1
|
Henarejos-Castillo I, Sanz FJ, Solana-Manrique C, Sebastian-Leon P, Medina I, Remohi J, Paricio N, Diaz-Gimeno P. Whole-exome sequencing and Drosophila modelling reveal mutated genes and pathways contributing to human ovarian failure. Reprod Biol Endocrinol 2024; 22:153. [PMID: 39633407 PMCID: PMC11616368 DOI: 10.1186/s12958-024-01325-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
BACKGROUND Ovarian failure (OF) is a multifactorial, complex disease presented by up to 1% of women under 40 years of age. Despite 90% of patients being diagnosed with idiopathic OF, the underlying molecular mechanisms remain unknown, making it difficult to personalize treatments for these patients in the clinical setting. Studying the presence and/or accumulation of SNVs at the gene/pathway levels will help describe novel genes and characterize disrupted biological pathways linked with ovarian failure. METHODS Ad-hoc case-control SNV screening conducted from 2020 to 2023 of 150 VCF files WES data included Spanish IVF patients with (n = 118) and without (n = 32) OF (< 40 years of age; mean BMI 22.78) along with GnomAD (n = 38,947) and IGSR (n = 1,271; 258 European female VCF) data for pseudo-control female populations. SNVs were prioritized according to their predicted deleteriousness, frequency in genomic databases, and proportional differences across populations. A burden test was performed to reveal genes with a higher presence of SNVs in the OF cohort in comparison to control and pseudo-control groups. Systematic in-silico analyses were performed to assess the potential disruptions caused by the mutated genes in relevant biological pathways. Finally, genes with orthologues in Drosophila melanogaster were considered to experimentally validate the potential impediments to ovarian function and reproductive potential. RESULTS Eighteen genes had a higher presence of SNVs in the OF population (FDR < 0.05). AK2, CDC27, CFTR, CTBP2, KMT2C, and MTCH2 were associated with OF for the first time and their silenced/knockout forms reduced fertility in Drosophila. We also predicted the disruption of 29 sub-pathways across four signalling pathways (FDR < 0.05). These sub-pathways included the metaphase to anaphase transition during oocyte meiosis, inflammatory processes related to necroptosis, DNA repair mismatch systems and the MAPK signalling cascade. CONCLUSIONS This study sheds light on the underlying molecular mechanisms of OF, providing novel associations for six genes and OF-related infertility, setting a foundation for further biomarker development, and improving precision medicine in infertility.
Collapse
Affiliation(s)
- Ismael Henarejos-Castillo
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Department of Pediatrics, Obstetrics and Gynaecology, University of Valencia, Av. Blasco Ibáñez 15, Valencia, 46010, Spain
| | - Francisco José Sanz
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Department of Genetics, Biotechnology and Biomedicine Institute (BioTecMed), University of Valencia, C. Dr. Moliner, 50, Burjassot, 46100, Spain
| | - Cristina Solana-Manrique
- Department of Genetics, Biotechnology and Biomedicine Institute (BioTecMed), University of Valencia, C. Dr. Moliner, 50, Burjassot, 46100, Spain
- Department of Physiotherapy, Faculty of Health Sciences, European University of Valencia, Passeig de l'Albereda, 7, Valencia, 46010, Spain
| | - Patricia Sebastian-Leon
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Ignacio Medina
- High-Performance Computing Service, University of Cambridge, 7 JJ Thomson Ave, Cambridge, CB3 0RB, UK
| | - José Remohi
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Department of Pediatrics, Obstetrics and Gynaecology, University of Valencia, Av. Blasco Ibáñez 15, Valencia, 46010, Spain
| | - Nuria Paricio
- Department of Genetics, Biotechnology and Biomedicine Institute (BioTecMed), University of Valencia, C. Dr. Moliner, 50, Burjassot, 46100, Spain
| | - Patricia Diaz-Gimeno
- IVI-RMA Global Research Alliance, IVI Foundation, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Valencia, 46026, Spain.
- Department of Genomic & Systems Reproductive Medicine, IVI Foundation, Valencia, Spain - Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, Valencia, 46026, Spain.
| |
Collapse
|
2
|
Ding L, Deng S, Zhang P, Zhang D, Tian Q. Identification of novel variants and candidate genes in women with 46,XX complete gonadal dysgenesis. Reprod Biol Endocrinol 2024; 22:140. [PMID: 39529088 PMCID: PMC11552300 DOI: 10.1186/s12958-024-01309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND 46,XX complete gonadal dysgenesis (46,XX-CGD) is a rare disorder of sexual development (DSD) characterized by primary amenorrhea and a lack of spontaneous pubertal development in individuals with a 46,XX karyotype despite the presence of female internal and external genitalia due to failure of bilateral ovarian development. The condition is genetically heterogeneous, and in most cases, its etiology is unknown. Determining the genetic cause would provide insights into potential targets for genetic diagnosis and counseling. METHODS To clarify the molecular mechanisms of 46,XX complete gonadal dysgenesis in the population of China, whole-exome sequencing (WES) was performed on DNA samples from patients with 46,XX-CGD. In silico analysis was conducted to predict the pathogenicity of the variants. RESULTS We recruited 20 patients with 46,XX-CGD and identified 8 variants in 6 genes, including three homozygous variants in MCM9, POF1B, and PSMC3IP; compound heterozygous variants in TWNK; and three heterozygous variants in TP63 and INSRR, from 7 patients. These variants included 3 recurrent variants and 5 novel variants. CONCLUSIONS This study identified several novel variants, broadening the variant spectrum of 46,XX-CGD. 46,XX-CGD is a genetically heterogeneous condition, and WES is a powerful tool for determining its genetic etiology. The results of this study will aid researchers and clinicians in genetic counseling and suggest that WES is valuable for detecting 46,XX-CGD, which may lead to early interventions for patients.
Collapse
Affiliation(s)
- Leilei Ding
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Shan Deng
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Pan Zhang
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Duoduo Zhang
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China
| | - Qinjie Tian
- National Clinical Research Center for Obstetric & Gynecologic Diseases, Department of Obstetrics and Gynecology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
- Center for Rare Diseases Research, Chinese Academy of Medical Sciences, Beijing, 100730, People's Republic of China.
| |
Collapse
|
3
|
Allouch A, Al-Barazenji T, Al-Shafai M, Abdallah AM. The landscape of genetic variations in non-syndromic primary ovarian insufficiency in the MENA region: a systematic review. Front Endocrinol (Lausanne) 2024; 14:1289333. [PMID: 38737775 PMCID: PMC11082268 DOI: 10.3389/fendo.2023.1289333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/01/2023] [Indexed: 05/14/2024] Open
Abstract
Introduction Premature ovarian insufficiency (POI) is a primary cause of infertility with variable clinical manifestations. POI is a multifactorial disease with both environmental and known genetic etiologies, but data on the genetic variations associated with POI in the Middle East and North Africa (MENA) region are scarce. The aim of this study was to systematically review all known genetic causes of POI in the MENA region. Methods The PubMed, Science Direct, ProQuest, and Embase databases were searched from inception to December 2022 for all reports of genetic variants associated with POI in the MENA region. Clinical and genetic data were collected from eligible articles, and ClinVar and PubMed (dbSNP) were searched for variants. Results Of 1,803 studies, 25 met the inclusion criteria. Fifteen studies were case-control studies and ten were case reports representing 1,080 non-syndromic POI patients in total. Seventy-nine variants in 25 genes associated with POI were reported in ten MENA countries. Of the 79 variants, 46 were rare and 33 were common variants. Of the 46 rare variants, 19 were pathogenic or likely pathogenic according to ACMG classification guidelines and ClinVar. No clear phenotype-genotype association was observed. Male family members carrying pathogenic variants also had infertility problems. Discussion To our best knowledge, this is the first systematic review of the genetic variants associated with POI in the MENA region. Further functional studies are needed to assess the disease-causing molecular mechanisms of these variants. Knowledge of the genetic basis of POI in the Middle East could facilitate early detection of the condition and thus early implementation of therapeutic interventions, paving the way for precision medicine options in specific populations.
Collapse
Affiliation(s)
- Asma Allouch
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Tara Al-Barazenji
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
- Biomedical Research Center, Qatar University, Doha, Qatar
| | - Atiyeh M. Abdallah
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
4
|
Bakhshalizadeh S, Bird AD, Sreenivasan R, Bell KM, Robevska G, van den Bergen J, Asghari-Jafarabadi M, Kueh AJ, Touraine P, Lokchine A, Jaillard S, Ayers KL, Wilhelm D, Sinclair AH, Tucker EJ. A Human Homozygous HELQ Missense Variant Does Not Cause Premature Ovarian Insufficiency in a Mouse Model. Genes (Basel) 2024; 15:333. [PMID: 38540391 PMCID: PMC10970702 DOI: 10.3390/genes15030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 04/02/2024] Open
Abstract
Disruption of meiosis and DNA repair genes is associated with female fertility disorders like premature ovarian insufficiency (POI). In this study, we identified a homozygous missense variant in the HELQ gene (c.596 A>C; p.Gln199Pro) through whole exome sequencing in a POI patient, a condition associated with disrupted ovarian function and female infertility. HELQ, an enzyme involved in DNA repair, plays a crucial role in repairing DNA cross-links and has been linked to germ cell maintenance, fertility, and tumour suppression in mice. To explore the potential association of the HELQ variant with POI, we used CRISPR/Cas9 to create a knock-in mouse model harbouring the equivalent of the human HELQ variant identified in the POI patient. Surprisingly, Helq knock-in mice showed no discernible phenotype, with fertility levels, histological features, and follicle development similar to wild-type mice. Despite the lack of observable effects in mice, the potential role of HELQ in human fertility, especially in the context of POI, should not be dismissed. Larger studies encompassing diverse ethnic populations and alternative functional approaches will be necessary to further examine the role of HELQ in POI. Our results underscore the potential uncertainties associated with genomic variants and the limitations of in vivo animal modelling.
Collapse
Affiliation(s)
- Shabnam Bakhshalizadeh
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Anthony D. Bird
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; (A.D.B.); (D.W.)
- Hudson Institute of Medical Research, Monash Medical Centre, Melbourne, VIC 3168, Australia
- Department of Molecular & Translational Science, Monash University, Melbourne, VIC 3168, Australia
| | - Rajini Sreenivasan
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Katrina M. Bell
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Gorjana Robevska
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Jocelyn van den Bergen
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
| | - Mohammad Asghari-Jafarabadi
- Biostatistics Unit, School of Public Health and Preventative Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3004, Australia;
- Department of Psychiatry, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia
| | - Andrew J. Kueh
- The Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia;
- Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Pitie Salpetriere Hospital, AP-HP, Sorbonne University Medicine, 75013 Paris, France;
| | - Anna Lokchine
- IRSET (Institut de Recherche en Santé, Environnement et Travail), INSERM/EHESP/Univ Rennes/CHU Rennes–UMR_S 1085, 35000 Rennes, France; (A.L.); (S.J.)
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 35033 Rennes, France
| | - Sylvie Jaillard
- IRSET (Institut de Recherche en Santé, Environnement et Travail), INSERM/EHESP/Univ Rennes/CHU Rennes–UMR_S 1085, 35000 Rennes, France; (A.L.); (S.J.)
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, 35033 Rennes, France
| | - Katie L. Ayers
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Dagmar Wilhelm
- Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC 3010, Australia; (A.D.B.); (D.W.)
| | - Andrew H. Sinclair
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| | - Elena J. Tucker
- Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, VIC 3052, Australia; (S.B.); (R.S.); (K.M.B.); (G.R.); (J.v.d.B.); (K.L.A.); (A.H.S.)
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC 3052, Australia
| |
Collapse
|
5
|
Gao M, Zhang T, Chen T, Chen Z, Zhu Z, Wen Y, Qin S, Bao Y, Zhao T, Li H, Liu L, Hao M, Wang J, Wang F, Wang H, Zhou B, Zhang H, Xia G, Wang C. Polycomb repressive complex 1 modulates granulosa cell proliferation in early folliculogenesis to support female reproduction. Theranostics 2024; 14:1371-1389. [PMID: 38389850 PMCID: PMC10879878 DOI: 10.7150/thno.89878] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/10/2024] [Indexed: 02/24/2024] Open
Abstract
Rationale: Premature ovarian insufficiency (POI) is an accelerated reduction in ovarian function inducing infertility. Folliculogenesis defects have been reported to trigger POI as a consequence of ovulation failure. However, the underlying mechanisms remain unclear due to the genetic complexity and heterogeneity of POI. Methods: We used whole genome sequencing (WGS), conditional knockout mouse models combined with laser capture microdissection (LCM), and RNA/ChIP sequencing to analyze the crucial roles of polycomb repressive complex 1 (PRC1) in clinical POI and mammalian folliculogenesis. Results: A deletion mutation of MEL18, the key component of PRC1, was identified in a 17-year-old patient. However, deleting Mel18 in granulosa cells (GCs) did not induce infertility until its homolog, Bmi1, was deleted simultaneously. Double deficiency of BMI1/MEL18 eliminated PRC1 catalytic activity, upregulating cyclin-dependent kinase inhibitors (CDKIs) and thus blocking GC proliferation during primary-to-secondary follicle transition. This defect led to damaged intercellular crosstalk, eventually resulting in gonadotropin response failure and infertility. Conclusions: Our findings highlighted the pivotal role of PRC1 as an epigenetic regulator of gene transcription networks in GC proliferation during early folliculogenesis. In the future, a better understanding of molecular details of PRC1 structural and functional abnormalities may contribute to POI diagnosis and therapeutic options.
Collapse
Affiliation(s)
- Meng Gao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tuo Zhang
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Tengxiang Chen
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Department of Physiology, College of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, 550025, China
| | - Ziqi Chen
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zijian Zhu
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yang Wen
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Shaogang Qin
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yibing Bao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Ting Zhao
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hengxing Li
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Longping Liu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ming Hao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fengchao Wang
- Transgenic Animal Center, National Institute of Biological Sciences, Beijing, 102206, China
| | - Haibin Wang
- Fujian Provincial Key Laboratory of Reproductive Health Research, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian Province, 361005, China
| | - Bo Zhou
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Hua Zhang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Guoliang Xia
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, College of Life Science, Ningxia University, Yinchuan, 750021, China
| | - Chao Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
6
|
Vogt EC, Bratland E, Berland S, Berentsen R, Lund A, Björnsdottir S, Husebye E, Øksnes M. Improving diagnostic precision in primary ovarian insufficiency using comprehensive genetic and autoantibody testing. Hum Reprod 2024; 39:177-189. [PMID: 37953503 PMCID: PMC10767963 DOI: 10.1093/humrep/dead233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/31/2023] [Indexed: 11/14/2023] Open
Abstract
STUDY QUESTION Is it possible to find the cause of primary ovarian insufficiency (POI) in more women by extensive screening? SUMMARY ANSWER Adding next generation sequencing techniques including a POI-associated gene panel, extended whole exome sequencing data, as well as specific autoantibody assays to the recommended diagnostic investigations increased the determination of a potential etiological diagnosis of POI from 11% to 41%. WHAT IS KNOWN ALREADY POI affects ∼1% of women. Clinical presentations and pathogenic mechanisms are heterogeneous and include genetic, autoimmune, and environmental factors, but the underlying etiology remains unknown in the majority of cases. STUDY DESIGN, SIZE, DURATION Prospective cross-sectional study of 100 women with newly diagnosed POI of unknown cause consecutively referred to Haukeland University Hospital, Bergen, Norway, January 2019 to December 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS In addition to standard recommended diagnostic investigations including screening for chromosomal anomalies and premutations in the fragile X mental retardation 1 gene (FMR1) we used whole exome sequencing, including targeted analysis of 103 ovarian-related genes, and assays of autoantibodies against steroid cell antigens. MAIN RESULTS AND THE ROLE OF CHANCE We identified chromosomal aberrations in 8%, FMR1 premutations in 3%, genetic variants related to POI in 16%, and autoimmune POI in 3%. Furthermore in 11% we identified POI associated genetic Variants of unknown signifcance (VUS). A homozygous pathogenic variant in the ZSWIM7 gene (NM_001042697.2) was found in two women, corroborating this as a novel cause of monogenic POI. No associations between phenotypes and genotypes were found. LIMITATIONS, REASONS FOR CAUTION Use of candidate genetic and autoimmune markers limit the possibility to discover new markers. To further investigate the genetic variants, family studies would have been useful. We found a relatively high proportion of genetic variants in women from Africa and lack of genetic diversity in the genomic databases can impact diagnostic accuracy. WIDER IMPLICATIONS OF THE FINDINGS Since no specific clinical or biochemical markers predicted the underlying cause of POI discussion of which tests should be part of diagnostic screening in clinical practice remains open. New technology has altered the availability and effectiveness of genetic testing, and cost-effectiveness analyses are required to aid sustainable diagnostics. STUDY FUNDING/COMPETING INTEREST(S) The study was supported by grants and fellowships from Stiftelsen Kristian Gerhard Jebsen, the Novonordisk Foundation, the Norwegian Research Council, University of Bergen, and the Regional Health Authorities of Western Norway. The authors declare no conflict of interest. TRIAL REGISTRATION NUMBER NCT04082169.
Collapse
Affiliation(s)
- Elinor Chelsom Vogt
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Eirik Bratland
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Siren Berland
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ragnhild Berentsen
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Agnethe Lund
- Department of Gynecology and Obstetrics, Haukeland University Hospital, Bergen, Norway
| | - Sigridur Björnsdottir
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Department of Endocrinology, Metabolism and Diabetes, Karolinska University Hospital, Stockholm, Sweden
| | - Eystein Husebye
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Marianne Øksnes
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
7
|
Xu H, Wang C, Wei H, Li T, Fang Y, Wang B. A novel missense variant in LAMC1 identified in a POI family by whole exome sequencing. Gynecol Endocrinol 2023; 39:2265507. [PMID: 37839437 DOI: 10.1080/09513590.2023.2265507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
OBJECTIVE This study aimed to identify novel pathogenic genes and variants in a Chinese family with premature ovarian insufficiency (POI). METHODS A Chinese POI family was enrolled in this study. Whole exome sequencing was performed on the proband and her mother to identify the potential causative genes and variants and Sanger sequencing was used to confirm the finally identified potential pathogenic variant in the family. RESULTS An assessment of the family pedigree suggested that POI was inherited in an autosomal dominant manner in this family. A novel missense variant of the laminin subunit gamma-1 gene (LAMC1; NM_002293.4: c.3281A > T, p.D1094V) was finally identified in the proband and her affected mother. This variant was not found in any public databases. In silico analysis indicated the amino acid encoded at the variant site was highly conserved among mammals and associated with decreased protein stability and disrupted protein function. Its presence in the POI family was confirmed by Sanger sequencing. CONCLUSIONS This study firstly reported a novel missense variant of LAMC1 in a Chinese POI family, which was inherited in an autosomal dominant manner. This variant may result in the development of POI. Our results provide supporting evidence for a causative role for LAMC1 variants in POI.
Collapse
Affiliation(s)
- Huanfang Xu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Acupuncture and Moxibustion Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Chunyan Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Han Wei
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Tengyan Li
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| | - Yigong Fang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
- Acupuncture and Moxibustion Hospital of China Academy of Chinese Medical Sciences, Beijing, China
| | - Binbin Wang
- Graduate School of Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
- Center for Genetics, National Research Institute for Family Planning, Beijing, China
| |
Collapse
|
8
|
Ding X, Gong X, Fan Y, Cao J, Zhao J, Zhang Y, Wang X, Meng K. DNA double-strand break genetic variants in patients with premature ovarian insufficiency. J Ovarian Res 2023; 16:135. [PMID: 37430352 DOI: 10.1186/s13048-023-01221-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 06/20/2023] [Indexed: 07/12/2023] Open
Abstract
Premature ovarian insufficiency (POI) is a clinically heterogeneous disease that may seriously affect the physical and mental health of women of reproductive age. POI primarily manifests as ovarian function decline and endocrine disorders in women prior to age 40 and is an established cause of female infertility. It is crucial to elucidate the causative factors of POI, not only to expand the understanding of ovarian physiology, but also to provide genetic counselling and fertility guidance to affected patients. Factors leading to POI are multifaceted with genetic factors accounting for 7% to 30%. In recent years, an increasing number of DNA damage-repair-related genes have been linked with the occurrence of POI. Among them, DNA double-strand breaks (DSBs), one of the most damaging to DNA, and its main repair methods including homologous recombination (HR) and non-homologous end joining (NHEJ) are of particular interest. Numerous genes are known to be involved in the regulation of programmed DSB formation and damage repair. The abnormal expression of several genes have been shown to trigger defects in the overall repair pathway and induce POI and other diseases. This review summarises the DSB-related genes that may contribute to the development of POI and their potential regulatory mechanisms, which will help to further establish role of DSB in the pathogenesis of POI and provide theoretical guidance for the study of the pathogenesis and clinical treatment of this disease.
Collapse
Affiliation(s)
- Xuechun Ding
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaowei Gong
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yingying Fan
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Jinghe Cao
- Affiliated Hospital of Jining Medical University, Jining, China
| | - Jingyu Zhao
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Yixin Zhang
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China
- College of Second Clinical Medical, Jining Medical University, Jining, China
| | - Xiaomei Wang
- College of Basic Medicine, Jining Medical University, Jining, China.
| | - Kai Meng
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University, Jining, China.
- Lin He's Academician Workstation of New Medicine and Clinical Translation, Jining Medical University, Jining, China.
| |
Collapse
|
9
|
Shekari S, Stankovic S, Gardner EJ, Hawkes G, Kentistou KA, Beaumont RN, Mörseburg A, Wood AR, Prague JK, Mishra GD, Day FR, Baptista J, Wright CF, Weedon MN, Hoffmann ER, Ruth KS, Ong KK, Perry JRB, Murray A. Penetrance of pathogenic genetic variants associated with premature ovarian insufficiency. Nat Med 2023; 29:1692-1699. [PMID: 37349538 DOI: 10.1038/s41591-023-02405-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/17/2023] [Indexed: 06/24/2023]
Abstract
Premature ovarian insufficiency (POI) affects 1% of women and is a leading cause of infertility. It is often considered to be a monogenic disorder, with pathogenic variants in ~100 genes described in the literature. We sought to systematically evaluate the penetrance of variants in these genes using exome sequence data in 104,733 women from the UK Biobank, 2,231 (1.14%) of whom reported at natural menopause under the age of 40 years. We found limited evidence to support any previously reported autosomal dominant effect. For nearly all heterozygous effects on previously reported POI genes, we ruled out even modest penetrance, with 99.9% (13,699 out of 13,708) of all protein-truncating variants found in reproductively healthy women. We found evidence of haploinsufficiency effects in several genes, including TWNK (1.54 years earlier menopause, P = 1.59 × 10-6) and SOHLH2 (3.48 years earlier menopause, P = 1.03 × 10-4). Collectively, our results suggest that, for the vast majority of women, POI is not caused by autosomal dominant variants either in genes previously reported or currently evaluated in clinical diagnostic panels. Our findings, plus previous studies, suggest that most POI cases are likely oligogenic or polygenic in nature, which has important implications for future clinical genetic studies, and genetic counseling for families affected by POI.
Collapse
Affiliation(s)
- Saleh Shekari
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Stasa Stankovic
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Eugene J Gardner
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Gareth Hawkes
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Katherine A Kentistou
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Robin N Beaumont
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Alexander Mörseburg
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Andrew R Wood
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Julia K Prague
- Exeter Centre of Excellence for Diabetes Research, University of Exeter, Exeter, UK
- Macleod Diabetes and Endocrinology Centre, Royal Devon and Exeter National Health Service Foundation Trust, Exeter, UK
| | - Gita D Mishra
- School of Public Health, Faculty of Medicine, University of Queensland, Brisbane, Queensland, Australia
| | - Felix R Day
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Julia Baptista
- Peninsula Medical School, University of Plymouth, Plymouth, UK
| | - Caroline F Wright
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Michael N Weedon
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Eva R Hoffmann
- Department of Cellular and Molecular Medicine, DNRF Center for Chromosome Stability, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Katherine S Ruth
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Ken K Ong
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - John R B Perry
- MRC Epidemiology Unit, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
- Metabolic Research Laboratory, Wellcome-MRC Institute of Metabolic Science, University of Cambridge, Cambridge, UK.
| | - Anna Murray
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
10
|
Helderman NC, Terlouw D, Bonjoch L, Golubicki M, Antelo M, Morreau H, van Wezel T, Castellví-Bel S, Goldberg Y, Nielsen M. Molecular functions of MCM8 and MCM9 and their associated pathologies. iScience 2023; 26:106737. [PMID: 37378315 PMCID: PMC10291252 DOI: 10.1016/j.isci.2023.106737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Minichromosome Maintenance 8 Homologous Recombination Repair Factor (MCM8) and Minichromosome Maintenance 9 Homologous Recombination Repair Factor (MCM9) are recently discovered minichromosome maintenance proteins and are implicated in multiple DNA-related processes and pathologies, including DNA replication (initiation), meiosis, homologous recombination and mismatch repair. Consistent with these molecular functions, variants of MCM8/MCM9 may predispose carriers to disorders such as infertility and cancer and should therefore be included in relevant diagnostic testing. In this overview of the (patho)physiological functions of MCM8 and MCM9 and the phenotype of MCM8/MCM9 variant carriers, we explore the potential clinical implications of MCM8/MCM9 variant carriership and highlight important future directions of MCM8 and MCM9 research. With this review, we hope to contribute to better MCM8/MCM9 variant carrier management and the potential utilization of MCM8 and MCM9 in other facets of scientific research and medical care.
Collapse
Affiliation(s)
| | - Diantha Terlouw
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laia Bonjoch
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariano Golubicki
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Marina Antelo
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
11
|
Abstract
Ovarian aging is a natural and physiological aging process characterized by loss of quantity and quality of oocyte or follicular pool. As it is generally accepted that women are born with a finite follicle pool that will go through constant decline without renewing, which, together with decreased oocyte quality, makes a severe situation for women who is of advanced age but desperate for a healthy baby. The aim of our review was to investigate mechanisms leading to ovarian aging by discussing both extra- and intra- ovarian factors and to identify genetic characteristics of ovarian aging. The mechanisms were identified as both extra-ovarian alternation of hypothalamic-pituitary-ovarian axis and intra-ovarian alternation of ovary itself, including telomere, mitochondria, oxidative stress, DNA damage, protein homeostasis, aneuploidy, apoptosis and autophagy. Moreover, here we reviewed related Genome-wide association studies (GWAS studies) from 2009 to 2021 and next generation sequencing (NGS) studies of primary ovarian insufficiency (POI) in order to describe genetic characteristics of ovarian aging. It is reasonable to wish more reliable anti-aging interventions for ovarian aging as the exploration of mechanisms and genetics being progressing.
Collapse
Affiliation(s)
- Xiangfei Wang
- Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lingjuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wenpei Xiang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
12
|
Chen M, Jiang H, Zhang C. Selected Genetic Factors Associated with Primary Ovarian Insufficiency. Int J Mol Sci 2023; 24:ijms24054423. [PMID: 36901862 PMCID: PMC10002966 DOI: 10.3390/ijms24054423] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 03/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is a heterogeneous disease resulting from non-functional ovaries in women before the age of 40. It is characterized by primary amenorrhea or secondary amenorrhea. As regards its etiology, although many POI cases are idiopathic, menopausal age is a heritable trait and genetic factors play an important role in all POI cases with known causes, accounting for approximately 20% to 25% of cases. This paper reviews the selected genetic causes implicated in POI and examines their pathogenic mechanisms to show the crucial role of genetic effects on POI. The genetic factors that can be found in POI cases include chromosomal abnormalities (e.g., X chromosomal aneuploidies, structural X chromosomal abnormalities, X-autosome translocations, and autosomal variations), single gene mutations (e.g., newborn ovary homeobox gene (NOBOX), folliculogenesis specific bHLH transcription factor (FIGLA), follicle-stimulating hormone receptor (FSHR), forkhead box L2 (FOXL2), bone morphogenetic protein 15 (BMP15), etc., as well as defects in mitochondrial functions and non-coding RNAs (small ncRNAs and long ncRNAs). These findings are beneficial for doctors to diagnose idiopathic POI cases and predict the risk of POI in women.
Collapse
Affiliation(s)
- Mengchi Chen
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Haotian Jiang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Chunping Zhang
- Department of Cell Biology, College of Medicine, Nanchang University, Nanchang 330006, China
- Correspondence:
| |
Collapse
|
13
|
Ke H, Tang S, Guo T, Hou D, Jiao X, Li S, Luo W, Xu B, Zhao S, Li G, Zhang X, Xu S, Wang L, Wu Y, Wang J, Zhang F, Qin Y, Jin L, Chen ZJ. Landscape of pathogenic mutations in premature ovarian insufficiency. Nat Med 2023; 29:483-492. [PMID: 36732629 PMCID: PMC9941050 DOI: 10.1038/s41591-022-02194-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2022] [Indexed: 02/04/2023]
Abstract
Premature ovarian insufficiency (POI) is a major cause of female infertility due to early loss of ovarian function. POI is a heterogeneous condition, and its molecular etiology is unclear. To identify genetic variants associated with POI, here we performed whole-exome sequencing in a cohort of 1,030 patients with POI. We detected 195 pathogenic/likely pathogenic variants in 59 known POI-causative genes, accounting for 193 (18.7%) cases. Association analyses comparing the POI cohort with a control cohort of 5,000 individuals without POI identified 20 further POI-associated genes with a significantly higher burden of loss-of-function variants. Functional annotations of these novel 20 genes indicated their involvement in ovarian development and function, including gonadogenesis (LGR4 and PRDM1), meiosis (CPEB1, KASH5, MCMDC2, MEIOSIN, NUP43, RFWD3, SHOC1, SLX4 and STRA8) and folliculogenesis and ovulation (ALOX12, BMP6, H1-8, HMMR, HSD17B1, MST1R, PPM1B, ZAR1 and ZP3). Cumulatively, pathogenic and likely pathogenic variants in known POI-causative and novel POI-associated genes contributed to 242 (23.5%) cases. Further genotype-phenotype correlation analyses indicated that genetic contribution was higher in cases with primary amenorrhea compared to that in cases with secondary amenorrhea. This study expands understanding of the genetic landscape underlying POI and presents insights that have the potential to improve the utility of diagnostic genetic screenings.
Collapse
Affiliation(s)
- Hanni Ke
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Shuyan Tang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Ting Guo
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Dong Hou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Xue Jiao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Shan Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Wei Luo
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Bingying Xu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Shidou Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Guangyu Li
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China
| | - Xiaoxi Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuhua Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Lingbo Wang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yanhua Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Feng Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
- Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China.
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.
| | - Li Jin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, China.
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China.
- Center for Reproductive Medicine, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
14
|
The Role of MCM9 in the Etiology of Sertoli Cell-Only Syndrome and Premature Ovarian Insufficiency. J Clin Med 2023; 12:jcm12030990. [PMID: 36769638 PMCID: PMC9917496 DOI: 10.3390/jcm12030990] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Infertility in couples is a common problem, with both female and male factors contributing to similar extents. Severe, congenital disorders affecting fertility are, however, rare. While folliculogenesis and spermatogenesis are generally orchestrated via different mechanisms, some genetic anomalies can impair both female and male gametogenesis. Minichromosome maintenance complex component 9 (MCM9) is involved in DNA repair and mutations of the MCM9 gene have been previously reported in females with premature ovarian insufficiency (POI). MCM9 is also an emerging cancer risk gene. We performed next-generation and Sanger sequencing of fertility and related genes and hormonal and imaging studies in a kindred whose members had POI and disordered spermatogenesis. We identified a homozygous pathogenic MCM9 variant, c.394C>T (p.Arg132*) in three sisters affected by POI due to ovarian dysgenesis and their brother who had normal pubertal development but suffered from non-obstructive azoospermia. Testicular biopsy revealed Sertoli cell-only testicular histopathology. No evidence of early onset cancer was found in the homozygotic family members, but they were all young (<30 years) at the time of the study. In the male patient the homozygous MCM9 variant led to normal pubertal development and hormonal levels but caused a Sertoli-cell-only syndrome with non-obstructive azoospermia. In the homozygous females studied, the clinical, hormonal, and gonadal phenotypes revealed ovarian dysgenesis consistent with previous reports. Active screening for potential colorectal and other cancer risks in the homozygotic MCM9 subjects has been instigated.
Collapse
|
15
|
Sperduti S, Paradiso E, Anzivino C, Lazzaretti C, Limoncella S, D'Alessandro S, Roy N, Reggianini F, Ferrari T, Melli B, La Sala GB, Nicoli A, Daolio J, Villani MT, Tagliavini S, Trenti T, Potì F, Sandhowe R, Centonze C, Lispi M, Simoni M, Casarini L. LH increases the response to FSH in granulosa-lutein cells from sub/poor-responder patients in vitro. Hum Reprod 2023; 38:103-112. [PMID: 36367827 DOI: 10.1093/humrep/deac246] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 10/11/2022] [Indexed: 11/13/2022] Open
Abstract
STUDY QUESTION Does LH addition to FSH in vitro recover the human primary granulosa lutein cell (hGLC) sub/poor-response? SUMMARY ANSWER A picomolar concentration of LH may recover the FSH-induced cAMP and progesterone production of hGLC from sub/poor-responder women. WHAT IS KNOWN ALREADY Clinical studies suggested that FSH and LH co-treatment may be beneficial for the ovarian response of sub/poor-responders undergoing ovarian stimulation during ART. STUDY DESIGN, SIZE, DURATION hGLC samples from 286 anonymous women undergoing oocyte retrieval for ART were collected from October 2017 to February 2021. PARTICIPANTS/MATERIALS, SETTING, METHODS hGLCs from women undergoing ovarian stimulation during ART were blindly purified, cultured, genotyped and treated in vitro by increasing concentrations of FSH (nM) ±0.5 nM LH. cAMP and progesterone levels produced after 3 and 24 h, respectively, were measured. In vitro data were stratified a posteriori, according to the donors' ovarian response, into normo-, sub- and poor-responder groups and statistically compared. The effects of LH addition to FSH were compared with those obtained by FSH alone in all the groups as well. MAIN RESULTS AND THE ROLE OF CHANCE hGLCs from normo-responders were shown to have higher sensitivity to FSH treatment than sub-/poor-responders in vitro. Equimolar FSH concentrations induced higher cAMP (about 2.5- to 4.2-fold), and progesterone plateau levels (1.2- to 2.1-fold), in cells from normo-responder women than those from sub-/poor-responders (ANOVA; P < 0.05). The addition of LH to the cell treatment significantly increased overall FSH efficacy, indicated by cAMP and progesterone levels, within all groups (P > 0.05). Interestingly, these in vitro endpoints, collected from the normo-responder group treated with FSH alone, were similar to those obtained in the sub-/poor-responder group under FSH + LH treatment. No different allele frequencies and FSH receptor (FSHR) gene expression levels between groups were found, excluding genetics of gonadotropin and their receptors as a factor linked to the normo-, sub- and poor-response. In conclusion, FSH elicits phenotype-specific ovarian lutein cell response. Most importantly, LH addition may fill the gap between cAMP and steroid production patterns between normo- and sub/poor-responders. LIMITATIONS, REASONS FOR CAUTION Although the number of experimental replicates is overall high for an in vitro study, clinical trials are required to demonstrate if the endpoints evaluated herein reflect parameters of successful ART. hGLC retrieved after ovarian stimulation may not fully reproduce the response to hormones of granulosa cells from the antral follicular stage. WIDER IMPLICATIONS OF THE FINDINGS This in vitro assay may describe the individual response to personalize ART stimulation protocol, according to the normo-, sub- and poor-responder status. Moreover, this in vitro study supports the need to conduct optimally designed, randomized clinical trials exploring the personalized use of LH in assisted reproduction. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by Merck KGaA. M.L. and C.C. are employees of Merck KGaA or of the affiliate Merck Serono SpA. Other authors have no competing interests to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Samantha Sperduti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Claudia Anzivino
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvia Limoncella
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara D'Alessandro
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,International Ph.D. School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy
| | - Neena Roy
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesca Reggianini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tommaso Ferrari
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Melli
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanni Battista La Sala
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Nicoli
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Jessica Daolio
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Maria Teresa Villani
- Department of Obstetrics and Gynaecology, Fertility Center, ASMN, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Simonetta Tagliavini
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL/Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Tommaso Trenti
- Department of Laboratory Medicine and Pathological Anatomy, Azienda USL/Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Francesco Potì
- Department of Medicine and Surgery, Unit of Neurosciences, University of Parma, Parma, Italy
| | - Reinhild Sandhowe
- Centre of Reproductive Medicine and Andrology, University Hospital Münster, Münster, Germany
| | - Chiara Centonze
- Medical Affair, Merck Serono SpA (Rome, Italy), An Affiliate of Merck KGaA, Darmstadt, Germany
| | - Monica Lispi
- International Ph.D. School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Modena, Italy.,Global Medical Affair, Merck KGaA, Darmstadt, Germany
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy.,Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.,Center for Genomic Research, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
16
|
Wang Y, Jiang J, Zhang J, Fan P, Xu J. Research Progress on the Etiology and Treatment of Premature Ovarian Insufficiency. Biomed Hub 2023; 8:97-107. [PMID: 38094192 PMCID: PMC10718577 DOI: 10.1159/000535508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Background Menopause in women marks the knot of reproductive life, and menopause is defined as the last menstrual period in a woman, but this is caused by the failure of the ovarian reserve. The average age of natural menopause in the general population of women has remained around 50-52 years. Premature ovarian insufficiency (POI) is a debilitating clinical syndrome that manifests as a decline in ovarian function in women under 40. This condition is a prominent cause of female infertility. Summary POI is a debilitating condition that not only wreaks havoc on patients' physical and mental well-being but also imposes substantial mental, psychological, and economic burdens, particularly on women. In addition to diminished fertility, individuals afflicted with POI face an elevated risk of developing debilitating conditions such as osteoporosis and cardiovascular disease. The etiologies of POI are highly heterogeneous, and it can be caused by spontaneous genetic defects or induced by autoimmune diseases, infections, and iatrogenic or environmental factors. Alarmingly, idiopathic POI, a subtype characterized by an unknown etiology, accounts for more than half of all POI cases. Currently, clinical interventions for POI primarily consist of hormone replacement therapy. Fertility preservation methods are cryopreservation of embryos, oocytes, and ovarian tissue. Immunological interventions, gene editing techniques, and stem cell-based therapies are being explored to unravel the diverse etiologies and underlying mechanisms of POI, thereby enabling the identification of optimal therapeutic interventions. These innovative approaches offer unprecedented opportunities to advance the field of reproductive medicine. Key Messages The main aim of this paper was to offer a succinct summary of the latest research breakthroughs concerning the elucidation of the mechanisms governing the origin and management of POI.
Collapse
Affiliation(s)
- Yuxian Wang
- Department of Reproductive Medicine Centre, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Jianqiu Jiang
- Department of Reproductive Medicine Centre, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Jiali Zhang
- Department of Reproductive Medicine Centre, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Peiyin Fan
- Department of Reproductive Medicine Centre, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Jian Xu
- Department of Reproductive Medicine Centre, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| |
Collapse
|
17
|
Auwerx C, Lepamets M, Sadler MC, Patxot M, Stojanov M, Baud D, Mägi R, Porcu E, Reymond A, Kutalik Z. The individual and global impact of copy-number variants on complex human traits. Am J Hum Genet 2022; 109:647-668. [PMID: 35240056 PMCID: PMC9069145 DOI: 10.1016/j.ajhg.2022.02.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/09/2022] [Indexed: 12/25/2022] Open
Abstract
The impact of copy-number variations (CNVs) on complex human traits remains understudied. We called CNVs in 331,522 UK Biobank participants and performed genome-wide association studies (GWASs) between the copy number of CNV-proxy probes and 57 continuous traits, revealing 131 signals spanning 47 phenotypes. Our analysis recapitulated well-known associations (e.g., 1q21 and height), revealed the pleiotropy of recurrent CNVs (e.g., 26 and 16 traits for 16p11.2-BP4-BP5 and 22q11.21, respectively), and suggested gene functionalities (e.g., MARF1 in female reproduction). Forty-eight CNV signals (38%) overlapped with single-nucleotide polymorphism (SNP)-GWASs signals for the same trait. For instance, deletion of PDZK1, which encodes a urate transporter scaffold protein, decreased serum urate levels, while deletion of RHD, which encodes the Rhesus blood group D antigen, associated with hematological traits. Other signals overlapped Mendelian disorder regions, suggesting variable expressivity and broad impact of these loci, as illustrated by signals mapping to Rotor syndrome (SLCO1B1/3), renal cysts and diabetes syndrome (HNF1B), or Charcot-Marie-Tooth (PMP22) loci. Total CNV burden negatively impacted 35 traits, leading to increased adiposity, liver/kidney damage, and decreased intelligence and physical capacity. Thirty traits remained burden associated after correcting for CNV-GWAS signals, pointing to a polygenic CNV architecture. The burden negatively correlated with socio-economic indicators, parental lifespan, and age (survivorship proxy), suggesting a contribution to decreased longevity. Together, our results showcase how studying CNVs can expand biological insights, emphasizing the critical role of this mutational class in shaping human traits and arguing in favor of a continuum between Mendelian and complex diseases.
Collapse
Affiliation(s)
- Chiara Auwerx
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Maarja Lepamets
- Institute of Molecular and Cell Biology, University of Tartu, Tartu 51010, Estonia; Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Marie C Sadler
- Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Marion Patxot
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland
| | - Miloš Stojanov
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, CHUV, Lausanne 1011, Switzerland
| | - David Baud
- Materno-fetal and Obstetrics Research Unit, Department Woman-Mother-Child, CHUV, Lausanne 1011, Switzerland
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu 51010, Estonia
| | - Eleonora Porcu
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland.
| | - Zoltán Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland; Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland; University Center for Primary Care and Public Health, Lausanne 1010, Switzerland.
| |
Collapse
|
18
|
Biallelic mutations in PSMC3IP are associated with secondary amenorrhea: expanding the spectrum of premature ovarian insufficiency. J Assist Reprod Genet 2022; 39:1177-1181. [PMID: 35352317 PMCID: PMC9107541 DOI: 10.1007/s10815-022-02471-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022] Open
Abstract
Premature ovarian insufficiency (POI) has a strong genetic component, but, in most cases, the etiology remains unidentified. PSMC3IP is an autosomal recessive gene for POI and ovarian dysgenesis, and so far, biallelic mutations in this gene have been described in only four independent families, with all affected members showing primary amenorrhea. Here, we report on the first family with recessive variants in the PSMC3IP gene and POI in a patient with secondary amenorrhea. Whole-exome sequencing (WES) was performed on a 29-year-old woman with secondary amenorrhea and POI; she was found to carry compound heterozygous variants in the PSMC3IP gene: c.206_208delAGA and c.189 G > T. Her younger sister, who also presented with a suspect of POI due to infertility and very low levels of anti-müllerian hormone (AMH), was found to carry the same PSMC3IP variants. Our case report shows the importance to include PSMC3IP in designed POI NGS panels or in WES/WGS studies in patients with either primary or secondary amenorrhea.
Collapse
|
19
|
Turkyilmaz A, Alavanda C, Ates EA, Geckinli BB, Polat H, Gokcu M, Karakaya T, Cebi AH, Soylemez MA, Guney Aİ, Ata P, Arman A. Whole-exome sequencing reveals new potential genes and variants in patients with premature ovarian insufficiency. J Assist Reprod Genet 2022; 39:695-710. [PMID: 35066699 PMCID: PMC8995228 DOI: 10.1007/s10815-022-02408-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/19/2022] [Indexed: 10/19/2022] Open
Abstract
PURPOSE Premature ovarian insufficiency (POI) is a heterogeneous disorder characterized by the cessation of menstrual cycles before the age of 40 years due to the depletion or dysfunction of the ovarian follicles. POI is a highly heterogeneous disease in terms of etiology. The aim of this study is to reveal the genetic etiology in POI patients. METHODS A total of 35 patients (mean age: 27.2 years) from 28 different families diagnosed with POI were included in the study. Karyotype, FMR1 premutation analysis, single nucleotide polymorphism (SNP) array, and whole-exome sequencing (WES) were conducted to determine the genetic etiology of patients. RESULTS A total of 35 patients with POI were first evaluated by karyotype analysis, and chromosomal anomaly was detected in three (8.5%) and FMR1 premutation was detected in six patients (17%) from two different families. A total of 29 patients without FMR1 premutation were included in the SNP array analysis, and one patient had a 337-kb deletion in the chromosome 6q26 region including PARK2 gene, which was thought to be associated with POI. Twenty-nine cases included in SNP array analysis were evaluated simultaneously with WES analysis, and genetic variant was detected in 55.1% (16/29). CONCLUSION In the present study, rare novel variants were identified in genes known to be associated with POI, which contribute to the mutation spectrum. The effects of detected novel genes and variations on different pathways such as gonadal development, meiosis and DNA repair, or metabolism need to be investigated by experimental studies. Molecular etiology allows accurate genetic counseling to the patient and family as well as fertility planning.
Collapse
Affiliation(s)
- Ayberk Turkyilmaz
- Department of Medical Genetics, School of Medicine, Karadeniz Technical University, Trabzon, Turkey.
| | - Ceren Alavanda
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Esra Arslan Ates
- grid.414850.c0000 0004 0642 8921Department of Medical Genetics, Marmara University Pendik Training and Research Hospital, Istanbul, Turkey
| | - Bilgen Bilge Geckinli
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Hamza Polat
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Mehmet Gokcu
- grid.31564.350000 0001 2186 0630Department of Medical Genetics, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Taner Karakaya
- Department of Medical Genetics, Isparta City Hospital, Isparta, Turkey
| | - Alper Han Cebi
- grid.31564.350000 0001 2186 0630Department of Medical Genetics, School of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Mehmet Ali Soylemez
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ahmet İlter Guney
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Pinar Ata
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| | - Ahmet Arman
- grid.16477.330000 0001 0668 8422Department of Medical Genetics, School of Medicine, Marmara University, Istanbul, Turkey
| |
Collapse
|
20
|
Gorsi B, Hernandez E, Moore MB, Moriwaki M, Chow CY, Coelho E, Taylor E, Lu C, Walker A, Touraine P, Nelson LM, Cooper AR, Mardis ER, Rajkovic A, Yandell M, Welt CK. Causal and Candidate Gene Variants in a Large Cohort of Women With Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2022; 107:685-714. [PMID: 34718612 PMCID: PMC9006976 DOI: 10.1210/clinem/dgab775] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT A genetic etiology likely accounts for the majority of unexplained primary ovarian insufficiency (POI). OBJECTIVE We hypothesized that heterozygous rare variants and variants in enhanced categories are associated with POI. DESIGN The study was an observational study. SETTING Subjects were recruited at academic institutions. PATIENTS Subjects from Boston (n = 98), the National Institutes of Health and Washington University (n = 98), Pittsburgh (n = 20), Italy (n = 43), and France (n = 32) were diagnosed with POI (amenorrhea with an elevated follicle-stimulating hormone level). Controls were recruited for health in old age or were from the 1000 Genomes Project (total n = 233). INTERVENTION We performed whole exome sequencing (WES), and data were analyzed using a rare variant scoring method and a Bayes factor-based framework for identifying genes harboring pathogenic variants. We performed functional studies on identified genes that were not previously implicated in POI in a D. melanogaster model. MAIN OUTCOME Genes with rare pathogenic variants and gene sets with increased burden of deleterious variants were identified. RESULTS Candidate heterozygous variants were identified in known genes and genes with functional evidence. Gene sets with increased burden of deleterious alleles included the categories transcription and translation, DNA damage and repair, meiosis and cell division. Variants were found in novel genes from the enhanced categories. Functional evidence supported 7 new risk genes for POI (USP36, VCP, WDR33, PIWIL3, NPM2, LLGL1, and BOD1L1). CONCLUSIONS Candidate causative variants were identified through WES in women with POI. Aggregating clinical data and genetic risk with a categorical approach may expand the genetic architecture of heterozygous rare gene variants causing risk for POI.
Collapse
Affiliation(s)
- Bushra Gorsi
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Edgar Hernandez
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Marvin Barry Moore
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Mika Moriwaki
- Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, UT, USA
| | - Clement Y Chow
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Emily Coelho
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Elaine Taylor
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Claire Lu
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Amanda Walker
- University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Philippe Touraine
- Sorbonne Universite, Hôpital Universitaire Pitié Salpêtrière-Charles Foix, Service d’Endocrinologie et Médecine de la Reproduction, Centre de Maladies Endocriniennes Rares de la Croissance et du Développement, Centre de Pathologies Gynécologiques Rares, Paris, France
| | | | | | - Elaine R Mardis
- Institute for Genomic Medicine, Nationwide Children’s Hospital, Ohio State University College of Medicine, Columbus, OH, USA
| | - Aleksander Rajkovic
- Department of Pathology, University of California San Francisco School of Medicine, San Francisco, CA, USA
| | - Mark Yandell
- Utah Center for Genetic Discovery, Department of Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Corrine K Welt
- Division of Endocrinology, Metabolism and Diabetes, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
21
|
Abstract
Primary ovarian insufficiency (POI) is determined by exhaustion of follicles in the ovaries, which leads to infertility before the age of 40 years. It is characterized by a strong familial and heterogeneous genetic background. Therefore, we will mainly discuss the genetic basis of POI in this review. We identified 107 genes related to POI etiology in mammals described by several independent groups. Thirty-four of these genes (AARS2, AIRE, ANTXR1, ATM, BMPR1B, CLPP, CYP17A1, CYP19A1, DCAF17, EIF2B, ERAL1, FANCA, FANCC, FMR1, FOXL2, GALT, GNAS, HARS2, HSD17B4, LARS2, LMNA, MGME1, NBN, PMM2, POLG, PREPL, RCBTB1, RECQL2/3/4, STAR, TWNK, and XRCC4/9) have been linked to syndromic POI and are mainly implicated in metabolism function and meiosis/DNA repair. In addition, the majority of genes associated with nonsyndromic POI, widely expanded by high-throughput techniques over the last decade, have been implicated in ovarian development and meiosis/DNA repair pathways (ATG7, ATG9, ANKRD31, BMP8B, BMP15, BMPR1A, BMPR1B, BMPR2, BNC1, BRCA2, CPEB1, C14ORF39, DAZL, DIAPH2, DMC1, ERCC6, FANCL, FANCM, FIGLA, FSHR, GATA4, GDF9, GJA4, HELQ, HSF2BP, HFM1, INSL3, LHCGR, LHX8, MCM8, MCM9, MEIOB, MSH4, MSH5, NANOS3, NOBOX, NOTCH2, NR5A1, NUP107, PGRMC1, POLR3H, PRDM1, PRDM9, PSMC3IP, SOHLH1, SOHLH2, SPIDR, STAG3, SYCE1, TP63, UBR2, WDR62, and XRCC2), whereas a few are related to metabolic functions (EIF4ENIF1, KHDRBS1, MRPS22, POLR2C). Some genes, such as STRA8, FOXO3A, KIT, KITL, WNT4, and FANCE, have been shown to cause ovarian insufficiency in rodents, but mutations in these genes have yet to be elucidated in women affected by POI. Lastly, some genes have been rarely implicated in its etiology (AMH, AMHR2, ERRC2, ESR1, INHA, LMN4, POF1B, POU5F1, REC8, SMC1B). Considering the heterogeneous genetic and familial background of this disorder, we hope that an overview of literature data would reinforce that genetic screening of those patients is worthwhile and helpful for better genetic counseling and patient management.
Collapse
Affiliation(s)
- Monica Malheiros França
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil; Section of Endocrinology Diabetes and Metabolism, Department of Medicine, The University of Chicago, Chicago, IL, USA.
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil.
| |
Collapse
|
22
|
Mei L, Huang L, Huang Y, Wu X, He H, He X, Su Z, Li P. Two novel biallelic mutations in PSMC3IP in a patient affected by premature ovarian insufficiency. Mol Med Rep 2021; 25:45. [PMID: 34878148 DOI: 10.3892/mmr.2021.12561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/17/2021] [Indexed: 11/05/2022] Open
Abstract
Premature ovarian insufficiency (POI) is a heterogeneous condition occurring when a woman experiences a loss of ovarian activity before the age of 40. POI is one of the most common reproductive endocrine diseases in women of childbearing age. The present study investigated the clinical manifestations and genetic features of a Chinese patient affected by POI. Next‑generation whole‑exome capture sequencing with Sanger direct sequencing were applied to the proband and her clinically unaffected family members. Two novel compound heterozygous mutations were identified in PSMC3IP. The first was a splicing mutation (c.597+1G>T) that was inherited from her father, whereas the second mutation (c.268G>C p.D90H) was discovered in both her mother and younger sister. The two mutations were co‑segregated with the disease phenotype in the family. In conclusion, the findings of the present study further support the key role of PSMC3IP in the etiology of POI and provide a novel insight into elucidating the mechanisms of female infertility.
Collapse
Affiliation(s)
- Libin Mei
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Lingling Huang
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Yanru Huang
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Xiaoling Wu
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Huang He
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Xuemei He
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Zhiying Su
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| | - Ping Li
- Department of Reproductive Medicine, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, Fujian 361003, P.R. China
| |
Collapse
|
23
|
Bestetti I, Barbieri C, Sironi A, Specchia V, Yatsenko SA, De Donno MD, Caslini C, Gentilini D, Crippa M, Larizza L, Marozzi A, Rajkovic A, Toniolo D, Bozzetti MP, Finelli P. Targeted whole exome sequencing and Drosophila modelling to unveil the molecular basis of primary ovarian insufficiency. Hum Reprod 2021; 36:2975-2991. [PMID: 34480478 PMCID: PMC8523209 DOI: 10.1093/humrep/deab192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 07/29/2021] [Indexed: 11/25/2022] Open
Abstract
STUDY QUESTION Can a targeted whole exome sequencing (WES) on a cohort of women showing a primary ovarian insufficiency (POI) phenotype at a young age, combined with a study of copy number variations, identify variants in candidate genes confirming their deleterious effect on ovarian function? SUMMARY ANSWER This integrated approach has proved effective in identifying novel candidate genes unveiling mechanisms involved in POI pathogenesis. WHAT IS KNOWN ALREADY POI, a condition occurring in 1% of women under 40 years of age, affects women’s fertility leading to a premature loss of ovarian reserve. The genetic causes of POI are highly heterogeneous and several determinants contributing to its prominent oligogenic inheritance pattern still need to be elucidated. STUDY DESIGN, SIZE, DURATION WES screening for pathogenic variants of 41 Italian women with non-syndromic primary and early secondary amenorrhoea occurring before age 25 was replicated on another 60 POI patients, including 35 French and 25 American women, to reveal statistically significant shared variants. PARTICIPANTS/MATERIALS, SETTING, METHODS The Italian POI patients’ DNA were processed by targeted WES including 542 RefSeq genes expressed or functioning during distinct reproductive or ovarian processes (e.g. DNA repair, meiosis, oocyte maturation, folliculogenesis and menopause). Extremely rare variants were filtered and selected by means of a Fisher Exact test using several publicly available datasets. A case-control Burden test was applied to highlight the most significant genes using two ad-hoc control female cohorts. To support the obtained data, the identified genes were screened on a novel cohort of 60 Caucasian POI patients and the same case-control analysis was carried out. Comparative analysis of the human identified genes was performed on mouse and Drosophila melanogaster by analysing the orthologous genes in their ovarian phenotype, and two of the selected genes were fruit fly modelled to explore their role in fertility. MAIN RESULTS AND THE ROLE OF CHANCE The filtering steps applied to search for extremely rare pathogenic variants in the Italian cohort revealed 64 validated single-nucleotide variants/Indels in 59 genes in 30 out of 41 screened women. Burden test analysis highlighted 13 ovarian genes as being the most enriched and significant. To validate these findings, filtering steps and Burden analysis on the second cohort of Caucasian patients yielded 11 significantly enriched genes. Among them, AFP, DMRT3, MOV10, FYN and MYC were significant in both patient cohorts and hence were considered strong candidates for POI. Mouse and Drosophila comparative analysis evaluated a conserved role through the evolution of several candidates, and functional studies using a Drosophila model, when applicable, supported the conserved role of the MOV10 armitage and DMRT3 dmrt93B orthologues in female fertility. LARGE SCALE DATA The datasets for the Italian cohort generated during the current study are publicly available at ClinVar database (http://www.ncbi.nlm.nih.gov/clinvar/): accession numbers SCV001364312 to SCV001364375. LIMITATIONS, REASONS FOR CAUTION This is a targeted WES analysis hunting variants in candidate genes previously identified by different genomic approaches. For most of the investigated sporadic cases, we could not track the parental inheritance, due to unavailability of the parents’ DNA samples; in addition, we might have overlooked additional rare variants in novel candidate POI genes extracted from the exome data. On the contrary, we might have considered some inherited variants whose clinical significance is uncertain and might not be causative for the patients’ phenotype. Additionally, as regards the Drosophila model, it will be extremely important in the future to have more mutants or RNAi strains available for each candidate gene in order to validate their role in POI pathogenesis. WIDER IMPLICATIONS OF THE FINDINGS The genomic, statistical, comparative and functional approaches integrated in our study convincingly support the extremely heterogeneous oligogenic nature of POI, and confirm the maintenance across the evolution of some key genes safeguarding fertility and successful reproduction. Two principal classes of genes were identified: (i) genes primarily involved in meiosis, namely in synaptonemal complex formation, asymmetric division and oocyte maturation and (ii) genes safeguarding cell maintenance (piRNA and DNA repair pathways). STUDY FUNDING/COMPETING INTEREST(S) This work was supported by Italian Ministry of Health grants ‘Ricerca Corrente’ (08C621_2016 and 08C924_2019) provided to IRCCS Istituto Auxologico Italiano, and by ‘Piano Sostegno alla Ricerca’ (PSR2020_FINELLI_LINEA_B) provided by the University of Milan; M.P.B. was supported by Telethon-Italy (grant number GG14181). There are no conflicts of interest.
Collapse
Affiliation(s)
- I Bestetti
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - C Barbieri
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milan, Italy
| | - A Sironi
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - V Specchia
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - S A Yatsenko
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, Pittsburgh, PA, USA.,Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - M D De Donno
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - C Caslini
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - D Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - M Crippa
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - L Larizza
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - A Marozzi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| | - A Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San, Francisco, San Francisco, CA, USA.,Institute of Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - D Toniolo
- Division of Genetics and Cell Biology, San Raffaele Research Institute and Vita Salute University, Milan, Italy
| | - M P Bozzetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - P Finelli
- Research Laboratory of Medical Cytogenetics and Molecular Genetics, IRCCS Istituto Auxologico Italiano, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Segrate, Milan, Italy
| |
Collapse
|
24
|
Rydze RT, Patton B, Briley SM, Salazar-Torralba H, Gipson G, James R, Rajkovic A, Thompson T, Pangas SA. Deletion of Gremlin-2 alters estrous cyclicity and disrupts female fertility in mice. Biol Reprod 2021; 105:1205-1220. [PMID: 34333627 DOI: 10.1093/biolre/ioab148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
Members of the differential screening-selected gene aberrative in neuroblastoma (DAN) protein family are developmentally conserved extracellular binding proteins that antagonize bone morphogenetic protein (BMP) signaling. This protein family includes the Gremlin proteins, GREM1 and GREM2, which have key functions during embryogenesis and adult physiology. While BMPs play essential roles in ovarian follicle development, the role of the DAN family in female reproductive physiology is less understood. We generated mice null for Grem2 to determine its role in female reproduction in addition to screening patients with primary ovarian insufficiency for variants in GREM2. Grem2-/- mice are viable, but female Grem2-/- mice have diminished fecundity and irregular estrous cycles. This is accompanied by significantly reduced production of ovarian anti-Müllerian hormone (AMH) from small growing follicles, leading to a significant decrease in serum AMH. Surprisingly, as AMH is a well-established marker of the ovarian reserve, morphometric analysis of ovarian follicles showed maintenance of primordial follicles in Grem2-/- mice like wild type littermates. While Grem2 mRNA transcripts were not detected in the pituitary, Grem2 is expressed in hypothalami of wild type female mice, suggesting the potential for dysfunction in multiple tissues composing the hypothalamic-pituitary-ovarian axis that contribute to the subfertility phenotype. Additionally, screening 106 women with primary ovarian insufficiency identified one individual with a heterozygous variant in GREM2 that lies within the predicted BMP-GREM2 interface. In total, these data suggest Grem2 is necessary for female fecundity by playing a novel role in regulating the HPO axis and contributing to female reproductive disease.
Collapse
Affiliation(s)
- Robert T Rydze
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Baylor College of Medicine and Texas Children's Hospital Pavilion for Women, Houston, TX, 77030, USA.,Graduate Program in Clinical Scientist Training, Baylor College of Medicine, Houston, TX 77030
| | - Bethany Patton
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030.,Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Shawn M Briley
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030.,Graduate Program in Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030
| | | | - Gregory Gipson
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rebecca James
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Aleksandar Rajkovic
- Department of Pathology, University of California, San Francisco, USA, Department of OB-GYN, University of California, San Francisco, USA, Institute of Human Genetics, University of California, San Francisco, USA
| | - Thomas Thompson
- Department of Molecular Genetics, Biochemistry, & Microbiology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Stephanie A Pangas
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX 77030.,Graduate Program in Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030.,Graduate Program in Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 77030.,Department of Molecular & Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
25
|
Abstract
Premature ovarian insufficiency (POI) is a life-long disorder of heterogeneous etiology, presenting as adolescent primary amenorrhea in its most severe form, with an overall incidence of 1%. Idiopathic POI accounts for up to 70% of women with POI; and genomic, genetic, epidemiological, familial and cohort studies demonstrate a genetic component to this condition. Currently, the only genetic tests routinely performed in non-syndromic POI are FMR1 premutation and cytogenetics, the latter specifically for X-chromosome abnormalities. However, a myriad of genetic aberrations has been identified and implicated, some of which act in a monogenic Mendelian fashion. The presence of multiple genetic aberrations and the complexity of POI genomics are hardly surprising since the embryological formation of the primordial oocyte pool, postnatal oogenesis and folliculogenesis are all highly complex pathways. With this review, the aim is to discuss the current genetic etiologies in the emerging field of POI genomics. Promising candidate genes include STAG3, SYCE1, FIGLA, NOBOX, FSHR, BMP15 and INHA. This area has the potential to progress rapidly in light of advances in genomic technologies. The development of a POI genomic map not only will assist in understanding the underlying molecular mechanisms affecting ovarian function but will also be essential in designing predictive and diagnostic gene panels as well as future novel therapeutic strategies.
Collapse
Affiliation(s)
- B Cloke
- Menopause Research Unit, McNair Gynaecology Centre, Guy's Hospital, Guy's and St Thomas' Hospitals NHS Trust, London, UK
| | - J Rymer
- Menopause Research Unit, McNair Gynaecology Centre, Guy's Hospital, Guy's and St Thomas' Hospitals NHS Trust, London, UK.,School of Medical Education, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
26
|
Henarejos-Castillo I, Aleman A, Martinez-Montoro B, Gracia-Aznárez FJ, Sebastian-Leon P, Romeu M, Remohi J, Patiño-Garcia A, Royo P, Alkorta-Aranburu G, Diaz-Gimeno P. Machine Learning-Based Approach Highlights the Use of a Genomic Variant Profile for Precision Medicine in Ovarian Failure. J Pers Med 2021; 11:609. [PMID: 34199109 PMCID: PMC8305607 DOI: 10.3390/jpm11070609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/27/2022] Open
Abstract
Ovarian failure (OF) is a common cause of infertility usually diagnosed as idiopathic, with genetic causes accounting for 10-25% of cases. Whole-exome sequencing (WES) may enable identifying contributing genes and variant profiles to stratify the population into subtypes of OF. This study sought to identify a blood-based gene variant profile using accumulation of rare variants to promote precision medicine in fertility preservation programs. A case-control (n = 118, n = 32, respectively) WES study was performed in which only non-synonymous rare variants <5% minor allele frequency (MAF; in the IGSR) and coverage ≥ 100× were considered. A profile of 66 variants of uncertain significance was used for training an unsupervised machine learning model to separate cases from controls (97.2% sensitivity, 99.2% specificity) and stratify the population into two subtypes of OF (A and B) (93.31% sensitivity, 96.67% specificity). Model testing within the IGSR female population predicted 0.5% of women as subtype A and 2.4% as subtype B. This is the first study linking OF to the accumulation of rare variants and generates a new potential taxonomy supporting application of this approach for precision medicine in fertility preservation.
Collapse
Affiliation(s)
- Ismael Henarejos-Castillo
- IVI Foundation-Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain; (I.H.-C.); (A.A.); (P.S.-L.)
- Department of Paediatrics, Obstetrics and Gynaecology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain;
| | - Alejandro Aleman
- IVI Foundation-Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain; (I.H.-C.); (A.A.); (P.S.-L.)
| | - Begoña Martinez-Montoro
- IVI-RMA Pamplona, Reproductive Medicine, C/Sangüesa, Número 15-Planta Baja, 31003 Pamplona, Spain; (B.M.-M.); (P.R.)
| | - Francisco Javier Gracia-Aznárez
- CIMA Lab Diagnostics, University of Navarra, IdiSNA, Avda Pio XII, 55, 31008 Pamplona, Spain; (F.J.G.-A.); (A.P.-G.); (G.A.-A.)
| | - Patricia Sebastian-Leon
- IVI Foundation-Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain; (I.H.-C.); (A.A.); (P.S.-L.)
- IVI-RMA Pamplona, Reproductive Medicine, C/Sangüesa, Número 15-Planta Baja, 31003 Pamplona, Spain; (B.M.-M.); (P.R.)
| | - Monica Romeu
- Hospital Universitario y Politécnico La Fe, Av. Fernando Abril Martorell 106, 46026 Valencia, Spain;
| | - Jose Remohi
- Department of Paediatrics, Obstetrics and Gynaecology, University of Valencia, Av. Blasco Ibáñez 15, 46010 Valencia, Spain;
- IVI-RMA Valencia, Reproductive Medicine, Plaça de la Policia Local, 3, 46015 Valencia, Spain
| | - Ana Patiño-Garcia
- CIMA Lab Diagnostics, University of Navarra, IdiSNA, Avda Pio XII, 55, 31008 Pamplona, Spain; (F.J.G.-A.); (A.P.-G.); (G.A.-A.)
- Laboratorio de Pediatría-Unidad de Genética Clínica, Clínica Universidad de Navarra, Avda Pio XII, 55, 31008 Pamplona, Spain
| | - Pedro Royo
- IVI-RMA Pamplona, Reproductive Medicine, C/Sangüesa, Número 15-Planta Baja, 31003 Pamplona, Spain; (B.M.-M.); (P.R.)
| | - Gorka Alkorta-Aranburu
- CIMA Lab Diagnostics, University of Navarra, IdiSNA, Avda Pio XII, 55, 31008 Pamplona, Spain; (F.J.G.-A.); (A.P.-G.); (G.A.-A.)
| | - Patricia Diaz-Gimeno
- IVI Foundation-Instituto de Investigación Sanitaria La Fe, Av. Fernando Abril Martorell 106, Torre A, Planta 1ª, 46026 Valencia, Spain; (I.H.-C.); (A.A.); (P.S.-L.)
- IVI-RMA Pamplona, Reproductive Medicine, C/Sangüesa, Número 15-Planta Baja, 31003 Pamplona, Spain; (B.M.-M.); (P.R.)
| |
Collapse
|
27
|
Huang C, Guo T, Qin Y. Meiotic Recombination Defects and Premature Ovarian Insufficiency. Front Cell Dev Biol 2021; 9:652407. [PMID: 33763429 PMCID: PMC7982532 DOI: 10.3389/fcell.2021.652407] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/05/2021] [Indexed: 12/12/2022] Open
Abstract
Premature ovarian insufficiency (POI) is the depletion of ovarian function before 40 years of age due to insufficient oocyte formation or accelerated follicle atresia. Approximately 1–5% of women below 40 years old are affected by POI. The etiology of POI is heterogeneous, including genetic disorders, autoimmune diseases, infection, iatrogenic factors, and environmental toxins. Genetic factors account for 20–25% of patients. However, more than half of the patients were idiopathic. With the widespread application of next-generation sequencing (NGS), the genetic spectrum of POI has been expanded, especially the latest identification in meiosis and DNA repair-related genes. During meiotic prophase I, the key processes include DNA double-strand break (DSB) formation and subsequent homologous recombination (HR), which are essential for chromosome segregation at the first meiotic division and genome diversity of oocytes. Many animal models with defective meiotic recombination present with meiotic arrest, DSB accumulation, and oocyte apoptosis, which are similar to human POI phenotype. In the article, based on different stages of meiotic recombination, including DSB formation, DSB end processing, single-strand invasion, intermediate processing, recombination, and resolution and essential proteins involved in synaptonemal complex (SC), cohesion complex, and fanconi anemia (FA) pathway, we reviewed the individual gene mutations identified in POI patients and the potential candidate genes for POI pathogenesis, which will shed new light on the genetic architecture of POI and facilitate risk prediction, ovarian protection, and early intervention for POI women.
Collapse
Affiliation(s)
- Chengzi Huang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Ting Guo
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| | - Yingying Qin
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, China.,Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Shandong University, Jinan, China
| |
Collapse
|
28
|
Biswas L, Tyc K, Yakoubi WE, Morgan K, Xing J, Schindler K. Meiosis interrupted: the genetics of female infertility via meiotic failure. Reproduction 2021; 161:R13-R35. [PMID: 33170803 PMCID: PMC7855740 DOI: 10.1530/rep-20-0422] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Abstract
Idiopathic or 'unexplained' infertility represents as many as 30% of infertility cases worldwide. Conception, implantation, and term delivery of developmentally healthy infants require chromosomally normal (euploid) eggs and sperm. The crux of euploid egg production is error-free meiosis. Pathologic genetic variants dysregulate meiotic processes that occur during prophase I, meiotic resumption, chromosome segregation, and in cell cycle regulation. This dysregulation can result in chromosomally abnormal (aneuploid) eggs. In turn, egg aneuploidy leads to a broad range of clinical infertility phenotypes, including primary ovarian insufficiency and early menopause, egg fertilization failure and embryonic developmental arrest, or recurrent pregnancy loss. Therefore, maternal genetic variants are emerging as infertility biomarkers, which could allow informed reproductive decision-making. Here, we select and deeply examine human genetic variants that likely cause dysregulation of critical meiotic processes in 14 female infertility-associated genes: SYCP3, SYCE1, TRIP13, PSMC3IP, DMC1, MCM8, MCM9, STAG3, PATL2, TUBB8, CEP120, AURKB, AURKC, andWEE2. We discuss the function of each gene in meiosis, explore genotype-phenotype relationships, and delineate the frequencies of infertility-associated variants.
Collapse
Affiliation(s)
- Leelabati Biswas
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katarzyna Tyc
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Warif El Yakoubi
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Katie Morgan
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Karen Schindler
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| |
Collapse
|
29
|
Capalbo A, Poli M, Riera-Escamilla A, Shukla V, Kudo Høffding M, Krausz C, Hoffmann ER, Simon C. Preconception genome medicine: current state and future perspectives to improve infertility diagnosis and reproductive and health outcomes based on individual genomic data. Hum Reprod Update 2020; 27:254-279. [PMID: 33197264 DOI: 10.1093/humupd/dmaa044] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/13/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Our genetic code is now readable, writable and hackable. The recent escalation of genome-wide sequencing (GS) applications in population diagnostics will not only enable the assessment of risks of transmitting well-defined monogenic disorders at preconceptional stages (i.e. carrier screening), but also facilitate identification of multifactorial genetic predispositions to sub-lethal pathologies, including those affecting reproductive fitness. Through GS, the acquisition and curation of reproductive-related findings will warrant the expansion of genetic assessment to new areas of genomic prediction of reproductive phenotypes, pharmacogenomics and molecular embryology, further boosting our knowledge and therapeutic tools for treating infertility and improving women's health. OBJECTIVE AND RATIONALE In this article, we review current knowledge and potential development of preconception genome analysis aimed at detecting reproductive and individual health risks (recessive genetic disease and medically actionable secondary findings) as well as anticipating specific reproductive outcomes, particularly in the context of IVF. The extension of reproductive genetic risk assessment to the general population and IVF couples will lead to the identification of couples who carry recessive mutations, as well as sub-lethal conditions prior to conception. This approach will provide increased reproductive autonomy to couples, particularly in those cases where preimplantation genetic testing is an available option to avoid the transmission of undesirable conditions. In addition, GS on prospective infertility patients will enable genome-wide association studies specific for infertility phenotypes such as predisposition to premature ovarian failure, increased risk of aneuploidies, complete oocyte immaturity or blastocyst development failure, thus empowering the development of true reproductive precision medicine. SEARCH METHODS Searches of the literature on PubMed Central included combinations of the following MeSH terms: human, genetics, genomics, variants, male, female, fertility, next generation sequencing, genome exome sequencing, expanded carrier screening, secondary findings, pharmacogenomics, controlled ovarian stimulation, preconception, genetics, genome-wide association studies, GWAS. OUTCOMES Through PubMed Central queries, we identified a total of 1409 articles. The full list of articles was assessed for date of publication, limiting the search to studies published within the last 15 years (2004 onwards due to escalating research output of next-generation sequencing studies from that date). The remaining articles' titles were assessed for pertinence to the topic, leaving a total of 644 articles. The use of preconception GS has the potential to identify inheritable genetic conditions concealed in the genome of around 4% of couples looking to conceive. Genomic information during reproductive age will also be useful to anticipate late-onset medically actionable conditions with strong genetic background in around 2-4% of all individuals. Genetic variants correlated with differential response to pharmaceutical treatment in IVF, and clear genotype-phenotype associations are found for aberrant sperm types, oocyte maturation, fertilization or pre- and post-implantation embryonic development. All currently known capabilities of GS at the preconception stage are reviewed along with persisting and forthcoming barriers for the implementation of precise reproductive medicine. WIDER IMPLICATIONS The expansion of sequencing analysis to additional monogenic and polygenic traits may enable the development of cost-effective preconception tests capable of identifying underlying genetic causes of infertility, which have been defined as 'unexplained' until now, thus leading to the development of a true personalized genomic medicine framework in reproductive health.
Collapse
Affiliation(s)
- Antonio Capalbo
- Igenomix Italy, Marostica, Italy.,Igenomix Foundation, INCLIVA, Valencia, Spain
| | | | - Antoni Riera-Escamilla
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Spain
| | - Vallari Shukla
- Department of Cellular and Molecular Medicine, DRNF Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Miya Kudo Høffding
- Department of Cellular and Molecular Medicine, DRNF Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Csilla Krausz
- Andrology Department, Fundació Puigvert, Universitat Autònoma de Barcelona, Instituto de Investigaciones Biomédicas Sant Pau (IIB-Sant Pau), Barcelona, Spain.,Department of Experimental and Clinical Biomedical Sciences "Mario Serio", Centre of Excellence DeNothe, University of Florence, Florence, Italy
| | - Eva R Hoffmann
- Department of Cellular and Molecular Medicine, DRNF Center for Chromosome Stability, University of Copenhagen, Copenhagen, Denmark
| | - Carlos Simon
- Igenomix Foundation, INCLIVA, Valencia, Spain.,Department of Obstetrics and Gynecology, University of Valencia, Valencia, Spain.,Department of Obstetrics and Gynecology BIDMC, Harvard University, Cambridge, MA, USA
| |
Collapse
|
30
|
Pang J, Gao J, Zhang L, Mivechi NF, Ko L. GT198 Is a Target of Oncology Drugs and Anticancer Herbs. FRONTIERS IN ORAL HEALTH 2020; 2. [PMID: 34476412 PMCID: PMC8409151 DOI: 10.3389/froh.2021.679460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tumor angiogenesis is a hallmark of cancer. Therapeutic drug inhibitors targeting angiogenesis are clinically effective. We have previously identified GT198 (gene symbol PSMC3IP, also known as Hop2) as an oncoprotein that induces tumor angiogenesis in human cancers, including oral cancer. In this study, we show that the GT198 protein is a direct drug target of more than a dozen oncology drugs and several clinically successful anticancer herbs. GT198 is a DNA repair protein that binds to DNA. Using an in vitro DNA-binding assay, we tested the approved oncology drug set VII from the National Cancer Institute containing 129 oncology drugs. Identified GT198 inhibitors include but are not limited to mitoxantrone, doxorubicin, paclitaxel, etoposide, dactinomycin, and imatinib. Paclitaxel and etoposide have higher binding affinities, whereas doxorubicin has higher binding efficacy due to competitive inhibition. GT198 shares protein sequence homology with DNA topoisomerases, which are known drug targets, so that GT198 is likely a new drug target previously unrecognized. To seek more powerful GT198 inhibitors, we further tested several anticancer herbal extracts. The positive anticancer herbs with high affinity and high efficacy are all clinically successful ones, including allspice from Jamaica, Gleditsia sinensis or honey locust from China, and BIRM from Ecuador. Partial purification of allspice using an organic chemical approach demonstrated great feasibility of natural product purification, when the activity is monitored by the in vitro DNA-binding assay using GT198 as a target. Together, our study reveals GT198 as a new targeting mechanism for existing oncology drugs. The study also delivers an excellent drug target suitable for compound identification and natural product purification. In particular, this study opens an opportunity to rapidly identify drugs with high efficacy and low toxicity from nature.
Collapse
Affiliation(s)
- Junfeng Pang
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Jie Gao
- Department of Clinical and Diagnostic Science, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Liyong Zhang
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nahid F Mivechi
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Lan Ko
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States.,Research and Development, OnkoTarget, Augusta, GA, United States
| |
Collapse
|
31
|
Renault L, Patiño LC, Magnin F, Delemer B, Young J, Laissue P, Binart N, Beau I. BMPR1A and BMPR1B Missense Mutations Cause Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2020; 105:5643734. [PMID: 31769494 DOI: 10.1210/clinem/dgz226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/25/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Primary ovarian insufficiency (POI) is a frequently occurring disorder affecting approximately 1% of women under 40 years of age. POI, which is characterized by the premature depletion of ovarian follicles and elevated plasma levels of follicle-stimulating hormone, leads to infertility. Although various etiological factors have been described, including chromosomal abnormalities and gene mutations, most cases remain idiopathic. OBJECTIVE To identify and to functionally validate new sequence variants in 2 genes that play a key role in mammalian ovarian function, BMPR1A and BMPR1B (encoding for bone morphogenic protein receptor), leading to POI. METHODS The impact on bone morphogenic protein (BMP) signaling of BMPR1A and BMPR1B variants, previously identified by whole-exome sequencing on 69 women affected by isolated POI, was established by different in vitro functional experiments. RESULTS We demonstrate that the BMPR1A-p.Arg442His and BMPR1B-p.Phe272Leu variants are correctly expressed and located but lead to an impairment of downstream BMP signaling. CONCLUSION In accordance with infertility observed in mice lacking Bmpr1a in the ovaries and in Bmpr1b-/- mice, our results unveil, for the first time, a link between BMPR1A and BMPR1B variants and the origin of POI. We show that BMP signaling impairment through specific BMPR1A and BMPR1B variants is a novel pathophysiological mechanism involved in human POI. We consider that BMPR1A and BMPR1B variants constitute genetic biomarkers of the origin of POI and have clinical utility.
Collapse
Affiliation(s)
- Lucie Renault
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Liliana C Patiño
- Center For Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Françoise Magnin
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Brigitte Delemer
- Service d'Endocrinologie-Diabète-Nutrition, CHU de Reims-Hôpital Robert-Debré, Reims, France
| | - Jacques Young
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hôpital, Le Kremlin-Bicêtre, France
| | - Paul Laissue
- Center For Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Nadine Binart
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Isabelle Beau
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
32
|
Touraine P. Premature ovarian insufficiency: step-by-step genetics bring new insights. Fertil Steril 2020; 113:767-768. [PMID: 32145927 DOI: 10.1016/j.fertnstert.2019.12.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 11/16/2022]
Affiliation(s)
- Philippe Touraine
- Department of Endocrinology and Reproductive Medicine, Center for Rare Endocrine and Gynecological Disorders, Sorbonne Université, Assistance Publique Hopitaux de Paris, Paris, France
| |
Collapse
|
33
|
Guo T, Zheng Y, Li G, Zhao S, Ma J, Qin Y. Novel pathogenic mutations in minichromosome maintenance complex component 9 (MCM9) responsible for premature ovarian insufficiency. Fertil Steril 2020; 113:845-852. [PMID: 32145932 DOI: 10.1016/j.fertnstert.2019.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/30/2022]
Abstract
OBJECTIVE To investigate whether mutations in the minichromosome maintenance complex component 9 (MCM9) gene were present in 192 patients with sporadic premature ovarian insufficiency (POI) of Chinese descent. DESIGN Genetic and functional study. SETTING University-based reproductive medicine center. PATIENT(S) A total of 192 patients with sporadic POI and 192 control women with regular menstruation. INTERVENTION(S) Sanger sequencing performed in 192 sporadic POI patients, and potential pathogenic variants were excluded in matched controls. Functional effects of mutations on MCM9 were explored based on etoposide-induced DNA damage response, and DNA repair capacity was evaluated by histone H2AX phosphorylation level. MAIN OUTCOME MEASURE(S) Sanger sequencing and functional characteristics. RESULT(S) Three novel heterozygous mutations in MCM9, c.C1423T (p.L475F), c.T2921C (p.L974S), and c.G3388A (p.A1130T), were identified in three POI patients separately, which were absent in 192 controls. Functional studies showed that the human embryonic kidney 293 (HEK293) cells overexpressing mutant MCM9 presented with diminished DNA repair capacity compared with wild type. CONCLUSION(S) This study identified novel mutations in MCM9 that are potentially causative for sporadic POI in Chinese women and further highlighted the role of DNA repair capacity in maintenance of ovarian function.
Collapse
Affiliation(s)
- Ting Guo
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, and Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, People's Republic of China
| | - Ye Zheng
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, and Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, People's Republic of China; Department of Reproductive Medicine, the Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, People's Republic of China
| | - Guangyu Li
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, and Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, People's Republic of China
| | - Shidou Zhao
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, and Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, People's Republic of China
| | - Jinlong Ma
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, and Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, People's Republic of China
| | - Yingying Qin
- Center for Reproductive Medicine, Shandong University, National Research Center for Assisted Reproductive Technology and Reproductive Genetics, and Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, People's Republic of China.
| |
Collapse
|
34
|
França MM, Mendonca BB. Genetics of Primary Ovarian Insufficiency in the Next-Generation Sequencing Era. J Endocr Soc 2020; 4:bvz037. [PMID: 32099950 PMCID: PMC7033037 DOI: 10.1210/jendso/bvz037] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/17/2019] [Indexed: 01/12/2023] Open
Abstract
Primary ovarian insufficiency (POI) is characterized by amenorrhea, increased follicle-stimulating hormone (FSH) levels, and hypoestrogenism, leading to infertility before the age of 40 years. Elucidating the cause of POI is a key point for diagnosing and treating affected women. Here, we review the genetic etiology of POI, highlighting new genes identified in the last few years using next-generation sequencing (NGS) approaches. We searched the MEDLINE/PubMed, Cochrane, and Web of Science databases for articles published in or translated to English. Several genes were found to be associated with POI genetic etiology in humans and animal models (SPIDR, BMPR2, MSH4, MSH5, GJA4, FANCM, POLR2C, MRPS22, KHDRBS1, BNC1, WDR62, ATG7/ATG9, BRCA2, NOTCH2, POLR3H, and TP63). The heterogeneity of POI etiology has been revealed to be remarkable in the NGS era, and discoveries have indicated that meiosis and DNA repair play key roles in POI development.
Collapse
Affiliation(s)
- Monica Malheiros França
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Berenice Bilharinho Mendonca
- Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
35
|
Yatsenko SA, Rajkovic A. Genetics of human female infertility†. Biol Reprod 2019; 101:549-566. [PMID: 31077289 PMCID: PMC8127036 DOI: 10.1093/biolre/ioz084] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
About 10% of women of reproductive age are unable to conceive or carry a pregnancy to term. Female factors alone account for at least 35% of all infertility cases and comprise a wide range of causes affecting ovarian development, maturation of oocytes, and fertilization competence, as well as the potential of a fertilized egg for preimplantation development, implantation, and fetal growth. Genetic abnormalities leading to infertility in females comprise large chromosome abnormalities, submicroscopic chromosome deletion and duplications, and DNA sequence variations in the genes that control numerous biological processes implicated in oogenesis, maintenance of ovarian reserve, hormonal signaling, and anatomical and functional development of female reproductive organs. Despite the great number of genes implicated in reproductive physiology by the study of animal models, only a subset of these genes is associated with human infertility. In this review, we mainly focus on genetic alterations identified in humans and summarize recent knowledge on the molecular pathways of oocyte development and maturation, the crucial role of maternal-effect factors during embryogenesis, and genetic conditions associated with ovarian dysgenesis, primary ovarian insufficiency, early embryonic lethality, and infertility.
Collapse
Affiliation(s)
- Svetlana A Yatsenko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Magee-Womens Research Institute, Pittsburgh, PA
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Aleksandar Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA
- Institute of Human Genetics, University of California San Francisco, San Francisco, CA
| |
Collapse
|