1
|
Liao TY, Boden A, King PC, Thissen H, Crawford RJ, Ivanova EP, Kingshott P. Cold-Spray Deposition of Antibacterial Molybdenum Coatings on Poly(dimethylsiloxane). ACS APPLIED BIO MATERIALS 2025; 8:1167-1185. [PMID: 39849900 DOI: 10.1021/acsabm.4c01380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Despite their widespread utilization in biomedical applications, these synthetic materials can be susceptible to microbial contamination, potentially compromising their functionality and increasing the risk of infection in patients. In this study, molybdenum (Mo), an essential metal in biological systems, was investigated as a Mo-based cold-sprayed coating on poly(dimethylsiloxane) (PDMS) for its potential use as biocompatible and antimicrobial surfaces for biomedical applications. Various cold-spray parameters were employed in the fabrication of Mo-embedded PDMS surfaces to alter the surface structure of the substrate, Mo loading density, and embedding layer thickness. Specifically, relatively low nozzle scanning speeds were used to develop high-density Mo-embedded PDMS surfaces. A comprehensive analysis was conducted to investigate how cold-spray processing parameters affect the surface topography, wettability, and chemical properties. The ability of the Mo-embedded PDMS to inhibit the colonization of Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa bacterial species was demonstrated by both live/dead staining and disk diffusion methods. Surfaces with higher Mo loading densities significantly reduced the level of bacterial attachment and enhanced the bactericidal activity upon contact. Also, the level of Mo ion release over a 14-day period was measured and correlated to the properties of the substrate surface. Furthermore, attachment, viability, and proliferation of osteoblast-like MG63 cells were assessed to investigate the effect of Mo ion release on the biocompatibility of fabricated coatings. A notable decrease in cell viability and delayed growth of MG63 cells became evident after 7 days of incubation with the highly Mo-loaded samples. While this study enhanced our understanding regarding the engineering of composite materials for combatting microbial infections, the findings also suggest that the release of Mo ions may detrimentally affect osteoblast survival, potentially compromising the long-term functionality of orthopedic implants produced using this technique.
Collapse
Affiliation(s)
- Tzu-Ying Liao
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Andrew Boden
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Peter C King
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Helmut Thissen
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- CSIRO Manufacturing Research Way, Clayton, Victoria 3168, Australia
| | - Russell J Crawford
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Elena P Ivanova
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- School of Science, STEM College, RMIT University, Melbourne, Victoria 3000, Australia
| | - Peter Kingshott
- Department of Chemistry and Biotechnology; School of Science, Computing & Engineering Technologies, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| |
Collapse
|
2
|
Jiang P, Zhang Y, Hu R, Shi B, Zhang L, Huang Q, Yang Y, Tang P, Lin C. Advanced surface engineering of titanium materials for biomedical applications: From static modification to dynamic responsive regulation. Bioact Mater 2023; 27:15-57. [PMID: 37035422 PMCID: PMC10074421 DOI: 10.1016/j.bioactmat.2023.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 03/29/2023] Open
Abstract
Titanium (Ti) and its alloys have been widely used as orthopedic implants, because of their favorable mechanical properties, corrosion resistance and biocompatibility. Despite their significant success in various clinical applications, the probability of failure, degradation and revision is undesirably high, especially for the patients with low bone density, insufficient quantity of bone or osteoporosis, which renders the studies on surface modification of Ti still active to further improve clinical results. It is discerned that surface physicochemical properties directly influence and even control the dynamic interaction that subsequently determines the success or rejection of orthopedic implants. Therefore, it is crucial to endow bulk materials with specific surface properties of high bioactivity that can be performed by surface modification to realize the osseointegration. This article first reviews surface characteristics of Ti materials and various conventional surface modification techniques involving mechanical, physical and chemical treatments based on the formation mechanism of the modified coatings. Such conventional methods are able to improve bioactivity of Ti implants, but the surfaces with static state cannot respond to the dynamic biological cascades from the living cells and tissues. Hence, beyond traditional static design, dynamic responsive avenues are then emerging. The dynamic stimuli sources for surface functionalization can originate from environmental triggers or physiological triggers. In short, this review surveys recent developments in the surface engineering of Ti materials, with a specific emphasis on advances in static to dynamic functionality, which provides perspectives for improving bioactivity and biocompatibility of Ti implants.
Collapse
Affiliation(s)
- Pinliang Jiang
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yanmei Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ren Hu
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bin Shi
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Lihai Zhang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Qiaoling Huang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Yun Yang
- Research Institute for Biomimetics and Soft Matter, Fujian Provincial Key Laboratory for Soft Functional Materials Research, College of Physical Science and Technology, Xiamen University, Xiamen, 361005, China
| | - Peifu Tang
- Department of Orthopaedics, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Changjian Lin
- State Key Lab of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
3
|
Vilardell AM, Krakhmalev P, Yadroitsava I, Yadroitsev I, Garcia-Giralt N. In Vitro Characterization of In Situ Alloyed Ti6Al4V(ELI)-3 at.% Cu Obtained by Laser Powder Bed Fusion. MATERIALS 2021; 14:ma14237260. [PMID: 34885415 PMCID: PMC8658412 DOI: 10.3390/ma14237260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/16/2022]
Abstract
The intensive cytotoxicity of pure copper is effectively kills bacteria, but it can compromise cellular behavior, so a rational balance must be found for Cu-loaded implants. In the present study, the individual and combined effect of surface composition and roughness on osteoblast cell behavior of in situ alloyed Ti6Al4V(ELI)-3 at.% Cu obtained by laser powder bed fusion was studied. Surface composition was studied using scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. Surface roughness measurements were carried out using confocal microscopy. In vitro osteoblast performance was evaluated by means of cell morphology observation of cell viability, proliferation, and mineralization. In vitro studies were performed at 1, 7, and 14 days of cell culture, except for cell mineralization at 28 days, on grounded and as-built (rough) samples with and without 3 at.% Cu. The addition of 3 at.% Cu did not show cell cytotoxicity but inhibited cell proliferation. Cell mineralization tends to be higher for samples with 3 at.% Cu content. Surface roughness inhibited cell proliferation too, but showed enhanced cell mineralization capacity and therefore, higher osteoblast performance, especially when as-built samples contained 3 at.% Cu. Cell proliferation was only observed on ground samples without Cu but showed the lowest cell mineralization.
Collapse
Affiliation(s)
- Anna Martín Vilardell
- Department of Engineering and Physics, Karlstad University, 651 88 Karlstad, Sweden;
- Correspondence:
| | - Pavel Krakhmalev
- Department of Engineering and Physics, Karlstad University, 651 88 Karlstad, Sweden;
| | - Ina Yadroitsava
- Department of Mechanical Engineering and Mechatronics, Central University of Technology, Bloemfontein 9300, Free State, South Africa; (I.Y.); (I.Y.)
| | - Igor Yadroitsev
- Department of Mechanical Engineering and Mechatronics, Central University of Technology, Bloemfontein 9300, Free State, South Africa; (I.Y.); (I.Y.)
| | - Natalia Garcia-Giralt
- IMIM (Institut Hospital del Mar d’Investigacions Mèdiques), CIBERFES, ISCIII, Doctor Aiguader 88, 08003 Barcelona, Spain;
| |
Collapse
|
4
|
Wu VM, Ahmed MK, Mostafa MS, Uskoković V. Empirical and theoretical insights into the structural effects of selenite doping in hydroxyapatite and the ensuing inhibition of osteoclasts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 117:111257. [PMID: 32919627 PMCID: PMC7501993 DOI: 10.1016/j.msec.2020.111257] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 04/02/2020] [Accepted: 06/30/2020] [Indexed: 12/14/2022]
Abstract
The use of ions as therapeutic agents has the potential to minimize the use of small-molecule drugs and biologics for the same purpose, thus providing a potentially more economic and less adverse means of treating, ameliorating or preventing a number of diseases. Hydroxyapatite (HAp) is a solid compound capable of accommodating foreign ions with a broad range of sizes and charges and its properties can dramatically change with the incorporation of these ionic additives. While most ionic substitutes in HAp have been monatomic cations, their lesser atomic weight, higher diffusivity, chaotropy and a lesser residence time on surfaces theoretically makes them prone to exert a lesser influence on the material/cell interaction than the more kosmotropic oxyanions. Selenite ion as an anionic substitution in HAp was explored in this study for its ability to affect the short-range and the long-range crystalline symmetry and solubility as well as for its ability to affect the osteoclast activity. We combined microstructural, crystallographic and spectroscopic analyses with quantum mechanical calculations to understand the structural effects of doping HAp with selenite. Integration of selenite ions into the crystal structure of HAp elongated the crystals along the c-axis, but isotropically lowered the crystallinity. It also increased the roughness of the material in direct proportion with the content of the selenite dopant, thus having a potentially positive effect on cell adhesion and integration with the host tissue. Selenite in total acted as a crystal structure breaker, but was also able to bring about symmetry at the local and global scales within specific concentration windows, indicating a variety of often mutually antagonistic crystallographic effects that it can induce in a concentration-dependent manner. Experimental determination of the lattice strain coupled with ab initio calculations on three different forms of carbonated HAp (A-type, B-type, AB-type) demonstrated that selenite ions initially substitute carbonates in the crystal structure of carbonated HAp, before substituting phosphates at higher concentrations. The most energetically favored selenite-doped HAp is of AB-type, followed by the B-type and only then by the A-type. This order of stability was entailed by the variation in the geometry and orientation of both the selenite ion and its neighboring phosphates and/or carbonates. The incorporation of selenite in different types of carbonated HAp also caused variations of different thermodynamic parameters, including entropy, enthalpy, heat capacity, and the Gibbs free energy. Solubility of HAp accommodating 1.2 wt% of selenite was 2.5 times higher than that of undoped HAp and the ensuing release of the selenite ion was directly responsible for inhibiting RAW264.7 osteoclasts. Dose-response curves demonstrated that the inhibition of osteoclasts was directly proportional to the concentration of selenite-doped HAp and to the selenite content in it. Meanwhile, selenite-doped HAp had a significantly less adverse effect on osteoblastic K7M2 and MC3T3-E1 cells than on RAW264.7 osteoclasts. The therapeutically promising osteoblast vs. osteoclast selectivity of inhibition was absent when the cells were challenged with undoped HAp, indicating that it is caused by selenite ions in HAp rather than by HAp alone. It is concluded that like three oxygens building the selenite pyramid, the coupling of (1) experimental materials science, (2) quantum mechanical modeling and (3) biological assaying is a triad from which a deeper understanding of ion-doped HAp and other biomaterials can emanate.
Collapse
Affiliation(s)
| | - M K Ahmed
- Department of Physics, Faculty of Science, Suez University, Suez, Egypt
| | - Mervat S Mostafa
- Science and Technology Center of Excellence, Ministry of Military Production, Cairo, Egypt
| | - Vuk Uskoković
- Tardigrade Nano, 7 Park Vista, Irvine, CA 92604, USA; Department of Mechanical and Aerospace Engineering, University of California, Irvine, Engineering Gateway 4200, Irvine, CA 92697, USA.
| |
Collapse
|
5
|
In Vitro Bone Cell Behavior on Porous Titanium Samples: Influence of Porosity by Loose Sintering and Space Holder Techniques. METALS 2020. [DOI: 10.3390/met10050696] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A great variety of powder metallurgy techniques can produce biomimetic porous titanium structures with similar mechanical properties to host bone tissue. In this work, loose sintering and space holder techniques, two frequently used metallurgical techniques, are compared to evaluate the influences of porosity (content, size, morphology and wall roughness), mechanical properties (stiffness and yield strength) and in-vitro cellular responses (adhesion and proliferation of myoblasts and osteoblasts). These comparisons are made to achieve the best balance between biomechanical and bifunctional behavior of a partial porous implant for cortical bone replacement. Cell adhesion (filopodia presence) and spreading were promoted on both porous surfaces and fully dense substrates (non-porous control surfaces). Porous scaffold samples designed using 50 vol.% NaCl space holder technique had an improved bioactive response over those obtained with the loose sintering technique due to higher roughness and scaffold pore diameter. However, the presence of large and heterogeneous pores compromises the mechanical reliability of the implant. Considering both scenarios, the substrates obtained with 40 vol.% NH4HCO3 and pore size ranges between 100 and 200 μm provide a balanced optimization of size and strength to promote in-vitro osseointegration.
Collapse
|
6
|
Optimisation of grafted phosphorylcholine-based polymer on additively manufactured titanium substrate for hip arthroplasty. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:696-706. [DOI: 10.1016/j.msec.2019.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 04/07/2019] [Accepted: 04/08/2019] [Indexed: 01/03/2023]
|
7
|
Lu J, Zhang W, Huo W, Zhao Y, Cui W, Zhang Y. Electrochemical Corrosion Behavior and Mechanical Properties of Nanocrystalline Ti⁻6Al⁻4V Alloy Induced by Sliding Friction Treatment. MATERIALS 2019; 12:ma12050760. [PMID: 30841630 PMCID: PMC6427322 DOI: 10.3390/ma12050760] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 12/28/2022]
Abstract
A nanograined (NG) layer with an average grain size of less than 100 nm has been successfully prepared on a Ti–6Al–4V sheet surface by sliding friction treatment (SFT). The electrochemical corrosion/passive behavior and mechanical properties of an NG Ti–6Al–4V sheet were examined in this study. A bi-layer passive film that consisted of an outer TiO2-rich layer and an inner Al2O3-rich layer was formed on either an NG or coarse-grained (CG) surface. The improved corrosion was mainly caused by the enhanced stability and thickness of the passive layer. Tensile experiments were carried out to evaluate the mechanical properties at ambient temperature. The NG Ti–6Al–4V sample exhibited the high yield strength (956 MPa) with a moderate elongation of 8%. These superior comprehensive properties demonstrated its potential as a biomedical material.
Collapse
Affiliation(s)
- Jinwen Lu
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China.
| | - Wei Zhang
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China.
| | - Wangtu Huo
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China.
| | - Yongqing Zhao
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China.
| | - Wenfang Cui
- Key Laboratory for Anisotropy and Texture of Materials, Northeastern University, Shenyang 110819, China.
| | - Yusheng Zhang
- Advanced Materials Research Central, Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China.
| |
Collapse
|
8
|
Plasma nitriding under low temperature improves the endothelial cell biocompatibility of 316L stainless steel. Biotechnol Lett 2019; 41:503-510. [PMID: 30820710 DOI: 10.1007/s10529-019-02657-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
OBJECTIVES To evaluate the effects of the surface modification of 316L stainless steel (SS) by low-temperature plasma nitriding on endothelial cells for stent applications. RESULTS X-ray diffraction (XRD) confirmed the incorporation of nitrogen into the treated steel. The surface treatment significantly increased SS roughness and hydrophilic characteristics. After 4 h the cells adhered to the nitride surfaces and formed clusters. During the 24 h incubation period, cell viability on the nitrided surface was higher compared to the polished surface. Nitriding reduced late apoptosis of rabbit aorta endothelial cell (RAEC) on the SS surface. CONCLUSION Low temperature plasma nitriding improved the biocompatible of stainless steel for use in stents.
Collapse
|
9
|
Functionalized coatings by cold spray: An in vitro study of micro- and nanocrystalline hydroxyapatite compared to porous titanium. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 87:41-49. [PMID: 29549948 DOI: 10.1016/j.msec.2018.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022]
Abstract
Three different surface treatments on a Ti6Al4V alloy have been in vitro tested for possible application in cementless joint prosthesis. All of them involve the novelty of using the Cold Spray technology for their deposition: (i) an as-sprayed highly rough titanium and, followed by the deposition of a thin hydroxyapatite layer with (ii) microcrystalline or (iii) nanocrystalline structure. Primary human osteoblasts were extracted from knee and seeded onto the three different surfaces. Cell viability was tested by MTS and LIVE/DEAD assays, cell differentiation by alkaline phosphatase (ALP) quantification and cell morphology by Phalloidin staining. All tests were carried out at 1, 7 and 14 days of cell culture. Different cell morphologies between titanium and hydroxyapatite surfaces were exhibited. At 1 day of cell culture, cells on the titanium coating were spread and flattened, expanding the filopodia actin filaments in all directions, while cells on the hydroxyapatite coatings showed round like-shape morphology due to slower attachment. Higher cell viability was detected at all times of cell culture on titanium coating due to a better attachment at 1 day. However, from 7 days of cell culture, cells on hydroxyapatite showed good attachment onto surfaces and highly increased their proliferation, mostly on nanocrystalline, achieving similar cell viability levels than titanium coatings. ALP levels were significantly higher in titanium, in part, because of greatest cell number. Overall, the best cell functional results were obtained on titanium coatings whereas microcrystalline hydroxyapatite presented the worst cellular parameters. However, results indicate that nanocrystalline hydroxyapatite coatings may achieve promising results for the faster cell proliferation once cells are attached on the surface.
Collapse
|