1
|
Martínez JD, Núñez-Franco R, Valverde P, Delgado S, Ardá A, Jiménez-Barbero J, Jiménez-Oses G, Cañada FJ. Glycans and Chirality: Stereoselectivity at the Core of DC-SIGN's Recognition. A Novel View of the Optimum Minimal Ligand Epitope. Chemistry 2025:e202501420. [PMID: 40342067 DOI: 10.1002/chem.202501420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2025] [Revised: 05/07/2025] [Accepted: 05/07/2025] [Indexed: 05/11/2025]
Abstract
Glycans exhibit an unparalleled density of stereochemical information, encoded at the monosaccharide level through multiple stereogenic centers, anomeric configurations, ring tautomerism, and conformational variability. Indeed, chiral recognition is fundamental to the interaction between glycans and proteins. Despite the theoretical risk posed by mirror-image molecules, the stereochemical diversity of the "glycan code" enables similar chiral motifs to arise from both D- and L-sugars. Herein, we present an in-depth investigation of the stereochemical features governing lectin-glycan recognition, using the well-characterized human C-type lectin Dendritic cell-specific ICAM-3-grabbing nonintegrin (DC-SIGN) as a model. By combining experimental (STD-NMR) and computational approaches, we identified a minimal optimal binding epitope recognized by DC-SIGN. Key binding requirements include the correct chirality of the Ca2⁺-coordinating oxygens, an adjacent equatorial hydroxyl group for hydrogen bonding with Glu354, and hydrophobic contacts with Val351. Known ligands L-fucose and D-mannose fulfill these criteria. Our results further demonstrate that DC-SIGN also binds α/β-L-galactose, α/β-D-rhamnose, and myo-inositol. Among these, α/β-D-rhamnose exhibits higher affinity than α-OMe-D-mannose, while α/β-L-galactose binds more strongly than D-rhamnose and myo-inositol, although with lower affinity than α-OMe-L-fucose. STD-NMR experiments confirmed that all these ligands share the same core binding epitope.
Collapse
Affiliation(s)
- J Daniel Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Reyes Núñez-Franco
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Pablo Valverde
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Sandra Delgado
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
| | - Ana Ardá
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Jesús Jiménez-Barbero
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
- Department of Organic Chemistry II Faculty of Science and Technology University of the Basque Country, EHU-UPV, Leioa, Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Avda, Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Gonzalo Jiménez-Oses
- CIC bioGUNE, Basque Research Technology Alliance, BRTA, Bizkaia Technology park, Building 800, 48160, Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - F Javier Cañada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
- CIBER de Enfermedades Respiratorias (CIBERES) Avda, Monforte de Lemos 3-5, 28029, Madrid, Spain
| |
Collapse
|
2
|
Pérez Carrillo V, Whittaker JJ, Wiedemann C, Harder JM, Lohr T, Jamithireddy AK, Dajka M, Goretzki B, Joseph B, Guskov A, Harmer NJ, Holzgrabe U, Hellmich UA. Structure and Dynamics of Macrophage Infectivity Potentiator Proteins from Pathogenic Bacteria and Protozoans Bound to Fluorinated Pipecolic Acid Inhibitors. J Med Chem 2025; 68:5926-5941. [PMID: 39976355 PMCID: PMC11912469 DOI: 10.1021/acs.jmedchem.5c00134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/01/2025] [Accepted: 02/05/2025] [Indexed: 02/21/2025]
Abstract
Macrophage infectivity potentiator (MIP) proteins, found in pro- and eukaryotic pathogens, influence microbial virulence, host cell infection, pathogen replication, and dissemination. MIPs share an FKBP (FK506 binding protein)-like prolyl-cis/trans-isomerase domain, making them attractive targets for inhibitor development. We determined high-resolution crystal structures of Burkholderia pseudomallei and Trypanosoma cruzi MIPs in complex with fluorinated pipecolic acid inhibitors. The inhibitor binding profiles in solution were compared across B. pseudomallei, T. cruzi, and Legionella pneumophila MIPs using 1H, 15N, and 19F NMR spectroscopy. Demonstrating the versatility of fluorinated ligands for characterizing inhibitor complexes, 19F NMR spectroscopy identified differences in ligand binding dynamics across MIPs. EPR spectroscopy and SAXS further revealed inhibitor-induced global structural changes in homodimeric L. pneumophila MIP. This study demonstrates the importance of integrating diverse methods to probe protein dynamics and provides a foundation for optimizing MIP-targeted inhibitors in this structurally conserved yet dynamically variable protein family.
Collapse
Affiliation(s)
- Victor
Hugo Pérez Carrillo
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Jacob J. Whittaker
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Christoph Wiedemann
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Jean-Martin Harder
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
| | - Theresa Lohr
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am
Hubland, 97074 Würzburg, Germany
| | - Anil K. Jamithireddy
- Living
Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, U.K.
| | - Marina Dajka
- Department
of Physics, Free University of Berlin, 14195 Berlin, Germany
| | - Benedikt Goretzki
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
- Center for
Biomolecular Magnetic Resonance, Goethe-University, 60438 Frankfurt/Main, Germany
| | - Benesh Joseph
- Department
of Physics, Free University of Berlin, 14195 Berlin, Germany
| | - Albert Guskov
- Groningen
Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, The Netherlands
| | - Nicholas J. Harmer
- Living
Systems Institute, University of Exeter, Stocker Road, EX4 4QD Exeter, U.K.
| | - Ulrike Holzgrabe
- Institute
of Pharmacy and Food Chemistry, University
of Würzburg, Am
Hubland, 97074 Würzburg, Germany
| | - Ute A. Hellmich
- Faculty
of Chemistry and Earth Sciences, Institute of Organic Chemistry and
Macromolecular Chemistry, Friedrich Schiller
University Jena, 07743 Jena, Germany
- Center for
Biomolecular Magnetic Resonance, Goethe-University, 60438 Frankfurt/Main, Germany
- Cluster
of Excellence “Balance of the Microverse”, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
3
|
Dahiya D, Péter-Szabó Z, Senanayake M, Pingali SV, Leite WC, Byrnes J, Buchko GW, Sivan P, Vilaplana F, Master ER, O'Neill H. SANS investigation of fungal loosenins reveals substrate-dependent impacts of protein action on the inter-microfibril arrangement of cellulosic substrates. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:27. [PMID: 40022179 PMCID: PMC11869483 DOI: 10.1186/s13068-025-02618-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 12/30/2024] [Indexed: 03/03/2025]
Abstract
BACKGROUND Microbial expansin-related proteins include fungal loosenins, which have been previously shown to disrupt cellulose networks and enhance the enzymatic conversion of cellulosic substrates. Despite showing beneficial impacts to cellulose processing, detailed characterization of cellulosic materials after loosenin treatment is lacking. In this study, small-angle neutron scattering (SANS) was used to investigate the effects of three recombinantly produced loosenins that originate from Phanerochaete carnosa, PcaLOOL7, PcaLOOL9, and PcaLOOL12, on the organization of holocellulose preparations from Eucalyptus and Spruce wood samples. RESULTS Whereas the SANS analysis of Spruce holocellulose revealed an increase in inter-microfibril spacing of neighboring cellulose microfibrils following treatment with PcaLOOL12 and to a lesser extent PcaLOOL7, the analysis of Eucalyptus holocellulose revealed a reduction in the ordered arrangement of microfibrils following treatment with PcaLOOL12 and to a lesser extent PcaLOOL9. Parallel SEC-SAXS characterization of PcaLOOL7, PcaLOOL9, and PcaLOOL12 indicated the proteins likely function as monomers; moreover, all appear to retain a flexible disordered N-terminus and folded C-terminal region. The comparatively high impact of PcaLOOL12 motivated its NMR structural characterization, revealing a double-psi β-barrel (DPBB) domain surrounded by three α-helices-the largest nestled against the DPBB core and the other two part of loops extending from the core. CONCLUSIONS The SANS analysis of PcaLOOL action on holocellulose samples confirms their ability to disrupt cellulose fiber networks and suggests a progression from reducing regular order in the microfibril arrangement to increasing inter-microfibril spacing. The most impactful PcaLOOL, PcaLOOL12, was previously observed to be the most highly expressed loosenin in P. carnosa. Its structural characterization herein reveals its stabilization through two disulfide linkages, and an extended N-terminal region distal to a negatively charged and surface accessible polysaccharide binding groove.
Collapse
Affiliation(s)
- Deepika Dahiya
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland
| | - Zsuzsanna Péter-Szabó
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, 106 91, Stockholm, Sweden
| | - Manjula Senanayake
- Neutron Scattering Division and Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sai Venkatesh Pingali
- Neutron Scattering Division and Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Wellington C Leite
- Neutron Scattering Division and Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - James Byrnes
- Brookhaven National Laboratory, National Synchrotron Light Source II, Bldg. 745, P.O. Box 5000, Upton, NY, 11973-5000, USA
| | - Garry W Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
- School of Molecular Biosciences, Washington State University, Pullman, WA, 99164, USA
| | - Pramod Sivan
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, 106 91, Stockholm, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, 106 91, Stockholm, Sweden
- Wallenberg Wood Science Centre, KTH Royal Institute of Technology, 100 44, Stockholm, Sweden
| | - Emma R Master
- Department of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150, Espoo, Finland.
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| | - Hugh O'Neill
- Neutron Scattering Division and Center for Structural Molecular Biology, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
4
|
Lomoschitz A, Meyer J, Guitart T, Krepl M, Lapouge K, Hayn C, Schweimer K, Simon B, Šponer J, Gebauer F, Hennig J. The Drosophila RNA binding protein Hrp48 binds a specific RNA sequence of the msl-2 mRNA 3' UTR to regulate translation. Biophys Chem 2025; 316:107346. [PMID: 39504588 DOI: 10.1016/j.bpc.2024.107346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/02/2024] [Accepted: 10/26/2024] [Indexed: 11/08/2024]
Abstract
Repression of msl-2 mRNA translation is essential for viability of Drosophila melanogaster females to prevent hypertranscription of both X chromosomes. This translational control event is coordinated by the female-specific protein Sex-lethal (Sxl) which recruits the RNA binding proteins Unr and Hrp48 to the 3' untranslated region (UTR) of the msl-2 transcript and represses translation initiation. The mechanism exerted by Hrp48 during translation repression and its interaction with msl-2 are not well understood. Here we investigate the RNA binding specificity and affinity of the tandem RNA recognition motifs of Hrp48. Using NMR spectroscopy, molecular dynamics simulations and isothermal titration calorimetry, we identified the exact region of msl-2 3' UTR recognized by Hrp48. Additional biophysical experiments and translation assays give further insights into complex formation of Hrp48, Unr, Sxl and RNA. Our results show that Hrp48 binds independent of Sxl and Unr downstream of the E and F binding sites of Sxl and Unr to msl-2.
Collapse
Affiliation(s)
- Andrea Lomoschitz
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Julia Meyer
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Tanit Guitart
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain
| | - Miroslav Krepl
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| | - Clara Hayn
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany
| | - Kristian Schweimer
- Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Bernd Simon
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Molecular Biology and Biophysics - University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Jiří Šponer
- Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, 612 65 Brno, Czech Republic; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc 783 71, Czech Republic
| | - Fátima Gebauer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Janosch Hennig
- Molecular Systems Biology Unit, European Molecular Biology Laboratory (EMBL), 69117 Heidelberg, Germany; Department of Biochemistry IV - Biophysical Chemistry, University of Bayreuth, 95447 Bayreuth, Germany.
| |
Collapse
|
5
|
Troshkina AA, Klochkov VV, Bikmullin AG, Klochkova EA, Blokhin DS. 1H, 13C, and 15N resonance assignments of the amyloidogenic peptide SEM2(49-107) by NMR spectroscopy. BIOMOLECULAR NMR ASSIGNMENTS 2024:10.1007/s12104-024-10209-y. [PMID: 39612117 DOI: 10.1007/s12104-024-10209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024]
Abstract
It has been shown that human seminal fluid is a major factor in enhancing HIV activity. The SEM2(49-107) peptide is a product of cleavage after ejaculation by internal prostheses of the semenogelin 2 protein, expressed in seminal vesicles. It is established that the peptide SEM2(49-107) forms amyloid fibrils, which increase probability of contracting HIV infection. In this nuclear magnetic resonance (NMR) study, we present almost complete (86%) resonance assignments for the 1H 15N and 13C atoms of the backbone and side-chain of the SEM2(49-107) peptide (BioMagResBank accession number 52356). The secondary structure of SEM2(49-107) peptide was estimated by using two approaches, secondary chemical shifts analysis (CSI) and TALOS-N prediction. Analysis of the secondary structure of the SEM2(49-107) peptide using both methods revealed that the peptide contains helical segments at the C-terminus. Also in this work, we used phase-sensitive 2D HSQC 1H- 15N experiments measuring longitudinal T1 and transverse T2 NMR relaxation times to report predicted secondary structure and backbone dynamics of the SEM2(49-107) peptide. This resonance assignment will form the basis of future NMR research, contributing to a better understanding of the peptide structure and internal dynamics of the molecule.
Collapse
Affiliation(s)
- Anastasia A Troshkina
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420008, Russia.
| | - Vladimir V Klochkov
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420008, Russia
| | - Aydar G Bikmullin
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russia
| | - Evelina A Klochkova
- Laboratory of Structural Biology, Institute of Fundamental Medicine and Biology, Kazan Federal University, 18 Kremlevskaya, Kazan, 420008, Russia
| | - Dmitriy S Blokhin
- NMR Laboratory, Medical Physics Department, Institute of Physics, Kazan Federal University, Kremlevskaya Str., 18, Kazan, 420008, Russia
| |
Collapse
|
6
|
Bernal-Bernal D, Pantoja-Uceda D, López-Alonso JP, López-Rojo A, López-Ruiz JA, Galbis-Martínez M, Ochoa-Lizarralde B, Tascón I, Elías-Arnanz M, Ubarretxena-Belandia I, Padmanabhan S. Structural basis for regulation of a CBASS-CRISPR-Cas defense island by a transmembrane anti-σ factor and its ECF σ partner. SCIENCE ADVANCES 2024; 10:eadp1053. [PMID: 39454004 PMCID: PMC11506125 DOI: 10.1126/sciadv.adp1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 09/20/2024] [Indexed: 10/27/2024]
Abstract
How CRISPR-Cas and cyclic oligonucleotide-based antiphage signaling systems (CBASS) are coordinately deployed against invaders remains unclear. We show that a locus containing two CBASS and one type III-B CRISPR-Cas system, regulated by the transmembrane anti-σ DdvA and its cognate extracytoplasmic function (ECF) σ DdvS, can defend Myxococcus xanthus against a phage. Cryo-electron microscopy reveals DdvA-DdvS pairs assemble as arrow-shaped transmembrane dimers. Each DdvA periplasmic domain adopts a separase/craspase-type tetratricopeptide repeat (TPR)-caspase HetF-associated with TPR (TPR-CHAT) architecture with an incomplete His-Cys active site, lacking three α-helices conserved among CHAT domains. Each active site faces the dimer interface, raising the possibility that signal-induced caspase-like DdvA autoproteolysis in trans precedes RseP-mediated intramembrane proteolysis and DdvS release. Nuclear magnetic resonance reveals a DdvA cytoplasmic CHCC-type zinc-bound three-helix bundle that binds to DdvS σ2 and σ4 domains, undergoing σ4-induced helix extension to trap DdvS. Altogether, we provide structural-mechanistic insights into membrane anti-σ-ECF σ regulation of an antiviral CBASS-CRISPR-Cas defense island.
Collapse
Affiliation(s)
- Diego Bernal-Bernal
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
| | - David Pantoja-Uceda
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
| | | | - Alfonso López-Rojo
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - José Antonio López-Ruiz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - Marisa Galbis-Martínez
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | | | - Igor Tascón
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Montserrat Elías-Arnanz
- Departamento de Genética y Microbiología, Área de Genética (Unidad Asociada al IQF-CSIC), Universidad de Murcia, 30100 Murcia, Spain
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (UPV/EHU, CSIC), 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - S. Padmanabhan
- Instituto de Química Física “Blas Cabrera,” CSIC (IQF-CSIC), 28006 Madrid, Spain
| |
Collapse
|
7
|
Nencini R, Mantzari E, Sandelin AE, Ollila OHS. Rapid Interpretation of Protein Backbone Rotation Dynamics Directly from Spin Relaxation Data. J Phys Chem Lett 2024; 15:10204-10209. [PMID: 39353179 PMCID: PMC11480883 DOI: 10.1021/acs.jpclett.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Besides their structure, dynamics is pivotal for protein functions, particularly for intrinsically disordered proteins (IDPs) that do not fold into a fixed 3D structure. However, the detection of protein dynamics is difficult for IDPs and other disordered biomolecules. NMR spin relaxation rates are sensitive to the rapid rotations of chemical bonds, but their interpretation is arduous for IDPs or molecular assemblies with a complex dynamic landscape. Here we demonstrate numerically that the dynamics of a wide range of proteins, from short peptides to partially disordered proteins and peptides in micelles, can be characterized by calculating the total effective correlation times of protein backbone N-H bond rotations, τeff, from experimentally measured transverse 15N spin relaxation rates, R2, using a linear relation. Our results enable the determination of magnetic-field-independent and intuitively understandable parameters describing protein dynamics at different regions of the sequence directly from experiments. A practical advance of the approach is demonstrated by analyzing partially disordered proteins in which rotations of disordered regions occur with timescales of 1-2 ns, independent of their size, suggesting that rotations of disordered and folded regions are uncoupled in these proteins.
Collapse
Affiliation(s)
- Ricky Nencini
- Institute
of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Division
of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - Efstathia Mantzari
- Institute
of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- VTT
Technical Research Centre of Finland, Espoo 02044, Finland
| | - Amanda E. Sandelin
- Institute
of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- Division
of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki 00014, Finland
| | - O. H. Samuli Ollila
- Institute
of Biotechnology, University of Helsinki, Helsinki 00014, Finland
- VTT
Technical Research Centre of Finland, Espoo 02044, Finland
| |
Collapse
|
8
|
Locke A, Guarino K, Rule GS. Labeling of methyl groups: a streamlined protocol and guidance for the selection of 2H precursors based on molecular weight. JOURNAL OF BIOMOLECULAR NMR 2024; 78:149-159. [PMID: 38787508 PMCID: PMC11491418 DOI: 10.1007/s10858-024-00441-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/21/2024] [Indexed: 05/25/2024]
Abstract
A streamlined one-day protocol is described to produce isotopically methyl-labeled protein with high levels of deuterium for NMR studies. Using this protocol, the D2O and 2H-glucose content of the media and protonation level of ILV labeling precursors (ketobutyrate and ketovalerate) were varied. The relaxation rate of the multiple-quantum (MQ) state that is present during the HMQC-TROSY pulse sequence was measured for different labeling schemes and this rate was used to predict upper limits of molecular weights for various labeling schemes. The use of deuterated solvents (D2O) or deuterated glucose is not required to obtain 1H-13C correlated NMR spectra of a 50 kDa homodimeric protein that are suitable for assignment by mutagenesis. High quality spectra of 100-150 kDa proteins, suitable for most applications, can be obtained without the use of deuterated glucose. The proton on the β-position of ketovalerate appears to undergo partial exchange with deuterium under the growth conditions used in this study.
Collapse
Affiliation(s)
- Alexandra Locke
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA, 15213, USA
| | - Kylee Guarino
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA, 15213, USA
| | - Gordon S Rule
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
9
|
Rønne ME, Dybdahl Andersen C, Teze D, Petersen AB, Fredslund F, Stender EGP, Chaberski EK, Holck J, Aachmann FL, Welner DH, Svensson B. Action and cooperation in alginate degradation by three enzymes from the human gut bacterium Bacteroides eggerthii DSM 20697. J Biol Chem 2024; 300:107596. [PMID: 39032652 PMCID: PMC11381880 DOI: 10.1016/j.jbc.2024.107596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Alginate is a polysaccharide consumed by humans in edible seaweed and different foods where it is applied as a texturizing hydrocolloid or in encapsulations of drugs and probiotics. While gut bacteria are found to utilize and ferment alginate to health-beneficial short-chain fatty acids, knowledge on the details of the molecular reactions is sparse. Alginates are composed of mannuronic acid (M) and its C-5 epimer guluronic acid (G). An alginate-related polysaccharide utilization locus (PUL) has been identified in the gut bacterium Bacteroides eggerthii DSM 20697. The PUL encodes two polysaccharide lyases (PLs) from the PL6 (BePL6) and PL17 (BePL17) families as well as a KdgF-like metalloprotein (BeKdgF) known to catalyze ring-opening of 4,5-unsaturated monouronates yielding 4-deoxy-l-erythro-5-hexoseulose uronate (DEH). B. eggerthii DSM 20697 does not grow on alginate, but readily proliferates with a lag phase of a few hours in the presence of an endo-acting alginate lyase A1-I from the marine bacterium Sphingomonas sp. A1. The B. eggerthii lyases are both exo-acting and while BePL6 is strictly G-block specific, BePL17 prefers M-blocks. BeKdgF retained 10-27% activity in the presence of 0.1-1 mM EDTA. X-ray crystallography was used to investigate the three-dimensional structure of BeKdgF, based on which a catalytic mechanism was proposed to involve Asp102, acting as acid/base having pKa of 5.9 as determined by NMR pH titration. BePL6 and BePL17 cooperate in alginate degradation with BeKdgF linearizing producing 4,5-unsaturated monouronates. Their efficiency of alginate degradation was much enhanced by the addition of the A1-I alginate lyase.
Collapse
Affiliation(s)
- Mette E Rønne
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian Dybdahl Andersen
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - David Teze
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark; Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Agnes Beenfeldt Petersen
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Folmer Fredslund
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Emil G P Stender
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Evan Kirk Chaberski
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Jesper Holck
- Enzyme Technology, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Finn L Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, Trondheim, Norway
| | - Ditte Hededam Welner
- Enzyme Engineering and Structural Biology, Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Birte Svensson
- Enzyme and Protein Chemistry, Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
10
|
Dahiya D, Péter-Szabó Z, Senanayake M, Pingali SV, Leite WC, Byrnes J, Buchko GW, Sivan P, Vilaplana F, Master E, O'Neill H. SANS investigation of fungal loosenins reveal substrate dependent impacts of protein 1 action on inter-fibril distance and packing order of cellulosic substrates. RESEARCH SQUARE 2024:rs.3.rs-4769386. [PMID: 39184091 PMCID: PMC11343303 DOI: 10.21203/rs.3.rs-4769386/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
BACKGROUND Microbial expansin-related proteins include fungal loosenins, which have been previously shown to disrupt cellulose networks and enhance the enzymatic conversion of cellulosic substrates. Despite showing beneficial impacts to cellulose processing, detailed characterization of cellulosic materials after loosenin treatment is lacking. In this study, small-angle neutron scattering (SANS) was used to investigate the effects of three recombinantly produced loosenins that originate from Phanerochaete carnosa, PcaLOOL7, PcaLOOL9, and PcaLOOL12, on the organization of holocellulose preparations from Eucalyptus and Spruce wood samples. RESULTS Whereas the SANS analysis of Spruce holocellulose revealed an increase in interfibril spacing of neighboring cellulose microfibrils following treatment with PcaLOOL12 and to a lesser extent PcaLOOL7, the analysis of Eucalyptus holocellulose revealed a reduction in packing number following treatment with PcaLOOL12 and to a lesser extent PcaLOOL9. Parallel SEC-SAXS characterization of PcaLOOL7, PcaLOOL9, and PcaLOOL12 indicated the proteins likely function as monomers; moreover, all appear to retain a flexible disordered N-terminus and folded C-terminal region. The comparatively high impact of PcaLOOL12 motivated its NMR structural characterization, revealing a double-psi b-barrel (DPBB) domain surrounded by three alpha-helices - the largest nestled against the DPBB core and the other two part of loops extending from the core. CONCLUSIONS The SANS analysis of PcaLOOL action on holocellulose samples confirms their ability to disrupt cellulose fiber networks and suggests a progression from reducing microfibril packing to increasing interfibril distance. The most impactful PcaLOOL, PcaLOOL12, was previously observed to be the most highly expressed loosenin in P. carnosa. Its structural characterization herein reveals its stabilization through two disulfide linkages, and an extended N-terminal region distal to a negatively charged and surface accessible polysaccharide binding groove.
Collapse
|
11
|
Wiedemann C, Whittaker JJ, Pérez Carrillo VH, Goretzki B, Dajka M, Tebbe F, Harder JM, Krajczy PR, Joseph B, Hausch F, Guskov A, Hellmich UA. Legionella pneumophila macrophage infectivity potentiator protein appendage domains modulate protein dynamics and inhibitor binding. Int J Biol Macromol 2023; 252:126366. [PMID: 37633566 DOI: 10.1016/j.ijbiomac.2023.126366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/28/2023]
Abstract
Macrophage infectivity potentiator (MIP) proteins are widespread in human pathogens including Legionella pneumophila, the causative agent of Legionnaires' disease and protozoans such as Trypanosoma cruzi. All MIP proteins contain a FKBP (FK506 binding protein)-like prolyl-cis/trans-isomerase domain that hence presents an attractive drug target. Some MIPs such as the Legionella pneumophila protein (LpMIP) have additional appendage domains of mostly unknown function. In full-length, homodimeric LpMIP, the N-terminal dimerization domain is linked to the FKBP-like domain via a long, free-standing stalk helix. Combining X-ray crystallography, NMR and EPR spectroscopy and SAXS, we elucidated the importance of the stalk helix for protein dynamics and inhibitor binding to the FKBP-like domain and bidirectional crosstalk between the different protein regions. The first comparison of a microbial MIP and a human FKBP in complex with the same synthetic inhibitor was made possible by high-resolution structures of LpMIP with a [4.3.1]-aza-bicyclic sulfonamide and provides a basis for designing pathogen-selective inhibitors. Through stereospecific methylation, the affinity of inhibitors to L. pneumophila and T. cruzi MIP was greatly improved. The resulting X-ray inhibitor-complex structures of LpMIP and TcMIP at 1.49 and 1.34 Å, respectively, provide a starting point for developing potent inhibitors against MIPs from multiple pathogenic microorganisms.
Collapse
Affiliation(s)
- C Wiedemann
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - J J Whittaker
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, the Netherlands
| | - V H Pérez Carrillo
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - B Goretzki
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany; Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt/Main, Germany
| | - M Dajka
- Department of Physics, Freie Universität Berlin, Germany
| | - F Tebbe
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - J-M Harder
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany
| | - P R Krajczy
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Darmstadt, Germany
| | - B Joseph
- Department of Physics, Freie Universität Berlin, Germany
| | - F Hausch
- Department of Chemistry and Biochemistry Clemens-Schöpf-Institute, Technical University Darmstadt, Darmstadt, Germany; Centre for Synthetic Biology, Technical University of Darmstadt, 64283 Darmstadt, Germany
| | - A Guskov
- Groningen Institute for Biomolecular Sciences and Biotechnology, University of Groningen, 9747AG Groningen, the Netherlands
| | - U A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, Germany; Center for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt/Main, Germany; Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena, Germany.
| |
Collapse
|
12
|
Liu Y, Lv P, Wang W, Zhang J, Zhou X, Qiu Y, Cai K, Zhang H, Fang Y, Li Y. Structural insight into EV-A71 3A protein and its interaction with a peptide inhibitor. Virol Sin 2023; 38:975-979. [PMID: 37757951 PMCID: PMC10786657 DOI: 10.1016/j.virs.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
•Our results disclosed a dihelical structure of Enterovirus A71 3A1–57 protein in apo form. •We depicted rigid helices and a unique flexible C-terminus for apo-form 3A1–57. •This study revealed a competitive binding-based molecular mechanism underlying inhibition of dimeric 3A by ER-DRI.
Collapse
Affiliation(s)
- Yahui Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Panjing Lv
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Medical Subcenter of HUST Analytical & Testing Center, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jiahai Zhang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention (Hubei CDC), Wuhan, 430079, China.
| | - Haoran Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Yuan Fang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
13
|
Moursy A, Cléry A, Gerhardy S, Betz KM, Rao S, Mazur J, Campagne S, Beusch I, Duszczyk MM, Robinson MD, Panse VG, Allain FHT. RNA recognition by Npl3p reveals U2 snRNA-binding compatible with a chaperone role during splicing. Nat Commun 2023; 14:7166. [PMID: 37935663 PMCID: PMC10630445 DOI: 10.1038/s41467-023-42962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
The conserved SR-like protein Npl3 promotes splicing of diverse pre-mRNAs. However, the RNA sequence(s) recognized by the RNA Recognition Motifs (RRM1 & RRM2) of Npl3 during the splicing reaction remain elusive. Here, we developed a split-iCRAC approach in yeast to uncover the consensus sequence bound to each RRM. High-resolution NMR structures show that RRM2 recognizes a 5´-GNGG-3´ motif leading to an unusual mille-feuille topology. These structures also reveal how RRM1 preferentially interacts with a CC-dinucleotide upstream of this motif, and how the inter-RRM linker and the region C-terminal to RRM2 contribute to cooperative RNA-binding. Structure-guided functional studies show that Npl3 genetically interacts with U2 snRNP specific factors and we provide evidence that Npl3 melts U2 snRNA stem-loop I, a prerequisite for U2/U6 duplex formation within the catalytic center of the Bact spliceosomal complex. Thus, our findings suggest an unanticipated RNA chaperoning role for Npl3 during spliceosome active site formation.
Collapse
Affiliation(s)
- Ahmed Moursy
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Antoine Cléry
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland.
| | - Stefan Gerhardy
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Sardona Therapeutics, San Francisco, CA, USA
| | - Katharina M Betz
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Sanjana Rao
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Jarosław Mazur
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Sébastien Campagne
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland
- ARNA laboratory, INSERM U1212, University of Bordeaux, Bordeaux, France
| | - Irene Beusch
- Department of Biology, Institute of Biochemistry, ETH Zurich, Switzerland
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Mark D Robinson
- Institute of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Vikram Govind Panse
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland.
- Faculty of Science, University of Zurich, Zurich, Switzerland.
| | | |
Collapse
|
14
|
Pritzlaff A, Ferré G, Mulry E, Lin L, Pour NG, Savin DA, Harris M, Eddy MT. Atomic-Scale View of Protein-PEG Interactions that Redirect the Thermal Unfolding Pathway of PEGylated Human Galectin-3. Angew Chem Int Ed Engl 2022; 61:e202203784. [PMID: 35922375 PMCID: PMC9529833 DOI: 10.1002/anie.202203784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Indexed: 07/28/2023]
Abstract
PEGylation is a promising approach to address the central challenge of applying biologics, i.e., lack of protein stability in the demanding environment of the human body. Wider application is hindered by lack of atomic level understanding of protein-PEG interactions, preventing design of conjugates with predicted properties. We deployed an integrative structural and biophysical approach to address this critical challenge with the PEGylated carbohydrate recognition domain of human galectin-3 (Gal3C), a lectin essential for cell adhesion and potential biologic. PEGylation dramatically increased Gal3C thermal stability, forming a stable intermediate and redirecting its unfolding pathway. Structural details revealed by NMR pointed to a potential role of PEG localization facilitated by charged residues. Replacing these residues subtly altered the protein-PEG interface and thermal unfolding behavior, providing insight into rationally designing conjugates while preserving PEGylation benefits.
Collapse
Affiliation(s)
- Amanda Pritzlaff
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Guillaume Ferré
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Emma Mulry
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Ling Lin
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Daniel A. Savin
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Michael Harris
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Matthew T. Eddy
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
15
|
Structural Insights into Mouse H-FABP. Life (Basel) 2022; 12:life12091445. [PMID: 36143481 PMCID: PMC9505153 DOI: 10.3390/life12091445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Intracellular fatty acid-binding proteins are evolutionarily highly conserved proteins. The major functions and responsibilities of this family are the regulation of FA uptake and intracellular transport. The structure of the H-FABP ortholog from mouse (Mus musculus) had not been revealed at the time this study was completed. Thus, further exploration of the structural properties of mouse H-FABP is expected to extend our knowledge of the model animal’s molecular mechanism of H-FABP function. Here, we report the high-resolution crystal structure and the NMR characterization of mouse H-FABP. Our work discloses the unique structural features of mouse H-FABP, offering a structural basis for the further development of small-molecule inhibitors for H-FABP.
Collapse
|
16
|
Pritzlaff A, Ferré G, Mulry E, Lin L, Pour NG, Eddy M, Savin DA, Harris M. Atomic‐Scale View of Protein–PEG Interactions that Redirect the Thermal Unfolding Pathway of PEGylated Human Galectin‐3. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | - Emma Mulry
- University of Florida Department of Chemistry UNITED STATES
| | - Ling Lin
- University of Florida Department of Chemistry UNITED STATES
| | | | - Matthew Eddy
- University of Florida Chemistry 126 Sisler Hall 32611 Gainesville UNITED STATES
| | | | - Michael Harris
- University of Florida Department of Chemistry UNITED STATES
| |
Collapse
|
17
|
Kusova AM, Iskhakova AK, Zuev YF. NMR and dynamic light scattering give different diffusion information for short-living protein oligomers. Human serum albumin in water solutions of metal ions. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:375-383. [PMID: 35687130 DOI: 10.1007/s00249-022-01605-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/16/2022] [Accepted: 05/22/2022] [Indexed: 11/28/2022]
Abstract
Diffusive behavior of human serum albumin (HSA) in the presence of Mg2+ and Cu2+ ions was studied by pulsed field gradient nuclear magnetic resonance (PFG NMR) and dynamic light scattering (DLS). According to NMR data yielding measurements of HSA self-diffusion coefficient, a weighted average of the protein monomers and oligomers diffusion mobility in the presence of metal ions was observed. While the short-time collective diffusion measured by DLS showed one type of diffusing species in ion-free HSA solution and two molecular forms of HSA in the presence of metal ions. The light intensity correlation function analysis showed that HSA oligomers have a limited lifetime (lower limit is about 0.4 ms) intermediate between characteristic time scales of PFG NMR and DLS experiments. For a theoretical description of concentration dependence of HSA self- and collective diffusion coefficients, the phenomenological approach based on the frictional formalism of non-equilibrium thermodynamics was used (Vink theory), allowing analysis of the solvent-solute and solute-solute interactions in protein solutions. In the presence of metal ions, a significant increase of HSA protein-protein friction coefficient was shown. Based on theoretical analysis of collective diffusion data, the positive values of second virial coefficients A2 for HSA monomers were obtained. The A2 values were found to be higher for the HSA with metal ions compared with the ion-free HSA solution. This is due to the more pronounced contribution of repulsion in protein-protein interactions of HSA monomers in the presence of Mg2+ and Cu2+ ions.
Collapse
Affiliation(s)
- A M Kusova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan, 420111, Russian Federation.
| | - A K Iskhakova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan, 420111, Russian Federation
| | - Yu F Zuev
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, Lobachevsky Str., 2/31, Kazan, 420111, Russian Federation.,A. Butlerov Chemical Institute, Kazan Federal University, Kremlevskaya 18, Kazan, 420008, Russian Federation
| |
Collapse
|
18
|
Mazzei L, Musiani F, Żerko S, Koźminski W, Cianci M, Beniamino Y, Ciurli S, Zambelli B. Structure, dynamics, and function of SrnR, a transcription factor for nickel-dependent gene expression. Metallomics 2021; 13:6445039. [PMID: 34850061 DOI: 10.1093/mtomcs/mfab069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/18/2021] [Indexed: 11/14/2022]
Abstract
Streptomyces griseus, a bacterium producing antibacterial drugs and featuring possible application in phytoremediation, expresses two metal-dependent superoxide dismutase (SOD) enzymes, containing either Fe(II) or Ni(II) in their active site. In particular, the alternative expression of the two proteins occurs in a metal-dependent mode, with the Fe(II)-enzyme gene (sodF) repressed at high intracellular Ni(II) concentrations by a two-component system (TCS). This complex involves two proteins, namely SgSrnR and SgSrnQ, which represent the transcriptional regulator and the Ni(II) sensor of the system, respectively. SgSrnR belongs to the ArsR/SmtB family of metal-dependent transcription factors; in the apo-form and in the absence of SgSrnQ, it can bind the DNA operator of sodF, upregulating gene transcription. According to a recently proposed hypothesis, Ni(II) binding to SgSrnQ would promote its interaction with SgSrnR, causing the release of the complex from DNA and the consequent downregulation of the sodF expression. SgSrnQ is predicted to be highly disordered, thus the understanding, at the molecular level, of how the SgSrnR/SgSrnQ TCS specifically responds to Ni(II) requires the knowledge of the structural, dynamic, and functional features of SgSrnR. These were investigated synergistically in this work using X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, atomistic molecular dynamics calculations, isothermal titration calorimetry, and in silico molecular docking. The results reveal that the homodimeric apo-SgSrnR binds to its operator in a two-step process that involves the more rigid globular portion of the protein and leaves its largely disordered regions available to possibly interact with the disordered SgSrnQ in a Ni-dependent process.
Collapse
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna. Italy
| | - Francesco Musiani
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna. Italy
| | - Szymon Żerko
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Wiktor Koźminski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089, Warsaw, Poland
| | - Michele Cianci
- Department of Agricultural, Food and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, I-60131 Ancona, Italy
| | - Ylenia Beniamino
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna. Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna. Italy
| | - Barbara Zambelli
- Laboratory of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Giuseppe Fanin 40, I-40127 Bologna. Italy
| |
Collapse
|
19
|
Kawale AA, Burmann BM. Characterization of backbone dynamics using solution NMR spectroscopy to discern the functional plasticity of structurally analogous proteins. STAR Protoc 2021; 2:100919. [PMID: 34761231 PMCID: PMC8567434 DOI: 10.1016/j.xpro.2021.100919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2022] Open
Abstract
The comprehensive delineation of inherent dynamic motions embedded in proteins, which can be crucial for their functional repertoire, is often essential yet remains poorly understood in the majority of cases. In this protocol, we outline detailed descriptions of the necessary steps for employing solution NMR spectroscopy for the in-depth amino acid level understanding of backbone dynamics of proteins. We describe the application of the protocol on the structurally analogous Tudor domains with disparate functionalities as a model system. For complete details on the use and execution of this protocol, please refer to Kawale and Burmann (2021).
Collapse
Affiliation(s)
- Ashish A Kawale
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Björn M Burmann
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden.,Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
20
|
De novo protein design by deep network hallucination. Nature 2021; 600:547-552. [PMID: 34853475 DOI: 10.1038/s41586-021-04184-w] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/21/2021] [Indexed: 12/25/2022]
Abstract
There has been considerable recent progress in protein structure prediction using deep neural networks to predict inter-residue distances from amino acid sequences1-3. Here we investigate whether the information captured by such networks is sufficiently rich to generate new folded proteins with sequences unrelated to those of the naturally occurring proteins used in training the models. We generate random amino acid sequences, and input them into the trRosetta structure prediction network to predict starting residue-residue distance maps, which, as expected, are quite featureless. We then carry out Monte Carlo sampling in amino acid sequence space, optimizing the contrast (Kullback-Leibler divergence) between the inter-residue distance distributions predicted by the network and background distributions averaged over all proteins. Optimization from different random starting points resulted in novel proteins spanning a wide range of sequences and predicted structures. We obtained synthetic genes encoding 129 of the network-'hallucinated' sequences, and expressed and purified the proteins in Escherichia coli; 27 of the proteins yielded monodisperse species with circular dichroism spectra consistent with the hallucinated structures. We determined the three-dimensional structures of three of the hallucinated proteins, two by X-ray crystallography and one by NMR, and these closely matched the hallucinated models. Thus, deep networks trained to predict native protein structures from their sequences can be inverted to design new proteins, and such networks and methods should contribute alongside traditional physics-based models to the de novo design of proteins with new functions.
Collapse
|
21
|
Flanking Disorder of the Folded αα-Hub Domain from Radical Induced Cell Death1 Affects Transcription Factor Binding by Ensemble Redistribution. J Mol Biol 2021; 433:167320. [PMID: 34687712 DOI: 10.1016/j.jmb.2021.167320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/28/2021] [Accepted: 10/13/2021] [Indexed: 11/22/2022]
Abstract
Protein intrinsic disorder is essential for organization of transcription regulatory interactomes. In these interactomes, the majority of transcription factors as well as their interaction partners have co-existing order and disorder. Yet, little attention has been paid to their interplay. Here, we investigate how order is affected by flanking disorder in the folded αα-hub domain RST from Radical-Induced Cell Death1 (RCD1), central in a large interactome of transcription factors. We show that the intrinsically disordered C-terminal tail of RCD1-RST shifts its conformational ensemble towards a pseudo-bound state through weak interactions with the ligand-binding pocket. An unfolded excited state is also accessible on the ms timescale independent of surrounding disordered regions, but its population is lowered by 50% in their presence. Flanking disorder additionally lowers transcription factor binding-affinity without affecting the dissociation rate constant, in accordance with similar bound-states assessed by NMR. The extensive dynamics of the RCD1-RST domain, modulated by flanking disorder, is suggestive of its adaptation to many different transcription factor ligands. The study illustrates how disordered flanking regions can tune fold and function through ensemble redistribution and is of relevance to modular proteins in general, many of which play key roles in regulation of genes.
Collapse
|
22
|
Aggarwal P, Bhavesh NS. Hinge like domain motion facilitates human RBMS1 protein binding to proto-oncogene c-myc promoter. Nucleic Acids Res 2021; 49:5943-5955. [PMID: 33999211 PMCID: PMC8191779 DOI: 10.1093/nar/gkab363] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 04/02/2021] [Accepted: 04/24/2021] [Indexed: 01/07/2023] Open
Abstract
DNA binding proteins recognize DNA specifically or non-specifically using direct and indirect readout mechanisms like sliding, hopping, and diffusion. However, a common difficulty in explicitly elucidating any particular mechanism of site-specific DNA-protein recognition is the lack of knowledge regarding target sequences and inadequate account of non-specific interactions, in general. Here, we decipher the structural basis of target search performed by the key regulator of expression of c-myc proto-oncogene, the human RBMS1 protein. In this study, we have shown the structural reorganization of this multi-domain protein required for recognizing the specific c-myc promoter sequence. The results suggest that a synergy between structural re-organization and thermodynamics is necessary for the recognition of target sequences. The study presents another perspective of looking at the DNA-protein interactions.
Collapse
Affiliation(s)
- Priyanka Aggarwal
- Transcription Regulation group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Neel Sarovar Bhavesh
- Transcription Regulation group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
23
|
Raza T, Dhaka N, Joseph D, Dadhwal P, Kakita VMR, Atreya HS, Mukherjee SP. Insights into the NF-κB-DNA Interaction through NMR Spectroscopy. ACS OMEGA 2021; 6:12877-12886. [PMID: 34056439 PMCID: PMC8154232 DOI: 10.1021/acsomega.1c01299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Transcription factors bind specifically to their target elements in the genome, eliciting specific gene expression programs. The nuclear factor-κB (NF-κB) system is a family of proteins comprising inducible transcription activators, which play a critical role in inflammation and cancer. The NF-κB members function as dimers with each monomeric unit binding the κB-DNA. Despite the available structures of the various NF-κB dimers in complex with the DNA, the structural features of these dimers in the nucleic acid-free form are not well-characterized. Using solution NMR spectroscopy, we characterize the structural features of 73.1 kDa p50 subunit of the NF-κB homodimer in the DNA-free form and compare it with the κB DNA-bound form of the protein. The study further reveals that in the nucleic acid-free form, the two constituent domains of p50, the N-terminal and the dimerization domains, are structurally independent of each other. However, in a complex with the κB DNA, both the domains of p50 act as a single unit. The study also provides insights into the mechanism of κB DNA recognition by the p50 subunit of NF-κB.
Collapse
Affiliation(s)
- Tahseen Raza
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand 247667, India
| | - Nitin Dhaka
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand 247667, India
| | - David Joseph
- NMR
Research Centre, Indian Institute of Science
Bengaluru, Bengaluru, Karnataka 560012, India
| | - Prikshat Dadhwal
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand 247667, India
| | - Veera Mohana Rao Kakita
- UM-DAE-Centre
for Excellence in Basic Sciences, University
of Mumbai, Kalina Campus, Mumbai, Maharashtra 400098, India
| | - Hanudatta S. Atreya
- NMR
Research Centre, Indian Institute of Science
Bengaluru, Bengaluru, Karnataka 560012, India
| | - Sulakshana P. Mukherjee
- Department
of Biotechnology, Indian Institute of Technology
Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
24
|
Camponeschi F, Gallo A, Piccioli M, Banci L. The long-standing relationship between paramagnetic NMR and iron-sulfur proteins: the mitoNEET example. An old method for new stories or the other way around? MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:203-221. [PMID: 37904758 PMCID: PMC10539769 DOI: 10.5194/mr-2-203-2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/18/2021] [Indexed: 11/01/2023]
Abstract
Paramagnetic NMR spectroscopy and iron-sulfur (Fe-S) proteins have maintained a synergic relationship for decades. Indeed, the hyperfine shifts with their temperature dependencies and the relaxation rates of nuclei of cluster-bound residues have been extensively used as a fingerprint of the type and of the oxidation state of the Fe-S cluster within the protein frame. The identification of NMR signals from residues surrounding the metal cofactor is crucial for understanding the structure-function relationship in Fe-S proteins, but it is generally impaired in standard NMR experiments by paramagnetic relaxation enhancement due to the presence of the paramagnetic cluster(s). On the other hand, the availability of systems of different sizes and stabilities has, over the years, stimulated NMR spectroscopists to exploit iron-sulfur proteins as paradigmatic cases to develop experiments, models, and protocols. Here, the cluster-binding properties of human mitoNEET have been investigated by 1D and 2D 1 H diamagnetic and paramagnetic NMR, in its oxidized and reduced states. The NMR spectra of both oxidation states of mitoNEET appeared to be significantly different from those reported for previously investigated [ Fe 2 S 2 ] 2 + / + proteins. The protocol we have developed in this work conjugates spectroscopic information arising from "classical" paramagnetic NMR with an extended mapping of the signals of residues around the cluster which can be taken, even before the sequence-specific assignment is accomplished, as a fingerprint of the protein region constituting the functional site of the protein. We show how the combined use of 1D NOE experiments, 13 C direct-detected experiments, and double- and triple-resonance experiments tailored using R1 - and/or R2 -based filters significantly reduces the "blind" sphere of the protein around the paramagnetic cluster. This approach provided a detailed description of the unique electronic properties of mitoNEET, which are responsible for its biological function. Indeed, the NMR properties suggested that the specific electronic structure of the cluster possibly drives the functional properties of different [ Fe 2 S 2 ] proteins.
Collapse
Affiliation(s)
- Francesca Camponeschi
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine,
Sesto Fiorentino, 50019, Italy
| | - Angelo Gallo
- Department of Pharmacy, University of Patras, Patras, 26504,
Greece
| | - Mario Piccioli
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine,
Sesto Fiorentino, 50019, Italy
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, 50019, Italy
| | - Lucia Banci
- Consorzio Interuniversitario Risonanze Magnetiche MetalloProteine,
Sesto Fiorentino, 50019, Italy
- Magnetic Resonance Center and Department of Chemistry, University of Florence, Sesto Fiorentino, 50019, Italy
| |
Collapse
|
25
|
Plata M, Hale W, Sharma M, Werner JM, Utz M. Microfluidic platform for serial mixing experiments with in operando nuclear magnetic resonance spectroscopy. LAB ON A CHIP 2021; 21:1598-1603. [PMID: 33662071 DOI: 10.1039/d0lc01100b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We present a microfluidic platform that allows in operando nuclear magnetic resonance (NMR) observation of serial mixing experiments. Gradually adding one reagent to another is a fundamental experimental modality, widely used to quantify equilibrium constants, for titrations, and in chemical kinetics studies. NMR provides a non-invasive means to quantify concentrations and to follow structural changes at the molecular level as a function of exchanged volume. Using active pneumatic valving on the microfluidic device directly inside an NMR spectrometer equipped with a transmission-line NMR microprobe, the system allows injection of aliquots and in situ mixing in a sample volume of less than 10 μL.
Collapse
Affiliation(s)
- Marek Plata
- School of Chemistry, University of Southampton, SO17 1BJ, UK. and Institute for Life Sciences, University of Southampton, SO17 1BJ, UK and School of Biological Sciences, University of Southampton, SO17 1BJ, UK
| | - William Hale
- School of Chemistry, University of Southampton, SO17 1BJ, UK.
| | | | - Jörn M Werner
- Institute for Life Sciences, University of Southampton, SO17 1BJ, UK and School of Biological Sciences, University of Southampton, SO17 1BJ, UK
| | - Marcel Utz
- School of Chemistry, University of Southampton, SO17 1BJ, UK. and Institute for Life Sciences, University of Southampton, SO17 1BJ, UK
| |
Collapse
|
26
|
Zhang H, Zhou Q, Guo C, Feng L, Wang H, Liao X, Lin D. Structural Basis for the C-Terminal Domain of Mycobacterium tuberculosis Ribosome Maturation Factor RimM to Bind Ribosomal Protein S19. Biomolecules 2021; 11:597. [PMID: 33919647 PMCID: PMC8073977 DOI: 10.3390/biom11040597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 01/25/2023] Open
Abstract
Multidrug-resistant tuberculosis (TB) is a serious threat to public health, calling for the development of new anti-TB drugs. Chaperon protein RimM, involved in the assembly of ribosomal protein S19 into 30S ribosomal subunit during ribosome maturation, is a potential drug target for TB treatment. The C-terminal domain (CTD) of RimM is primarily responsible for binding S19. However, both the CTD structure of RimM from Mycobacterium tuberculosis (MtbRimMCTD) and the molecular mechanisms underlying MtbRimMCTD binding S19 remain elusive. Here, we report the solution structure, dynamics features of MtbRimMCTD, and its interaction with S19. MtbRimMCTD has a rigid hydrophobic core comprised of a relatively conservative six-strand β-barrel, tailed with a short α-helix and interspersed with flexible loops. Using several biophysical techniques including surface plasmon resonance (SPR) affinity assays, nuclear magnetic resonance (NMR) assays, and molecular docking, we established a structural model of the MtbRimMCTD-S19 complex and indicated that the β4-β5 loop and two nonconserved key residues (D105 and H129) significantly contributed to the unique pattern of MtbRimMCTD binding S19, which might be implicated in a form of orthogonality for species-dependent RimM-S19 interaction. Our study provides the structural basis for MtbRimMCTD binding S19 and is beneficial to the further exploration of MtbRimM as a potential target for the development of new anti-TB drugs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Donghai Lin
- MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; (H.Z.); (Q.Z.); (C.G.); (L.F.); (H.W.); (X.L.)
| |
Collapse
|
27
|
Buchko GW, Zhou M, Craig JK, Van Voorhis WC, Myler PJ. Backbone chemical shift assignments for the SARS-CoV-2 non-structural protein Nsp9: intermediate (ms - μs) dynamics in the C-terminal helix at the dimer interface. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:107-116. [PMID: 33392924 PMCID: PMC7779335 DOI: 10.1007/s12104-020-09992-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/24/2020] [Indexed: 05/28/2023]
Abstract
The Betacoronavirus SARS-CoV-2 non-structural protein Nsp9 is a 113-residue protein that is essential for viral replication, and consequently, a potential target for the development of therapeutics against COVID19 infections. To capture insights into the dynamics of the protein's backbone in solution and accelerate the identification and mapping of ligand-binding surfaces through chemical shift perturbation studies, the backbone 1H, 13C, and 15N NMR chemical shifts for Nsp9 have been extensively assigned. These assignments were assisted by the preparation of an ~ 70% deuterated sample and residue-specific, 15N-labelled samples (V, L, M, F, and K). A major feature of the assignments was the "missing" amide resonances for N96-L106 in the 1H-15N HSQC spectrum, a region that comprises almost the complete C-terminal α-helix that forms a major part of the homodimer interface in the crystal structure of SARS-CoV-2 Nsp9, suggesting this region either undergoes intermediate motion in the ms to μs timescale and/or is heterogenous. These "missing" amide resonances do not unambiguously appear in the 1H-15N HSQC spectrum of SARS-CoV-2 Nsp9 collected at a concentration of 0.0007 mM. At this concentration, at the detection limit, native mass spectrometry indicates the protein is exclusively in the monomeric state, suggesting the intermediate motion in the C-terminal of Nsp9 may be due to intramolecular dynamics. Perhaps this intermediate ms to μs timescale dynamics is the physical basis for a previously suggested "fluidity" of the C-terminal helix that may be responsible for homophilic (Nsp9-Nsp9) and postulated heterophilic (Nsp9-Unknown) protein-protein interactions.
Collapse
Affiliation(s)
- Garry W Buchko
- Seattle Structural Genomics Center for Infectious Disease, Seattle, USA.
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA.
- School of Molecular Biosciences, Washington State University, Pullman, Washington, USA.
| | - Mowei Zhou
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Justin K Craig
- Seattle Structural Genomics Center for Infectious Disease, Seattle, USA
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease, University of Washington, Seattle, Washington, USA
| | - Wesley C Van Voorhis
- Seattle Structural Genomics Center for Infectious Disease, Seattle, USA
- Department of Medicine, Division of Allergy and Infectious Disease, Center for Emerging and Re-emerging Infectious Disease, University of Washington, Seattle, Washington, USA
| | - Peter J Myler
- Seattle Structural Genomics Center for Infectious Disease, Seattle, USA
- Seattle Children's Research Institute, Seattle, Washington, USA
- Department of Pediatrics, Department of Medical Education and Biomedical Informatics, Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
28
|
Ogden TEH, Yang JC, Schimpl M, Easton LE, Underwood E, Rawlins P, McCauley M, Langelier MF, Pascal J, Embrey K, Neuhaus D. Dynamics of the HD regulatory subdomain of PARP-1; substrate access and allostery in PARP activation and inhibition. Nucleic Acids Res 2021; 49:2266-2288. [PMID: 33511412 PMCID: PMC7913765 DOI: 10.1093/nar/gkab020] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/17/2020] [Accepted: 01/08/2021] [Indexed: 01/08/2023] Open
Abstract
PARP-1 is a key early responder to DNA damage in eukaryotic cells. An allosteric mechanism links initial sensing of DNA single-strand breaks by PARP-1's F1 and F2 domains via a process of further domain assembly to activation of the catalytic domain (CAT); synthesis and attachment of poly(ADP-ribose) (PAR) chains to protein sidechains then signals for assembly of DNA repair components. A key component in transmission of the allosteric signal is the HD subdomain of CAT, which alone bridges between the assembled DNA-binding domains and the active site in the ART subdomain of CAT. Here we present a study of isolated CAT domain from human PARP-1, using NMR-based dynamics experiments to analyse WT apo-protein as well as a set of inhibitor complexes (with veliparib, olaparib, talazoparib and EB-47) and point mutants (L713F, L765A and L765F), together with new crystal structures of the free CAT domain and inhibitor complexes. Variations in both dynamics and structures amongst these species point to a model for full-length PARP-1 activation where first DNA binding and then substrate interaction successively destabilise the folded structure of the HD subdomain to the point where its steric blockade of the active site is released and PAR synthesis can proceed.
Collapse
Affiliation(s)
- Tom E H Ogden
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Ji-Chun Yang
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | - Laura E Easton
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | | | | | - Michael M McCauley
- Department of Biochemistry & Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Marie-France Langelier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | - John M Pascal
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, QC, Canada
| | | | - David Neuhaus
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
29
|
Aiyer S, Swapna GVT, Ma LC, Liu G, Hao J, Chalmers G, Jacobs BC, Montelione GT, Roth MJ. A common binding motif in the ET domain of BRD3 forms polymorphic structural interfaces with host and viral proteins. Structure 2021; 29:886-898.e6. [PMID: 33592170 DOI: 10.1016/j.str.2021.01.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 01/21/2021] [Indexed: 12/23/2022]
Abstract
The extraterminal (ET) domain of BRD3 is conserved among BET proteins (BRD2, BRD3, BRD4), interacting with multiple host and viral protein-protein networks. Solution NMR structures of complexes formed between the BRD3 ET domain and either the 79-residue murine leukemia virus integrase (IN) C-terminal domain (IN329-408) or its 22-residue IN tail peptide (IN386-407) alone reveal similar intermolecular three-stranded β-sheet formations. 15N relaxation studies reveal a 10-residue linker region (IN379-388) tethering the SH3 domain (IN329-378) to the ET-binding motif (IN389-405):ET complex. This linker has restricted flexibility, affecting its potential range of orientations in the IN:nucleosome complex. The complex of the ET-binding peptide of the host NSD3 protein (NSD3148-184) and the BRD3 ET domain includes a similar three-stranded β-sheet interaction, but the orientation of the β hairpin is flipped compared with the two IN:ET complexes. These studies expand our understanding of molecular recognition polymorphism in complexes of ET-binding motifs with viral and host proteins.
Collapse
Affiliation(s)
- Sriram Aiyer
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - G V T Swapna
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Li-Chung Ma
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Gaohua Liu
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Jingzhou Hao
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Gordon Chalmers
- Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Brian C Jacobs
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA
| | - Gaetano T Montelione
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Chemistry and Chemical Biology, Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| | - Monica J Roth
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
30
|
Kumar M, Dhaka N, Raza T, Dadhwal P, Atreya HS, Mukherjee SP. Domain Stability Regulated through the Dimer Interface Controls the Formation Kinetics of a Specific NF-κB Dimer. Biochemistry 2021; 60:513-523. [PMID: 33555182 DOI: 10.1021/acs.biochem.0c00837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The NF-κB family of transcription factors is a key regulator of the immune response in the vertebrates. The family comprises five proteins that function as dimers formed in various combinations among the members, with the RelA-p50 dimer being physiologically the most abundant. While most of the 15 possible dimers are scarcely present in the cell with some remaining experimentally undetected to date, there are specific gene sets that are only activated by certain sparsely populated NF-κB dimers. The mechanism of transcription activation of such specific genes that are activated only by specific NF-κB dimers remains unclear. Here we show that the dimer interfacial residues control the stabilization of the global hydrogen bond network of the NF-κB dimerization domain, which, in turn, controls the thermodynamic stabilization of different NF-κB dimers. The relatively low thermodynamic stability of the RelA-RelA homodimer is critical as it facilitates the formation of the more stable RelA-p50 heterodimer. Through the modulation of the thermodynamic stability of the RelA-RelA homodimer, the kinetics of the RelA-p50 heterodimer formation can be regulated. This phenomenon provides an insight into the mechanism of RelA-RelA specific target gene regulation in physiology.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Nitin Dhaka
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Tahseen Raza
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Prikshat Dadhwal
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Hanudatta S Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sulakshana P Mukherjee
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
31
|
Ruiz L, Kaczmarska Z, Gomes T, Aragon E, Torner C, Freier R, Baginski B, Martin-Malpartida P, de Martin Garrido N, Marquez JA, Cordeiro TN, Pluta R, Macias MJ. Unveiling the dimer/monomer propensities of Smad MH1-DNA complexes. Comput Struct Biotechnol J 2021; 19:632-646. [PMID: 33510867 PMCID: PMC7810915 DOI: 10.1016/j.csbj.2020.12.044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022] Open
Abstract
MH1 domains of BMP-activated Smads populate a dimer-monomer equilibrium. Swapping loop1 between BMP- and TGFβ Smads turns dimers into monomers and vice versa. BMP-responsive genomic regions have a lower average count of motifs than TGFβ ones.
Smad transcription factors are the main downstream effectors of the Transforming growth factor β superfamily (TGFβ) signalling network. The DNA complexes determined here by X-ray crystallography for the Bone Morphogenetic Proteins (BMP) activated Smad5 and Smad8 proteins reveal that all MH1 domains bind [GGC(GC)|(CG)] motifs similarly, although TGFβ-activated Smad2/3 and Smad4 MH1 domains bind as monomers whereas Smad1/5/8 form helix-swapped dimers. Dimers and monomers are also present in solution, as revealed by NMR. To decipher the characteristics that defined these dimers, we designed chimeric MH1 domains and characterized them using X-ray crystallography. We found that swapping the loop1 between TGFβ- and BMP- activated MH1 domains switches the dimer/monomer propensities. When we scanned the distribution of Smad-bound motifs in ChIP-Seq peaks (Chromatin immunoprecipitation followed by high-throughput sequencing) in Smad-responsive genes, we observed specific site clustering and spacing depending on whether the peaks correspond to BMP- or TGFβ-responsive genes. We also identified significant correlations between site distribution and monomer or dimer propensities. We propose that the MH1 monomer or dimer propensity of Smads contributes to the distinct motif selection genome-wide and together with the MH2 domain association, help define the composition of R-Smad/Smad4 trimeric complexes.
Collapse
Affiliation(s)
- Lidia Ruiz
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Zuzanna Kaczmarska
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France.,International Institute of Molecular and Cell Biology in Warsaw, Trojdena 4, Warsaw 02-109, Poland
| | - Tiago Gomes
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Eric Aragon
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Carles Torner
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Regina Freier
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Blazej Baginski
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Natàlia de Martin Garrido
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - José A Marquez
- EMBL Grenoble, 71 Avenue des Martyrs, CS 90181, Grenoble Cedex 9 38042, France
| | - Tiago N Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB), Universidade NOVA de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Radoslaw Pluta
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain
| | - Maria J Macias
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac, 10, Barcelona 08028, Spain.,ICREA, Passeig Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
32
|
Horst R, Farley KA, Kormos BL, Withka JM. NMR spectroscopy: the swiss army knife of drug discovery. JOURNAL OF BIOMOLECULAR NMR 2020; 74:509-519. [PMID: 32617727 DOI: 10.1007/s10858-020-00330-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy has evolved into a powerful tool within drug discovery over the last two decades. While traditionally being used by medicinal chemists for small molecule structure elucidation, it can also be a valuable tool for the identification of small molecules that bind to drug targets, for the characterization of target-ligand interactions and for hit-to-lead optimization. Here, we describe how NMR spectroscopy is integrated into the Pfizer drug discovery pipeline and how we utilize this approach to identify and validate initial hits and generate leads.
Collapse
Affiliation(s)
- Reto Horst
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA.
| | - Kathleen A Farley
- Medicinal Sciences, Pfizer, Eastern Point Road, Groton, CT, 06340, USA
| | - Bethany L Kormos
- Medicinal Sciences, Pfizer, 610 Main St., Cambridge, MA, 02139, USA
| | - Jane M Withka
- Medicinal Sciences, Pfizer, 610 Main St., Cambridge, MA, 02139, USA
| |
Collapse
|
33
|
Liess AKL, Kucerova A, Schweimer K, Schlesinger D, Dybkov O, Urlaub H, Mansfeld J, Lorenz S. Dimerization regulates the human APC/C-associated ubiquitin-conjugating enzyme UBE2S. Sci Signal 2020; 13:eaba8208. [PMID: 33082289 PMCID: PMC7613103 DOI: 10.1126/scisignal.aba8208] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
At the heart of protein ubiquitination cascades, ubiquitin-conjugating enzymes (E2s) form reactive ubiquitin-thioester intermediates to enable efficient transfer of ubiquitin to cellular substrates. The precise regulation of E2s is thus crucial for cellular homeostasis, and their deregulation is frequently associated with tumorigenesis. In addition to driving substrate ubiquitination together with ubiquitin ligases (E3s), many E2s can also autoubiquitinate, thereby promoting their own proteasomal turnover. To investigate the mechanisms that balance these disparate activities, we dissected the regulatory dynamics of UBE2S, a human APC/C-associated E2 that ensures the faithful ubiquitination of cell cycle regulators during mitosis. We uncovered a dimeric state of UBE2S that confers autoinhibition by blocking a catalytically critical ubiquitin binding site. Dimerization is stimulated by the lysine-rich carboxyl-terminal extension of UBE2S that is also required for the recruitment of this E2 to the APC/C and is autoubiquitinated as substrate abundance becomes limiting. Consistent with this mechanism, we found that dimerization-deficient UBE2S turned over more rapidly in cells and did not promote mitotic slippage during prolonged drug-induced mitotic arrest. We propose that dimerization attenuates the autoubiquitination-induced turnover of UBE2S when the APC/C is not fully active. More broadly, our data illustrate how the use of mutually exclusive macromolecular interfaces enables modulation of both the activities and the abundance of E2s in cells to facilitate precise ubiquitin signaling.
Collapse
Affiliation(s)
- Anna K L Liess
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Alena Kucerova
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | | | - Dörte Schlesinger
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Olexandr Dybkov
- Department for Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077 Göttingen, Germany
- Bioanalytics Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Jörg Mansfeld
- Cell Cycle, Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany.
- Institute of Cancer Research, London SW7 3RP, UK
| | - Sonja Lorenz
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
34
|
Structural and Functional Analysis of BBA03, Borrelia burgdorferi Competitive Advantage Promoting Outer Surface Lipoprotein. Pathogens 2020; 9:pathogens9100826. [PMID: 33050189 PMCID: PMC7650648 DOI: 10.3390/pathogens9100826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/17/2022] Open
Abstract
BBA03 is a Borrelia burgdorferi outer surface lipoprotein encoded on one of the most conserved plasmids in Borrelia genome, linear plasmid 54 (lp54). Although many of its genes have been identified as contributing or essential for spirochete fitness in vivo, the majority of the proteins encoded on this plasmid have no known function and lack homologs in other organisms. In this paper, we report the solution NMR structure of the B. burgdorferi outer surface lipoprotein BBA03, which is known to provide a competitive advantage to the bacteria during the transmission from tick vector to mammalian host. BBA03 shows structural homology to other outer surface lipoproteins reflecting their genetic and evolutionary relatedness. Analysis of the structure reveals a pore in BBA03, which could potentially bind lipids.
Collapse
|
35
|
Fridmanis J, Otikovs M, Brangulis K, Tārs K, Jaudzems K. Solution NMR structure of Borrelia burgdorferi outer surface lipoprotein BBP28, a member of the mlp protein family. Proteins 2020; 89:588-594. [PMID: 32949018 DOI: 10.1002/prot.26011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/05/2020] [Accepted: 09/13/2020] [Indexed: 12/19/2022]
Abstract
Lyme disease is the most widespread vector-transmitted disease in North America and Europe, caused by infection with Borrelia burgdorferi sensu lato complex spirochetes. We report the solution NMR structure of the B. burgdorferi outer surface lipoprotein BBP28, a member of the multicopy lipoprotein (mlp) family. The structure comprises a tether peptide, five α-helices and an extended C-terminal loop. The fold is similar to that of Borrelia turicatae outer surface protein BTA121, which is known to bind lipids. These results contribute to the understanding of Lyme disease pathogenesis by revealing the molecular structure of a protein from the widely found mlp family.
Collapse
Affiliation(s)
| | | | - Kalvis Brangulis
- Latvian Biomedical Research and Study Centre, Riga, Latvia.,Department of Human Physiology and Biochemistry, Riga Stradins University, Riga, Latvia
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Centre, Riga, Latvia.,Department of Molecular Biology, University of Latvia, Riga, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Riga, Latvia.,Department of Organic Chemistry, University of Latvia, Riga, Latvia
| |
Collapse
|
36
|
Tolkatchev D, Smith GE, Schultz LE, Colpan M, Helms GL, Cort JR, Gregorio CC, Kostyukova AS. Leiomodin creates a leaky cap at the pointed end of actin-thin filaments. PLoS Biol 2020; 18:e3000848. [PMID: 32898131 PMCID: PMC7500696 DOI: 10.1371/journal.pbio.3000848] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 09/18/2020] [Accepted: 08/17/2020] [Indexed: 01/26/2023] Open
Abstract
Improper lengths of actin-thin filaments are associated with altered contractile activity and lethal myopathies. Leiomodin, a member of the tropomodulin family of proteins, is critical in thin filament assembly and maintenance; however, its role is under dispute. Using nuclear magnetic resonance data and molecular dynamics simulations, we generated the first atomic structural model of the binding interface between the tropomyosin-binding site of cardiac leiomodin and the N-terminus of striated muscle tropomyosin. Our structural data indicate that the leiomodin/tropomyosin complex only forms at the pointed end of thin filaments, where the tropomyosin N-terminus is not blocked by an adjacent tropomyosin protomer. This discovery provides evidence supporting the debated mechanism where leiomodin and tropomodulin regulate thin filament lengths by competing for thin filament binding. Data from experiments performed in cardiomyocytes provide additional support for the competition model; specifically, expression of a leiomodin mutant that is unable to interact with tropomyosin fails to displace tropomodulin at thin filament pointed ends and fails to elongate thin filaments. Together with previous structural and biochemical data, we now propose a molecular mechanism of actin polymerization at the pointed end in the presence of bound leiomodin. In the proposed model, the N-terminal actin-binding site of leiomodin can act as a "swinging gate" allowing limited actin polymerization, thus making leiomodin a leaky pointed-end cap. Results presented in this work answer long-standing questions about the role of leiomodin in thin filament length regulation and maintenance.
Collapse
Affiliation(s)
- Dmitri Tolkatchev
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Garry E. Smith
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| | - Lauren E. Schultz
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Gregory L. Helms
- The Center for NMR Spectroscopy, Washington State University, Pullman, Washington, United States of America
| | - John R. Cort
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, United States of America
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, United States of America
| | - Carol C. Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, Arizona, United States of America
| | - Alla S. Kostyukova
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington, United States of America
| |
Collapse
|
37
|
Velivelli SLS, Czymmek KJ, Li H, Shaw JB, Buchko GW, Shah DM. Antifungal symbiotic peptide NCR044 exhibits unique structure and multifaceted mechanisms of action that confer plant protection. Proc Natl Acad Sci U S A 2020; 117:16043-16054. [PMID: 32571919 PMCID: PMC7354933 DOI: 10.1073/pnas.2003526117] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the indeterminate nodules of a model legume Medicago truncatula, ∼700 nodule-specific cysteine-rich (NCR) peptides with conserved cysteine signature are expressed. NCR peptides are highly diverse in sequence, and some of these cationic peptides exhibit antimicrobial activity in vitro and in vivo. However, there is a lack of knowledge regarding their structural architecture, antifungal activity, and modes of action against plant fungal pathogens. Here, the three-dimensional NMR structure of the 36-amino acid NCR044 peptide was solved. This unique structure was largely disordered and highly dynamic with one four-residue α-helix and one three-residue antiparallel β-sheet stabilized by two disulfide bonds. NCR044 peptide also exhibited potent fungicidal activity against multiple plant fungal pathogens, including Botrytis cinerea and three Fusarium spp. It inhibited germination in quiescent spores of B. cinerea In germlings, it breached the fungal plasma membrane and induced reactive oxygen species. It bound to multiple bioactive phosphoinositides in vitro. Time-lapse confocal and superresolution microscopy revealed strong fungal cell wall binding, penetration of the cell membrane at discrete foci, followed by gradual loss of turgor, subsequent accumulation in the cytoplasm, and elevated levels in nucleoli of germlings. Spray-applied NCR044 significantly reduced gray mold disease symptoms caused by the fungal pathogen B. cinerea in tomato and tobacco plants, and postharvest products. Our work illustrates the antifungal activity of a structurally unique NCR peptide against plant fungal pathogens and paves the way for future development of this class of peptides as a spray-on fungistat/fungicide.
Collapse
Affiliation(s)
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St Louis, MO 63132
- Advanced Bioimaging Laboratory, Donald Danforth Plant Science Center, St Louis, MO 63132
| | - Hui Li
- Donald Danforth Plant Science Center, St Louis, MO 63132
| | - Jared B Shaw
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354
| | - Garry W Buchko
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99354
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164
| | - Dilip M Shah
- Donald Danforth Plant Science Center, St Louis, MO 63132;
| |
Collapse
|
38
|
Leeb S, Sörensen T, Yang F, Mu X, Oliveberg M, Danielsson J. Diffusive protein interactions in human versus bacterial cells. Curr Res Struct Biol 2020; 2:68-78. [PMID: 34235470 PMCID: PMC8244477 DOI: 10.1016/j.crstbi.2020.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/05/2020] [Accepted: 04/06/2020] [Indexed: 01/14/2023] Open
Abstract
Random encounters between proteins in crowded cells are by no means passive, but found to be under selective control. This control enables proteome solubility, helps to optimise the diffusive search for interaction partners, and allows for adaptation to environmental extremes. Interestingly, the residues that modulate the encounters act mesoscopically through protein surface hydrophobicity and net charge, meaning that their detailed signatures vary across organisms with different intracellular constraints. To examine such variations, we use in-cell NMR relaxation to compare the diffusive behaviour of bacterial and human proteins in both human and Escherichia coli cytosols. We find that proteins that ‘stick’ in E. coli are generally less restricted in mammalian cells. Furthermore, the rotational diffusion in the mammalian cytosol is less sensitive to surface-charge mutations. This implies that, in terms of protein motions, the mammalian cytosol is more forgiving to surface alterations than E. coli cells. The cellular differences seem not linked to the proteome properties per se, but rather to a 6-fold difference in protein concentrations. Our results outline a scenario in which the tolerant cytosol of mammalian cells, found in long-lived multicellular organisms, provides an enlarged evolutionary playground, where random protein-surface mutations are less deleterious than in short-generational bacteria. Random protein encounters and diffusibility in cells are controlled by surface charge. Protein rotational diffusion is less restricted in human cells than in E. coli. Human cells are less sensitive to alterations of protein charge than Escherichia coli cells.
Collapse
Affiliation(s)
- Sarah Leeb
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Therese Sörensen
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Fan Yang
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Xin Mu
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| | - Jens Danielsson
- Department of Biochemistry and Biophysics, Arrhenius Laboratories of Natural Sciences, Stockholm University, S-106 91, Stockholm, Sweden
| |
Collapse
|
39
|
NusA directly interacts with antitermination factor Q from phage λ. Sci Rep 2020; 10:6607. [PMID: 32313022 PMCID: PMC7171158 DOI: 10.1038/s41598-020-63523-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/27/2020] [Indexed: 12/03/2022] Open
Abstract
Antitermination (AT) is a ubiquitous principle in the regulation of bacterial transcription to suppress termination signals. In phage λ antiterminator protein Q controls the expression of the phage’s late genes with loading of λQ onto the transcription elongation complex halted at a σ-dependent pause requiring a specific DNA element. The molecular basis of λQ-dependent AT and its dependence on N-utilization substance (Nus) A is so far only poorly understood. Here we used solution-state nuclear magnetic resonance spectroscopy to show that the solution structure of λQ is in agreement with the crystal structure of an N-terminally truncated variant and that the 60 residues at the N-terminus are unstructured. We also provide evidence that multidomain protein NusA interacts directly with λQ via its N-terminal domain (NTD) and the acidic repeat (AR) 2 domain, with the λQ:NusA-AR2 interaction being able to release NusA autoinhibition. The binding sites for NusA-NTD and NusA-AR2 on λQ overlap and the interactions are mutually exclusive with similar affinities, suggesting distinct roles during λQ-dependent AT, e.g. the λQ:NusA-NTD interaction might position NusA-NTD in a way to suppress termination, making NusA-NTD repositioning a general scheme in AT mechanisms.
Collapse
|
40
|
Danielsson J, Noel JK, Simien JM, Duggan BM, Oliveberg M, Onuchic JN, Jennings PA, Haglund E. The Pierced Lasso Topology Leptin has a Bolt on Dynamic Domain Composed by the Disordered Loops I and III. J Mol Biol 2020; 432:3050-3063. [PMID: 32081588 DOI: 10.1016/j.jmb.2020.01.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/18/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
Leptin is an important signaling hormone, mostly known for its role in energy expenditure and satiety. Furthermore, leptin plays a major role in other proteinopathies, such as cancer, marked hyperphagia, impaired immune function, and inflammation. In spite of its biological relevance in human health, there are no NMR resonance assignments of the human protein available, obscuring high-resolution characterization of the soluble protein and/or its conformational dynamics, suggested as being important for receptor interaction and biological activity. Here, we report the nearly complete backbone resonance assignments of human leptin. Chemical shift-based secondary structure prediction confirms that in solution leptin forms a four-helix bundle including a pierced lasso topology. The conformational dynamics, determined on several timescales, show that leptin is monomeric, has a rigid four-helix scaffold, and a dynamic domain, including a transiently formed helix. The dynamic domain is anchored to the helical scaffold by a secondary hydrophobic core, pinning down the long loops of leptin to the protein body, inducing motional restriction without a well-defined secondary or tertiary hydrogen bond stabilized structure. This dynamic region is well suited for and may be involved in functional allosteric dynamics upon receptor binding.
Collapse
Affiliation(s)
- Jens Danielsson
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
| | | | | | - Brendan Michael Duggan
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, USA
| | - Mikael Oliveberg
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - José Nelson Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, USA; Department of Physics and Astronomy, Department of Chemistry, And Department of Biosciences, Rice University, Houston, USA
| | - Patricia Ann Jennings
- Department of Chemistry and Biochemistry, The University of California at San Diego, La Jolla, USA
| | - Ellinor Haglund
- The Department of Chemistry, University of Hawaii, Manoa, Honolulu, USA.
| |
Collapse
|
41
|
Ragucci S, Ruggiero A, Russo R, Landi N, Valletta M, Chambery A, Russo L, Di Maro A. Correlation of structure, function and protein dynamics in myoglobins from Eurasian woodcock, chicken and ostrich. J Biomol Struct Dyn 2020; 39:851-866. [DOI: 10.1080/07391102.2020.1719201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sara Ragucci
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Alessio Ruggiero
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Rosita Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Nicola Landi
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Mariangela Valletta
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Angela Chambery
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Luigi Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies (DiSTABiF), University of Campania ‘Luigi Vanvitelli’, Caserta, Italy
| |
Collapse
|
42
|
Pantoja-Uceda D, Oroz J, Fernández C, de Alba E, Giraldo R, Laurents DV. Conformational Priming of RepA-WH1 for Functional Amyloid Conversion Detected by NMR Spectroscopy. Structure 2020; 28:336-347.e4. [PMID: 31918960 DOI: 10.1016/j.str.2019.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/03/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
How proteins with a stable globular fold acquire the amyloid state is still largely unknown. RepA, a versatile plasmidic DNA binding protein from Pseudomonas savastanoi, is functional as a transcriptional repressor or as an initiator or inhibitor of DNA replication, the latter via assembly of an amyloidogenic oligomer. Its N-terminal domain (WH1) is responsible for discrimination between these functional abilities by undergoing insufficiently understood structural changes. RepA-WH1 is a stable dimer whose conformational dynamics had not been explored. Here, we have studied it through NMR {1H}-15N relaxation and H/D exchange kinetics measurements. The N- and the C-terminal α-helices, and the internal amyloidogenic loop, are partially unfolded in solution. S4-indigo, a small inhibitor of RepA-WH1 amyloidogenesis, binds to and tethers the N-terminal α-helix to a β-hairpin that is involved in dimerization, thus providing evidence for a priming role of fraying ends and dimerization switches in the amyloidogenesis of folded proteins.
Collapse
Affiliation(s)
- David Pantoja-Uceda
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain
| | - Javier Oroz
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain
| | - Cristina Fernández
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Eva de Alba
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Rafael Giraldo
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, c/ Ramiro de Maeztu 9, Madrid 28040, Spain.
| | - Douglas V Laurents
- Instituto de Química Física "Rocasolano", Consejo Superior de Investigaciones Científicas, c/ Serrano 119, Madrid 28006, Spain.
| |
Collapse
|
43
|
Structure of the PUB Domain from Ubiquitin Regulatory X Domain Protein 1 (UBXD1) and Its Interaction with the p97 AAA+ ATPase. Biomolecules 2019; 9:biom9120876. [PMID: 31847414 PMCID: PMC6995525 DOI: 10.3390/biom9120876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/11/2019] [Accepted: 12/11/2019] [Indexed: 01/19/2023] Open
Abstract
AAA+ ATPase p97/valosin-containing protein (VCP)/Cdc48 is a key player in various cellular stress responses in which it unfolds ubiquitinated proteins to facilitate their degradation by the proteasome. P97 works in different cellular processes using alternative sets of cofactors and is implicated in multiple degenerative diseases. Ubiquitin regulatory X domain protein 1 (UBXD1) has been linked to pathogenesis and is unique amongst p97 cofactors because it interacts with both termini of p97. Its N-domain binds to the N-domain and N/D1 interface of p97 and regulates its ATPase activity. The PUB (peptide:N-glycanase and UBA or UBX-containing proteins) domain binds the p97 C-terminus, but how it controls p97 function is still unknown. Here we present the NMR structure of UBXD1-PUB together with binding studies, mutational analysis, and a model of UBXD1-PUB in complex with the p97 C-terminus. While the binding pocket is conserved among PUB domains, UBXD1-PUB features a unique loop and turn regions suggesting a role in coordinating interaction with downstream regulators and substrate processing
Collapse
|
44
|
Bashardanesh Z, Elf J, Zhang H, van der Spoel D. Rotational and Translational Diffusion of Proteins as a Function of Concentration. ACS OMEGA 2019; 4:20654-20664. [PMID: 31858051 PMCID: PMC6906769 DOI: 10.1021/acsomega.9b02835] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/14/2019] [Indexed: 05/21/2023]
Abstract
Atomistic simulations of three different proteins at different concentrations are performed to obtain insight into protein mobility as a function of protein concentration. We report on simulations of proteins from diluted to the physiological water concentration (about 70% of the mass). First, the viscosity was computed and found to increase by a factor of 7-9 going from pure water to the highest protein concentration, in excellent agreement with in vivo nuclear magnetic resonance results. At a physiological concentration of proteins, the translational diffusion is found to be slowed down to about 30% of the in vitro values. The slow-down of diffusion found here using atomistic models is slightly more than that of a hard sphere model that neglects the electrostatic interactions. Interestingly, rotational diffusion of proteins is slowed down somewhat more (by about 80-95% compared to in vitro values) than translational diffusion, in line with experimental findings and consistent with the increased viscosity. The finding that rotation is retarded more than translation is attributed to solvent-separated clustering. No direct interactions between the proteins are found, and the clustering can likely be attributed to dispersion interactions that are stronger between proteins than between protein and water. Based on these simulations, we can also conclude that the internal dynamics of the proteins in our study are affected only marginally under crowding conditions, and the proteins become somewhat more stable at higher concentrations. Simulations were performed using a force field that was tuned for dealing with crowding conditions by strengthening the protein-water interactions. This force field seems to lead to a reproducible partial unfolding of an α-helix in one of the proteins, an effect that was not observed in the unmodified force field.
Collapse
Affiliation(s)
- Zahedeh Bashardanesh
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-75124 Uppsala, Sweden
| | - Johan Elf
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-75124 Uppsala, Sweden
| | - Haiyang Zhang
- Department
of Biological Science and Engineering, School of Chemistry and Biological
Engineering, University of Science and Technology
Beijing, 100083 Beijing, China
| | - David van der Spoel
- Uppsala
Center for Computational Chemistry, Science for Life Laboratory, Department
of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box
596, SE-75124 Uppsala, Sweden
- E-mail: . Phone: +46 18 4714205
| |
Collapse
|
45
|
Bortnov V, Tonelli M, Lee W, Lin Z, Annis DS, Demerdash ON, Bateman A, Mitchell JC, Ge Y, Markley JL, Mosher DF. Solution structure of human myeloid-derived growth factor suggests a conserved function in the endoplasmic reticulum. Nat Commun 2019; 10:5612. [PMID: 31819058 PMCID: PMC6901522 DOI: 10.1038/s41467-019-13577-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Human myeloid-derived growth factor (hMYDGF) is a 142-residue protein with a C-terminal endoplasmic reticulum (ER) retention sequence (ERS). Extracellular MYDGF mediates cardiac repair in mice after anoxic injury. Although homologs of hMYDGF are found in eukaryotes as distant as protozoans, its structure and function are unknown. Here we present the NMR solution structure of hMYDGF, which consists of a short α-helix and ten β-strands distributed in three β-sheets. Conserved residues map to the unstructured ERS, loops on the face opposite the ERS, and the surface of a cavity underneath the conserved loops. The only protein or portion of a protein known to have a similar fold is the base domain of VNN1. We suggest, in analogy to the tethering of the VNN1 nitrilase domain to the plasma membrane via its base domain, that MYDGF complexed to the KDEL receptor binds cargo via its conserved residues for transport to the ER.
Collapse
Affiliation(s)
- Valeriu Bortnov
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Marco Tonelli
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Woonghee Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ziqing Lin
- Departments of Cell and Regenerative Biology and Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Douglas S Annis
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Omar N Demerdash
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Alex Bateman
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, CB10 1SD, UK
| | - Julie C Mitchell
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Ying Ge
- Departments of Cell and Regenerative Biology and Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Human Proteomics Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - John L Markley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA
- National Magnetic Resonance Facility at Madison, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Deane F Mosher
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
46
|
Guo C, Xiao Y, Bi F, Lin W, Wang H, Yao, H, Lin D. Recombinant expression, biophysical and functional characterization of ClpS from Mycobacterium tuberculosis. Acta Biochim Biophys Sin (Shanghai) 2019; 51:1158-1167. [PMID: 31650179 DOI: 10.1093/abbs/gmz102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Indexed: 11/13/2022] Open
Abstract
Intracellular proteolysis is attracting more and more attention for its unique and important character in Mycobacterium tuberculosis (Mt). The ClpS protein from Mt (MtClpS) plays a critical role in intracellular proteolysis by recognizing N-end rule substrates, which makes it become a potential target for antibacterial drugs. However, the molecular mechanism of MtClpS recognizing N-end rule substrates remains unclear. Preparation of highly concentrated and pure MtClpS protein is a prerequisite for further structural and functional studies. In the present work, we tried several fusion tags and various expression conditions to maximize the production of MtClpS in Escherichia coli. We established an efficient approach for preparing the MtClpS protein with a high yield of 24.7 mg/l and a high purity of 98%. After buffer screening, we obtained a stable MtClpS protein sample concentrated at 0.63 mM in the presence of glycerol, l-Arginine, and l-Glutamate. Moreover, circular dichroism characterization indicated that the secondary structure of MtClpS consists of 38% α-helix and 24% β-sheet. The 2D 1H-15N HSQC nuclear magnetic resonance spectrum showed a good dispersion of resonance peaks with uniform intensity, indicating that the purified MtClpS protein was well folded and conformationally homogeneous. Isothermal titration calorimetry experiments revealed significant interactions of MtClpS with N-end rule peptides beginning with Leu, Tyr, Trp, or Phe. Furthermore, residues D34, D35, and H66 were confirmed as key residues for MtClpS recognizing the N-end rule peptide. The successful expression and biophysical characterization of MtClpS enabled us to gain insight into the molecular mechanism of MtClpS recognizing N-end rule substrates. The obtained stable and pure recombinant MtClpS will enable future inhibitor screening experiments.
Collapse
Affiliation(s)
- Chenyun Guo
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yihang Xiao
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Fangkai Bi
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weiliang Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huilin Wang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Hongwei Yao,
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Donghai Lin
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
47
|
Zhang M, Yu XW, Xu Y, Guo RT, Swapna GVT, Szyperski T, Hunt JF, Montelione GT. Structural Basis by Which the N-Terminal Polypeptide Segment of Rhizopus chinensis Lipase Regulates Its Substrate Binding Affinity. Biochemistry 2019; 58:3943-3954. [PMID: 31436959 PMCID: PMC7195698 DOI: 10.1021/acs.biochem.9b00462] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Members of an important group of industrial enzymes, Rhizopus lipases, exhibit valuable hydrolytic features that underlie their biological functions. Particularly important is their N-terminal polypeptide segment (NTPS), which is required for secretion and proper folding but is removed in the process of enzyme maturation. A second common feature of this class of lipases is the α-helical "lid", which regulates the accessibility of the substrate to the enzyme active site. Some Rhizopus lipases also exhibit "interfacial activation" by micelle and/or aggregate surfaces. While it has long been recognized that the NTPS is critical for function, its dynamic features have frustrated efforts to characterize its structure by X-ray crystallography. Here, we combine nuclear magnetic resonance spectroscopy and X-ray crystallography to determine the structure and dynamics of Rhizopus chinensis lipase (RCL) with its 27-residue NTPS prosequence (r27RCL). Both r27RCL and the truncated mature form of RCL (mRCL) exhibit biphasic interfacial activation kinetics with p-nitrophenyl butyrate (pNPB). r27RCL exhibits a substrate binding affinity significantly lower than that of mRCL due to stabilization of the closed lid conformation by the NTPS. In contrast to previous predictions, the NTPS does not enhance lipase activity by increasing surface hydrophobicity but rather inhibits activity by forming conserved interactions with both the closed lid and the core protein structure. Single-site mutations and kinetic studies were used to confirm that the NTPS serves as internal competitive inhibitor and to develop a model of the associated process of interfacial activation. These structure-function studies provide the basis for engineering RCL lipases with enhanced catalytic activities.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Xiao-Wei Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
| | - Rey-Ting Guo
- Industrial Enzyme National Engineering Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People’s Republic of China
| | - G. V. T. Swapna
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| | - Thomas Szyperski
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York, 14260. USA
| | - John F. Hunt
- Department of Biological Science, Columbia University, New York, New York 10027, USA
| | - Gaetano T. Montelione
- Center for Advanced Biotechnology and Medicine, and Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, New Jersey, 08854, USA
| |
Collapse
|
48
|
Faustino AF, Martins AS, Karguth N, Artilheiro V, Enguita FJ, Ricardo JC, Santos NC, Martins IC. Structural and Functional Properties of the Capsid Protein of Dengue and Related Flavivirus. Int J Mol Sci 2019; 20:E3870. [PMID: 31398956 PMCID: PMC6720645 DOI: 10.3390/ijms20163870] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Dengue, West Nile and Zika, closely related viruses of the Flaviviridae family, are an increasing global threat, due to the expansion of their mosquito vectors. They present a very similar viral particle with an outer lipid bilayer containing two viral proteins and, within it, the nucleocapsid core. This core is composed by the viral RNA complexed with multiple copies of the capsid protein, a crucial structural protein that mediates not only viral assembly, but also encapsidation, by interacting with host lipid systems. The capsid is a homodimeric protein that contains a disordered N-terminal region, an intermediate flexible fold section and a very stable conserved fold region. Since a better understanding of its structure can give light into its biological activity, here, first, we compared and analyzed relevant mosquito-borne Flavivirus capsid protein sequences and their predicted structures. Then, we studied the alternative conformations enabled by the N-terminal region. Finally, using dengue virus capsid protein as main model, we correlated the protein size, thermal stability and function with its structure/dynamics features. The findings suggest that the capsid protein interaction with host lipid systems leads to minor allosteric changes that may modulate the specific binding of the protein to the viral RNA. Such mechanism can be targeted in future drug development strategies, namely by using improved versions of pep14-23, a dengue virus capsid protein peptide inhibitor, previously developed by us. Such knowledge can yield promising advances against Zika, dengue and closely related Flavivirus.
Collapse
Affiliation(s)
- André F Faustino
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Ana S Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Nina Karguth
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Vanessa Artilheiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal
| | - Joana C Ricardo
- Centro de Química-Física Molecular, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| | - Ivo C Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisbon, Portugal.
| |
Collapse
|
49
|
Bennet IA, Finger LD, Baxter NJ, Ambrose B, Hounslow AM, Thompson MJ, Exell JC, Shahari NNBM, Craggs TD, Waltho JP, Grasby JA. Regional conformational flexibility couples substrate specificity and scissile phosphate diester selectivity in human flap endonuclease 1. Nucleic Acids Res 2019; 46:5618-5633. [PMID: 29718417 PMCID: PMC6009646 DOI: 10.1093/nar/gky293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 04/09/2018] [Indexed: 02/07/2023] Open
Abstract
Human flap endonuclease-1 (hFEN1) catalyzes the divalent metal ion-dependent removal of single-stranded DNA protrusions known as flaps during DNA replication and repair. Substrate selectivity involves passage of the 5'-terminus/flap through the arch and recognition of a single nucleotide 3'-flap by the α2-α3 loop. Using NMR spectroscopy, we show that the solution conformation of free and DNA-bound hFEN1 are consistent with crystal structures; however, parts of the arch region and α2-α3 loop are disordered without substrate. Disorder within the arch explains how 5'-flaps can pass under it. NMR and single-molecule FRET data show a shift in the conformational ensemble in the arch and loop region upon addition of DNA. Furthermore, the addition of divalent metal ions to the active site of the hFEN1-DNA substrate complex demonstrates that active site changes are propagated via DNA-mediated allostery to regions key to substrate differentiation. The hFEN1-DNA complex also shows evidence of millisecond timescale motions in the arch region that may be required for DNA to enter the active site. Thus, hFEN1 regional conformational flexibility spanning a range of dynamic timescales is crucial to reach the catalytically relevant ensemble.
Collapse
Affiliation(s)
- Ian A Bennet
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute for Biomolecular Research, The University of Sheffield, Sheffield S3 7HF, UK
| | - L David Finger
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute for Biomolecular Research, The University of Sheffield, Sheffield S3 7HF, UK
| | - Nicola J Baxter
- Department of Molecular Biology and Biotechnology, Krebs Institute for Biomolecular Research, The University of Sheffield, Sheffield S10 2TN, UK.,Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Benjamin Ambrose
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute for Biomolecular Research, The University of Sheffield, Sheffield S3 7HF, UK
| | - Andrea M Hounslow
- Department of Molecular Biology and Biotechnology, Krebs Institute for Biomolecular Research, The University of Sheffield, Sheffield S10 2TN, UK
| | - Mark J Thompson
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute for Biomolecular Research, The University of Sheffield, Sheffield S3 7HF, UK
| | - Jack C Exell
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute for Biomolecular Research, The University of Sheffield, Sheffield S3 7HF, UK
| | - Nur Nazihah B Md Shahari
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute for Biomolecular Research, The University of Sheffield, Sheffield S3 7HF, UK
| | - Timothy D Craggs
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute for Biomolecular Research, The University of Sheffield, Sheffield S3 7HF, UK
| | - Jonathan P Waltho
- Department of Molecular Biology and Biotechnology, Krebs Institute for Biomolecular Research, The University of Sheffield, Sheffield S10 2TN, UK.,Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester, Manchester M1 7DN, UK
| | - Jane A Grasby
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute for Biomolecular Research, The University of Sheffield, Sheffield S3 7HF, UK
| |
Collapse
|
50
|
Cai C, Nie Y, Gong Y, Li S, Ramelot TA, Kennedy MA, Yue X, Zhu J, Liu M, Yang Y. Solution NMR structure of CGL2373, a polyketide cyclase-like protein from Corynebacterium glutamicum. Proteins 2019; 88:237-241. [PMID: 31294849 DOI: 10.1002/prot.25771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/17/2019] [Accepted: 07/06/2019] [Indexed: 11/11/2022]
Abstract
Protein CGL2373 from Corynebacterium glutamicum was previously proposed to be a member of the polyketide_cyc2 family, based on amino-acid sequence and secondary structure features derived from NMR chemical shift assignments. We report here the solution NMR structure of CGL2373, which contains three α-helices and one antiparallel β-sheet and adopts a helix-grip fold. This structure shows moderate similarities to the representative polyketide cyclases, TcmN, WhiE, and ZhuI. Nevertheless, unlike the structures of these homologs, CGL2373 structure looks like a half-open shell with a much larger pocket, and key residues in the representative polyketide cyclases for binding substrate and catalyzing aromatic ring formation are replaced with different residues in CGL2373. Also, the gene cluster where the CGL2373-encoding gene is located in C. glutamicum contains additional genes encoding nucleoside diphosphate kinase, folylpolyglutamate synthase, and valine-tRNA ligase, different from the typical gene cluster encoding polyketide cyclase in Streptomyces. Thus, although CGL2373 is structurally a polyketide cyclase-like protein, the function of CGL2373 may differ from the known polyketide cyclases and needs to be further investigated. The solution structure of CGL2373 lays a foundation for in silico ligand screening and binding site identifying in future functional study.
Collapse
Affiliation(s)
- Cong Cai
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Yao Nie
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yixuan Gong
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuangli Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Theresa A Ramelot
- Department of Chemistry and Biochemistry, The Northeast Structural Genomics Consortium, Miami University, Oxford, Ohio
| | - Michael A Kennedy
- Department of Chemistry and Biochemistry, The Northeast Structural Genomics Consortium, Miami University, Oxford, Ohio
| | - Xiali Yue
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|