during the natural injury progression. Cell viability was similar in all groups and Hmox1 expression was not affected by adropin treatment. MCP-1 potently induced macrophage migration across the endothelial monolayer and adropin treatment effectively reduced this phenomenon. CONCLUSIONS Endothelial injury is a hallmark of many disease states. Our results suggest that adropin treatment could be a valuable strategy in preventing heme-mediated endothelial injury and macrophage infiltration. Further investigation of adropin therapy in animal models and human tissue specimens is needed.
Collapse
Affiliation(s)
- William S Dodd
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Devan Patel
- College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Brandon Lucke-Wold
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Koji Hosaka
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Nohra Chalouhi
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Brian L Hoh
- Department of Neurosurgery, College of Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
47
|
Annarapu GK, Nolfi-Donegan D, Reynolds M, Wang Y, Kohut L, Zuckerbraun B, Shiva S. Heme stimulates platelet mitochondrial oxidant production to induce targeted granule secretion. Redox Biol 2021; 48:102205. [PMID: 34891098 PMCID: PMC8661700 DOI: 10.1016/j.redox.2021.102205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/24/2021] [Accepted: 12/04/2021] [Indexed: 10/19/2022] Open
Abstract
Hemolysis, a pathological component of many diseases, is associated with thrombosis and vascular dysfunction. Hemolytic products, including cell-free hemoglobin and free heme directly activate platelets. However, the effect of hemolysis on platelet degranulation, a central process in not only thrombosis, but also inflammatory and mitogenic signaling, remains less clear. Our group showed that hemoglobin-induced platelet activation involved the production of mitochondrial reactive oxygen species (mtROS). However, the molecular mechanism by which extracellular hemolysis induces platelet mtROS production, and whether these mtROS regulate platelet degranulation remains unknown. Here, we demonstrate using isolated human platelets that cell free heme is a more potent agonist for platelet activation than hemoglobin, and stimulates the release of a specific set of molecules, including the glycoprotein thrombospondin-1 (TSP-1), from the α-granule of platelets. We uncover the mechanism of heme-mediated platelet mtROS production which is dependent on the activation of platelet toll-like receptor 4 (TLR4) signaling and leads to the downstream phosphorylation and inhibition of complex-V by the serine kinase Akt. Notably, inhibition of platelet TLR4 or Akt, or scavenging of mtROS prevents heme-induced granule release in vitro. Further, heme-dependent granule release is significantly attenuated in vivo in mice lacking TLR4 or those treated with the mtROS scavenger MitoTEMPO. These data elucidate a novel mechanism of TLR4-mediated mitochondrial regulation, establish the mechanistic link between hemolysis and platelet degranulation, and begin to define the heme and mtROS-dependent platelet secretome. These data have implications for hemolysis-induced thrombo-inflammatory signaling and for the consideration of platelet mitochondria as a therapeutic target in hemolytic disorders.
Collapse
Affiliation(s)
- Gowtham K Annarapu
- Pittsburgh Heart, Lung, Blood, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Deirdre Nolfi-Donegan
- Pittsburgh Heart, Lung, Blood, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA; Department of Pediatrics, Division of Hematology/Oncology, Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Michael Reynolds
- Pittsburgh Heart, Lung, Blood, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Yinna Wang
- Pittsburgh Heart, Lung, Blood, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA
| | - Lauryn Kohut
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Brian Zuckerbraun
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA; Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
48
|
Agnello L, Giglio RV, Bivona G, Scazzone C, Gambino CM, Iacona A, Ciaccio AM, Lo Sasso B, Ciaccio M. The Value of a Complete Blood Count (CBC) for Sepsis Diagnosis and Prognosis. Diagnostics (Basel) 2021; 11:1881. [PMID: 34679578 PMCID: PMC8534992 DOI: 10.3390/diagnostics11101881] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/28/2022] Open
Abstract
Sepsis represents an important global health burden due to its high mortality and morbidity. The rapid detection of sepsis is crucial in order to prevent adverse outcomes and reduce mortality. However, the diagnosis of sepsis is still challenging and many efforts have been made to identify reliable biomarkers. Unfortunately, many investigated biomarkers have several limitations that do not support their introduction in clinical practice, such as moderate diagnostic and prognostic accuracy, long turn-around time, and high-costs. Complete blood count represents instead a precious test that provides a wealth of information on individual health status. It can guide clinicians to early-identify patients at high risk of developing sepsis and to predict adverse outcomes. It has several advantages, being cheap, easy-to-perform, and available in all wards, from the emergency department to the intensive care unit. Noteworthy, it represents a first-level test and an alteration of its parameters must always be considered within the clinical context, and the eventual suspect of sepsis must be confirmed by more specific investigations. In this review, we describe the usefulness of basic and new complete blood count parameters as diagnostic and prognostic biomarkers of sepsis.
Collapse
Affiliation(s)
- Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (L.A.); (R.V.G.); (G.B.); (C.S.); (C.M.G.); (B.L.S.)
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (L.A.); (R.V.G.); (G.B.); (C.S.); (C.M.G.); (B.L.S.)
| | - Giulia Bivona
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (L.A.); (R.V.G.); (G.B.); (C.S.); (C.M.G.); (B.L.S.)
| | - Concetta Scazzone
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (L.A.); (R.V.G.); (G.B.); (C.S.); (C.M.G.); (B.L.S.)
| | - Caterina Maria Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (L.A.); (R.V.G.); (G.B.); (C.S.); (C.M.G.); (B.L.S.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Alessandro Iacona
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Anna Maria Ciaccio
- Unit of Clinical Biochemistry, University of Palermo, 90127 Palermo, Italy;
| | - Bruna Lo Sasso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (L.A.); (R.V.G.); (G.B.); (C.S.); (C.M.G.); (B.L.S.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy; (L.A.); (R.V.G.); (G.B.); (C.S.); (C.M.G.); (B.L.S.)
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| |
Collapse
|
49
|
Food-grade lactic acid bacteria and probiotics as a potential protective tool against erythrotoxic dietary xenobiotics. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
50
|
Complement C5 inhibition protects against hemolytic anemia and acute kidney injury in anthrax peptidoglycan-induced sepsis in baboons. Proc Natl Acad Sci U S A 2021; 118:2104347118. [PMID: 34507997 DOI: 10.1073/pnas.2104347118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 01/20/2023] Open
Abstract
Late-stage anthrax infections are characterized by dysregulated immune responses and hematogenous spread of Bacillus anthracis, leading to extreme bacteremia, sepsis, multiple organ failure, and, ultimately, death. Despite the bacterium being nonhemolytic, some fulminant anthrax patients develop a secondary atypical hemolytic uremic syndrome (aHUS) through unknown mechanisms. We recapitulated the pathology in baboons challenged with cell wall peptidoglycan (PGN), a polymeric, pathogen-associated molecular pattern responsible for the hemostatic dysregulation in anthrax sepsis. Similar to aHUS anthrax patients, PGN induces an initial hematocrit elevation followed by progressive hemolytic anemia and associated renal failure. Etiologically, PGN induces erythrolysis through direct excessive activation of all three complement pathways. Blunting terminal complement activation with a C5 neutralizing peptide prevented the progressive deposition of membrane attack complexes on red blood cells (RBC) and subsequent intravascular hemolysis, heme cytotoxicity, and acute kidney injury. Importantly, C5 neutralization did not prevent immune recognition of PGN and shifted the systemic inflammatory responses, consistent with improved survival in sepsis. Whereas PGN-induced hemostatic dysregulation was unchanged, C5 inhibition augmented fibrinolysis and improved the thromboischemic resolution. Overall, our study identifies PGN-driven complement activation as the pathologic mechanism underlying hemolytic anemia in anthrax and likely other gram-positive infections in which PGN is abundantly represented. Neutralization of terminal complement reactions reduces the hemolytic uremic pathology induced by PGN and could alleviate heme cytotoxicity and its associated kidney failure in gram-positive infections.
Collapse
|