1
|
Liu L, Chen H, Zhao X, Han Q, Xu Y, Liu Y, Zhang A, Li Y, Zhang W, Chen B, Wang J. Advances in the application and research of biomaterials in promoting bone repair and regeneration through immune modulation. Mater Today Bio 2025; 30:101410. [PMID: 39811613 PMCID: PMC11731593 DOI: 10.1016/j.mtbio.2024.101410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 12/02/2024] [Accepted: 12/15/2024] [Indexed: 01/16/2025] Open
Abstract
With the ongoing development of osteoimmunology, increasing evidence indicates that the local immune microenvironment plays a critical role in various stages of bone formation. Consequently, modulating the immune inflammatory response triggered by biomaterials to foster a more favorable immune microenvironment for bone regeneration has emerged as a novel strategy in bone tissue engineering. This review first examines the roles of various immune cells in bone tissue injury and repair. Then, the contributions of different biomaterials, including metals, bioceramics, and polymers, in promoting osteogenesis through immune regulation, as well as their future development directions, are discussed. Finally, various design strategies, such as modifying the physicochemical properties of biomaterials and integrating bioactive substances, to optimize material design and create an immune environment conducive to bone formation, are explored. In summary, this review comprehensively covers strategies and approaches for promoting bone tissue regeneration through immune modulation. It offers a thorough understanding of current research trends in biomaterial-based immune regulation, serving as a theoretical reference for the further development and clinical application of biomaterials in bone tissue engineering.
Collapse
Affiliation(s)
- Li Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Hao Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Xue Zhao
- Department of Endocrinology, The First Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Qing Han
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yongjun Xu
- Department of Orthopedics Surgery, Wangqing County People's Hospital, Yanbian, 133000, Jilin, China
| | - Yang Liu
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Aobo Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Yongyue Li
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Weilong Zhang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Bingpeng Chen
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| | - Jincheng Wang
- Department of Orthopedic Surgery, The Second Hospital of Jilin University, Changchun, 130000, Jilin, China
| |
Collapse
|
2
|
Lee S, Kim JH, Kim YH, Hong J, Kim WK, Jin S, Kang BJ. Sustained BMP-2 delivery via alginate microbeads and polydopamine-coated 3D-Printed PCL/β-TCP scaffold enhances bone regeneration in long bone segmental defects. J Orthop Translat 2024; 49:11-22. [PMID: 39420946 PMCID: PMC11483278 DOI: 10.1016/j.jot.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/12/2024] [Accepted: 08/20/2024] [Indexed: 10/19/2024] Open
Abstract
Background/Objective Repair of long bone defects remains a major challenge in clinical practice, necessitating the use of bone grafts, growth factors, and mechanical stability. Hence, a combination therapy involving a 3D-printed polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) scaffold coated with polydopamine (PDA) and alginate microbeads (AM) for sustained delivery of bone morphogenetic protein-2 (BMP-2) was investigated to treat long bone segmental defects. Methods Several in vitro analyses were performed to evaluate the scaffold osteogenic effects in vitro such as PDA surface modification, namely, hydrophilicity and cell adhesion; cytotoxicity and BMP-2 release kinetics using CCK-8 assay and ELISA, respectively; osteogenic differentiation in canine adipose-derived mesenchymal stem cells (Ad-MSCs); formation of mineralized nodules using ALP staining and ARS staining; and mRNA expression of osteogenic differentiation markers using RT-qPCR. Bone regeneration in femoral bone defects was evaluated in vivo using a rabbit femoral segmental bone defect model by performing radiography, micro-computed tomography, and histological observation (hematoxylin and eosin and Masson's trichrome staining). Results The PDA-coated 3D-printed scaffold demonstrated increased hydrophilicity, cell adhesion, and cell proliferation compared with that of the control. BMP-2 release kinetics assessment showed that BMP-2 AM showed a reduced initial burst and continuous release for 28 days. In vitro co-culture with canine Ad-MSCs showed an increase in mineralization and mRNA expression of osteogenic markers in the BMP-2 AM group compared with that of the BMP-2-adsorbed scaffold group. In vivo bone regeneration evaluation 12 weeks after surgery showed that the BMP-2 AM/PDA group exhibited the highest bone volume in the scaffold, followed by the BMP-2/PDA group. High cortical bone connectivity was observed in the PDA-coated scaffold groups. Conclusion These findings suggest that the combined use of PDA-coated 3D-printed bone scaffolds and BMP-2 AM can successfully induce bone regeneration even in load-bearing bone segmental defects. The translational potential of this article A 3D-printed PCL/β-TCP scaffold was fabricated to mimic the cortical bone of the femur. Along with the application of PDA surface modification and sustained BMP-2 release via AM, the developed scaffold could provide suitable osteoconduction, osteoinduction, and osteogenesis in both in vitro settings and in vivo rabbit femoral segmental bone defect models. Therefore, our findings suggest a promising therapeutic option for treating challenging long bone segmental defects, with potential for future clinical application.
Collapse
Affiliation(s)
- Seoyun Lee
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Jae-Hun Kim
- Department of Mechanical System Engineering, Graduate School of Knowledge-based Technology and Energy, Tech University of Korea, Gyeonggi, 15073, South Korea
| | - Yong-Hun Kim
- T&R Biofab Co. Ltd., Gyeonggi, 15073, South Korea
| | - Jihyeock Hong
- Department of Mechanical Engineering, Tech University of Korea, Gyeonggi, 15073, South Korea
| | - Woo Keyoung Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| | - Songwan Jin
- T&R Biofab Co. Ltd., Gyeonggi, 15073, South Korea
- Department of Mechanical Engineering, Tech University of Korea, Gyeonggi, 15073, South Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, South Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
3
|
Zhu S, Zhou J, Xie Z. The balance between helper T 17 and regulatory T cells in osteoimmunology and relevant research progress on bone tissue engineering. Immun Inflamm Dis 2024; 12:e70011. [PMID: 39264247 PMCID: PMC11391570 DOI: 10.1002/iid3.70011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND Bone regeneration is a well-regulated dynamic process, of which the prominent role of the immune system on bone homeostasis is more and more revealed by recent research. Before fully activation of the bone remodeling cells, the immune system needs to clean up the microenvironment in facilitating the bone repair initiation. Furthermore, this microenvironment must be maintained properly by various mechanisms over the entire bone regeneration process. OBJECTIVE This review aims to summarize the role of the T-helper 17/Regulatory T cell (Th17/Treg) balance in bone cell remodeling and discuss the relevant progress in bone tissue engineering. RESULTS The role of the immune response in the early stages of bone regeneration is crucial, especially the impact of the Th17/Treg balance on osteoclasts, mesenchymal stem cells (MSCs), and osteoblasts activity. By virtue of these knowledge advancements, innovative approaches in bone tissue engineering, such as nano-structures, hydrogel, and exosomes, are designed to influence the Th17/Treg balance and thereby augment bone repair and regeneration. CONCLUSION Targeting the Th17/Treg balance is a promising innovative strategy for developing new treatments to enhance bone regeneration, thus offering potential breakthroughs in bone injury clinics.
Collapse
Affiliation(s)
- Shuyu Zhu
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| | - Jing Zhou
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| | - Zhigang Xie
- Kunming Medical University School of Stomatology and Affiliated Stomatology HospitalKunmingYunnan ProvinceChina
| |
Collapse
|
4
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
5
|
Fendi F, Abdullah B, Suryani S, Usman AN, Tahir D. Development and application of hydroxyapatite-based scaffolds for bone tissue regeneration: A systematic literature review. Bone 2024; 183:117075. [PMID: 38508371 DOI: 10.1016/j.bone.2024.117075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
Hydroxyapatite [HA, Ca10(PO4)6(OH)2], with its robust biocompatibility and bioactivity, has found extensive utility in bone grafting, replacement therapies, and supplemental medical materials. HA is highly regarded for its osteoconductive properties because it boasts hydrophilicity, nontoxicity, non-allergenicity, and non-mutagenicity. Nevertheless, HA's intrinsic mechanical weakness has spurred efforts to enhance its properties. This enhancement is achieved through ion incorporation, with elements such as magnesium, zinc, lithium, strontium, boron, and others being integrated into the HA structure. In the domain of orthopedics, HA-based scaffolds have emerged as a solution for addressing prevalent issues like bone deformities and defects stemming from congenital anomalies, injuries, trauma, infections, or tumors. The fabrication of three-dimensional scaffolds (3D scaffolds) has enabled advancements in bone regeneration and replacement, with a focus on practical applications such as repairing calvarial, skull, and femoral defects. In vitro and in vivo assessments have substantiated the effectiveness of 3D scaffolds for bone defect repair, regeneration, and tissue engineering. Beyond bone-related applications, scaffolds demonstrate versatility in enhancing cartilage healing and serving as bioimplants. The wide array of scaffold applications underscores their ongoing potential for further development in the realm of medical science.
Collapse
Affiliation(s)
- Fendi Fendi
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | - Bualkar Abdullah
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | - Sri Suryani
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia
| | | | - Dahlang Tahir
- Department of Physics, Hasanuddin University, Makassar 90245, Indonesia.
| |
Collapse
|
6
|
Kim YR, Yun EB, Ryu DI, Kim BH, Kim JS, Kim YS, Kang JH, Cho EH, Koh JT, Lim HP, Park C, Lee BN. The potential bone regeneration effects of leptin- and osteolectin-coated 3D-printed PCL scaffolds: an in vivostudy. Biomed Mater 2024; 19:045008. [PMID: 38688311 DOI: 10.1088/1748-605x/ad45d7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
This study investigated the effectiveness of bone regeneration upon the application of leptin and osteolectin to a three-dimensional (3D) printed poly(ϵ-caprolactone) (PCL) scaffold. A fused deposition modeling 3D bioprinter was used to fabricate scaffolds with a diameter of 4.5 mm, a height of 0.5 mm, and a pore size of 420-520 nm using PCL (molecular weight: 43 000). After amination of the scaffold surface for leptin and osteolectin adhesion, the experimental groups were divided into the PCL scaffold (control), the aminated PCL (PCL/Amine) scaffold, the leptin-coated PCL (PCL/Leptin) scaffold, and the osteolectin-coated PCL (PCL/Osteo) scaffold. Next, the water-soluble tetrazolium salt-1 (WST-1) assay was used to assess cell viability. All groups exhibited cell viability rates of >100%. Female 7-week-old Sprague-Dawley rats were used forin vivoexperiments. Calvarial defects were introduced on the rats' skulls using a 5.5 mm trephine bur. The rats were divided into the PCL (control), PCL/Leptin, and PCL/Osteo scaffold groups. The scaffolds were then inserted into the calvarial defect areas, and the rats were sacrificed after 8-weeks to analyze the defect area. Micro-CT analysis indicated that the leptin- and osteolectin-coated scaffolds exhibited significantly higher bone regeneration. Histological analysis revealed new bone and blood vessels in the calvarial defect area. These findings indicate that the 3D-printed PCL scaffold allows for patient-customized fabrication as well as the easy application of proteins like leptin and osteolectin. Moreover, leptin and osteolectin did not show cytotoxicity and exhibited higher bone regeneration potential than the existing scaffold.
Collapse
Affiliation(s)
- Young-Ran Kim
- Department of Biomedical Engineering, College of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Byeol Yun
- College of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Dam-In Ryu
- College of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Bo-Hye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Joong-Seon Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Ye-Seul Kim
- Department of Prosthodontics, College of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jin-Ho Kang
- Department of Prosthodontics, College of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Eun-Hyo Cho
- Department of Conservative Dentistry, College of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Jeong-Tae Koh
- Department of Pharmacology and Dental Therapeutics, College of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Hyun-Pil Lim
- Department of Prosthodontics, College of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Chan Park
- Department of Prosthodontics, College of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| | - Bin-Na Lee
- Department of Conservative Dentistry, College of Dentistry, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
7
|
Samadi A, Moammeri A, Azimi S, Bustillo-Perez BM, Mohammadi MR. Biomaterial engineering for cell transplantation. BIOMATERIALS ADVANCES 2024; 158:213775. [PMID: 38252986 DOI: 10.1016/j.bioadv.2024.213775] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/27/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024]
Abstract
The current paradigm of medicine is mostly designed to block or prevent pathological events. Once the disease-led tissue damage occurs, the limited endogenous regeneration may lead to depletion or loss of function for cells in the tissues. Cell therapy is rapidly evolving and influencing the field of medicine, where in some instances attempts to address cell loss in the body. Due to their biological function, engineerability, and their responsiveness to stimuli, cells are ideal candidates for therapeutic applications in many cases. Such promise is yet to be fully obtained as delivery of cells that functionally integrate with the desired tissues upon transplantation is still a topic of scientific research and development. Main known impediments for cell therapy include mechanical insults, cell viability, host's immune response, and lack of required nutrients for the transplanted cells. These challenges could be divided into three different steps: 1) Prior to, 2) during the and 3) after the transplantation procedure. In this review, we attempt to briefly summarize published approaches employing biomaterials to mitigate the above technical challenges. Biomaterials are offering an engineerable platform that could be tuned for different classes of cell transplantation to potentially enhance and lengthen the pharmacodynamics of cell therapies.
Collapse
Affiliation(s)
- Amirmasoud Samadi
- Department of Chemical and Biomolecular Engineering, 6000 Interdisciplinary Science & Engineering Building (ISEB), Irvine, CA 92617, USA
| | - Ali Moammeri
- Department of Chemical Engineering, Virginia Tech, Blacksburg, VA 24061, USA
| | - Shamim Azimi
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Bexi M Bustillo-Perez
- Department of Chemical Engineering, Queen's University, Kingston, ON K7L 3N6, Canada
| | - M Rezaa Mohammadi
- Dale E. and Sarah Ann Fowler School of Engineering, Chapman University, Orange, CA 92866, USA.
| |
Collapse
|
8
|
Popkov A, Tverdokhlebov S, Muradisinov S, Popkov D. First Clinical Case of Ilizarov Femur Lengthening over a Bioactive and Degradable Intramedullary Implant. Case Rep Orthop 2023; 2023:7547590. [PMID: 38099082 PMCID: PMC10721347 DOI: 10.1155/2023/7547590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/24/2023] [Accepted: 11/09/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction The Ilizarov distraction osteogenesis is a recognized method of limb lengthening in orthopaedic practice. Its most challenging problems are long duration of external fixation and related pin-tract infection and joint contractures. The solution might be the use of a bioactive degradable intramedullary implant stimulating bone healing. Case Presentation. We present a case of a 14-year-old boy with 6 cm posttraumatic shortening of the femur and associated varus deformity of 20 degrees. He was treated with the Ilizarov technique of femur lengthening over an intramedullary degradable polycaprolactone (PCL) implant with hydroxyapatite (HA) filling. We faced no complications within the lengthening process. Shortening and deformity of the femur were corrected in 90 days. The index of external fixation was 15 days/cm. External fixation time was reduced almost twice comparing to the conventional method. Degradable intramedullary nails ensured the advantage of avoidance of the removal procedure. Radiography and CT confirmed faster new bone healing and remodeling. Conclusion The combined lengthening technique over a PCL/HA implant might be used to shorten external fixation time and to stimulate bone healing especially in patients with compromised bone. Using a bioabsorbable material presents the benefit of eliminating the need for a second surgery to remove the nail, thereby reducing soft tissue damage.
Collapse
Affiliation(s)
- Arnold Popkov
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russia
| | | | - Sergei Muradisinov
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russia
| | - Dmitry Popkov
- Russian Ilizarov Scientific Center for Restorative Traumatology and Orthopaedics, Kurgan, Russia
| |
Collapse
|
9
|
Bello SA, Cruz-Lebrón J, Rodríguez-Rivera OA, Nicolau E. Bioactive Scaffolds as a Promising Alternative for Enhancing Critical-Size Bone Defect Regeneration in the Craniomaxillofacial Region. ACS APPLIED BIO MATERIALS 2023; 6:4465-4503. [PMID: 37877225 DOI: 10.1021/acsabm.3c00432] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Reconstruction of critical-size bone defects (CSDs) in the craniomaxillofacial (CMF) region remains challenging. Scaffold-based bone-engineered constructs have been proposed as an alternative to the classical treatments made with autografts and allografts. Scaffolds, a key component of engineered constructs, have been traditionally viewed as biologically passive temporary replacements of deficient bone lacking intrinsic cues to promote osteogenesis. Nowadays, scaffolds are functionalized, giving rise to bioactive scaffolds promoting bone regeneration more effectively than conventional counterparts. This review focuses on the three approaches most used to bioactivate scaffolds: (1) conferring microarchitectural designs or surface nanotopography; (2) loading bioactive molecules; and (3) seeding stem cells on scaffolds, providing relevant examples of in vivo (preclinical and clinical) studies where these methods are employed to enhance CSDs healing in the CMF region. From these, adding bioactive molecules (specifically bone morphogenetic proteins or BMPs) to scaffolds has been the most explored to bioactivate scaffolds. Nevertheless, the downsides of grafting BMP-loaded scaffolds in patients have limited its successful translation into clinics. Despite these drawbacks, scaffolds containing safer, cheaper, and more effective bioactive molecules, combined with stem cells and topographical cues, remain a promising alternative for clinical use to treat CSDs in the CMF complex replacing autografts and allografts.
Collapse
Affiliation(s)
- Samir A Bello
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Junellie Cruz-Lebrón
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Osvaldo A Rodríguez-Rivera
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| | - Eduardo Nicolau
- Department of Chemistry, University of Puerto Rico, Rio Piedras Campus, PO Box 23346, San Juan, Puerto Rico 00931, United States
- Molecular Sciences Research Center, University of Puerto Rico, 1390 Ponce De León Ave, Suite 1-7, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
10
|
Lan D, Wu B, Zhang H, Chen X, Li Z, Dai F. Novel Bioinspired Nerve Scaffold with High Synchrony between Biodegradation and Nerve Regeneration for Repair of Peripheral Nerve Injury. Biomacromolecules 2023; 24:5451-5466. [PMID: 37917398 DOI: 10.1021/acs.biomac.3c00920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
The morphological structure reconstruction and functional recovery of long-distance peripheral nerve injury (PNI) are global medical challenges. Biodegradable nerve scaffolds that provide mechanical support for the growth and extension of neurites are a desired way to repair long-distance PNI. However, the synchrony of scaffold degradation and nerve regeneration is still challenging. Here, a novel bioinspired multichannel nerve guide conduit (MNGC) with topographical cues based on silk fibroin and ε-polylysine modification was constructed. This conduit (SF(A) + PLL MNGC) exhibited sufficient mechanical strength, excellent degradability, and favorable promotion of cell growth. Peripheral nerve repairing was evaluated by an in vivo 10 mm rat sciatic model. In vivo evidence demonstrated that SF(A) + PLL MNGC was completely biodegraded in the body within 4 weeks after providing sufficient physical support and guide for neurite extension, and a 10 mm sciatic nerve defect was effectively repaired without scar formation, indicating a high synchronous effect of scaffold biodegradation and nerve regeneration. More importantly, the regenerated nerve of the SF(A) + PLL MNGC group showed comparable morphological reconstruction and functional recovery to that of autologous nerve transplantation. This work proved that the designed SF(A) + PLL MNGC has potential for application in long-distance PNI repair in the clinic.
Collapse
Affiliation(s)
- Dongwei Lan
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Baiqing Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Haiqiang Zhang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Xiang Chen
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Zhi Li
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
- Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400715, China
- College of Sericulture, Textile and Biomass Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
11
|
Canciani E, Straticò P, Varasano V, Dellavia C, Sciarrini C, Petrizzi L, Rimondini L, Varoni EM. Polylevolysine and Fibronectin-Loaded Nano-Hydroxyapatite/PGLA/Dextran-Based Scaffolds for Improving Bone Regeneration: A Histomorphometric in Animal Study. Int J Mol Sci 2023; 24:ijms24098137. [PMID: 37175849 PMCID: PMC10179305 DOI: 10.3390/ijms24098137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
The regeneration of large bone defects is still demanding, requiring biocompatible scaffolds, with osteoconductive and osteoinductive properties. This study aimed to assess the pre-clinical efficacy of a nano-hydroxyapatite (nano-HA)/PGLA/dextran-based scaffold loaded with Polylevolysine (PLL) and fibronectin (FN), intended for bone regeneration of a critical-size tibial defect, using an ovine model. After physicochemical characterization, the scaffolds were implanted in vivo, producing two monocortical defects on both tibiae of ten adult sheep, randomly divided into two groups to be euthanized at three and six months after surgery. The proximal left and right defects were filled, respectively, with the test scaffold (nano-HA/PGLA/dextran-based scaffold loaded with PLL and FN) and the control scaffold (nano-HA/PGLA/dextran-based scaffold not loaded with PLL and FN); the distal defects were considered negative control sites, not receiving any scaffold. Histological and histomorphometric analyses were performed to quantify the bone ingrowth and residual material 3 and 6 months after surgery. In both scaffolds, the morphological analyses, at the SEM, revealed the presence of submicrometric crystals on the surfaces and within the scaffolds, while optical microscopy showed a macroscopic 3D porous architecture. XRD confirmed the presence of nano-HA with a high level of crystallinity degree. At the histological and histomorphometric evaluation, new bone formation and residual biomaterial were detectable inside the defects 3 months after intervention, without differences between the scaffolds. At 6 months, the regenerated bone was significantly higher in the defects filled with the test scaffold (loaded with PLL and FN) than in those filled with the control scaffold, while the residual material was higher in correspondence to the control scaffold. Nano-HA/PGLA/dextran-based scaffolds loaded with PLL and FN appear promising in promoting bone regeneration in critical-size defects, showing balanced regenerative and resorbable properties to support new bone deposition.
Collapse
Affiliation(s)
- Elena Canciani
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Paola Straticò
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Vincenzo Varasano
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Claudia Dellavia
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| | - Chiara Sciarrini
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Lucio Petrizzi
- Department of Veterinary Medicine, University of Teramo, 64100 Teramo, Italy
| | - Lia Rimondini
- Department of Health Sciences, Università del Piemonte Orientale, 28100 Novara, Italy
| | - Elena M Varoni
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20142 Milan, Italy
| |
Collapse
|
12
|
Roumani S, Jeanneau C, Giraud T, Cotten A, Laucournet M, Sohier J, Pithioux M, About I. Osteogenic Potential of a Polyethylene Glycol Hydrogel Functionalized with Poly-Lysine Dendrigrafts (DGL) for Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16020862. [PMID: 36676600 PMCID: PMC9863473 DOI: 10.3390/ma16020862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/28/2022] [Accepted: 01/12/2023] [Indexed: 05/27/2023]
Abstract
Resorbable hydrogels are widely used as scaffolds for tissue engineering. These hydrogels can be modified by grafting dendrimer-linked functionalized molecules (dendrigrafts). Our aim was to develop a tunable poly(L-lysine) dendrigrafts (DGL)/PEG-based hydrogel with an inverse porosity and to investigate its osteogenic potential. DGL/PEG hydrogels were emulsified in a surfactant-containing oil solution to form microspheres. The toxicity was evaluated on Human Vascular Endothelial Cells (HUVECs) and Bone Marrow Mesenchymal Stem Cells (hMSCs) with Live/Dead and MTT assays. The effects on HUVECs were investigated through C5 Complement expression by RT-PCR and C5a/TGF-β1 secretion by ELISA. Recruitment of hMSCs was investigated using Boyden chambers and their osteogenic differentiation was studied by measuring Alkaline Phosphatase activity (ALP) and BMP-2 secretion by ELISA. Adjusting the stirring speed during the emulsification allowed to obtain spherical microspheres with tunable diameters (10-1600 µm). The cell viability rate with the hydrogel was 95 and 100% with HUVECs and hMSCs, respectively. Incubating HUVECs with the biomaterial induced a 5-fold increase in TGF-β1 and a 3-fold increase in Complement C5a release. Furthermore, HUVEC supernatants obtained after incubation with the hydrogel induced a 2.5-fold increase in hMSC recruitment. The hydrogel induced a 3-fold increase both in hMSC ALP activity and BMP-2 secretion. Overall, the functionalized hydrogel enhanced the osteogenic potential by interacting with endothelial cells and hMSCs and represents a promising tool for bone tissue engineering.
Collapse
Affiliation(s)
- Sandra Roumani
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
| | | | - Thomas Giraud
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
- APHM, Hôpital Timone, Pôle Odontologie, 13005 Marseille, France
| | - Aurélie Cotten
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
| | - Marc Laucournet
- Laboratory for Tissue Biology and Therapeutic Engineering (LBTI), UMR 5305, CNRS, Lyon University, 69367 Lyon, France
| | - Jérôme Sohier
- Laboratory for Tissue Biology and Therapeutic Engineering (LBTI), UMR 5305, CNRS, Lyon University, 69367 Lyon, France
| | - Martine Pithioux
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
- Aix-Marseille University, APHM, CNRS, ISM, Sainte-Marguerite Hospital, Institute for Locomotion, Department of Orthopaedics and Traumatology, 13009 Marseille, France
| | - Imad About
- Aix-Marseille University, CNRS, ISM, 13009 Marseille, France
| |
Collapse
|
13
|
Lv B, Wu J, Xiong Y, Xie X, Lin Z, Mi B, Liu G. Functionalized multidimensional biomaterials for bone microenvironment engineering applications: Focus on osteoimmunomodulation. Front Bioeng Biotechnol 2022; 10:1023231. [PMID: 36406210 PMCID: PMC9672076 DOI: 10.3389/fbioe.2022.1023231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/20/2022] [Indexed: 09/26/2023] Open
Abstract
As bone biology develops, it is gradually recognized that bone regeneration is a pathophysiological process that requires the simultaneous participation of multiple systems. With the introduction of osteoimmunology, the interplay between the immune system and the musculoskeletal diseases has been the conceptual framework for a thorough understanding of both systems and the advancement of osteoimmunomodulaty biomaterials. Various therapeutic strategies which include intervention of the surface characteristics or the local delivery systems with the incorporation of bioactive molecules have been applied to create an ideal bone microenvironment for bone tissue regeneration. Our review systematically summarized the current research that is being undertaken in the field of osteoimmunomodulaty bone biomaterials on a case-by-case basis, aiming to inspire more extensive research and promote clinical conversion.
Collapse
Affiliation(s)
| | | | | | | | | | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Chen X, Gao CY, Chu XY, Zheng CY, Luan YY, He X, Yang K, Zhang DL. VEGF-Loaded Heparinised Gelatine-Hydroxyapatite-Tricalcium Phosphate Scaffold Accelerates Bone Regeneration via Enhancing Osteogenesis-Angiogenesis Coupling. Front Bioeng Biotechnol 2022; 10:915181. [PMID: 35757798 PMCID: PMC9216719 DOI: 10.3389/fbioe.2022.915181] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 01/02/2023] Open
Abstract
Background: Bone tissue defect, one of the common orthopaedicdiseases, is traumatizing and affects patient’s lifestyle. Although autologous and xenograft bone transplantations are performed in bone tissue engineering, clinical development of bone transplantation is limited because ofvarious factors, such as varying degrees of immune rejection, lack of bone sources, and secondary damage to bone harvesting. Methods: We synthesised a heparinised gelatine-hydroxyapatite-tricalcium phosphate (HG-HA-TCP) scaffold loaded with sustained-release vascular endothelial growth factor (VEGF) analysed their structure, mechanical properties, and biocompatibility. Additionally, the effects of HG-HA-TCP (VEGF) scaffolds on osteogenic differentiation and vascularisation of stem cells from human exfoliated deciduous teeth (SHED) in vitro and bone regeneration in vivo were investigated. Results: HG-HA-TCP scaffold possessed good pore structure, mechanical properties, and biocompatibility. HG-HA-TCP scaffold loaded with VEGF could effectively promote SHED proliferation, migration, and adhesion. Moreover, HG-HA-TCP (VEGF) scaffold increased the expression of osteogenesis- and angiogenesis-related genes and promoted osteogenic differentiation and vascularisation in cells. In vivo results demonstrated that VEGF-loaded HG-HA-TCP scaffold improved new bone regeneration and enhanced bone mineral density, revealed byhistological, micro-CT and histochemical straining analyses. Osteogenic and angiogenic abilities of the three biological scaffolds wereranked as follows: HG-HA-TCP (VEGF) > G-HA-TCP (VEGF) > G-HA-TCP. Conclusion: HG-HA-TCP (VEGF) scaffold with good biocompatibility could create an encouraging osteogenic microenvironment that could accelerate vessel formation and osteogenesis, providing an effective scaffold for bone tissue engineering and developing new clinical treatment strategies for bone tissue defects.
Collapse
Affiliation(s)
- Xu Chen
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, China.,Department of Stomatology, Eighth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chun-Yan Gao
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, China
| | - Xiao-Yang Chu
- Department of Stomatology, Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chun-Yan Zheng
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, China
| | - Ying-Yi Luan
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xin He
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, China
| | - Kai Yang
- Prenatal Diagnosis Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Dong-Liang Zhang
- Department of Orthodontics, Beijing Stomatological Hospital, Capital Medical University School of Stomatology, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
The Relationship between Osteoinduction and Vascularization: Comparing the Ectopic Bone Formation of Five Different Calcium Phosphate Biomaterials. MATERIALS 2022; 15:ma15103440. [PMID: 35629467 PMCID: PMC9146137 DOI: 10.3390/ma15103440] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/21/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Objective: The objective of this study is to compare the bone induction of five kinds of calcium phosphate (Ca-P) biomaterials implanted in mice and explore the vascularization and particle-size-related osteoinductive mechanism. Methods: The following five kinds of Ca-P biomaterials including hydroxyapatite (HA) and/or tricalcium phosphate (TCP) were implanted in the muscle of 30 BALB/c mice (n = 6): 20 nm HA (20HA), 60 nm HA (60HA), 12 µm HA (12HA), 100 nm TCP (100TCP) and 12 µm HA + 100 nm TCP (HATCP). Then, all animals were put on a treadmill to run 30 min at a 6 m/h speed each day. Five and ten weeks later, three mice of each group were killed, and the samples were harvested to assess the osteoinductive effects by hematoxylin eosin (HE), Masson’s trichrome and safranine−fast green stainings, and the immunohistochemistry of the angiogenesis and osteogenesis markers CD31 and type I collagen (ColI). Results: The numbers of blood vessels were 139 ± 29, 118 ± 25, 78 ± 15, 65 ± 14 in groups HATCP, 100TCP, 60HA and 20HA, respectively, which were significantly higher than that of group 12HA (12 ± 5) in week 5 (p < 0.05). The area percentages of new bone tissue were (7.33 ± 1.26)% and (8.49 ± 1.38)% in groups 100TCP and HATCP, respectively, which were significantly higher than those in groups 20HA (3.27 ± 0.38)% and 60HA (3.43 ± 0.27)% (p < 0.05); however, no bone tissue was found in group 12HA 10 weeks after transplantation. The expression of CD31 was positive in new blood vessels, and the expression of ColI was positive in new bone tissue. Conclusions: Nanoscale Ca-P biomaterials could induce osteogenesis in mice muscle, and the osteoinductive effects of TCP were about 124% higher than those of 20HA and 114% higher than those of 60HA. The particle size of the biomaterials affected angiogenesis and osteogenesis. There was a positive correlation between the number of blood vessels and the area percentage of new bone tissue; therefore, osteoinduction is closely related to vascularization. Our results provide an experimental basis for the synthesis of calcium−phosphorus matrix composites and for further exploration of the osteoinductive mechanism.
Collapse
|
16
|
Shang L, Shao J, Ge S. Immunomodulatory Properties: The Accelerant of Hydroxyapatite-Based Materials for Bone Regeneration. Tissue Eng Part C Methods 2022; 28:377-392. [PMID: 35196904 DOI: 10.1089/ten.tec.2022.00111112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The immunoinflammatory response is the prerequisite step for wound healing and tissue regeneration, and the immunomodulatory effects of biomaterials have attracted increasing attention. Hydroxyapatite [Ca10(PO4)6(OH)2] (HAp), a common calcium phosphate ceramic, due to its structural and functional similarity to the inorganic constituent of natural bones, has been developed for different application purposes such as bone substitutes, tissue engineering scaffolds, and implant coatings. Recently, the interaction between HAp-based materials and the immune system (various immune cells), and the immunomodulatory effects of HAp-based materials on bone tissue regeneration have been explored extensively. Macrophages-mediated regenerative effect by HAp stimulation occupies the mainstream status of immunomodulatory strategies. The immunomodulation of HAp can be manipulated by tuning the physical, chemical, and biological cues such as surface functionalization (physical or chemical modifications), structural and textural characteristics (size, shape, and surface topography), and the incorporation of bioactive substances (cytokines, rare-earth elements, and bioactive ions). Therefore, HAp ceramic materials can contribute to bone regeneration by creating a favorable osteoimmune microenvironment, which would provide a more comprehensive theoretical basis for their further clinical applications. Considering the rapidly developed HAp-based materials as well as their excellent biological performances in the field of regenerative medicine, this review discusses the recent advances concerning the immunomodulatory methods for HAp-based biomaterials and their roles in bone tissue regeneration.
Collapse
Affiliation(s)
- Lingling Shang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| |
Collapse
|
17
|
Zhou A, Wu B, Yu H, Tang Y, Liu J, Jia Y, Yang X, Xiang L. Current Understanding of Osteoimmunology in Certain Osteoimmune Diseases. Front Cell Dev Biol 2021; 9:698068. [PMID: 34485284 PMCID: PMC8416088 DOI: 10.3389/fcell.2021.698068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/15/2021] [Indexed: 02/05/2023] Open
Abstract
The skeletal system and immune system seem to be two independent systems. However, there in fact are extensive and multiple crosstalk between them. The concept of osteoimmunology was created to describe those interdisciplinary events, but it has been constantly updated over time. In this review, we summarize the interactions between the skeletal and immune systems in the co-development of the two systems and the progress of certain typical bone abnormalities and bone regeneration on the cellular and molecular levels according to the mainstream novel study. At the end of the review, we also highlighted the possibility of extending the research scope of osteoimmunology to other systemic diseases. In conclusion, we propose that osteoimmunology is a promising perspective to uncover the mechanism of related diseases; meanwhile, a study from the point of view of osteoimmunology may also provide innovative ideas and resolutions to achieve the balance of internal homeostasis.
Collapse
Affiliation(s)
- Anqi Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bingfeng Wu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Yu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yufei Tang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yinan Jia
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xiaoyu Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lin Xiang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|