1
|
Maes L, Szabó A, Van Haevermaete J, Geurs I, Dewettinck K, Vandenbroucke RE, Van Vlierberghe S, Laukens D. Digital light processing of photo-crosslinkable gelatin to create biomimetic 3D constructs serving small intestinal tissue regeneration. BIOMATERIALS ADVANCES 2025; 171:214232. [PMID: 39983500 DOI: 10.1016/j.bioadv.2025.214232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/27/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Regeneration of small intestinal mucosal tissue could offer a promising strategy for Crohn's disease patients suffering from chronic inflammatory damage. Here, we aimed to develop hydrogels that mirror the villi and crypts of the small intestine and exhibit a physiological stiffness of G' ~ 1.52 kPa. For this purpose, we developed gelatin-methacryloyl-aminoethyl-methacrylate (gel-MA-AEMA)-, and gelatin-methacryloyl-norbornene (gel-MA-NB)-based biomaterial inks to fabricate 3D hydrogels ("villi only" versus "crypts and villi") with digital light processing (DLP) and co-cultured Caco-2/HT29-MTX cells. Gel-MA-AEMA was selected for its higher amount of methacrylates which was hypothesized to provide superior photo-crosslinking kinetics and hence superior DLP fabrication potential while gel-MA-NB was evaluated for its selective functionalization potential with thiolated bioactive compounds following DLP processing, resulting from its incorporated NB moieties which remain unreacted during the DLP process. Both gel-MA-AEMA-, and gel-MA-NB-based hydrogels exhibited a physiologically relevant stiffness, but only the gel-MA-AEMA-based biomaterial ink could be successfully utilized for printing hydrogels encompassing villi and crypts. Paracellular permeability of small sized marker molecules in combination with transepithelial electrical resistance measurements showed the formation of a functional barrier over time on all hydrogel constructs. Transmission electron microscopy and enterocyte differentiation marker genes' expression levels revealed the superior differentiation of Caco-2 on the 3D constructs compared to 2D hydrogel sheets. In summary, while both hydrogels enhanced functional barrier formation and enterocyte differentiation, gel-MA-AEMA proved more conducive to DLP compared to gel-MA-NB. Furthermore, our study underscored the benefits of cultivating intestinal cells on soft 3D constructs, enhancing cell barrier properties and differentiation, thus providing added value over traditional 2D supports.
Collapse
Affiliation(s)
- Laure Maes
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium; Barriers in Inflammation Lab, Department of Biomedical Molecular Biology, Ghent University, Ghent 9000, Belgium; VIB-UGent Center for Inflammation Research, VIB, Ghent 9000, Belgium
| | - Anna Szabó
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Jens Van Haevermaete
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium; Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium
| | - Indi Geurs
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Ghent University, Ghent 9000, Belgium
| | - Koen Dewettinck
- Food Structure & Function Research Group, Department of Food Technology, Safety and Health, Ghent University, Ghent 9000, Belgium
| | - Roosmarijn E Vandenbroucke
- Barriers in Inflammation Lab, Department of Biomedical Molecular Biology, Ghent University, Ghent 9000, Belgium; VIB-UGent Center for Inflammation Research, VIB, Ghent 9000, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Ghent 9000, Belgium.
| | - Debby Laukens
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, Ghent 9000, Belgium.
| |
Collapse
|
2
|
Prakash N, Cha Y, Koh WG, Park H, Bello AB, Lee SH. Derivation of Mesenchymal Stem Cells through Sequential Presentation of Growth Factors via Gelatin Microparticles in Pluripotent Stem Cell Spheroids. Biomater Res 2025; 29:0184. [PMID: 40303481 PMCID: PMC12038162 DOI: 10.34133/bmr.0184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/10/2025] [Accepted: 03/15/2025] [Indexed: 05/02/2025] Open
Abstract
The use of mesenchymal stem cells (MSCs) in regenerative medicine has gained considerable attention in recent years with the development of clinically relevant MSCs from induced pluripotent stem cells (iPSCs) and embryonic stem cells. Through sequential presentations of appropriate growth factors (GFs), iPSCs can be differentiated into mesodermal cells and then into MSCs. Furthermore, the formation of 3-dimensional cell spheroids, known as embryoid bodies, can be used to mimic in vivo conditions. However, the compact nature of embryoid bodies restricts the efficient and uniform delivery of GFs, leading to the formation of necrotic zones and hindered differentiation. To address this, we developed 2 types of gelatin microparticles (GelMPs) with distinct degradation rates for sequential delivery of GFs to enhance differentiation while preventing necrotic zones. In 2-dimensional culture, bone morphogenetic protein-4 (BMP4) and fibroblast growth factor 2 (FGF2) were identified as key proteins inducing iPSC differentiation into mesodermal cells and MSCs. The sequential presentation of these GFs was optimized for a 3-dimensional culture system by engineering fast-degrading GelMPs conjugated with BMP4 and slow-degrading GelMPs conjugated with FGF2. Our approach facilitated efficient iPSC differentiation into induced mesenchymal stem cells (iMSCs), as demonstrated by enhanced expression of mesodermal markers during the early stages of differentiation and MSC-specific markers at later stages. The resulting iMSCs exhibited characteristic surface markers (e.g., CD73, CD90, CD105, and CD44) and trilineage differentiation capability and were genetically stable. Compared to adult-derived MSCs, iMSCs showed superior proliferative capacity and reduced senescence, making them advantageous for cell therapy and regenerative medicine. This innovative approach of generating iMSCs has vast potential for therapeutic applications.
Collapse
Affiliation(s)
- Nityanand Prakash
- Department of Biomedical Engineering,
Dongguk University, Seoul 04620, Republic of Korea
| | - Young Cha
- Molecular Neurobiology Laboratory, McLean Hospital and Department of Psychiatry,
Harvard Medical School, Belmont, MA 02478, USA
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering,
Yonsei University, Seoul 03722, Republic of Korea
| | - Hansoo Park
- School of Integrative Engineering,
Chung-Ang University, Seoul 06911, Republic of Korea
| | - Alvin Bacero Bello
- Department of Biomedical Engineering,
Dongguk University, Seoul 04620, Republic of Korea
| | - Soo-Hong Lee
- Department of Biomedical Engineering,
Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
3
|
Lameirinhas NS, Teixeira MC, Carvalho JPF, Valente BFA, Luís JL, Duarte IF, Pinto RJB, Oliveira H, Oliveira JM, Silvestre AJD, Vilela C, Freire CSR. Biofabrication of HepG2 Cells-Laden 3D Structures Using Nanocellulose-Reinforced Gelatin-Based Hydrogel Bioinks: Materials Characterization, Cell Viability Assessment, and Metabolomic Analysis. ACS Biomater Sci Eng 2025. [PMID: 40241282 DOI: 10.1021/acsbiomaterials.4c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The successful replication of the intricate architecture of human tissues remains a major challenge in the biomedical area. Three-dimensional (3D) bioprinting has emerged as a promising approach for the biofabrication of living tissue analogues, taking advantage of the use of adequate bioinks and printing methodologies. Here, a hydrogel bioink based on gelatin (Gel) and nanofibrillated cellulose (NFC), cross-linked with genipin, was developed for the 3D extrusion-based bioprinting of hepatocarcinoma cells (HepG2). This formulation combines the biological characteristics of Gel with the exceptional mechanical and rheological attributes of NFC. Gel/NFC ink formulations with different Gel/NFC mass compositions, viz., 90:10, 80:20, 70:30, and 60:40, were prepared and characterized. The corresponding cross-linked hydrogels were obtained using 1.5% (w/w) genipin as the cross-linking agent. The rheological and mechanical performances of the inks were enhanced by the addition of NFC, as evidenced by the rise in the yield stress from 70.9 ± 28.6 to 627.9 ± 74.8 Pa, compressive stress at 80% strain from 0.5 ± 0.1 to 1.5 ± 0.2 MPa, and Young's modulus from 4.7 ± 0.9 to 12.1 ± 1.1 MPa, for 90:10 and 60:40 inks, respectively. Moreover, higher NFC contents translated into 3D structures with better shape fidelity and the possibility of printing more intricate structures. These hydrogels were noncytotoxic toward HepG2 cells for up to 48 h, with cell viabilities consistently above 80%. The ink 70:30 was loaded with HepG2 cells (2 × 106 cells mL-1) and bioprinted. Cell viability remained elevated (90 ± 4%) until day 14 postbioprinting, with cells maintaining their metabolic activity shown by 1H NMR metabolomics, proving the enormous potential of Gel/NFC-based bioinks for bioprinting HepG2 cells without jeopardizing their viability and metabolism.
Collapse
Affiliation(s)
- Nicole S Lameirinhas
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria C Teixeira
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - João P F Carvalho
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Bruno F A Valente
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Jorge L Luís
- EMaRT Group─Emerging: Materials, Research, Technology, School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, 3720-509 Oliveira de Azeméis, Portugal
| | - Iola F Duarte
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
- LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo J B Pinto
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Helena Oliveira
- CESAM─Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José M Oliveira
- EMaRT Group─Emerging: Materials, Research, Technology, School of Design, Management and Production Technologies Northern Aveiro, University of Aveiro, 3720-509 Oliveira de Azeméis, Portugal
| | - Armando J D Silvestre
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Carla Vilela
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Carmen S R Freire
- CICECO─Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
4
|
del Rocío Aguilera-Marquez J, Manzanares-Guzmán A, García-Uriostegui L, Canales-Aguirre AA, Camacho-Villegas TA, Lugo-Fabres PH. Alginate-Gelatin Hydrogel Scaffold Model for Hypoxia Induction in Glioblastoma Embedded Spheroids. Gels 2025; 11:263. [PMID: 40277699 PMCID: PMC12026674 DOI: 10.3390/gels11040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and malignant brain tumor, characterized by hypoxia in its microenvironment, which drives its growth and resistance to treatments. Hypoxia-inducible factor 1 (HIF-1) plays a central role in GBM progression by regulating cellular adaptation to low oxygen availability, promoting processes such as angiogenesis and cell invasion. However, studying and modeling GBM under hypoxic conditions is complex, especially due to the limitations of animal models. In this study, we developed a glioma spheroid model using an alginate-gelatin hydrogel scaffold, which enabled the simulation of hypoxic conditions within the tumor. The scaffold-based model demonstrated high reproducibility, facilitating the analysis of HIF-1α expression, a key protein in the hypoxic response of GBM. Furthermore, cell viability, the microstructural features of the encapsulated spheroids, and the water absorption rate of the hydrogel were assessed. Our findings validate the three-dimensional (3D) glioblastoma spheroids model as a valuable platform for studying hypoxia in GBM and evaluating new therapies. This approach could offer a more accessible and specific alternative for studying the tumor microenvironment and therapeutic resistance in GBM.
Collapse
Affiliation(s)
- Janette del Rocío Aguilera-Marquez
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (J.d.R.A.-M.); (A.M.-G.); (A.A.C.-A.); (T.A.C.-V.)
| | - Alejandro Manzanares-Guzmán
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (J.d.R.A.-M.); (A.M.-G.); (A.A.C.-A.); (T.A.C.-V.)
| | - Lorena García-Uriostegui
- SECIHTI-Secretaría de Ciencia, Humanidades, Tecnología e Innovación-Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara 44430, Mexico;
| | - Alejandro A. Canales-Aguirre
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (J.d.R.A.-M.); (A.M.-G.); (A.A.C.-A.); (T.A.C.-V.)
| | - Tanya A. Camacho-Villegas
- Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (J.d.R.A.-M.); (A.M.-G.); (A.A.C.-A.); (T.A.C.-V.)
| | - Pavel H. Lugo-Fabres
- SECIHTI-Secretaría de Ciencia, Humanidades, Tecnología e Innovación-Unidad de Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico
| |
Collapse
|
5
|
Melilli G, Rousselle P, Mehiri M, Guigo N, Pin D, Sbirrazzuoli N. Bioderived Green Algae Metabolite as a Latent Cross-Linking Agent for Protein-Based Hydrogels with High Potential for Skin Repair Applications. ACS APPLIED BIO MATERIALS 2025; 8:2558-2568. [PMID: 39928045 DOI: 10.1021/acsabm.5c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
Despite advances in wound treatment through tissue engineering, the rapid colonization of biomaterials by host cells remains a crucial step toward complete wound healing. Thanks to their excellent biocompatibility, biodegradability, low antigenicity and cost-effectiveness, cross-linked hydrogels have attracted much attention as a viable solution for wound treatment. In this work, we have developed an inovative cross-linking method for gelatin-based hydrogels inspired by the wound closure mechanism of the green algae Caulerpa taxifolia. Caulerpenyne (CYN), a metabolite extracted from the algae, was used as a latent cross-linking agent for gelatin. The covalent cross-linking process is triggered by an in situ and on-demand deacetylation of the enol acetate functionalities of CYN in oxytoxin 2 (OXY) containing 1,4-dialdehyde, which immediately reacts with the lysine residue in gelatin. The content of ε-amino groups in gelatin was monitored as a function of CYN concentration. Swelling and gel content were analyzed as a function of CYN concentration. Morphology, rheological and biological properties were evaluated by in vitro and in vivo tests. Cell adhesion and viability tests performed with OXY-cross-linked hydrogels and compared with non-cross-linked and genipin-cross-linked gelatin showed excellent performance. Their use in whole skin wounds in pigs showed that CYN-cross-linked hydrogels promoted complete skin regeneration without any cytotoxicity, making them extremely promising matrices in the field of regenerative medicine.
Collapse
Affiliation(s)
- Giuseppe Melilli
- Université Côte d'Azur, Institut de Chimie de Nice, UMR CNRS 7272, 06108 Nice, France
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR CNRS 5305, Université Lyon 1, 69367 Lyon, France
| | - Mohamed Mehiri
- Université Côte d'Azur, Institut de Chimie de Nice, UMR CNRS 7272, 06108 Nice, France
| | - Nathanael Guigo
- Université Côte d'Azur, Institut de Chimie de Nice, UMR CNRS 7272, 06108 Nice, France
| | - Didier Pin
- Unité de Dermatologie, VetAgro Sup, 69280 Marcy l'Etoile, France
| | - Nicolas Sbirrazzuoli
- Université Côte d'Azur, Institut de Chimie de Nice, UMR CNRS 7272, 06108 Nice, France
| |
Collapse
|
6
|
Lamberger Z, Priebe V, Ryma M, Lang G. A Versatile Method to Produce Monomodal Nano- to Micro-Fiber Fragments as Fillers for Biofabrication. SMALL METHODS 2025; 9:e2401060. [PMID: 39690825 PMCID: PMC11926501 DOI: 10.1002/smtd.202401060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/04/2024] [Indexed: 12/19/2024]
Abstract
A key goal of biofabrication is the production of 3D tissue models with biomimetic properties. In natural tissues, fibrils-mainly composed of collagen-play a critical role in stabilizing and spatially organizing the extracellular matrix. To use biomimetic fibers for reinforcing bioinks in 3D printing, fiber fragmentation is necessary to prevent nozzle clogging. However, existing fragmentation methods are often material-specific, poorly scalable, and provide limited control over fragment size and shape. A novel workflow is introduced for producing fiber fragments applicable to various materials and fabrication techniques such as electrospinning, melt-electrowriting, fused deposition modeling, wet spinning, and microfluidic spinning. The method uses a sacrificial membrane as a substrate for precise cryo-sectioning of fibers. A significant advantage is that no additional handling steps, such as fiber detachment or transfer, are needed, resulting in highly reproducible fiber sectioning with a quasi-monodisperse length distribution. The membrane can be rolled before cutting, preventing fibers from sticking together and significantly increasing production efficiency. This method is also versatile, applicable to multiple fiber types and materials without re-parameterization. Cell culture experiments demonstrate that the fibers maintain key properties necessary for cell-fiber interactions, making them suitable for systematic screenings in the development of anisotropic 3D tissue models.
Collapse
Affiliation(s)
- Zan Lamberger
- Department for Functional Materials in Medicine and DentistryUniversity Hospital of WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Vivien Priebe
- Department for Functional Materials in Medicine and DentistryUniversity Hospital of WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Matthias Ryma
- Department for Functional Materials in Medicine and DentistryUniversity Hospital of WürzburgPleicherwall 2D‐97070WürzburgGermany
| | - Gregor Lang
- Department for Functional Materials in Medicine and DentistryUniversity Hospital of WürzburgPleicherwall 2D‐97070WürzburgGermany
| |
Collapse
|
7
|
McMillan A, Hoffman MR, Xu Y, Wu Z, Thayer E, Peel A, Guymon A, Kanotra S, Salem AK. 3D bioprinted ferret mesenchymal stem cell-laden cartilage grafts for laryngotracheal reconstruction in a ferret surgical model. Biomater Sci 2025; 13:1304-1322. [PMID: 39886992 PMCID: PMC11784027 DOI: 10.1039/d4bm01251h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Chondrogenic differentiation of mesenchymal stem cells (MSCs) within a three-dimensional (3D) environment can be guided to form cartilage-like tissue in vitro to generate cartilage grafts for implantation. 3D bioprinted, MSC-populated cartilage grafts have the potential to replace autologous cartilage in reconstructive airway surgery. Here, bone marrow-derived ferret MSCs (fMSCs) capable of directed musculoskeletal differentiation were generated for the first time. A multi-material, 3D bioprinted fMSC-laden scaffold was then engineered that was capable of in vitro cartilage regeneration, as evidenced by glycosaminoglycan (GAG) production and collagen II immunohistochemical staining. In vivo implantation of these 3D bioprinted scaffolds in a ferret model of laryngotracheal reconstruction (LTR) demonstrated healing of the defect site, epithelial mucosalization of the inner lumen, and expansion of the airway volume. While the implanted scaffold allowed for reconstruction of the created airway defect, minimal chondrocytes were identified at the implant site. Nevertheless, we have established the ferret as a biomedical research model for airway reconstruction and, although further evaluation is warranted, the generation of fMSCs provides an opportunity for realizing the potential for 3D bioprinted regenerative stem cell platforms in the ferret.
Collapse
Affiliation(s)
- Alexandra McMillan
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.
| | - Matthew R Hoffman
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Yan Xu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.
| | - Zongliang Wu
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.
| | - Emma Thayer
- Department of Otolaryngology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Adreann Peel
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
| | - Allan Guymon
- Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA, USA
| | - Sohit Kanotra
- Department of Head and Neck Surgery, UCLA, Los Angeles, California, USA
| | - Aliasger K Salem
- Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
8
|
Rashad A, Ojansivu M, Afyounian E, Heggset EB, Syverud K, Mustafa K. Effects of Chemical Pretreatments of Wood Cellulose Nanofibrils on Protein Adsorption and Biological Outcomes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9173-9188. [PMID: 39883857 PMCID: PMC11826900 DOI: 10.1021/acsami.5c00391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Wood-based nanocellulose is emerging as a promising nanomaterial in the field of tissue engineering due to its unique properties and versatile applications. Previously, we used TEMPO-mediated oxidation (TO) and carboxymethylation (CM) as chemical pretreatments prior to mechanical fibrillation of wood-based cellulose nanofibrils (CNFs) to produce scaffolds with different surface chemistries. The aim of the current study was to evaluate the effects of these chemical pretreatments on serum protein adsorption on 2D and 3D configurations of TO-CNF and CM-CNF and then to investigate their effects on cell adhesion, spreading, inflammatory mediator production in vitro, and the development of foreign body reaction (FBR) in vivo. Mass spectrometry analysis revealed that the surface chemistry played a key role in determining the proteomic profile and significantly influenced the behavior of periodontal ligament fibroblasts and osteoblast-like cells (Saos-2). The surface of TO-CNF 2D samples showed the highest protein adsorption followed by TO-CNF 3D samples. CM-CNF 2D samples adsorbed a higher number of proteins than their 3D counterparts. None of the CNF scaffolds showed toxicity in vitro or in vivo. However, carboxymethylation pretreatment negatively affected the adhesion, morphology, and spreading of both cell types. Although the CNF materials displayed clear differences in surface chemistry and proteomic profiles, both triggered the same foreign body response after being subcutaneously implanted in rats for 90 days. This observation highlights that the degradation rate of CNF scaffolds plays a central role in maintaining the foreign body response in vivo. It is imperative to comprehend the impact of chemical pretreatments of CNFs on protein adsorption and their interaction with diverse host cell types prior to the investigation of potential modifications. This knowledge is indispensable for the advancement of CNFs in regenerative applications within tissue engineering.
Collapse
Affiliation(s)
- Ahmad Rashad
- Center of
Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Miina Ojansivu
- Center of
Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| | - Ebrahim Afyounian
- Prostate
Cancer Research Center, Faculty of Medicine and Health Technology,
Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere 33520, Finland
| | | | - Kristin Syverud
- RISE PFI, Trondheim 7034, Norway
- Department
of Chemical Engineering, Norwegian University of Science and Technology (NTNU), Trondheim 7034, Norway
| | - Kamal Mustafa
- Center of
Translational Oral Research (TOR), Department of Clinical Dentistry, University of Bergen, Bergen 5009, Norway
| |
Collapse
|
9
|
Brembilla NC, El-Harane S, Durual S, Krause KH, Preynat-Seauve O. Adipose-Derived Stromal Cells Exposed to RGD Motifs Enter an Angiogenic Stage Regulating Endothelial Cells. Int J Mol Sci 2025; 26:867. [PMID: 39940638 PMCID: PMC11817220 DOI: 10.3390/ijms26030867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 02/16/2025] Open
Abstract
Adipose-derived stromal cells (ASCs) possess significant regenerative potential, playing a key role in tissue repair and angiogenesis. During wound healing, ASC interacts with the extracellular matrix by recognizing arginylglycylaspartic acid (RGD) motifs, which are crucial for mediating these functions. This study investigates how RGD exposure influences ASC behavior, with a focus on angiogenesis. To mimic the wound-healing environment, ASC were cultured in a porcine gelatin sponge, an RGD-exposing matrix. Transcriptomics revealed that ASC cultured in gelatin exhibited an upregulated expression of genes associated with inflammation, angiogenesis, and tissue repair compared to ASC in suspension. Pro-inflammatory and pro-angiogenic factors, including IL-1, IL-6, IL-8, and VEGF, were significantly elevated. Functional assays further demonstrated that ASC-conditioned media enhanced endothelial cell migration, tubulogenesis, and reduced endothelial permeability, all critical processes in angiogenesis. Notably, ASC-conditioned media also promoted vasculogenesis in human vascular organoids. The inhibition of ASC-RGD interactions using the cyclic peptide cilengitide reversed these effects, underscoring the essential role of RGD-integrin interactions in ASC-mediated angiogenesis. These findings suggest that gelatin sponges enhance ASC's regenerative and angiogenic properties via RGD-dependent mechanisms, offering promising therapeutic potential for tissue repair and vascular regeneration. Understanding how RGD modulates ASC behavior provides valuable insights into advancing cell-based regenerative therapies.
Collapse
Affiliation(s)
| | - Sanae El-Harane
- Department of Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Stéphane Durual
- Laboratory of Biomaterials, Faculty of Dental Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| | - Olivier Preynat-Seauve
- Hekestiss Plan-les-Ouates, 1228 Geneva, Switzerland
- Department of Medicine, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland;
| |
Collapse
|
10
|
Sovar A, Patrick MD, Annamalai RT. Substrate curvature influences cytoskeletal rearrangement and modulates macrophage phenotype. Front Immunol 2025; 15:1478464. [PMID: 39835126 PMCID: PMC11743265 DOI: 10.3389/fimmu.2024.1478464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Inflammation is a vital immune response, tightly orchestrated through both biochemical and biophysical cues. Dysregulated inflammation contributes to chronic diseases, highlighting the need for novel therapies that modulate immune responses with minimal side effects. While several biochemical pathways of inflammation are well understood, the influence of physical properties such as substrate curvature on immune cell behavior remains underexplored. This study investigates how substrate curvature impacts macrophage cytoskeletal dynamics, gene expression, and immunophenotype through mechanosensitive pathways. Methods Gelatin-based microgels with tunable surface curvatures were fabricated via water-in-oil emulsification and crosslinked with genipin. Microgels were sorted into three size ranges, yielding high (40-50 µm), intermediate (150-250 µm), and low (350-400 µm) curvature profiles. Macrophages were seeded onto these microgels, and cytoskeletal dynamics were examined using confocal microscopy, SEM, and actin-specific staining. Gene expression of pro- and anti-inflammatory markers was quantified using qPCR. The role of actin polymerization was assessed using Latrunculin-A (Lat-A) treatment. Results Macrophages adhered effectively to both high- and low-curvature microgels, displaying curvature-dependent morphological changes. Confocal imaging revealed that macrophages on low-curvature microgels exhibited significantly higher F-actin density than those on high-curvature microgels. Correspondingly, qPCR analysis showed upregulation of pro-inflammatory markers (e.g., Tnf, Nos2) in high-curvature conditions, while anti-inflammatory markers (e.g., Arg1) were elevated in low-curvature conditions. Lat-A treatment reduced F-actin density and modulated gene expression patterns, confirming the cytoskeletal regulation of macrophage phenotype. Discussion These findings demonstrate that substrate curvature influences macrophage behavior by modulating cytoskeletal dynamics and associated immunophenotypic markers through actin-mediated transcriptional pathways. By controlling curvature, therapeutic biomaterials may direct immune responses, offering a new avenue for treating inflammatory diseases. This mechanobiological approach presents a promising strategy for precision immunomodulation in regenerative medicine.
Collapse
Affiliation(s)
- Austin Sovar
- Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States
| | - Matthew D. Patrick
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | - Ramkumar T. Annamalai
- Department of Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
11
|
Bider F, Gunnella C, Reh JT, Clejanu CE, Kuth S, Beltrán AM, Boccaccini AR. Enhancing alginate dialdehyde-gelatin (ADA-GEL) based hydrogels for biofabrication by addition of phytotherapeutics and mesoporous bioactive glass nanoparticles (MBGNs). J Biomater Appl 2025; 39:524-556. [PMID: 39305217 PMCID: PMC11707976 DOI: 10.1177/08853282241280768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
This study explores the 3D printing of alginate dialdehyde-gelatin (ADA-GEL) inks incorporating phytotherapeutic agents, such as ferulic acid (FA), and silicate mesoporous bioactive glass nanoparticles (MBGNs) at two different concentrations. 3D scaffolds with bioactive properties suitable for bone tissue engineering (TE) were obtained. The degradation and swelling behaviour of films and 3D printed scaffolds indicated an accelerated trend with increasing MBGN content, while FA appeared to stabilize the samples. Determination of the degree of crosslinking validated the increased stability of hydrogels due to the addition of FA and 0.1% (w/v) MBGNs. The incorporation of MBGNs not only improved the effective moduli and conferred bioactive properties through the formation of hydroxyapatite (HAp) on the surface of ADA-GEL-based samples but also enhanced VEGF-A expression of MC3T3-E1 cells. The beneficial impact of FA and low concentrations of MBGNs in ADA-GEL-based inks for 3D (bio)printing applications was corroborated through various printing experiments, resulting in higher printing resolution, as also confirmed by rheological measurements. Cytocompatibility investigations revealed enhanced MC3T3-E1 cell activity and viability. Furthermore, the presence of mineral phases, as confirmed by an in vitro biomineralization assay, and increased ALP activity after 21 days, attributed to the addition of FA and MBGNs, were demonstrated. Considering the acquired structural and biological properties, along with efficient drug delivery capability, enhanced biological activity, and improved 3D printability, the newly developed inks exhibit promising potential for biofabrication and bone TE.
Collapse
Affiliation(s)
- Faina Bider
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Chiara Gunnella
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Jana T Reh
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Corina-Elena Clejanu
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Sonja Kuth
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte. Escuela Politécnica Superior, Virgen de África 7, Universidad de Sevilla, Seville (Spain)
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
12
|
Egorova VV, Lavrenteva MP, Makhaeva LN, Petrova EA, Ushakova AA, Bozhokin MS, Krivoshapkina EF. Fibrillar Hydrogel Inducing Cell Mechanotransduction for Tissue Engineering. Biomacromolecules 2024; 25:7674-7684. [PMID: 39526968 DOI: 10.1021/acs.biomac.4c00897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
One of the key strategies for tissue engineering is to design multifunctional bioinks that balance printability with cytocompatibility. Here, we describe fibrillar hydrogels produced by Schiff base formation between B-type gelatin and oxidized sodium alginate, followed by the incorporation of type I collagen, yielding a new gel (MyoColl). The resulting hydrogel exhibits a temperature- and mass-ratio-dependent sol-gel transition, showing variability of hydrogel properties depending on the component ratio. MyoColl composition provides a convenient platform for biofabrication in terms of shear thinning, yielding, Young's modulus, and shape accuracy. Metabolic activity tests and fluorescent microscopy of 2D hydrogel-based mouse C2C12 myoblast cell culture show significant cytocompatibility of the developed carriers. In addition, primary signs of cell mechanotransduction and myofilament formation of 3D printed MyoColl-based cell cultures were detected and described. Due to these promising results, the described hydrogel composition has shown itself as a convenient platform for muscle tissue engineering.
Collapse
Affiliation(s)
- Viktoriia V Egorova
- ChemBioCluster, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Mariia P Lavrenteva
- ChemBioCluster, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Liubov N Makhaeva
- St. Petersburg Governor's Physics and Mathematics Lyceum N 30, Saint Petersburg 199004, Russian Federation
| | - Ekaterina A Petrova
- Center for Chemical Engineering, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Alina A Ushakova
- Center for Chemical Engineering, ITMO University, Saint Petersburg 191002, Russian Federation
| | - Mikhail S Bozhokin
- Russian Scientific Research Institute of Traumatology and Orthopedics Named After R.R. Vredena, Saint Petersburg 195427, Russian Federation
- Cytology Institute of Russian Academy of Sciences, Saint Petersburg 194064, Russian Federation
| | | |
Collapse
|
13
|
Han JH, Jang SW, Kim YR, Na GR, Park JH, Choi HW. Comparative Analysis of Different Extracellular Matrices for the Maintenance of Bovine Satellite Cells. Animals (Basel) 2024; 14:3496. [PMID: 39682461 DOI: 10.3390/ani14233496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Cultured meat produced using satellite cells has emerged to address issues such as overpopulation, the ethical conundrums associated with the breeding environment, and the methane gas emissions associated with factory farming. To date, however, the challenges of maintaining satellite cells in vitro and reducing the costs of the culture media are still substantial. Gelatin, collagen, and fibronectin are commonly used extracellular matrices (ECMs) that facilitate signal integration with the cells and promote cell adhesion. In this study, we compared the proliferation, cell cycle, immunocytochemistry, and expression levels of Pax7, Pax3, Myf5, MyoD1, and MyoG genes in bovine satellite cells (BSCs) cultured on gelatin-, collagen- and fibronectin-coated dishes as part of short- and long-term cultures. We observed that BSCs cultured on gelatin-coated dishes showed higher levels of Pax7 expression than BSCs cultured on collagen- and fibronectin-coated dishes in both short- and long-term cultures, indicating that BSCs cultured on gelatin effectively maintained the satellite cell population in both the short- and long-term cultures. Our study highlights that gelatin is an effective ECM for the maintenance of BSCs and the production of cultured meat.
Collapse
Affiliation(s)
- Jae Ho Han
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Si Won Jang
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ye Rim Kim
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ga Rim Na
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Ji Hoon Park
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hyun Woo Choi
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Animal Science, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
14
|
Li S, Zhi C. Versatile Biopolymers for Advanced Lithium and Zinc Metal Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2413515. [PMID: 39588901 DOI: 10.1002/adma.202413515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/21/2024] [Indexed: 11/27/2024]
Abstract
Lithium (Li) and zinc (Zn) metals are emerging as promising anode materials for next-generation rechargeable metal batteries due to their excellent electronic conductivity and high theoretical capacities. However, issues such as uneven metal ion deposition and uncontrolled dendrite growth result in poor electrochemical stability, limited cycle life, and rapid capacity decay. Biopolymers, recognized for their abundance, cost-effectiveness, biodegradability, tunable structures, and adjustable properties, offer a compelling solution to these challenges. This review systematically and comprehensively examines biopolymers and their protective mechanisms for Li and Zn metal anodes. It begins with an overview of biopolymers, detailing key types, their structures, and properties. The review then explores recent advancements in the application of biopolymers as artificial solid electrolyte interphases, electrolyte additives, separators, and solid-state electrolytes, emphasizing how their structural properties enhance protection mechanisms and improve electrochemical performance. Finally, perspectives on current challenges and future research directions in this evolving field are provided.
Collapse
Affiliation(s)
- Shimei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin, New Territories, Hong Kong SAR, 999077, P. R. China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
15
|
Zhu P, Ma M, You T, Zhang B, Ye S, Liu S. Optimizing prolyl hydroxylation for functional recombinant collagen in Escherichia coli. Int J Biol Macromol 2024; 282:137400. [PMID: 39521206 DOI: 10.1016/j.ijbiomac.2024.137400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Collagen, a key extracellular matrix component, is renowned for its biocompatibility, biodegradability, and bioactivity, finding wide applications in food, medicine, cosmetics, and industry. Recombinant collagen expression in Escherichia coli offers advantages such as shorter production cycles and lower costs compared to extraction from animal tissues, though it is known to lack essential post-translational modifications, such as proline hydroxylation, which are crucial for its stability and biological function. Studies have shown that certain prolyl hydroxylases, including BaP4H, DsP4H, and L593, exhibit relatively high modification efficiency in the E. coli expression system. However, structures and functions of recombinant human type III collagen after modification by three prolyl hydroxylases remain uncertain. In this study, we investigated the percentage of proline hydroxylation, hydroxylation sites, circular dichroism spectra, and biological functions of recombinant human type III collagen modified by various prolyl hydroxylases. The results indicated that the L593 exhibited the highest percentage of proline hydroxylation, and the percentage of proline hydroxylation was closely associated with the formation of the collagen triple helix, while the hydroxylation ratio of prolines is not positively correlated with the stability of the collagen triple helix structure. The biological function results showed that the cell adhesion of recombinant collagen 3-3(BaP4H) and 3-3(L593) was significantly enhanced, which was closely related to the triple helix structure of recombinant human type III collagen. Our study provides valuable insights into the industrial production and biological applications of collagen, enhancing its functional research and scalability.
Collapse
Affiliation(s)
- Pei Zhu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Mingxue Ma
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Tianjie You
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China
| | - Bo Zhang
- Hangzhou Insightale Biotechnology Co., LTD, Hangzhou 310000, PR China
| | - Sheng Ye
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| | - Si Liu
- Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, School of Life Sciences, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, PR China.
| |
Collapse
|
16
|
Rajkumari N, Shalayel I, Tubbs E, Perrier Q, Chabert C, Lablanche S, Benhamou PY, Arnol C, Gredy L, Divoux T, Stephan O, Zebda A, van der Sanden B. Matrix design for optimal pancreatic β cells transplantation. BIOMATERIALS ADVANCES 2024; 164:213980. [PMID: 39126900 DOI: 10.1016/j.bioadv.2024.213980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/15/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
New therapeutic approaches to treat type 1 diabetes mellitus relies on pancreatic islet transplantation. Here, developing immuno-isolation strategies is essential to eliminate the need for systemic immunosuppression after pancreatic islet grafts. A solution is the macro-encapsulation of grafts in semipermeable matrixes with a double function: separating islets from host immune cells and facilitating the diffusion of insulin, glucose, and other metabolites. This study aims to synthesize and characterize different types of gelatin-collagen matrixes to prepare a macro-encapsulation device for pancreatic islets that fulfill these functions. While natural polymers exhibit superior biocompatibility compared to synthetic ones, their mechanical properties are challenging to reproduce. To address this issue, we conducted a comparative analysis between photo-crosslinked gelatin matrixes and chemically crosslinked collagen matrixes. We show that the different crosslinkers and polymerization methods influence the survival and glucose-stimulated insulin production of pancreatic β cells (INS1) in vitro, as well as the in vitro and in vivo stability of the matrix and the immuno-isolation in vivo. Among the matrixes, the stiff multilayer GelMA matrixes (8.5 kPa), fabricated by digital light processing, were the best suited for pancreatic β cells macro-encapsulation regarding these parameters. Within the alveoli of this matrix, pancreatic β cells spontaneously formed aggregates.
Collapse
Affiliation(s)
- Nikita Rajkumari
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France; Nantes University, CRCI2NA, INSERM 1307, 44000 Nantes, France.
| | - Ibrahim Shalayel
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France.
| | - Emily Tubbs
- Grenoble Alpes University, CEA, INSERM, IRIG, 38000 Grenoble, Biomics, France.
| | - Quentin Perrier
- Univ. Grenoble Alpes, INSERM, Grenoble Alpes University Hospital, Department of Pharmacy, LBFA U1055, Grenoble, France.
| | - Clovis Chabert
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France.
| | - Sandrine Lablanche
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France; Department of Endocrinology-Diabetology-Nutrition, Grenoble University Hospital, France.
| | - Pierre-Yves Benhamou
- Laboratory of Fundamental and Applied Bioenergetics (LBFA), Grenoble Alpes University and INSERM U1055, France; Department of Endocrinology-Diabetology-Nutrition, Grenoble University Hospital, France.
| | - Capucine Arnol
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France
| | - Laetitia Gredy
- MoVe, Laboratoire interdisciplinaire de physique, CNRS UMR 5588, Grenoble Alpes University, St-Martin d'Hères, France.
| | - Thibaut Divoux
- ENSL, CNRS, Laboratoire de Physique, F-69342 Lyon, France.
| | - Olivier Stephan
- MoVe, Laboratoire interdisciplinaire de physique, CNRS UMR 5588, Grenoble Alpes University, St-Martin d'Hères, France.
| | - Abdelkader Zebda
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France.
| | - Boudewijn van der Sanden
- SyNaBi & Platform of Intravital Microscopy, TIMC-IMAG, CNRS UMR 5525, Grenoble Alpes University, Grenoble INP, INSERM, Grenoble, France.
| |
Collapse
|
17
|
Tang Z, Deng L, Zhang J, Jiang T, Xiang H, Chen Y, Liu H, Cai Z, Cui W, Xiong Y. Intelligent Hydrogel-Assisted Hepatocellular Carcinoma Therapy. RESEARCH (WASHINGTON, D.C.) 2024; 7:0477. [PMID: 39691767 PMCID: PMC11651419 DOI: 10.34133/research.0477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Given the high malignancy of liver cancer and the liver's unique role in immune and metabolic regulation, current treatments have limited efficacy, resulting in a poor prognosis. Hydrogels, soft 3-dimensional network materials comprising numerous hydrophilic monomers, have considerable potential as intelligent drug delivery systems for liver cancer treatment. The advantages of hydrogels include their versatile delivery modalities, precision targeting, intelligent stimulus response, controlled drug release, high drug loading capacity, excellent slow-release capabilities, and substantial potential as carriers of bioactive molecules. This review presents an in-depth examination of hydrogel-assisted advanced therapies for hepatocellular carcinoma, encompassing small-molecule drug therapy, immunotherapy, gene therapy, and the utilization of other biologics. Furthermore, it examines the integration of hydrogels with conventional liver cancer therapies, including radiation, interventional therapy, and ultrasound. This review provides a comprehensive overview of the numerous advantages of hydrogels and their potential to enhance therapeutic efficacy, targeting, and drug delivery safety. In conclusion, this review addresses the clinical implementation of hydrogels in liver cancer therapy and future challenges and design principles for hydrogel-based systems, and proposes novel research directions and strategies.
Collapse
Affiliation(s)
- Zixiang Tang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Lin Deng
- Department of Clinical Medicine,
North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Jing Zhang
- Department of Gastroenterology,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Tao Jiang
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Honglin Xiang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanyang Chen
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Huzhe Liu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital,
Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P. R. China
| | - Yongfu Xiong
- Department of Hepatobiliary Surgery, Academician (Expert) Workstation, Sichuan Digestive System Disease Clinical Medical Research Center,
Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
18
|
Ieviņa L, Dubņika A. Navigating the combinations of platelet-rich fibrin with biomaterials used in maxillofacial surgery. Front Bioeng Biotechnol 2024; 12:1465019. [PMID: 39434715 PMCID: PMC11491360 DOI: 10.3389/fbioe.2024.1465019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
Platelet-rich fibrin (PRF) is a protein matrix with growth factors and immune cells extracted from venous blood via centrifugation. Previous studies proved it a beneficial biomaterial for bone and soft tissue regeneration in dental surgeries. Researchers have combined PRF with a wide range of biomaterials for composite preparation as it is biocompatible and easily acquirable. The results of the studies are difficult to compare due to varied research methods and the fact that researchers focus more on the PRF preparation protocol and less on the interaction of PRF with the chosen material. Here, the literature from 2013 to 2024 is reviewed to help surgeons and researchers navigate the field of commonly used biomaterials in maxillofacial surgeries (calcium phosphate bone grafts, polymers, metal nanoparticles, and novel composites) and their combinations with PRF. The aim is to help the readers select a composite that suits their planned research or medical case. Overall, PRF combined with bone graft materials shows potential for enhancing bone regeneration both in vivo and in vitro. Still, results vary across studies, necessitating standardized protocols and extensive clinical trials. Overviewed methods showed that the biological and mechanical properties of the PRF and material composites can be altered depending on the PRF preparation and incorporation process.
Collapse
Affiliation(s)
- Lauma Ieviņa
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| | - Arita Dubņika
- Institute of Biomaterials and Bioengineering, Faculty of Natural Science and Technology, Riga Technical University, Riga, Latvia
- Baltic Biomaterials Centre of Excellence, Headquarters at Riga Technical University, Riga, Latvia
| |
Collapse
|
19
|
Lee M, Seo D, Park J, Lee SH, Jeon J, Kim W, Kim J, Yang HS, Lee JY. Wet tissue adhesive polymeric powder hydrogels for skeletal muscle regeneration. Bioact Mater 2024; 40:334-344. [PMID: 38978803 PMCID: PMC11228550 DOI: 10.1016/j.bioactmat.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024] Open
Abstract
Volumetric muscle loss (VML) frequently results from traumatic incidents and can lead to severe functional disabilities. Hydrogels have been widely employed for VML tissue regeneration, which are unfortunately ineffective because of the lack of intimate contact with injured tissue for structural and mechanical support. Adhesive hydrogels allow for strong tissue connections for wound closure. Nevertheless, conventional adhesive hydrogels exhibit poor tissue adhesion in moist, bleeding wounds due to the hydration layer at the tissue-hydrogel interfaces, resulting in insufficient performance. In this study, we developed a novel, biocompatible, wet tissue adhesive powder hydrogel consisting of dextran-aldehyde (dex-ald) and gelatin for the regeneration of VML. This powder absorbs the interfacial tissue fluid and buffer solution on the tissue, spontaneously forms a hydrogel, and strongly adheres to the tissue via various molecular interactions, including the Schiff base reaction. In particular, the powder composition with a 1:4 ratio of dex-ald to gelatin exhibited optimal characteristics with an appropriate gelation time (258 s), strong tissue adhesion (14.5 kPa), and stability. Dex-ald/gelatin powder hydrogels presented strong adhesion to various organs and excellent hemostasis compared to other wet hydrogels and fibrin glue. A mouse VML injury model revealed that the dex-ald/gelatin powder hydrogel significantly improved muscle regeneration, reduced fibrosis, enhanced vascularization, and decreased inflammation. Consequently, our wet-adhesive powder hydrogel can serve as an effective platform for repairing various tissues, including the heart, muscle, and nerve tissues.
Collapse
Affiliation(s)
- Mingyu Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Daun Seo
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sun Hong Lee
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jin Jeon
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 FOUR NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
20
|
Cui X, Jiao J, Yang L, Wang Y, Jiang W, Yu T, Li M, Zhang H, Chao B, Wang Z, Wu M. Advanced tumor organoid bioprinting strategy for oncology research. Mater Today Bio 2024; 28:101198. [PMID: 39205873 PMCID: PMC11357813 DOI: 10.1016/j.mtbio.2024.101198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/14/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Bioprinting is a groundbreaking technology that enables precise distribution of cell-containing bioinks to construct organoid models that accurately reflect the characteristics of tumors in vivo. By incorporating different types of tumor cells into the bioink, the heterogeneity of tumors can be replicated, enabling studies to simulate real-life situations closely. Precise reproduction of the arrangement and interactions of tumor cells using bioprinting methods provides a more realistic representation of the tumor microenvironment. By mimicking the complexity of the tumor microenvironment, the growth patterns and diffusion of tumors can be demonstrated. This approach can also be used to evaluate the response of tumors to drugs, including drug permeability and cytotoxicity, and other characteristics. Therefore, organoid models can provide a more accurate oncology research and treatment simulation platform. This review summarizes the latest advancements in bioprinting to construct tumor organoid models. First, we describe the bioink used for tumor organoid model construction, followed by an introduction to various bioprinting methods for tumor model formation. Subsequently, we provide an overview of existing bioprinted tumor organoid models.
Collapse
Affiliation(s)
- Xiangran Cui
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Jianhang Jiao
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Lili Yang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Yang Wang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Weibo Jiang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Tong Yu
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Mufeng Li
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Han Zhang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Bo Chao
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| | - Zhonghan Wang
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
- Orthopaedic Research Institute of Jilin Province, Changchun, 130041, PR China
| | - Minfei Wu
- Department of Orthopedics, The Second Hospital of Jilin University Changchun, 130041, PR China
| |
Collapse
|
21
|
Garau Paganella L, Badolato A, Labouesse C, Fischer G, Sänger CS, Kourouklis A, Giampietro C, Werner S, Mazza E, Tibbitt MW. Variations in fluid chemical potential induce fibroblast mechano-response in 3D hydrogels. BIOMATERIALS ADVANCES 2024; 163:213933. [PMID: 38972277 DOI: 10.1016/j.bioadv.2024.213933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/28/2024] [Accepted: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Mechanical deformation of skin creates variations in fluid chemical potential, leading to local changes in hydrostatic and osmotic pressure, whose effects on mechanobiology remain poorly understood. To study these effects, we investigate the specific influences of hydrostatic and osmotic pressure on primary human dermal fibroblasts in three-dimensional hydrogel culture models. Cyclic hydrostatic pressure and hyperosmotic stress enhanced the percentage of cells expressing the proliferation marker Ki67 in both collagen and PEG-based hydrogels. Osmotic pressure also activated the p38 MAPK stress response pathway and increased the expression of the osmoresponsive genes PRSS35 and NFAT5. When cells were cultured in two-dimension (2D), no change in proliferation was observed with either hydrostatic or osmotic pressure. Furthermore, basal, and osmotic pressure-induced expression of osmoresponsive genes differed in 2D culture versus 3D hydrogels, highlighting the role of dimensionality in skin cell mechanotransduction and stressing the importance of 3D tissue-like models that better replicate in vivo conditions. Overall, these results indicate that fluid chemical potential changes affect dermal fibroblast mechanobiology, which has implications for skin function and for tissue regeneration strategies.
Collapse
Affiliation(s)
- Lorenza Garau Paganella
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Asia Badolato
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Céline Labouesse
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Gabriel Fischer
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Catharina S Sänger
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Andreas Kourouklis
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Costanza Giampietro
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; EMPA, Swiss Federal Laboratories for Material Science and Technologies, Dubendorf, Switzerland
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Edoardo Mazza
- Institute for Mechanical Systems, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland; EMPA, Swiss Federal Laboratories for Material Science and Technologies, Dubendorf, Switzerland
| | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, Institute of Energy and Process Engineering, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Hwang Y, Shimamura Y, Tanaka J, Miura A, Sawada A, Sarmah H, Shimizu D, Kondo Y, Lee H, Martini F, Ninish Z, Yan KS, Yamada K, Mori M. FGF2 promotes the expansion of parietal mesothelial progenitor pools and inhibits BMP4-mediated smooth muscle cell differentiation. Front Cell Dev Biol 2024; 12:1387237. [PMID: 39376629 PMCID: PMC11456698 DOI: 10.3389/fcell.2024.1387237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/11/2024] [Indexed: 10/09/2024] Open
Abstract
Mesothelial cells, in the outermost layer of internal organs, are essential for both organ development and homeostasis. Although the parietal mesothelial cell is the primary origin of mesothelioma that may highjack developmental signaling, the signaling pathways that orchestrate developing parietal mesothelial progenitor cell (MPC) behaviors, such as MPC pool expansion, maturation, and differentiation, are poorly understood. To address it, we established a robust protocol for culturing WT1+ MPCs isolated from developing pig and mouse parietal thorax. Quantitative qPCR and immunostaining analyses revealed that BMP4 facilitated MPC differentiation into smooth muscle cells (SMCs). In contrast, FGF2 significantly promoted MPC progenitor pool expansion but blocked the SMC differentiation. BMP4 and FGF2 counterbalanced these effects, but FGF2 had the dominant impact in the long-term culture. A Wnt activator, CHIR99021, was pivotal in MPC maturation to CALB2+ mesothelial cells, while BMP4 or FGF2 was limited. Our results demonstrated central pathways critical for mesothelial cell behaviors.
Collapse
Affiliation(s)
- Youngmin Hwang
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Yuko Shimamura
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Junichi Tanaka
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Akihiro Miura
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Anri Sawada
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Hemanta Sarmah
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Dai Shimizu
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Yuri Kondo
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Hyeonjeong Lee
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Francesca Martini
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Zurab Ninish
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| | - Kelley S. Yan
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University Irving Medical Center, New York, NY, United States
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, United States
| | - Kazuhiko Yamada
- Department of Surgery, School of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Munemasa Mori
- Columbia Center for Human Development (CCHD), Columbia University Irving Medical Center, New York, NY, United States
| |
Collapse
|
23
|
Brunel LG, Long CM, Christakopoulos F, Cai B, Johansson PK, Singhal D, Enejder A, Myung D, Heilshorn SC. Interpenetrating networks of fibrillar and amorphous collagen promote cell spreading and hydrogel stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612534. [PMID: 39345483 PMCID: PMC11429934 DOI: 10.1101/2024.09.11.612534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Hydrogels composed of collagen, the most abundant protein in the human body, are widely used as scaffolds for tissue engineering due to their ability to support cellular activity. However, collagen hydrogels with encapsulated cells often experience bulk contraction due to cell-generated forces, and conventional strategies to mitigate this undesired deformation often compromise either the fibrillar microstructure or cytocompatibility of the collagen. To support the spreading of encapsulated cells while preserving the structural integrity of the gels, we present an interpenetrating network (IPN) of two distinct collagen networks with different crosslinking mechanisms and microstructures. First, a physically self-assembled collagen network preserves the fibrillar microstructure and enables the spreading of encapsulated human corneal mesenchymal stromal cells. Second, an amorphous collagen network covalently crosslinked with bioorthogonal chemistry fills the voids between fibrils and stabilizes the gel against cell-induced contraction. This collagen IPN balances the biofunctionality of natural collagen with the stability of covalently crosslinked, engineered polymers. Taken together, these data represent a new avenue for maintaining both the fiber-induced spreading of cells and the structural integrity of collagen hydrogels by leveraging an IPN of fibrillar and amorphous collagen networks. Statement of significance Collagen hydrogels are widely used as scaffolds for tissue engineering due to their support of cellular activity. However, collagen hydrogels often undergo undesired changes in size and shape due to cell-generated forces, and conventional strategies to mitigate this deformation typically compromise either the fibrillar microstructure or cytocompatibility of the collagen. In this study, we introduce an innovative interpenetrating network (IPN) that combines physically self-assembled, fibrillar collagen-ideal for promoting cell adhesion and spreading-with covalently crosslinked, amorphous collagen-ideal for enhancing bulk hydrogel stability. Our IPN design maintains the native fibrillar structure of collagen while significantly improving resistance against cell-induced contraction, providing a promising solution to enhance the performance and reliability of collagen hydrogels for tissue engineering applications. Graphical abstract
Collapse
|
24
|
Roldán E, Reeves ND, Cooper G, Andrews K. Machine learning to predict morphology, topography and mechanical properties of sustainable gelatin-based electrospun scaffolds. Sci Rep 2024; 14:21017. [PMID: 39251653 PMCID: PMC11385233 DOI: 10.1038/s41598-024-71824-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/30/2024] [Indexed: 09/11/2024] Open
Abstract
Electrospinning is an outstanding manufacturing technique for producing nano-micro-scaled fibrous scaffolds comparable to biological tissues. However, the solvents used are normally hazardous for the health and the environment, which compromises the sustainability of the process and the industrial scaling. This novel study compares different machine learning models to predict how green solvents affect the morphology, topography and mechanical properties of gelatin-based scaffolds. Gelatin-based scaffolds were produced with different concentrations of distillate water (dH2O), acetic acid (HAc) and dimethyl sulfoxide (DMSO). 2214 observations, 12 machine learning approaches, including Generalised Linear Models, Generalised Additive Models, Generalised Additive Models for Location, Scale and Shape (GAMLSS), Decision Trees, Random Forest, Support Vector Machine and Artificial Neural Network, and a total of 72 models were developed to predict diameter of the fibres, inter-fibre separation, roughness, ultimate tensile strength, Young's modulus and strain at break. The best GAMLSS models improved the performance of R2 with respect to the popular regression models by 6.868%, and the MAPE was improved by 21.16%. HAc highly influenced the morphology and topography; however, the importance of DMSO was higher in the mechanical properties. The addition of the morphological properties as covariates in the topographic and mechanical models enhanced their understanding.
Collapse
Affiliation(s)
- Elisa Roldán
- Department of Engineering, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK.
| | - Neil D Reeves
- Lancaster Medical School, Faculty of Health and Medicine, Lancaster University, Lancaster, LA1 4YW, UK
| | - Glen Cooper
- School of Engineering, University of Manchester, Manchester, M13 9PL, UK
| | - Kirstie Andrews
- Department of Engineering, Faculty of Science & Engineering, Manchester Metropolitan University, Manchester, M1 5GD, UK
| |
Collapse
|
25
|
Yu P, Sedlačík T, Parmentier L, Jerca FA, Jerca VV, Van Vlierberghe S, Leiske MN, Hoogenboom R. Degradable Cell-Adhesive Hybrid Hydrogels by Cross-Linking of Gelatin with Poly(2-isopropenyl-2-oxazoline). Biomacromolecules 2024; 25:5332-5342. [PMID: 39059021 DOI: 10.1021/acs.biomac.4c00743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
This study focused on the cross-linking of poly(2-isopropenyl-2-oxazoline) (PiPOx) with gelatin to obtain strong, degradable hybrid hydrogels with good cell adhesion. The molecular weight and concentration of PiPOx and the PiPOx-to-gelatin ratio were varied to adjust the mechanical and swelling properties of the hybrid hydrogels. The swelling degree of PiPOx-gelatin hydrogels in water ranged between 1260 and 810%, with the corresponding Young's compressive moduli ranging from 77 to 215 kPa. Rheological measurements demonstrated the mechanical stability of the hydrogels. The hydrogels exhibited substantial degradation in Dulbecco's phosphate-buffered saline (DPBS) and cell culture medium within several weeks, indicating their degradability and responsiveness. The cell adhesion assay with primary human foreskin fibroblasts revealed the hybrid hydrogels are noncytotoxic and support cell attachment and proliferation. These strong hydrogels thus show excellent potential as biomedical cell scaffolds, combining the tunability and strength of PiPOx hydrogels with gelatin's cell-interactive properties while the ester-containing cross-links provide tunable degradability.
Collapse
Affiliation(s)
- Peitao Yu
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Tomáš Sedlačík
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Laurens Parmentier
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Florica Adriana Jerca
- Smart Organic Materials Group, "Costin D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| | - Valentin Victor Jerca
- Smart Organic Materials Group, "Costin D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Splaiul Independentei, 060023 Bucharest, Romania
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Meike N Leiske
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
- Macromolecular Chemistry, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
- Bavarian Polymer Institute, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| |
Collapse
|
26
|
Massonie M, Pinese C, Simon M, Bethry A, Nottelet B, Garric X. Biodegradable Tyramine Functional Gelatin/6 Arms-PLA Inks Compatible with 3D Two Photon-Polymerization Printing and Meniscus Tissue Regeneration. Biomacromolecules 2024; 25:5098-5109. [PMID: 39042487 DOI: 10.1021/acs.biomac.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The meniscus regeneration can present major challenges such as mimicking tissue microstructuration or triggering cell regeneration. In the case of lesions that require a personalized approach, photoprinting offers the possibility of designing resolutive biomaterial structures. The photo-cross-linkable ink composition determines the process ease and the final network properties. In this study, we designed a range of hybrid inks composed of gelatin(G) and 6-PLA arms(P) that were photo-cross-linked using tyramine groups. The photo-cross-linking efficiency, mechanical properties, degradation, and biological interactions of inks with different G/P mass ratios were studied. The G50P50 network properties were suitable for meniscus regeneration, with Young's modulus of 6.5 MPa, degradation in 2 months, and good cell proliferation. We then confirmed the potential of these inks to produce high-resolution microstructures by printing well-defined microstructures using two-photon polymerization. These hybrid inks offer new perspectives for biocompatible, degradable, and microstructured tissue engineering scaffold creation.
Collapse
Affiliation(s)
- Mathilde Massonie
- Polymers for Health and Biomaterials, IBMM, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
| | - Coline Pinese
- Polymers for Health and Biomaterials, IBMM, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| | - Matthieu Simon
- Cartigen Plateform, University of Montpellier, Montpellier University Hospital, 34090 Montpellier, France
| | - Audrey Bethry
- Polymers for Health and Biomaterials, IBMM, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
| | - Benjamin Nottelet
- Polymers for Health and Biomaterials, IBMM, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| | - Xavier Garric
- Polymers for Health and Biomaterials, IBMM, CNRS, ENSCM, University of Montpellier, 34090 Montpellier, France
- Department of Pharmacy, Nîmes University Hospital, 30900 Nimes, France
| |
Collapse
|
27
|
Cyr JA, Burdett C, Pürstl JT, Thompson RP, Troughton SC, Sinha S, Best SM, Cameron RE. Characterizing collagen scaffold compliance with native myocardial strains using an ex-vivo cardiac model: The physio-mechanical influence of scaffold architecture and attachment method. Acta Biomater 2024; 184:239-253. [PMID: 38942187 DOI: 10.1016/j.actbio.2024.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/30/2024] [Accepted: 06/21/2024] [Indexed: 06/30/2024]
Abstract
Applied to the epicardium in-vivo, regenerative cardiac patches support the ventricular wall, reduce wall stresses, encourage ventricular wall thickening, and improve ventricular function. Scaffold engraftment, however, remains a challenge. After implantation, scaffolds are subject to the complex, time-varying, biomechanical environment of the myocardium. The mechanical capacity of engineered tissue to biomimetically deform and simultaneously support the damaged native tissue is crucial for its efficacy. To date, however, the biomechanical response of engineered tissue applied directly to live myocardium has not been characterized. In this paper, we utilize optical imaging of a Langendorff ex-vivo cardiac model to characterize the native deformation of the epicardium as well as that of attached engineered scaffolds. We utilize digital image correlation, linear strain, and 2D principal strain analysis to assess the mechanical compliance of acellular ice templated collagen scaffolds. Scaffolds had either aligned or isotropic porous architecture and were adhered directly to the live epicardial surface with either sutures or cyanoacrylate glue. We demonstrate that the biomechanical characteristics of native myocardial deformation on the epicardial surface can be reproduced by an ex-vivo cardiac model. Furthermore, we identified that scaffolds with unidirectionally aligned pores adhered with suture fixation most accurately recapitulated the deformation of the native epicardium. Our study contributes a translational characterization methodology to assess the physio-mechanical performance of engineered cardiac tissue and adds to the growing body of evidence showing that anisotropic scaffold architecture improves the functional biomimetic capacity of engineered cardiac tissue. STATEMENT OF SIGNIFICANCE: Engineered cardiac tissue offers potential for myocardial repair, but engraftment remains a challenge. In-vivo, engineered scaffolds are subject to complex biomechanical stresses and the mechanical capacity of scaffolds to biomimetically deform is critical. To date, the biomechanical response of engineered scaffolds applied to live myocardium has not been characterized. In this paper, we utilize optical imaging of an ex-vivo cardiac model to characterize the deformation of the native epicardium and scaffolds attached directly to the heart. Comparing scaffold architecture and fixation method, we demonstrate that sutured scaffolds with anisotropic pores aligned with the native alignment of the superficial myocardium best recapitulate native deformation. Our study contributes a physio-mechanical characterization methodology for cardiac tissue engineering scaffolds.
Collapse
Affiliation(s)
- Jamie A Cyr
- Department of Materials Science & Metallurgy Cambridge University 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| | - Clare Burdett
- Department of Materials Science & Metallurgy Cambridge University 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Julia T Pürstl
- Department of Materials Science & Metallurgy Cambridge University 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Robert P Thompson
- Department of Materials Science & Metallurgy Cambridge University 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Samuel C Troughton
- Department of Materials Science & Metallurgy Cambridge University 27 Charles Babbage Road, Cambridge CB3 0FS, UK
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge University, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Serena M Best
- Department of Materials Science & Metallurgy Cambridge University 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| | - Ruth E Cameron
- Department of Materials Science & Metallurgy Cambridge University 27 Charles Babbage Road, Cambridge CB3 0FS, UK.
| |
Collapse
|
28
|
Băbuțan M, Botiz I. Morphological Characteristics of Biopolymer Thin Films Swollen-Rich in Solvent Vapors. Biomimetics (Basel) 2024; 9:396. [PMID: 39056837 PMCID: PMC11274445 DOI: 10.3390/biomimetics9070396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Biopolymers exhibit a large variety of attractive properties including biocompatibility, flexibility, gelation ability, and low cost. Therefore, especially in more recent years, they have become highly suitable for a wider and wider range of applications stretching across several key sectors such as those related to food packaging, pharmaceutic, and medical industries, just to name a few. Moreover, biopolymers' properties are known to be strongly dependent on the molecular arrangements adopted by such chains at the nanoscale and microscale. Fortunately, these arrangements can be altered and eventually optimized through a plethora of more or less efficient polymer processing methods. Here, we used a space-confined solvent vapor annealing (C-SVA) method to subject various biopolymers to rich swelling in solvent vapors in order to favor their further crystallization or self-assembly, with the final aim of obtaining thin biopolymer films exhibiting more ordered chain conformations. The results obtained by atomic force microscopy revealed that while the gelatin biopolymer nucleated and then crystallized into granular compact structures, other biopolymers preferred to self-assemble into (curved) lamellar rows composed of spherical nanoparticles (glycogen and chitosan) or into more complex helix-resembling morphologies (phytagel). The capability of the C-SVA processing method to favor crystallization and to induce self-assembly in various biopolymeric species or even monomeric units further emphasizes its great potential in the future structuring of a variety of biological (macro)molecules.
Collapse
Affiliation(s)
- Mihai Băbuțan
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
| | - Ioan Botiz
- Department of Physics of Condensed Matter and Advanced Technologies, Faculty of Physics, Babeș-Bolyai University, 400084 Cluj-Napoca, Romania;
- Interdisciplinary Research Institute on Bio-Nano-Sciences, Babeș-Bolyai University, 400271 Cluj-Napoca, Romania
| |
Collapse
|
29
|
Edwards SD, Ganash M, Guan Z, Lee J, Kim YJ, Jeong KJ. Enhanced osteogenesis of mesenchymal stem cells encapsulated in injectable microporous hydrogel. Sci Rep 2024; 14:14665. [PMID: 38918510 PMCID: PMC11199573 DOI: 10.1038/s41598-024-65731-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/24/2024] [Indexed: 06/27/2024] Open
Abstract
Delivery of therapeutic stem cells to treat bone tissue damage is a promising strategy that faces many hurdles to clinical translation. Among them is the design of a delivery vehicle which promotes desired cell behavior for new bone formation. In this work, we describe the use of an injectable microporous hydrogel, made of crosslinked gelatin microgels, for the encapsulation and delivery of human mesenchymal stem cells (MSCs) and compared it to a traditional nonporous injectable hydrogel. MSCs encapsulated in the microporous hydrogel showed rapid cell spreading with direct cell-cell connections whereas the MSCs in the nonporous hydrogel were entrapped by the surrounding polymer mesh and isolated from each other. On a per-cell basis, encapsulation in microporous hydrogel induced a 4 × increase in alkaline phosphatase (ALP) activity and calcium mineral deposition in comparison to nonporous hydrogel, as measured by ALP and calcium assays, which indicates more robust osteogenic differentiation. RNA-seq confirmed the upregulation of the genes and pathways that are associated with cell spreading and cell-cell connections, as well as the osteogenesis in the microporous hydrogel. These results demonstrate that microgel-based injectable hydrogels can be useful tools for therapeutic cell delivery for bone tissue repair.
Collapse
Affiliation(s)
- Seth D Edwards
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Mrinal Ganash
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Ziqiang Guan
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Jeil Lee
- Department of Biological and Chemical Engineering, Hongik University, Sejong City, Republic of Korea
| | - Young Jo Kim
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA
| | - Kyung Jae Jeong
- Department of Chemical Engineering and Bioengineering, University of New Hampshire, Durham, NH, 03824, USA.
| |
Collapse
|
30
|
Olate-Moya F, Rubí-Sans G, Engel E, Mateos-Timoneda MÁ, Palza H. 3D Bioprinting of Biomimetic Alginate/Gelatin/Chondroitin Sulfate Hydrogel Nanocomposites for Intrinsically Chondrogenic Differentiation of Human Mesenchymal Stem Cells. Biomacromolecules 2024; 25:3312-3324. [PMID: 38728671 DOI: 10.1021/acs.biomac.3c01444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
3D-printed hydrogel scaffolds biomimicking the extracellular matrix (ECM) are key in cartilage tissue engineering as they can enhance the chondrogenic differentiation of mesenchymal stem cells (MSCs) through the presence of active nanoparticles such as graphene oxide (GO). Here, biomimetic hydrogels were developed by cross-linking alginate, gelatin, and chondroitin sulfate biopolymers in the presence of GO as a bioactive filler, with excellent processability for developing bioactive 3D printed scaffolds and for the bioprinting process. A novel bioink based on our hydrogel with embedded human MSCs presented a cell survival rate near 100% after the 3D bioprinting process. The effects of processing and filler concentration on cell differentiation were further quantitatively evaluated. The nanocomposited hydrogels render high MSC proliferation and viability, exhibiting intrinsic chondroinductive capacity without any exogenous factor when used to print scaffolds or bioprint constructs. The bioactivity depended on the GO concentration, with the best performance at 0.1 mg mL-1. These results were explained by the rational combination of the three biopolymers, with GO nanoparticles having carboxylate and sulfate groups in their structures, therefore, biomimicking the highly negatively charged ECM of cartilage. The bioactivity of this biomaterial and its good processability for 3D printing scaffolds and 3D bioprinting techniques open up a new approach to developing novel biomimetic materials for cartilage repair.
Collapse
Affiliation(s)
- Felipe Olate-Moya
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, 8370458 Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Avenida Monseñor Álvaro del Portillo 12455, 7620086 Las Condes, Chile
| | - Gerard Rubí-Sans
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, 08028, 08019 Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 50018 Zaragoza, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Departament de Ciència i Enginyeria de Materials, EEBE, Universitat Politècnica de Catalunya (UPC), C/Eduard Maristany 10-14, 08019 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac, 10, 12, 08028, 08019 Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 50018 Zaragoza, Spain
| | - Miguel Ángel Mateos-Timoneda
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya, Josep Trueta Street s/n, 08195 Sant Cugat del Vallès, Barcelona, Spain
- Department of Basic Sciences, Faculty of Medicine and Health Sciences, Univesitat Internacional de Catalunya, Josep Trueta Street s/n, 08195 Sant Cugat del Vallès, Barcelona, Spain
| | - Humberto Palza
- Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, 8370458 Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Avenida Monseñor Álvaro del Portillo 12455, 7620086 Las Condes, Chile
| |
Collapse
|
31
|
Sim HJ, Marinkovic K, Xiao P, Lu H. Graphene Oxide Strengthens Gelatine through Non-Covalent Interactions with Its Amorphous Region. Molecules 2024; 29:2700. [PMID: 38893573 PMCID: PMC11173959 DOI: 10.3390/molecules29112700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Graphene oxide (GO) has attracted huge attention in biomedical sciences due to its outstanding properties and potential applications. In this study, we synthesized GO using our recently developed 1-pyrenebutyric acid-assisted method and assessed how the GO as a filler influences the mechanical properties of GO-gelatine nanocomposite dry films as well as the cytotoxicity of HEK-293 cells grown on the GO-gelatine substrates. We show that the addition of GO (0-2%) improves the mechanical properties of gelatine in a concentration-dependent manner. The presence of 2 wt% GO increased the tensile strength, elasticity, ductility, and toughness of the gelatine films by about 3.1-, 2.5-, 2-, and 8-fold, respectively. Cell viability, apoptosis, and necrosis analyses showed no cytotoxicity from GO. Furthermore, we performed circular dichroism, X-ray diffraction, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses to decipher the interactions between GO and gelatine. The results show, for the first time, that GO enhances the mechanical properties of gelatine by forming non-covalent intermolecular interactions with gelatine at its amorphous or disordered regions. We believe that our findings will provide new insight and help pave the way for potential and wide applications of GO in tissue engineering and regenerative biomedicine.
Collapse
Affiliation(s)
- Hak Jin Sim
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (H.J.S.); (K.M.)
- Department of Materials, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK;
| | - Katarina Marinkovic
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (H.J.S.); (K.M.)
- Department of Materials, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK;
| | - Ping Xiao
- Department of Materials, Faculty of Science and Engineering, The University of Manchester, Manchester M13 9PL, UK;
- Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Hui Lu
- School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK; (H.J.S.); (K.M.)
| |
Collapse
|
32
|
Ishikawa S, Kamata H, Sakai T. Preclustering Gelatin for Faster-Forming Injectable Hydrogels: A Strategy for Fabricating 3D Hydrogel Scaffolds with Improved Cell Dispersion. Macromol Biosci 2024; 24:e2300450. [PMID: 38403872 DOI: 10.1002/mabi.202300450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Gelatin-based injectable hydrogels capable of encapsulating cells are pivotal in tissue engineering because they can conform to any geometry and exhibit physical properties similar to those of living tissues. However, the slow gelation process observed in these cell-encapsulating hydrogels often causes an uneven dispersion of cells. This study proposes an approach for achieving fast gelation of unmodified gelatin under physiological conditions through gelatin preclustering. By using tetrafunctional succinimidyl-terminated poly(ethylene glycol) as a clustering agent, the gelation process is successfully expedited fivefold without requiring chemical modifications, effectively addressing the associated challenges of uneven cell distribution.
Collapse
Affiliation(s)
- Shohei Ishikawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Hiroyuki Kamata
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takamasa Sakai
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| |
Collapse
|
33
|
Li SG, Guo ZL, Tao SY, Han T, Zhou J, Lin WY, Guo X, Li CX, Diwas S, Hu XW. In vivo study on osteogenic efficiency of nHA/ gel porous scaffold with nacre water-soluble matrix. Tissue Cell 2024; 88:102347. [PMID: 38489914 DOI: 10.1016/j.tice.2024.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND/PURPOSE Nano-hydroxyapatite (nHA)/ gel porous scaffolds loaded with WSM carriers are promising bone replacement materials that can improve osseointegration ability. This investigation aimed to evaluate the osteoinductive activity by implanting the composition of nano-hydroxyapatite (nHA)/ Gel porous scaffolds as a carrier of WSM via an animal model. MATERIALS AND METHODS WSM was extracted and nHA was added to the matrix to construct porous composite scaffolds. The dose-effect curve of WSM concentration and alkaline phosphatase (ALP) activity was made by culturing rat osteoblasts and examining the absorbance. Three different materials were implanted into critical size defects (CSD) in the skulls of rats, which were further divided into four groups: WSM nHA /Gel group, n-WSM nHA /Gel group, HA powder group, and control group. RESULTS WSM (150 μg/mL-250μg/mL) effectively improved the activity of ALP in rat osteoblasts. All rats in each group had normal healing. WSM-loaded nHA /Gel group showed better performance on newly-formed bone tissue of rat skull and back at 4th week and 8th week, respectively. At the 4th week, the network of woven bone formed in the WSM-loaded nHA/Gel scaffold material. At 8th week, the reticular trabecular bone in the WSM-loaded scaffold material became dense lamellar bone, and the defect was mature lamellar bone. In the subcutaneous implantation experiment, WSM-loaded nHA/Gel scaffold material showed a better performance of heterotopic ossification than the pure nHA/Gel scaffold material. CONCLUSION WSM promotes osteoblast differentiation and bone mineralization. The results confirm that the nHA/ Gel Porous Scaffold with Nacre Water-Soluble Matrix has a significant bone promoting effect and can be used as a choice for tissue engineering to repair bone defects.
Collapse
Affiliation(s)
- SiRi-GuLeng Li
- Department of Dentistry, Guangzhou Health Science College, Guangzhou, PR China
| | - Zhu-Ling Guo
- School of Dentistry, Hainan Medical University, Haikou, PR China; Department of Health Management Center, The First Affiliated Hospital of Hainan Medical University, Haikou, PR China
| | - Si-Yu Tao
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Tao Han
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Jie Zhou
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Wan-Yun Lin
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Xiang Guo
- School of Dentistry, Hainan Medical University, Haikou, PR China
| | - Chu-Xing Li
- Department of Dentistry, The Second Affiliated Hospital of Hainan Medical University, Haikou, PR China
| | - Sunchuri Diwas
- School of International Education, Hainan Medical University, Haikou, PR China
| | - Xiao-Wen Hu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, PR China; Guangdong provincial key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
34
|
Salehi A, Sprejz S, Ruehl H, Olayioye M, Cattaneo G. An imprint-based approach to replicate nano- to microscale roughness on gelatin hydrogel scaffolds: surface characterization and effect on endothelialization. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1214-1235. [PMID: 38431849 DOI: 10.1080/09205063.2024.2322771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Biologization of biomaterials with endothelial cells (ECs) is an important step in vascular tissue engineering, aiming at improving hemocompatibility and diminishing the thrombo-inflammatory response of implants. Since subcellular topography in the scale of nano to micrometers can influence cellular adhesion, proliferation, and differentiation, we here investigate the effect of surface roughness on the endothelialization of gelatin hydrogel scaffolds. Considering the micron and sub-micron features of the different native tissues underlying the endothelium in the body, we carried out a biomimetic approach to replicate the surface roughness of tissues and analyzed how this impacted the adhesion and proliferation of human umbilical endothelial cells (HUVECs). Using an imprinting technique, nano and micro-roughness ranging from Sa= 402 nm to Sa= 8 μm were replicated on the surface of gelatin hydrogels. Fluorescent imaging of HUVECs on consecutive days after seeding revealed that microscale topographies negatively affect cell spreading and proliferation. By contrast, nanoscale roughnesses of Sa= 402 and Sa= 538 nm promoted endothelialization as evidenced by the formation of confluent cell monolayers with prominent VE-cadherin surface expression. Collectively, we present an affordable and flexible imprinting method to replicate surface characteristics of tissues on hydrogels and demonstrate how nanoscale roughness positively supports their endothelialization.
Collapse
Affiliation(s)
- Ali Salehi
- Institute of Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Stefanie Sprejz
- Institute of Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| | - Holger Ruehl
- Institute for Micro Integration, University of Stuttgart, Stuttgart, Germany
| | - Monilola Olayioye
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Giorgio Cattaneo
- Institute of Biomedical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
35
|
Puišo J, Žvirgždas J, Paškevičius A, Arslonova S, Adlienė D. Antimicrobial Properties of Newly Developed Silver-Enriched Red Onion-Polymer Composites. Antibiotics (Basel) 2024; 13:441. [PMID: 38786169 PMCID: PMC11117916 DOI: 10.3390/antibiotics13050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Simple low-cost, nontoxic, environmentally friendly plant-extract-based polymer films play an important role in their application in medicine, the food industry, and agriculture. The addition of silver nanoparticles to the composition of these films enhances their antimicrobial capabilities and makes them suitable for the treatment and prevention of infections. In this study, polymer-based gels and films (AgRonPVA) containing silver nanoparticles (AgNPs) were produced at room temperature from fresh red onion peel extract ("Ron"), silver nitrate, and polyvinyl alcohol (PVA). Silver nanoparticles were synthesized directly in a polymer matrix, which was irradiated by UV light. The presence of nanoparticles was approved by analyzing characteristic local surface plasmon resonance peaks occurring in UV-Vis absorbance spectra of irradiated experimental samples. The proof of evidence was supported by the results of XRD and EDX measurements. The diffusion-based method was applied to investigate the antimicrobial activity of several types of microbes located in the environment of the produced samples. Bacteria Staphylococcus aureus ATCC 29213, Acinetobacter baumannii ATCC BAA 747, and Pseudomonas aeruginosa ATCC 15442; yeasts Candida parapsilosis CBS 8836 and Candida albicans ATCC 90028; and microscopic fungi assays Aspergillus flavus BTL G-33 and Aspergillus fumigatus BTL G-38 were used in this investigation. The greatest effect was observed on Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa bacteria, defining these films as potential candidates for antimicrobial applications. The antimicrobial features of the films were less effective against fungi and the weakest against yeasts.
Collapse
Affiliation(s)
- Judita Puišo
- Department of Physics, Kaunas University of Technology, Studentų Str. 50, LT-51368 Kaunas, Lithuania
| | - Jonas Žvirgždas
- Laboratory of Biodeterioration Research, Institute of Botany, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (J.Ž.); (A.P.)
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, Institute of Botany, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (J.Ž.); (A.P.)
| | - Shirin Arslonova
- Tashkent City Branch of Republican Specialized Scientific—Practical Medical Centre of Oncology and Radiology, Boguston Str. 1, Tashkent P.O. Box 100070, Uzbekistan;
| | - Diana Adlienė
- Department of Physics, Kaunas University of Technology, Studentų Str. 50, LT-51368 Kaunas, Lithuania
| |
Collapse
|
36
|
Klimovič Š, Beckerová D, Věžník J, Kabanov D, Lacina K, Jelinkova S, Gumulec J, Rotrekl V, Přibyl J. Hyaluronic acid-based hydrogels with tunable mechanics improved structural and contractile properties of cells. BIOMATERIALS ADVANCES 2024; 159:213819. [PMID: 38430724 DOI: 10.1016/j.bioadv.2024.213819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Extracellular matrix (ECM) regulates cellular responses through mechanotransduction. The standard approach of in vitro culturing on plastic surfaces overlooks this phenomenon, so there is a need for biocompatible materials that exhibit adjustable mechanical and structural properties, promote cell adhesion and proliferation at low cost and for use in 2D or 3D cell cultures. This study presents a new tunable hydrogel system prepared from high-molecular hyaluronic acid (HA), Bovine serum albumin (BSA), and gelatin cross-linked using EDC/NHS. Hydrogels with Young's moduli (E) ranging from subunit to units of kilopascals were prepared by gradually increasing HA and BSA concentrations. Concentrated high-molecular HA network led to stiffer hydrogel with lower cluster size and swelling capacity. Medium and oxygen diffusion capability of all hydrogels showed they are suitable for 3D cell cultures. Mechanical and structural changes of mouse embryonic fibroblasts (MEFs) on hydrogels were compared with cells on standard cultivation surfaces. Experiments showed that hydrogels have suitable mechanical and cell adhesion capabilities, resulting in structural changes of actin filaments. Lastly, applying hydrogel for a more complex HL-1 cell line revealed improved mechanical and electrophysiological contractile properties.
Collapse
Affiliation(s)
- Šimon Klimovič
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Deborah Beckerová
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jakub Věžník
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Chemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Daniil Kabanov
- CEITEC, Masaryk University, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Lacina
- CEITEC, Masaryk University, Brno, Czech Republic
| | - Sarka Jelinkova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jaromír Gumulec
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Vladimír Rotrekl
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; ICRC, St. Anne's University Hospital, Brno, Czech Republic
| | - Jan Přibyl
- CEITEC, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
37
|
Ziverec A, Bax D, Cameron R, Best S, Pasdeloup M, Courtial EJ, Mallein-Gerin F, Malcor JD. The diazirine-mediated photo-crosslinking of collagen improves biomaterial mechanical properties and cellular interactions. Acta Biomater 2024; 180:230-243. [PMID: 38574880 DOI: 10.1016/j.actbio.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/06/2024]
Abstract
In tissue engineering, crosslinking with carbodiimides such as EDC is omnipresent to improve the mechanical properties of biomaterials. However, in collagen biomaterials, EDC reacts with glutamate or aspartate residues, inactivating the binding sites for cellular receptors and rendering collagen inert to many cell types. In this work, we have developed a crosslinking method that ameliorates the rigidity, stability, and degradation rate of collagen biomaterials, whilst retaining key interactions between cells and the native collagen sequence. Our approach relies on the UV-triggered reaction of diazirine groups grafted on lysines, leaving critical amino acid residues intact. Notably, GxxGER recognition motifs for collagen-binding integrins, ablated by EDC crosslinking, were left unreacted, enabling cell attachment, spreading, and colonization on films and porous scaffolds. In addition, our procedure conserves the architecture of biomaterials, improves their resistance to collagenase and cellular contraction, and yields material stiffness akin to that obtained with EDC. Importantly, diazirine-crosslinked collagen can host mesenchymal stem cells, highlighting its strong potential as a substrate for tissue repair. We have therefore established a new crosslinking strategy to modulate the mechanical features of collagen porous scaffolds without altering its biological properties, thereby offering an advantageous alternative to carbodiimide treatment. STATEMENT OF SIGNIFICANCE: This article describes an approach to improve the mechanical properties of collagen porous scaffolds, without impacting collagen's natural interactions with cells. This is significant because collagen crosslinking is overwhelmingly performed using carbodiimides, which results in a critical loss of cellular affinity. By contrast, our method leaves key cellular binding sites in the collagen sequence intact, enabling cell-biomaterial interactions. It relies on the fast, UV-triggered reaction of diazirine with collagen, and does not produce toxic by-products. It also supports the culture of mesenchymal stem cells, a pivotal cell type in a wide range of tissue repair applications. Overall, our approach offers an attractive option for the crosslinking of collagen, a prominent material in the growing field of tissue engineering.
Collapse
Affiliation(s)
- Audrey Ziverec
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Daniel Bax
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, United Kingdom
| | - Ruth Cameron
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, United Kingdom
| | - Serena Best
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge CB3 0FS, United Kingdom
| | - Marielle Pasdeloup
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Edwin-Joffrey Courtial
- 3dFAB, Univ Lyon, Université Lyon1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, 43, Bd du 11 novembre 1918, 69622 Villeurbanne, France
| | - Frédéric Mallein-Gerin
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367 Lyon Cedex 07, France
| | - Jean-Daniel Malcor
- Laboratory of Tissue Biology and Therapeutic Engineering, CNRS UMR 5305, University Claude Bernard-Lyon 1 and University of Lyon, 7 Passage du Vercors, 69367 Lyon Cedex 07, France.
| |
Collapse
|
38
|
Hazrati R, Alizadeh E, Soltani S, Keyhanvar P, Davaran S. Development of a Composite Hydrogel Containing Statistically Optimized PDGF-Loaded Polymeric Nanospheres for Skin Regeneration: In Vitro Evaluation and Stem Cell Differentiation Studies. ACS OMEGA 2024; 9:15114-15133. [PMID: 38585049 PMCID: PMC10993260 DOI: 10.1021/acsomega.3c09391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/21/2024] [Accepted: 03/05/2024] [Indexed: 04/09/2024]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) is a polypeptide growth factor generated by platelet granules faced to cytokines. It plays a role in forming and remodeling various tissue types, including epithelial tissue, through interaction with cell-surface receptors on most mesenchymal origin cells. However, it breaks down quickly in biological fluids, emphasizing the importance of preserving them from biodegradation. To address this challenge, we formulated and evaluated PDGF-encapsulated nanospheres (PD@PCEC) using polycaprolactone-polyethylene glycol-polycaprolactone. PD@PCECs were fabricated through the triple emulsion methodology and optimized by using the Box-Behnken design. The encapsulation efficiency (EE) of nanoencapsulated PDGF-BB was investigated concerning four variables: stirring rate (X1), stirring duration (X2), poly(vinyl alcohol) concentration (X3), and PDGF-BB concentration (X4). The selected optimized nanospheres were integrated into a gelatin-collagen scaffold (PD@PCEC@GC) and assessed for morphology, biocompatibility, in vitro release, and differentiation-inducing activity in human adipose-derived stem cells (hADSCs). The optimized PD@PCEC nanospheres exhibited a particle size of 177.9 ± 91 nm, a zeta potential of 5.2 mV, and an EE of 87.7 ± 0.44%. The release profile demonstrated approximately 85% of loaded PDGF-BB released during the first 360 h, with a sustained release over the entire 504 h period, maintaining bioactivity of 87.3%. The study also included an evaluation of the physicochemical properties of the scaffolds and an assessment of hADSC adhesion to the scaffold's surface. Additionally, hADSCs cultivated within the scaffold effectively differentiated into keratinocyte-like cells (KLCs) over 21 days, evidenced by morphological changes and upregulation of keratinocyte-specific genes, including cytokeratin 18, cytokeratin 19, and involucrin, at both transcriptional and protein levels.
Collapse
Affiliation(s)
- Raheleh Hazrati
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
- Research
Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| | - Effat Alizadeh
- Department
of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51664-15731, Iran
| | - Somaieh Soltani
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
| | - Peyman Keyhanvar
- Department
of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz 51664-15731, Iran
| | - Soodabeh Davaran
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz 51664-14766, Iran
- Research
Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz 51664, Iran
| |
Collapse
|
39
|
Romanova OA, Klein OI, Sytina EV, Rudyak SG, Patsaev TD, Tenchurin TH, Grigorchuk AY, Demina TS, Chvalun SN, Panteleyev AA. Fibroblasts and polymer composition are essential for bioengineering of airway epithelium on nonwoven scaffolds. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:851-868. [PMID: 38310545 DOI: 10.1080/09205063.2024.2310370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/19/2024] [Indexed: 02/06/2024]
Abstract
To make tissue engineering a truly effective tool, it is necessary to understand how the patterns of specific tissue development are modulated by and depend on the artificial environment. Even the most advanced approaches still do not fully meet the requirements of practical engineering of tracheobronchial epithelium. This study aimed to test the ability of the synthetic and natural nonwoven scaffolds to support the formation of morphological sound airway epithelium including the basement membrane (BM). We also sought to identify the potential role of fibroblasts in this process. Our results showed that nonwoven scaffolds are generally suitable for producing well-differentiated tracheobronchial epithelium (with cilia and goblet cells), while the structure and functionality of the equivalents appeared to be highly dependent on the composition of the scaffolds. Unlike natural scaffolds, synthetic ones supported the formation of the epithelium only when epithelial cells were cocultured with fibroblasts. Fibroblasts also appeared to be obligatory for basal lamina formation, regardless of the type of the nonwoven material used. However, even in the presence of fibroblasts, the synthetic scaffolds were unable to support the formation of the epithelium and of the BM (in particular, basal lamina) as effectively as the natural scaffolds did.
Collapse
Affiliation(s)
| | - Olga I Klein
- NRC Kurchatov Institute, Moscow, Russian Federation
- The Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Bach Institute of Biochemistry
| | | | - Stanislav G Rudyak
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | | | | | | | - Tatiana S Demina
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russian Federation
| | - Sergey N Chvalun
- NRC Kurchatov Institute, Moscow, Russian Federation
- Enikolopov Institute of Synthetic Polymeric Materials, Russian Academy of Sciences, Moscow, Russian Federation
| | - Andrey A Panteleyev
- NRC Kurchatov Institute, Moscow, Russian Federation
- A.V. Vishnevsky Institute of Surgery, Moscow, Russian Federation
| |
Collapse
|
40
|
Willems C, Qi F, Trutschel ML, Groth T. Functionalized Gelatin/Polysaccharide Hydrogels for Encapsulation of Hepatocytes. Gels 2024; 10:231. [PMID: 38667650 PMCID: PMC11048940 DOI: 10.3390/gels10040231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Liver diseases represent a considerable burden to patients and healthcare systems. Hydrogels play an important role in the engineering of soft tissues and may be useful for embedding hepatocytes for different therapeutic interventions or the development of in vitro models to study the pathogenesis of liver diseases or testing of drugs. Here, we developed two types of hydrogels by crosslinking hydrazide-functionalized gelatin with either oxidized dialdehyde hyaluronan or alginate through the formation of hydrazone bonds. Gel formulations were studied through texture analysis and rheometry, showing mechanical properties comparable to those of liver tissue while also demonstrating long-term stability. The biocompatibility of hydrogels and their ability to host hepatocytes was studied in vitro in comparison to pure gelatin hydrogels crosslinked by transglutaminase using the hepatocellular line HepG2. It was found that HepG2 cells could be successfully embedded in the hydrogels, showing no signs of gel toxicity and proliferating in a 3D environment comparable to pure transglutaminase cross-linked gelatin hydrogels used as control. Altogether, hydrazide gelatin in combination with oxidized polysaccharides makes stable in situ gelling systems for the incorporation of hepatocytes, which may pave the way for use in liver tissue engineering and drug testing.
Collapse
Affiliation(s)
- Christian Willems
- Department of Biomedical Materials, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany; (C.W.); (F.Q.)
| | - Fangdi Qi
- Department of Biomedical Materials, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany; (C.W.); (F.Q.)
| | - Marie-Luise Trutschel
- Department of Pharmaceutical Technology, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Thomas Groth
- Department of Biomedical Materials, Institute of Pharmacy, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany; (C.W.); (F.Q.)
- Interdisciplinary Center of Materials Science, Martin-Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
41
|
Sriram M, Priya S, Katti DS. Polyhydroxybutyrate-based osteoinductive mineralized electrospun structures that mimic components and tissue interfaces of the osteon for bone tissue engineering. Biofabrication 2024; 16:025036. [PMID: 38471166 DOI: 10.1088/1758-5090/ad331a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Scaffolds for bone tissue engineering should enable regeneration of bone tissues with its native hierarchically organized extracellular matrix (ECM) and multiple tissue interfaces. To achieve this, inspired by the structure and properties of bone osteon, we fabricated polyhydroxybutyrate (PHB)-based mineralized electrospun fibrous scaffolds. After studying multiple PHB-based fibers, we chose 7%PHB/1%Gelatin fibers (PG) to fabricate mineralized fibers that mimic mineralized collagen fibers in bone. The mineralized PG (mPG) surface had a rough, hydrophilic layer of low crystalline calcium phosphate which was biocompatible to bone marrow stromal cells (BMSCs), induced their proliferation and was osteoinductive. Subsequently, by modulating the electrospinning process, we fabricated mPG-based novel higher order fibrous scaffolds that mimic the macroscale geometries of osteons of bone ECM. Inspired by the aligned collagen fibers in bone lamellae, we fabricated mPG scaffolds with aligned fibers that could direct anisotropic elongation of mouse BMSC (mBMSCs). Further, we fabricated electrospun mPG-based osteoinductive tubular constructs which can mimic cylindrical bone components like osteons or lamellae or be used as long bone analogues based on their dimensions. Finally, to regenerate tissue interfaces in bone, we introduced a novel bi-layered scaffold-based approach. An electrospun bi-layered tubular construct that had PG in the outer layer and 7%PHB/0.5%Polypyrrole fibers (PPy) in the inner layer was fabricated. The bi-layered tubular construct underwent preferential surface mineralization only on its outer layer. This outer mineralized layer supported osteogenesis while the inner PPy layer could support neural cell growth. Thus, the bi-layered tubular construct may be used to regenerate haversian canal in the osteons which hosts nerve fibers. Overall, the study introduced novel techniques to fabricate biomimetic structures that can regenerate components of bone osteon and its multiple tissue interfaces. The study lays foundation for the fabrication of a modular scaffold that can regenerate bone with its hierarchical structure and complex tissue interfaces.
Collapse
Affiliation(s)
- M Sriram
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Smriti Priya
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Dhirendra S Katti
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
- Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
42
|
Dranseike D, Ota Y, Edwardson TGW, Guzzi EA, Hori M, Nakic ZR, Deshmukh DV, Levasseur MD, Mattli K, Tringides CM, Zhou J, Hilvert D, Peters C, Tibbitt MW. Designed modular protein hydrogels for biofabrication. Acta Biomater 2024; 177:107-117. [PMID: 38382830 DOI: 10.1016/j.actbio.2024.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Designing proteins that fold and assemble over different length scales provides a way to tailor the mechanical properties and biological performance of hydrogels. In this study, we designed modular proteins that self-assemble into fibrillar networks and, as a result, form hydrogel materials with novel properties. We incorporated distinct functionalities by connecting separate self-assembling (A block) and cell-binding (B block) domains into single macromolecules. The number of self-assembling domains affects the rigidity of the fibers and the final storage modulus G' of the materials. The mechanical properties of the hydrogels could be tuned over a broad range (G' = 0.1 - 10 kPa), making them suitable for the cultivation and differentiation of multiple cell types, including cortical neurons and human mesenchymal stem cells. Moreover, we confirmed the bioavailability of cell attachment domains in the hydrogels that can be further tailored for specific cell types or other biological applications. Finally, we demonstrate the versatility of the designed proteins for application in biofabrication as 3D scaffolds that support cell growth and guide their function. STATEMENT OF SIGNIFICANCE: Designed proteins that enable the decoupling of biophysical and biochemical properties within the final material could enable modular biomaterial engineering. In this context, we present a designed modular protein platform that integrates self-assembling domains (A blocks) and cell-binding domains (B blocks) within a single biopolymer. The linking of assembly domains and cell-binding domains this way provided independent tuning of mechanical properties and inclusion of biofunctional domains. We demonstrate the use of this platform for biofabrication, including neural cell culture and 3D printing of scaffolds for mesenchymal stem cell culture and differentiation. Overall, this work highlights how informed design of biopolymer sequences can enable the modular design of protein-based hydrogels with independently tunable biophysical and biochemical properties.
Collapse
Affiliation(s)
- Dalia Dranseike
- Macromolecular Engineering Laboratory, ETH Zurich, Zurich, Switzerland
| | - Yusuke Ota
- Organic Chemistry Laboratory, ETH Zurich, Zurich, Switzerland
| | | | - Elia A Guzzi
- Macromolecular Engineering Laboratory, ETH Zurich, Zurich, Switzerland
| | - Mao Hori
- Organic Chemistry Laboratory, ETH Zurich, Zurich, Switzerland
| | | | | | | | - Kevin Mattli
- Biosystems Technology, ZHAW, Wädenswil, Switzerland
| | | | - Jiangtao Zhou
- Laboratory of Food and Soft Materials, ETH Zurich, Switzerland
| | - Donald Hilvert
- Organic Chemistry Laboratory, ETH Zurich, Zurich, Switzerland.
| | | | - Mark W Tibbitt
- Macromolecular Engineering Laboratory, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
43
|
Limaye A, Perumal V, Karner CM, Arinzeh TL. Plant-Derived Zein as an Alternative to Animal-Derived Gelatin for Use as a Tissue Engineering Scaffold. ADVANCED NANOBIOMED RESEARCH 2024; 4:2300104. [PMID: 38665311 PMCID: PMC11045004 DOI: 10.1002/anbr.202300104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024] Open
Abstract
Natural biomaterials are commonly used as tissue engineering scaffolds due to their biocompatibility and biodegradability. Plant-derived materials have also gained significant interest due to their abundance and as a sustainable resource. This study evaluates the corn-derived protein zein as a plant-derived substitute for animal-derived gelatin, which is widely used for its favorable cell adhesion properties. Limited studies exist evaluating pure zein for tissue engineering. Herein, fibrous zein scaffolds are evaluated in vitro for cell adhesion, growth, and infiltration into the scaffold in comparison to gelatin scaffolds and are further studied in a subcutaneous model in vivo. Human mesenchymal stem cells (MSCs) on zein scaffolds express focal adhesion kinase and integrins such as αvβ3, α4, and β1 similar to gelatin scaffolds. MSCs also infiltrate zein scaffolds with a greater penetration depth than cells on gelatin scaffolds. Cells loaded onto zein scaffolds in vivo show higher cell proliferation and CD31 expression, as an indicator of blood vessel formation. Findings also demonstrate the capability of zein scaffolds to maintain the multipotent capability of MSCs. Overall, findings demonstrate plant-derived zein may be a suitable alternative to the animalderived gelatin and demonstrates zein's potential as a scaffold for tissue engineering.
Collapse
Affiliation(s)
- Apurva Limaye
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Biomedical Engineering, Columbia University, 3960 Broadway, New York, NY 10027, USA
| | - Venkatesan Perumal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Courtney M Karner
- Department of Internal Medicine, Charles and Jane Pak Center for Mineral Metabolism and Clinical Research, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
44
|
Meiling L, Yiran C, Xiaoli S, Kaihui C, Toshihiko H, Kikuji I, Kazunori M, Hattori S, Fujisaki H, Liu W, Ikejima T. Gelatin but not type I collagen promotes bacteria phagocytosis in PMA-treated U937 human lymphoma cells. Connect Tissue Res 2024; 65:170-185. [PMID: 38526028 DOI: 10.1080/03008207.2024.2330693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/09/2024] [Indexed: 03/26/2024]
Abstract
PURPOSE Besides comprising scaffolding, extracellular matrix components modulate many biological processes including inflammation and cell differentiation. We previously found precoating cell plates with extracellular matrix collagen I, or its denatured product gelatin, causes aggregation of macrophage-like human lymphoma U937 cells, which are induced to differentiation by phorbol myristate treatment. In the present study, we investigated the influence of gelatin or collagen I precoating on the bacteria phagocytosis in PMA-stimulated U937 cells. MATERIALS AND METHODS Colony forming units of phagocytosed bacteria, Giemsa-staining of cells with phagocytosed bacteria, confocal microscopic and flow cytometric analysis of cells with phagocytosed FITC-labeled bacteria and non-bioactive latex beats were conducted. RESULTS Gelatin precoating enhances the phagocytosis of both Gram-negative and positive bacteria, as shown by the increased colony forming units of bacteria phagocytosed by cells, and increased intracellular bacteria observed after Giemsa-staining. But collagen I has no marked influence. Confocal microscopy reveals that both live and dead FITC-bacteria were phagocytosed more in the cells with gelatin-coating but not collagen-coating. Of note, both gelatin and collagen I coating had no influence on the phagocytosis of non-bioactive latex beads. Since gelatin-coating increases autophagy but collagen I has no such impact, we are curious about the role of autophagy. Inhibiting autophagy reduced the phagocytosis of bacteria, in cells with gelatin-coating, while stimulating autophagy enhanced phagocytosis. CONCLUSION This study finds the bacteria-phagocytosis stimulatory effect of gelatin in PMA-treated U937 cells and reveals the positive regulatory role of autophagy, predicting the potential use of gelatin products in anti-bacterial therapy.
Collapse
Affiliation(s)
- Li Meiling
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Chen Yiran
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Sun Xiaoli
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Chen Kaihui
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Hayashi Toshihiko
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Nippi Research Institute of Biomatrix, Nippi Inc., Toride, Ibaraki, Japan
| | - Itoh Kikuji
- Biochemical Center, Japan SLC Inc., Shizuoka, Japan
| | - Mizuno Kazunori
- Nippi Research Institute of Biomatrix, Nippi Inc., Toride, Ibaraki, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Nippi Inc., Toride, Ibaraki, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Nippi Inc., Toride, Ibaraki, Japan
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| |
Collapse
|
45
|
Bider F, Miola M, Clejanu CE, Götzelmann J, Kuth S, Vernè E, Basu B, Boccaccini AR. 3D bioprinting of multifunctional alginate dialdehyde (ADA)-gelatin (GEL) (ADA-GEL) hydrogels incorporating ferulic acid. Int J Biol Macromol 2024; 257:128449. [PMID: 38029911 DOI: 10.1016/j.ijbiomac.2023.128449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/17/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
The present work explores the 3D extrusion printing of ferulic acid (FA)-containing alginate dialdehyde (ADA)-gelatin (GEL) scaffolds with a wide spectrum of biophysical and pharmacological properties. The tailored addition of FA (≤0.2 %) increases the crosslinking between FA and GEL in the presence of calcium chloride (CaCl2) and microbial transglutaminase, as confirmed using trinitrobenzenesulfonic acid (TNBS) assay. In agreement with an increase in crosslinking density, a higher viscosity of ADA-GEL with FA incorporation was achieved, leading to better printability. Importantly, FA release, enzymatic degradation and swelling were progressively reduced with an increase in FA loading to ADA-GEL, over 28 days. Similar positive impact on antibacterial properties with S. epidermidis strains as well as antioxidant properties were recorded. Intriguingly, FA incorporated ADA-GEL supported murine pre-osteoblast proliferation with reduced osteosarcoma cell proliferation over 7 days in culture, implicating potential anticancer property. Most importantly, FA-incorporated and cell-encapsulated ADA-GEL can be extrusion printed to shape fidelity-compliant multilayer scaffolds, which also support pre-osteoblast cells over 7 days in culture. Taken together, the present study has confirmed the significant potential of 3D bioprinting of ADA-GEL-FA ink to obtain structurally stable scaffolds with a broad spectrum of biophysical and therapeutically significant properties, for bone tissue engineering applications.
Collapse
Affiliation(s)
- Faina Bider
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Marta Miola
- Applied Science and Technology Department, Politecnico di Torino, 10129 Torino, Italy
| | - Corina-Elena Clejanu
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Johanna Götzelmann
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sonja Kuth
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Enrica Vernè
- Applied Science and Technology Department, Politecnico di Torino, 10129 Torino, Italy
| | - Bikramjit Basu
- Materials Research Center, Indian Institute of Science Bangalore, Bangalore 560012, India
| | - Aldo R Boccaccini
- Institute of Biomaterials, Friedrich-Alexander University Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
46
|
Hendriks J, Zoetebier B, Larrea CS, Le NXT, Saris DBF, Karperien M. Gelatin-tyramine addition and low hydrogel density improves cell attachment, migration, and metabolic activity in vitro and tissue response in vivo in enzymatically crosslinkable dextran-hyaluronic acid hydrogels. Int J Biol Macromol 2024; 259:128843. [PMID: 38104684 DOI: 10.1016/j.ijbiomac.2023.128843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/21/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Hydrogels are receiving increasing attention for their use in 3D cell culture, tissue engineering, and bioprinting applications. Each application places specific mechanical and biological demands on these hydrogels. We developed a hydrogel toolbox based on enzymatically crosslinkable polysaccharides via tyramine (TA) moieties, allowing for rapid and tunable crosslinking with well-defined stiffness and high cell viability. Including gelatin modified with TA moieties (Gel-TA) improved the hydrogels' biological properties; 3 T3 fibroblasts and HUVECs attached to and proliferated on the enriched hydrogels at minute Gel-TA concentrations, in contrast to bare or unmodified gelatin-enriched hydrogels. Moreover, we were able to switch HUVECs from a quiescent to a migratory phenotype simply by altering the ligand concentration, demonstrating the potential to easily control cell fate. In encapsulation studies, Gel-TA significantly improved the metabolic activity of 3 T3 fibroblasts in soft hydrogels. Furthermore, we showed rapid migration and network formation in Gel-TA enriched hydrogels in contrast to a non-migratory behavior in non-enriched polysaccharide hydrogels. Finally, low hydrogel density significantly improves tissue response in vivo with large infiltration and low fibrotic reaction. Further development by adding ECM proteins, peptides, and growth factor adhesion sites will lead to a toolbox for hydrogels tailored toward their desired application.
Collapse
Affiliation(s)
- Jan Hendriks
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Bram Zoetebier
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Carolina Serrano Larrea
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Nguyen Xuan Thanh Le
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands
| | - Daniël B F Saris
- Orthopedic Surgery, University Medical Center Utrecht, Utrecht, Netherlands; Orthopedics and Sports Medicine Mayo Clinic, Rochester, MN, United States of America
| | - Marcel Karperien
- Department of Developmental BioEngineering, Faculty of Science and Technology, Tech Med Centre, University of Twente, P.O. Box 217, 7500 AE Enschede, the Netherlands.
| |
Collapse
|
47
|
Tenchurin TK, Sytina EV, Solovieva EV, Shepelev AD, Mamagulashvili VG, Krasheninnikov SV, Yastremskiy EV, Nesterenko EV, Buzin AI, Istranova EV, Istranov LP, Fatkhudinov TK, Panteleyev AA, Chvalun SN. Effect of collagen denaturation degree on mechanical properties and biological activity of nanofibrous scaffolds. J Biomed Mater Res A 2024; 112:144-154. [PMID: 37921091 DOI: 10.1002/jbm.a.37598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 06/19/2023] [Accepted: 08/11/2023] [Indexed: 11/04/2023]
Abstract
Further progress in regenerative medicine and bioengineering highly depends on the development of 3D polymeric scaffolds with active biological properties. The most attention is paid to natural extracellular matrix components, primarily collagen. Herein, nonwoven nanofiber materials with various degrees of collagen denaturation and fiber diameters 250-500 nm were produced by electrospinning, stabilized by genipin, and characterized in detail. Collagen denaturation has been confirmed using DSC and FTIR analysis. The comparative study of collagen and gelatin nonwoven materials (NWM) revealed only minor differences in their biocompatibility with skin fibroblasts and keratinocytes in vitro. In long-term subcutaneous implantation study, the inflammation was less evident on collagen than on gelatin NWM. Remarkably, the pronounced calcification was revealed in the collagen NWM only. The results obtained can be useful in terms of improving the electrospinning technology of collagen from aqueous solutions, as well as emphasize the importance of long-term study to ensure proper implementation of the material, taking into account the ability of collagen to provoke calcification.
Collapse
Affiliation(s)
- Timur Kh Tenchurin
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Elena V Sytina
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Elena V Solovieva
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Aleksey D Shepelev
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Vissarion G Mamagulashvili
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Sergey V Krasheninnikov
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Evgeniy V Yastremskiy
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Elizaveta V Nesterenko
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Aleksandr I Buzin
- Enikolopov Institute of Synthetic Polymer Materials RAS, Moscow, Russian Federation
| | - Elena V Istranova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Leonid P Istranov
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | - Andrey A Panteleyev
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| | - Sergey N Chvalun
- Kurchatov Complex of NBICS Technologies, National Research Centre "Kurchatov Institute", Moscow, Russian Federation
| |
Collapse
|
48
|
Ko YR, Ahn DK, Lee JS, Jung JS, Lee YH, Kim YH. Effect of Thrombin-Containing Local Hemostatics on Postoperative Spinal Epidural Hematoma in Biportal Endoscopic Spinal Surgery. Asian Spine J 2024; 18:87-93. [PMID: 38379152 PMCID: PMC10910151 DOI: 10.31616/asj.2023.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/03/2023] [Accepted: 09/24/2023] [Indexed: 02/22/2024] Open
Abstract
STUDY DESIGN Retrospective case-control study. PURPOSE This study aimed to investigate the preventive effect of thrombin-containing local hemostatics (TCLH) on postoperative spinal epidural hematoma (POSEH) in biportal endoscopic spinal surgery (BESS). This study compared the incidence of morphometric and symptomatic POSEH with or without TCLH in BESS. OVERVIEW OF LITERATURE POSEH is reported not uncommon in BESS when compared with conventional spine surgery (CSS). TCLH achieves hemostasis with a high success rate in CSS. However, few studies have examined the effect of TCLH on BESS. METHODS Patients with and without TCLH were assigned to groups A and B, respectively. POSEH between the two groups was compared morphometrically and symptomatically. The risk factors for symptomatic and morphometric POSEH in BESS were identified. RESULTS The morphometric POSEH was greater in group B, and the difference was significant (p =0.019). The incidence of symptomatic POSEH was lower in group A with 4.6% (5/109) than in group B with 9.5% (9/95); however, the rate was not significantly different (p =0.136). The morphometric POSEH was classified into two small (hG1 and hG2) and large (hG3 and hG4) and were compared between groups A and B, and the difference was significant (p =0.02). In the multivariable logistic regression, nonuse of TCLH (p =0.004) and preoperative diagnosis of stenosis (p =0.016) were variables found to be significant risk factors of morphometric POSEH. CONCLUSIONS Severe compression of the thecal sac by POSEH is more common in patients without TCLH. The risk of hematoma formation was higher when bilateral decompression was needed and the cut bone surface was more exposed.
Collapse
Affiliation(s)
- Young Rok Ko
- Department of Orthopaedic Surgery, Seoul Sacred Heart General Hospital, Seoul, Korea
| | - Dong Ki Ahn
- Department of Orthopaedic Surgery, Seoul Sacred Heart General Hospital, Seoul, Korea
| | - Jung Soo Lee
- Department of Orthopaedic Surgery, Seoul Sacred Heart General Hospital, Seoul, Korea
| | - Jong Seo Jung
- Department of Orthopaedic Surgery, Seoul Sacred Heart General Hospital, Seoul, Korea
| | - Young Ho Lee
- Department of Orthopaedic Surgery, Seoul Sacred Heart General Hospital, Seoul, Korea
| | - Yong Ho Kim
- Department of Orthopaedic Surgery, Seoul Sacred Heart General Hospital, Seoul, Korea
| |
Collapse
|
49
|
Lee M, Kim YS, Park J, Choe G, Lee S, Kang BG, Jun JH, Shin Y, Kim M, Ahn Y, Lee JY. A paintable and adhesive hydrogel cardiac patch with sustained release of ANGPTL4 for infarcted heart repair. Bioact Mater 2024; 31:395-407. [PMID: 37680586 PMCID: PMC10481188 DOI: 10.1016/j.bioactmat.2023.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 08/05/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023] Open
Abstract
The infarcted heart undergoes irreversible pathological remodeling after reperfusion involving left ventricle dilation and excessive inflammatory reactions in the infarcted heart, frequently leading to fatal functional damage. Extensive attempts have been made to attenuate pathological remodeling in infarcted hearts using cardiac patches and anti-inflammatory drug delivery. In this study, we developed a paintable and adhesive hydrogel patch using dextran-aldehyde (dex-ald) and gelatin, incorporating the anti-inflammatory protein, ANGPTL4, into the hydrogel for sustained release directly to the infarcted heart to alleviate inflammation. We optimized the material composition, including polymer concentration and molecular weight, to achieve a paintable, adhesive hydrogel using 10% gelatin and 5% dex-ald, which displayed in-situ gel formation within 135 s, cardiac tissue-like modulus (40.5 kPa), suitable tissue adhesiveness (4.3 kPa), and excellent mechanical stability. ANGPTL4 was continuously released from the gelatin/dex-ald hydrogel without substantial burst release. The gelatin/dex-ald hydrogel could be conveniently painted onto the beating heart and degraded in vivo. Moreover, in vivo studies using animal models of acute myocardial infarction revealed that our hydrogel cardiac patch containing ANGPTL4 significantly improved heart tissue repair, evaluated by echocardiography and histological evaluation. The heart tissues treated with ANGPTL4-loaded hydrogel patches exhibited increased vascularization, reduced inflammatory macrophages, and structural maturation of cardiac cells. Our novel hydrogel system, which allows for facile paintability, appropriate tissue adhesiveness, and sustained release of anti-inflammatory drugs, will serve as an effective platform for the repair of various tissues, including heart, muscle, and cartilage.
Collapse
Affiliation(s)
- Mingyu Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Yong Sook Kim
- Cell Regeneration Research Center, Chonnam National University, Gwangju, Republic of Korea
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Goeun Choe
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Sanghun Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Bo Gyeong Kang
- Cell Regeneration Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Ju Hee Jun
- Cell Regeneration Research Center, Chonnam National University, Gwangju, Republic of Korea
| | - Yoonmin Shin
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
| | - Minchul Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Youngkeun Ahn
- Cell Regeneration Research Center, Chonnam National University, Gwangju, Republic of Korea
- Department of Cardiology, Chonnam National University Hospital, Gwangju, Republic of Korea
- Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
50
|
Cifuentes SJ, Domenech M. Heparin-collagen I bilayers stimulate FAK/ERK½ signaling via α2β1 integrin to support the growth and anti-inflammatory potency of mesenchymal stromal cells. J Biomed Mater Res A 2024; 112:65-81. [PMID: 37723658 DOI: 10.1002/jbm.a.37614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/20/2023]
Abstract
Understanding mesenchymal stromal cells (MSCs) growth mechanisms in response to surface chemistries is essential to optimize culture methods for high-quality and robust cell yields in cell manufacturing applications. Heparin (HEP) and collagen 1 (COL) substrates have been reported to enhance cell adhesion, growth, viability, and secretory potential in MSCs. However, the biomolecular mechanisms underlying the benefits of combined HEP/COL substrates are unknown. This work used HEP/COL bilayered surfaces to investigate the role of integrin-HEP interactions in the advantages of MSC culture. The layer-by-layer approach (LbL) was used to create HEP/COL bilayers, which were made up of stacks of 8 and 9 layers that combined HEP and COL in an alternate arrangement. Surface spectroscopic investigations and laser scanning microscopy evaluations verified the biochemical fingerprint of each component and a total stacked bilayer thickness of roughly 150 nm. Cell growth and apoptosis in response to IC50 and IC75 levels of BTT-3033 and Cilengitide, α2β1 and αvβ3 integrin inhibitors respectively, were evaluated on HEP/COL coated surfaces using two bone marrow-derived MSC donors. While integrin activity did not affect cell growth rates, it significantly affected cell adhesion and apoptosis on HEP/COL surfaces. HEP-ending HEP/COL surfaces significantly increased FAK-ERK½ phosphorylation and endogenous cell COL deposition compared to COL, COL-ending HEP/COL and uncoated surfaces. BTT-3033 but not Cilengitide treatment markedly affected FAK-ERK½ activity levels on HEP-ending HEP/COL surfaces supporting a major role for α2β1 activity. BTT-3033 treatment on HEP-ending bilayers reduced MSC-mediated macrophage inhibitory activity and altered the cytokine profile of co-cultures. Overall, this study supports a novel role for HEP in regulating the survival and potency of MSCs via enhancing the α2β1-FAK-ERK½ signaling mechanism.
Collapse
Affiliation(s)
- Said J Cifuentes
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
| | - Maribella Domenech
- Bioengineering Graduate Program, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
- Department of Chemical Engineering, University of Puerto Rico Mayaguez, Mayaguez, Puerto Rico, USA
| |
Collapse
|