1
|
Lowen SM, Waudby CA, Jagger AM, Aldobiyan I, Laffranchi M, Fra A, Christodoulou J, Irving JA, Lomas DA. High-resolution characterization of ex vivo AAT polymers by solution-state NMR spectroscopy. SCIENCE ADVANCES 2025; 11:eadu7064. [PMID: 40333971 PMCID: PMC12057664 DOI: 10.1126/sciadv.adu7064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/01/2025] [Indexed: 05/09/2025]
Abstract
Serpins, protease inhibitors whose regulated conformational instability renders them susceptible to mutations that cause misfolding, represent a system for the study of non-amyloid protein aggregation. The E342K "Z" variant of α-1-antitrypsin (AAT) undergoes oligomeric self-assembly into polymer chains that are associated with liver and lung pathologies in AAT deficiency. Structural characterization of polymers from human tissue has been limited by their heterogeneity and flexibility; here, we have studied their internal structure, which provides insights into the molecular linkage and the pathway by which they are formed. NMR spectra of heat-induced 13C-ILV-methyl-labeled polymers, and 1H-methyl spectra of liver-derived polymers, show equivalence to that of AAT in a post-protease-encounter conformation. This is corroborated by x-ray crystallography, which reveals a cryptic epitope recognized by the conformationally selective 2C1 antibody, common to both forms. These data definitively preclude most models of polymerization and are compatible with sequential intermolecular donation of the carboxyl terminus of one molecule into the next during polymer formation.
Collapse
Affiliation(s)
- Sarah M. Lowen
- UCL Respiratory, Rayne Institute, and the Institute of Structural and Molecular Biology, University College London, London WC1E 6JF, UK
| | | | - Alistair M. Jagger
- UCL Respiratory, Rayne Institute, and the Institute of Structural and Molecular Biology, University College London, London WC1E 6JF, UK
| | - Ibrahim Aldobiyan
- UCL Respiratory, Rayne Institute, and the Institute of Structural and Molecular Biology, University College London, London WC1E 6JF, UK
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mattia Laffranchi
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur-Fondazione Cenci Bolognetti, Viale Regina Elena 291, 00161 Rome, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Annamaria Fra
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - John Christodoulou
- Department of Structural and Molecular Biology, and the Institute of Structural and Molecular Biology, University College London, London WC1E 6BN, UK
| | - James A. Irving
- UCL Respiratory, Rayne Institute, and the Institute of Structural and Molecular Biology, University College London, London WC1E 6JF, UK
| | - David A. Lomas
- UCL Respiratory, Rayne Institute, and the Institute of Structural and Molecular Biology, University College London, London WC1E 6JF, UK
| |
Collapse
|
2
|
Martin F, Kazrani AA, Lafouge J, Diaz-Jimenez D, Siebert S, Fabbro-Burtschell L, Maillard E, Lapouge K, Mertens H, Sauter C, Leitner A, Ochsenbein F, Blais A, Bergamin E. Structure of the nucleosome-bound human BCL7A. Nucleic Acids Res 2025; 53:gkaf273. [PMID: 40207634 PMCID: PMC11983133 DOI: 10.1093/nar/gkaf273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/11/2025] Open
Abstract
Proteins of the BCL7 family (BCL7A, BCL7B, and BCL7C) are among the most recently identified subunits of the mammalian SWI/SNF chromatin remodeler complex and are absent from the unicellular version of this complex. Their function in the complex is unknown, and very limited structural information is available, despite the fact that they are mutated in several cancer types, most notably blood malignancies and hence medically relevant. Here, using cryo-electron microscopy in combination with biophysical and biochemical approaches, we show that BCL7A forms a stable, high-affinity complex with the nucleosome core particle (NCP) through binding of BCL7A with the acidic patch of the nucleosome via an arginine anchor motif. This interaction is impaired by BCL7A mutations found in cancer. Further, we determined that BCL7A contributes to the remodeling activity of the mSWI/SNF complex and we examined its function at the genomic level. Our findings reveal how BCL7 proteins interact with the NCP and help rationalize the impact of cancer-associated mutations. By providing structural information on the positioning of BCL7 on the NCP, our results broaden the understanding of the mechanism by which SWI/SNF recognizes the chromatin fiber.
Collapse
Affiliation(s)
- Franck Martin
- Department of Functional Genomics and Cancer & Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch-Graffenstaden, France
- Université de Strasbourg, 67084 Strasbourg, France
- Centre National de la Recherche Scientifique UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale U1258, 67400 Illkirch-Graffenstaden, France
| | - Asgar Abbas Kazrani
- Department of Functional Genomics and Cancer & Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch-Graffenstaden, France
- Université de Strasbourg, 67084 Strasbourg, France
- Centre National de la Recherche Scientifique UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale U1258, 67400 Illkirch-Graffenstaden, France
| | - Julie Lafouge
- Department of Functional Genomics and Cancer & Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch-Graffenstaden, France
- Université de Strasbourg, 67084 Strasbourg, France
- Centre National de la Recherche Scientifique UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale U1258, 67400 Illkirch-Graffenstaden, France
| | - Dana Mariel Diaz-Jimenez
- Department of Functional Genomics and Cancer & Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch-Graffenstaden, France
- Université de Strasbourg, 67084 Strasbourg, France
- Centre National de la Recherche Scientifique UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale U1258, 67400 Illkirch-Graffenstaden, France
| | - Stéphanie Siebert
- Department of Functional Genomics and Cancer & Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch-Graffenstaden, France
- Université de Strasbourg, 67084 Strasbourg, France
- Centre National de la Recherche Scientifique UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale U1258, 67400 Illkirch-Graffenstaden, France
| | - Leonie Fabbro-Burtschell
- Department of Functional Genomics and Cancer & Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch-Graffenstaden, France
- Université de Strasbourg, 67084 Strasbourg, France
- Centre National de la Recherche Scientifique UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale U1258, 67400 Illkirch-Graffenstaden, France
| | - Emma Maillard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France
| | - Karine Lapouge
- Protein Expression and Purification Core Facility, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Haydyn David Thomas Mertens
- European Molecular Biology Laboratory (EMBL), Hamburg Outstation, c/o DESY, Notkestraße 85, 22607 Hamburg, Germany
| | - Claude Sauter
- Architecture et Réactivité de l’ARN, Université de Strasbourg, CNRS, IBMC, 2 All. Konrad Roentgen, 67084 Strasbourg, France
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, 91190 Gif-sur-Yvette, France
| | - Alexandre Blais
- Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Ottawa Institute of Systems Biology, Ottawa, Ontario K1H 8M5, Canada
- University of Ottawa Centre for Inflammation, Immunity and Infection (CI3), Ottawa, Ontario K1H 8M5, Canada
- Éric Poulin Centre for Neuromuscular Disease, Ottawa, Ontario K1H 8M5, Canada
| | - Elisa Bergamin
- Department of Functional Genomics and Cancer & Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), 67400 Illkirch-Graffenstaden, France
- Université de Strasbourg, 67084 Strasbourg, France
- Centre National de la Recherche Scientifique UMR 7104, 67400 Illkirch-Graffenstaden, France
- Institut National de la Santé et de la Recherche Médicale U1258, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
3
|
Rohden DI, Toscano G, Schanda P, Lichtenecker RJ. Synthesis of Selectively 13C/ 2H/ 15N- Labeled Arginine to Probe Protein Conformation and Interaction by NMR Spectroscopy. Chemistry 2025; 31:e202500408. [PMID: 40080421 PMCID: PMC12043044 DOI: 10.1002/chem.202500408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/15/2025]
Abstract
The charged arginine side chain is unique in determining many innate properties of proteins, contributing to stability and interaction surfaces, and directing allosteric regulation and enzymatic catalysis. NMR experiments can be used to reveal these processes at the molecular level, but it often requires selective insertion of carbon-13, nitrogen-15, and deuterium at defined atomic positions. We introduce a method to endow arginine residues with defined isotope patterns, combining synthetic organic chemistry and cell-based protein overexpression. The resulting proteins feature NMR active spin systems with optimized relaxation pathways leading to simplified NMR spectra with a sensitive response to changes in the chemical environment of the nuclei observed.
Collapse
Affiliation(s)
- Darja I. Rohden
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 38Vienna1090Austria
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Giorgia Toscano
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 38Vienna1090Austria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaWähringer Str. 42Vienna1090Austria
| | - Paul Schanda
- Institute of Science and Technology AustriaAm Campus 1Klosterneuburg3400Austria
| | - Roman J. Lichtenecker
- Faculty of ChemistryInstitute of Organic ChemistryUniversity of ViennaWähringer Str. 38Vienna1090Austria
- MAG‐LABKarl‐Farkas Gasse 22Vienna1030Austria
| |
Collapse
|
4
|
Chaudhari AS, Favier A, Tehrani ZA, Kovaľ T, Andersson I, Schneider B, Dohnálek J, Černý J, Brutscher B, Fuertes G. Light-dependent flavin redox and adduct states control the conformation and DNA-binding activity of the transcription factor EL222. Nucleic Acids Res 2025; 53:gkaf215. [PMID: 40119733 PMCID: PMC11928941 DOI: 10.1093/nar/gkaf215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/25/2025] [Accepted: 03/06/2025] [Indexed: 03/24/2025] Open
Abstract
The activity of the light-oxygen-voltage/helix-turn-helix (LOV-HTH) photoreceptor EL222 is regulated through protein-protein and protein-DNA interactions, both triggered by photo-excitation of its flavin mononucleotide (FMN) cofactor. To gain molecular-level insight into the photocycle of EL222, we applied complementary methods: macromolecular X-ray crystallography (MX), nuclear magnetic resonance (NMR) spectroscopy, optical spectroscopies (infrared and UV-visible), molecular dynamics/metadynamics (MD/metaD) simulations, and protein engineering using noncanonical amino acids. Kinetic experiments provided evidence for two distinct EL222 conformations (lit1 and lit2) that become sequentially populated under illumination. These two lit states were assigned to covalently bound N5 protonated, and noncovalently bound hydroquinone forms of FMN, respectively. Only subtle structural differences were observed between the monomeric forms of all three EL222 species (dark, lit1, and lit2). While the dark state is largely monomeric, both lit states undergo monomer-dimer exchange. Furthermore, molecular modeling revealed differential dynamics and interdomain separation times arising from the three FMN states (oxidized, adduct, and reduced). Unexpectedly, all three EL222 species can associate with DNA, but only upon blue-light irradiation, a high population of stable complexes is obtained. Overall, we propose a model of EL222 activation where photoinduced changes in the FMN moiety shift the population equilibrium toward an open conformation that favors self-association and DNA-binding.
Collapse
Affiliation(s)
- Aditya S Chaudhari
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
- Faculty of Science, Charles University, Prague 11636, Czech Republic
| | - Adrien Favier
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble Cedex 9, 38044, France
| | - Zahra Aliakbar Tehrani
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| | - Tomáš Kovaľ
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| | - Inger Andersson
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
- Department of Cell and Molecular Biology, Uppsala University, Uppsala 75124, Sweden
| | - Bohdan Schneider
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| | - Jan Dohnálek
- Laboratory of Structure and Function of Biomolecules, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| | - Jiří Černý
- Laboratory of Structural Bioinformatics of Proteins, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| | - Bernhard Brutscher
- Université Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble Cedex 9, 38044, France
| | - Gustavo Fuertes
- Laboratory of Biomolecular Recognition, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| |
Collapse
|
5
|
Martínez-Carranza M, Vialle L, Madru C, Cordier F, Tekpinar AD, Haouz A, Legrand P, Le Meur RA, England P, Dulermo R, Guijarro JI, Henneke G, Sauguet L. Communication between DNA polymerases and Replication Protein A within the archaeal replisome. Nat Commun 2024; 15:10926. [PMID: 39738083 PMCID: PMC11686378 DOI: 10.1038/s41467-024-55365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
Replication Protein A (RPA) plays a pivotal role in DNA replication by coating and protecting exposed single-stranded DNA, and acting as a molecular hub that recruits additional replication factors. We demonstrate that archaeal RPA hosts a winged-helix domain (WH) that interacts with two key actors of the replisome: the DNA primase (PriSL) and the replicative DNA polymerase (PolD). Using an integrative structural biology approach, combining nuclear magnetic resonance, X-ray crystallography and cryo-electron microscopy, we unveil how RPA interacts with PriSL and PolD through two distinct surfaces of the WH domain: an evolutionarily conserved interface and a novel binding site. Finally, RPA is shown to stimulate the activity of PriSL in a WH-dependent manner. This study provides a molecular understanding of the WH-mediated regulatory activity in central replication factors such as RPA, which regulate genome maintenance in Archaea and Eukaryotes.
Collapse
Affiliation(s)
- Markel Martínez-Carranza
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
| | - Léa Vialle
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), Plouzané, France
| | - Clément Madru
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
| | - Florence Cordier
- Biological NMR & HDX-MS Technological Platform, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
- Structural Bioinformatics, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
| | - Ayten Dizkirici Tekpinar
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
- Department of Molecular Biology and Genetics, Van Yüzüncü Yil University, Van, Turkey
| | - Ahmed Haouz
- Crystallography Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
| | - Pierre Legrand
- Synchrotron SOLEIL, HelioBio group, L'Orme des Merisiers, Saint-Aubin, France
| | - Rémy A Le Meur
- Biological NMR & HDX-MS Technological Platform, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
| | - Patrick England
- Molecular Biophysics Platform, C2RT, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
| | - Rémi Dulermo
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), Plouzané, France
| | - J Iñaki Guijarro
- Biological NMR & HDX-MS Technological Platform, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France
| | - Ghislaine Henneke
- Univ Brest, Ifremer, CNRS, Biologie et Ecologie des Ecoystèmes marins profonds (BEEP), Plouzané, France.
| | - Ludovic Sauguet
- Architecture and Dynamics of Biological Macromolecules, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Paris, France.
| |
Collapse
|
6
|
Soubias O, Foley SL, Jian X, Jackson RA, Zhang Y, Rosenberg EM, Li J, Heinrich F, Johnson ME, Sodt AJ, Randazzo PA, Byrd RA. The PH domain in the ArfGAP ASAP1 drives catalytic activation through an unprecedented allosteric mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.20.629688. [PMID: 39763923 PMCID: PMC11702723 DOI: 10.1101/2024.12.20.629688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
ASAP1 is a multidomain Arf GTPase-activating protein (ArfGAP) that catalyzes GTP hydrolysis on the small GTPase Arf1 and is implicated in cancer progression. The PH domain of ASAP1 enhances its activity greater than 7 orders of magnitude but the underlying mechanisms remain poorly understood. Here, we combined Nuclear Magnetic Resonance (NMR), Molecular Dynamic (MD) simulations and mathematical modeling of functional data to build a comprehensive structural-mechanistic model of the complex of Arf1 and the ASAP1 PH domain on a membrane surface. Our results support a new conceptual model in which the PH domain contributes to efficient catalysis not only by membrane recruitment but by acting as a critical component of the catalytic interface, binding Arf·GTP and allosterically driving it towards the catalytic transition state. We discuss the biological implications of these results and how they may apply more broadly to poorly understood membrane-dependent regulatory mechanisms controlling catalysis of the ArfGAP superfamily as well as other peripheral membrane enzymes.
Collapse
Affiliation(s)
- Olivier Soubias
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Samuel L. Foley
- Department of Biophysics, The Johns Hopkins University, Baltimore, MD, USA
| | - Xiaoying Jian
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebekah A. Jackson
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Yue Zhang
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Eric M. Rosenberg
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jess Li
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| | - Frank Heinrich
- Department of Physics Carnegie Mellon University, Pittsburgh, PA, USA. NIST Center for Neutron Research, Gaithersburg, MD, USA
- Department of Physics Carnegie Mellon University, Pittsburgh, PA, USA. NIST Center for Neutron Research, Gaithersburg, MD, USA
| | | | - Alexander J. Sodt
- Unit of Membrane Chemical Physics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Paul A. Randazzo
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - R. Andrew Byrd
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
7
|
Vu DD, Bonucci A, Brenière M, Cisneros-Aguirre M, Pelupessy P, Wang Z, Carlier L, Bouvignies G, Cortes P, Aggarwal AK, Blackledge M, Gueroui Z, Belle V, Stark JM, Modesti M, Ferrage F. Multivalent interactions of the disordered regions of XLF and XRCC4 foster robust cellular NHEJ and drive the formation of ligation-boosting condensates in vitro. Nat Struct Mol Biol 2024; 31:1732-1744. [PMID: 38898102 DOI: 10.1038/s41594-024-01339-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70-Ku80 heterodimer (Ku), X-ray repair cross complementing 4 (XRCC4) in complex with DNA ligase 4 (X4L4) and XRCC4-like factor (XLF) form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were recently obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at residue resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs lead to the formation of XLF and X4L4 condensates in vitro, which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome-editing strategies.
Collapse
Affiliation(s)
- Duc-Duy Vu
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Alessio Bonucci
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Manon Brenière
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France
| | - Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Philippe Pelupessy
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ziqing Wang
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ludovic Carlier
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Guillaume Bouvignies
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, New York, NY, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Blackledge
- Institut de Biologie Structurale (IBS), Grenoble Alpes University, CNRS, CEA, Grenoble, France
| | - Zoher Gueroui
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne University, CNRS, Paris, France
| | - Valérie Belle
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix-Marseille University, Marseille, France.
| | - Fabien Ferrage
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France.
| |
Collapse
|
8
|
Schiffrin B, Crossley JA, Walko M, Machin JM, Nasir Khan G, Manfield IW, Wilson AJ, Brockwell DJ, Fessl T, Calabrese AN, Radford SE, Zhuravleva A. Dual client binding sites in the ATP-independent chaperone SurA. Nat Commun 2024; 15:8071. [PMID: 39277579 PMCID: PMC11401910 DOI: 10.1038/s41467-024-52021-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/23/2024] [Indexed: 09/17/2024] Open
Abstract
The ATP-independent chaperone SurA protects unfolded outer membrane proteins (OMPs) from aggregation in the periplasm of Gram-negative bacteria, and delivers them to the β-barrel assembly machinery (BAM) for folding into the outer membrane (OM). Precisely how SurA recognises and binds its different OMP clients remains unclear. Escherichia coli SurA comprises three domains: a core and two PPIase domains (P1 and P2). Here, by combining methyl-TROSY NMR, single-molecule Förster resonance energy transfer (smFRET), and bioinformatics analyses we show that SurA client binding is mediated by two binding hotspots in the core and P1 domains. These interactions are driven by aromatic-rich motifs in the client proteins, leading to SurA core/P1 domain rearrangements and expansion of clients from collapsed, non-native states. We demonstrate that the core domain is key to OMP expansion by SurA, and uncover a role for SurA PPIase domains in limiting the extent of expansion. The results reveal insights into SurA-OMP recognition and the mechanism of activation for an ATP-independent chaperone, and suggest a route to targeting the functions of a chaperone key to bacterial virulence and OM integrity.
Collapse
Affiliation(s)
- Bob Schiffrin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Joel A Crossley
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Martin Walko
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, UK
| | - Jonathan M Machin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Iain W Manfield
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Andrew J Wilson
- Astbury Centre for Structural Molecular Biology, School of Chemistry, University of Leeds, Leeds, UK
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Tomas Fessl
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Antonio N Calabrese
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| | - Anastasia Zhuravleva
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK.
| |
Collapse
|
9
|
Berhanu S, Majumder S, Müntener T, Whitehouse J, Berner C, Bera AK, Kang A, Liang B, Khan N, Sankaran B, Tamm LK, Brockwell DJ, Hiller S, Radford SE, Baker D, Vorobieva AA. Sculpting conducting nanopore size and shape through de novo protein design. Science 2024; 385:282-288. [PMID: 39024453 PMCID: PMC11549965 DOI: 10.1126/science.adn3796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 06/03/2024] [Indexed: 07/20/2024]
Abstract
Transmembrane β-barrels have considerable potential for a broad range of sensing applications. Current engineering approaches for nanopore sensors are limited to naturally occurring channels, which provide suboptimal starting points. By contrast, de novo protein design can in principle create an unlimited number of new nanopores with any desired properties. Here we describe a general approach to designing transmembrane β-barrel pores with different diameters and pore geometries. Nuclear magnetic resonance and crystallographic characterization show that the designs are stably folded with structures resembling those of the design models. The designs have distinct conductances that correlate with their pore diameter, ranging from 110 picosiemens (~0.5 nanometer pore diameter) to 430 picosiemens (~1.1 nanometer pore diameter). Our approach opens the door to the custom design of transmembrane nanopores for sensing and sequencing applications.
Collapse
Affiliation(s)
- Samuel Berhanu
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sagardip Majumder
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - James Whitehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | - Carolin Berner
- Structural Biology Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- VUB-VIB Center for Structural Biology, Brussels, Belgium
| | - Asim K. Bera
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA, USA
| | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | | | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | - David Baker
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Anastassia A. Vorobieva
- Structural Biology Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- VUB-VIB Center for Structural Biology, Brussels, Belgium
- VIB Center for AI and Computational Biology, Belgium
| |
Collapse
|
10
|
Giraud A, Imbert L, Favier A, Henot F, Duffieux F, Samson C, Frances O, Crublet E, Boisbouvier J. Enabling site-specific NMR investigations of therapeutic Fab using a cell-free based isotopic labeling approach: application to anti-LAMP1 Fab. JOURNAL OF BIOMOLECULAR NMR 2024; 78:73-86. [PMID: 38546905 DOI: 10.1007/s10858-023-00433-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/22/2023] [Indexed: 06/15/2024]
Abstract
Monoclonal antibodies (mAbs) are biotherapeutics that have achieved outstanding success in treating many life-threatening and chronic diseases. The recognition of an antigen is mediated by the fragment antigen binding (Fab) regions composed by four different disulfide bridge-linked immunoglobulin domains. NMR is a powerful method to assess the integrity, the structure and interaction of Fabs, but site specific analysis has been so far hampered by the size of the Fabs and the lack of approaches to produce isotopically labeled samples. We proposed here an efficient in vitro method to produce [15N, 13C, 2H]-labeled Fabs enabling high resolution NMR investigations of these powerful therapeutics. As an open system, the cell-free expression mode enables fine-tuned control of the redox potential in presence of disulfide bond isomerase to enhance the formation of native disulfide bonds. Moreover, inhibition of transaminases in the S30 cell-free extract offers the opportunity to produce perdeuterated Fab samples directly in 1H2O medium, without the need for a time-consuming and inefficient refolding process. This specific protocol was applied to produce an optimally labeled sample of a therapeutic Fab, enabling the sequential assignment of 1HN, 15N, 13C', 13Cα, 13Cβ resonances of a full-length Fab. 90% of the backbone resonances of a Fab domain directed against the human LAMP1 glycoprotein were assigned successfully, opening new opportunities to study, at atomic resolution, Fabs' higher order structures, dynamics and interactions, using solution-state NMR.
Collapse
Affiliation(s)
- Arthur Giraud
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France
- NMR-Bio, 5 place Robert Schuman, 38025, Grenoble, France
| | - Lionel Imbert
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
| | - Adrien Favier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
| | - Faustine Henot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France
| | | | - Camille Samson
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France
| | - Oriane Frances
- Sanofi Research & Development, 94403, Vitry-sur-Seine, France.
| | - Elodie Crublet
- NMR-Bio, 5 place Robert Schuman, 38025, Grenoble, France.
| | - Jérôme Boisbouvier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044, Grenoble, France.
| |
Collapse
|
11
|
Wu D, Koscic A, Schneider S, Dubini RCA, Rodriguez Camargo DC, Schneider S, Rovó P. Unveiling the Dynamic Self-Assembly of a Recombinant Dragline-Silk-Mimicking Protein. Biomacromolecules 2024; 25:1759-1774. [PMID: 38343096 PMCID: PMC10934265 DOI: 10.1021/acs.biomac.3c01239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/12/2024]
Abstract
Despite the considerable interest in the recombinant production of synthetic spider silk fibers that possess mechanical properties similar to those of native spider silks, such as the cost-effectiveness, tunability, and scalability realization, is still lacking. To address this long-standing challenge, we have constructed an artificial spider silk gene using Golden Gate assembly for the recombinant bacterial production of dragline-mimicking silk, incorporating all the essential components: the N-terminal domain, a 33-residue-long major-ampullate-spidroin-inspired segment repeated 16 times, and the C-terminal domain (N16C). This designed silk-like protein was successfully expressed in Escherichia coli, purified, and cast into films from formic acid. We produced uniformly 13C-15N-labeled N16C films and employed solid-state magic-angle spinning nuclear magnetic resonance (NMR) for characterization. Thus, we could demonstrate that our bioengineered silk-like protein self-assembles into a film where, when hydrated, the solvent-exposed layer of the rigid, β-nanocrystalline polyalanine core undergoes a transition to an α-helical structure, gaining mobility to the extent that it fully dissolves in water and transforms into a highly dynamic random coil. This hydration-induced behavior induces chain dynamics in the glycine-rich amorphous soft segments on the microsecond time scale, contributing to the elasticity of the solid material. Our findings not only reveal the presence of structurally and dynamically distinct segments within the film's superstructure but also highlight the complexity of the self-organization responsible for the exceptional mechanical properties observed in proteins that mimic dragline silk.
Collapse
Affiliation(s)
- Dongqing Wu
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Anamaria Koscic
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sonja Schneider
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Romeo C. A. Dubini
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, 80799 Munich, Germany
| | - Diana C. Rodriguez Camargo
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Sabine Schneider
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Petra Rovó
- Department
of Chemistry, Faculty of Chemistry and Pharmacy, Ludwig-Maximilians-Universität München, 81377 Munich, Germany
- Institute
of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
12
|
Theisen FF, Prestel A, Elkjær S, Leurs YHA, Morffy N, Strader LC, O'Shea C, Teilum K, Kragelund BB, Skriver K. Molecular switching in transcription through splicing and proline-isomerization regulates stress responses in plants. Nat Commun 2024; 15:592. [PMID: 38238333 PMCID: PMC10796322 DOI: 10.1038/s41467-024-44859-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 01/09/2024] [Indexed: 01/22/2024] Open
Abstract
The Arabidopsis thaliana DREB2A transcription factor interacts with the negative regulator RCD1 and the ACID domain of subunit 25 of the transcriptional co-regulator mediator (Med25) to integrate stress signals for gene expression, with elusive molecular interplay. Using biophysical and structural analyses together with high-throughput screening, we reveal a bivalent binding switch in DREB2A containing an ACID-binding motif (ABS) and the known RCD1-binding motif (RIM). The RIM is lacking in a stress-induced DREB2A splice variant with retained transcriptional activity. ABS and RIM bind to separate sites on Med25-ACID, and NMR analyses show a structurally heterogeneous complex deriving from a DREB2A-ABS proline residue populating cis- and trans-isomers with remote impact on the RIM. The cis-isomer stabilizes an α-helix, while the trans-isomer may introduce energetic frustration facilitating rapid exchange between activators and repressors. Thus, DREB2A uses a post-transcriptionally and post-translationally modulated switch for transcriptional regulation.
Collapse
Affiliation(s)
- Frederik Friis Theisen
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Prestel
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Steffie Elkjær
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yannick H A Leurs
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | | | | | - Charlotte O'Shea
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Kaare Teilum
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Birthe B Kragelund
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Karen Skriver
- The REPIN and The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
Zinke M, Lejeune M, Mechaly A, Bardiaux B, Boneca IG, Delepelaire P, Izadi-Pruneyre N. Ton motor conformational switch and peptidoglycan role in bacterial nutrient uptake. Nat Commun 2024; 15:331. [PMID: 38184686 PMCID: PMC10771500 DOI: 10.1038/s41467-023-44606-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024] Open
Abstract
Active nutrient uptake is fundamental for survival and pathogenicity of Gram-negative bacteria, which operate a multi-protein Ton system to transport essential nutrients like metals and vitamins. This system harnesses the proton motive force at the inner membrane to energize the import through the outer membrane, but the mechanism of energy transfer remains enigmatic. Here, we study the periplasmic domain of ExbD, a crucial component of the proton channel of the Ton system. We show that this domain is a dynamic dimer switching between two conformations representing the proton channel's open and closed states. By in vivo phenotypic assays we demonstrate that this conformational switch is essential for the nutrient uptake by bacteria. The open state of ExbD triggers a disorder to order transition of TonB, enabling TonB to supply energy to the nutrient transporter. We also reveal the anchoring role of the peptidoglycan layer in this mechanism. Herein, we propose a mechanistic model for the Ton system, emphasizing ExbD duality and the pivotal catalytic role of peptidoglycan. Sequence analysis suggests that this mechanism is conserved in other systems energizing gliding motility and membrane integrity. Our study fills important gaps in understanding bacterial motor mechanism and proposes novel antibacterial strategies.
Collapse
Affiliation(s)
- Maximilian Zinke
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, F-75015, Paris, France
| | - Maylis Lejeune
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, F-75015, Paris, France
| | - Ariel Mechaly
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Crystallography Platform, F-75015, Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, F-75015, Paris, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et génétique de la paroi bactérienne, F-75015, Paris, France
| | - Philippe Delepelaire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université Paris Cité, UMR7099 CNRS, F-75005, Paris, France
- Institut de Biologie Physico-Chimique, F-75005, Paris, France
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, F-75015, Paris, France.
| |
Collapse
|
14
|
Berhanu S, Majumder S, Müntener T, Whitehouse J, Berner C, Bera AK, Kang A, Liang B, Khan GN, Sankaran B, Tamm LK, Brockwell DJ, Hiller S, Radford SE, Baker D, Vorobieva AA. Sculpting conducting nanopore size and shape through de novo protein design. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572500. [PMID: 38187764 PMCID: PMC10769293 DOI: 10.1101/2023.12.20.572500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Transmembrane β-barrels (TMBs) are widely used for single molecule DNA and RNA sequencing and have considerable potential for a broad range of sensing and sequencing applications. Current engineering approaches for nanopore sensors are limited to naturally occurring channels such as CsgG, which have evolved to carry out functions very different from sensing, and hence provide sub-optimal starting points. In contrast, de novo protein design can in principle create an unlimited number of new nanopores with any desired properties. Here we describe a general approach to the design of transmembrane β-barrel pores with different diameter and pore geometry. NMR and crystallographic characterization shows that the designs are stably folded with structures close to the design models. We report the first examples of de novo designed TMBs with 10, 12 and 14 stranded β-barrels. The designs have distinct conductances that correlate with their pore diameter, ranging from 110 pS (~0.5 nm pore diameter) to 430 pS (~1.1 nm pore diameter), and can be converted into sensitive small-molecule sensors with high signal to noise ratio. The capability to generate on demand β-barrel pores of defined geometry opens up fundamentally new opportunities for custom engineering of sequencing and sensing technologies.
Collapse
Affiliation(s)
- Samuel Berhanu
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Sagardip Majumder
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | | | - James Whitehouse
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | - Carolin Berner
- Structural Biology Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- VUB-VIB Center for Structural Biology, Brussels, Belgium
| | - Asim K. Bera
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Binyong Liang
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - G Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics and Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22903, USA
| | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | | | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT
| | - David Baker
- Department of Biochemistry, The University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | - Anastassia A. Vorobieva
- Structural Biology Brussel, Vrije Universiteit Brussel, Brussels, Belgium
- VUB-VIB Center for Structural Biology, Brussels, Belgium
- VIB Center for AI and Computational Biology, Belgium
| |
Collapse
|
15
|
Sadi M, Carvalho N, Léger C, Vitorge B, Ladant D, Guijarro JI, Chenal A. B2LiVe, a label-free 1D-NMR method to quantify the binding of amphitropic peptides or proteins to membrane vesicles. CELL REPORTS METHODS 2023; 3:100624. [PMID: 37909050 PMCID: PMC10694493 DOI: 10.1016/j.crmeth.2023.100624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 08/03/2023] [Accepted: 10/04/2023] [Indexed: 11/02/2023]
Abstract
Amphitropic proteins and peptides reversibly partition from solution to membrane, a key process that regulates their functions. Experimental approaches classically used to measure protein partitioning into lipid bilayers, such as fluorescence and circular dichroism, are hardly usable when the peptides or proteins do not exhibit significant polarity and/or conformational changes upon membrane binding. Here, we describe binding to lipid vesicles (B2LiVe), a simple, robust, and widely applicable nuclear magnetic resonance (NMR) method to determine the solution-to-membrane partitioning of unlabeled proteins or peptides. B2LiVe relies on previously described proton 1D-NMR fast-pulsing techniques. Membrane partitioning induces a large line broadening, leading to a loss of protein signals; therefore, the decrease of the NMR signal directly measures the fraction of membrane-bound protein. The method uses low polypeptide concentrations and has been validated on several membrane-interacting polypeptides, ranging from 3 to 54 kDa, with membrane vesicles of different sizes and various lipid compositions.
Collapse
Affiliation(s)
- Mirko Sadi
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France; Université de Paris Cité, 75005 Paris, France
| | - Nicolas Carvalho
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France; Université de Paris Cité, 75005 Paris, France
| | - Corentin Léger
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - Bruno Vitorge
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Daniel Ladant
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - J Iñaki Guijarro
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France.
| | - Alexandre Chenal
- Institut Pasteur, Université de Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France.
| |
Collapse
|
16
|
Johann C, Wegner S, Althoff G, Struppe J. Automation in solid state NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 355:107554. [PMID: 37717302 DOI: 10.1016/j.jmr.2023.107554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023]
Abstract
Automation in solid state NMR (ssNMR) requires appropriate hardware, from rotor loading mechanisms over highly stable rf-transmitters and probe circuitry to automatic tuning and matching capabilities including automatic magic angle adjustment for ssNMR probes. While these hardware capabilities are highly desirable and are, to various degrees, provided by manufacturers, we focus herein on automating experiment setup using radio frequency (rf) fields, which are key parameters in solid state NMR experiments. Specifically, these include spinlock fields during cross polarization (CP), or rf-fields for homo- or heteronuclear spin recoupling or decoupling. Often, these fields have specific relationships to the magic angle spinning (MAS) frequency. Relying on a well-maintained spectrometer, the experiment setup shifts from traditionally required optimization of rf-power values for each element of an experiment sequence to automatically setting all parameters correctly without any need for optimization. The proposed approach allows executing an experiment by reading its rf-amplitude requirements based on the actual MAS rotation frequency just before starting data acquisition, while all other hardware-related parameters are automatically provided through global tables and scripts. Under modest MAS frequencies, no further rf-power optimization is required while providing optimal sensitivity of better than 90% of the optimal signal to noise. Any optional parameter optimization relates only to adjusting rf-nutation frequencies to the requirements of the sample and the sample rotation frequency rather than the spectrometer hardware. Fast MAS CP experiments with MAS frequencies above 40 kHz require a semi-automated setup by optimizing Hartmann-Hahn (HH) matched rf-fields that are synchronously varied relative to the MAS-frequency. This allows for a significant reduction of setup steps by up to one order of magnitude for such experiments, avoiding the traditional grid search for optimal CPMAS conditions. The approach presented here can also be applied to decoupling or recoupling sequences, requiring rotor synchronized rf-fields, reducing the setup to a few steps addressing the spin system's properties rather than the spectrometer hardware. Our approach permits automating all basic solid state NMR experiments for high throughput analytical tasks.
Collapse
Affiliation(s)
- Christof Johann
- Buker Biospin Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | | | - Gerhard Althoff
- Buker Biospin Rudolf-Plank-Str. 23, 76275 Ettlingen, Germany
| | - Jochem Struppe
- Bruker Biospin Corporation, 15 Fortune Drive, Billerica, MA 01821, United States.
| |
Collapse
|
17
|
Zinke M, Lejeune M, Mechaly A, Bardiaux B, Boneca IG, Delepelaire P, Izadi-Pruneyre N. Ton Motor Conformational Switch and Peptidoglycan Role in Bacterial Nutrient Uptake. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.11.552980. [PMID: 37609138 PMCID: PMC10441417 DOI: 10.1101/2023.08.11.552980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Active nutrient uptake is fundamental for survival and pathogenicity of Gram-negative bacteria, which operate a multi-protein Ton system to transport essential nutrients like metals and vitamins. This system harnesses the proton motive force at the inner membrane to energize the import through the outer membrane, but the mechanism of energy transfer remains enigmatic. Here, we study the periplasmic domain of ExbD, a crucial component of the proton channel of the Ton system. We show that this domain is a dynamic dimer switching between two conformations representing the proton channel's open and closed states. By in vivo phenotypic assays we demonstrate that this conformational switch is essential for the nutrient uptake by bacteria. The open state of ExbD triggers a disorder to order transition of TonB, enabling TonB to supply energy to the nutrient transporter. We also reveal the anchoring role of the peptidoglycan layer in this mechanism. Herein, we propose a mechanistic model for the Ton system, emphasizing ExbD duality and the pivotal catalytic role of peptidoglycan. Sequence analysis suggests that this mechanism is conserved in other systems energizing gliding motility and membrane integrity. Our study fills important gaps in understanding bacterial motor mechanism and proposes novel antibacterial strategies.
Collapse
Affiliation(s)
- Maximilian Zinke
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, F-75015 Paris, France
| | - Maylis Lejeune
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, F-75015 Paris, France
| | - Ariel Mechaly
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Crystallography Platform, F-75015 Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, F-75015 Paris, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, Unité de Biologie et génétique de la paroi bactérienne F-75015, Paris, France
| | - Philippe Delepelaire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, Université Paris Cité, UMR7099 CNRS, F-75005, Paris, France
- Institut de Biologie Physico-Chimique, F-75005, Paris, France
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, F-75015 Paris, France
| |
Collapse
|
18
|
Vu DD, Bonucci A, Brenière M, Cisneros-Aguirre M, Pelupessy P, Wang Z, Carlier L, Bouvignies G, Cortes P, Aggarwal AK, Blackledge M, Gueroui Z, Belle V, Stark JM, Modesti M, Ferrage F. Multivalent interactions of the disordered regions of XLF and XRCC4 foster robust cellular NHEJ and drive the formation of ligation-boosting condensates in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548668. [PMID: 37503201 PMCID: PMC10369993 DOI: 10.1101/2023.07.12.548668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In mammalian cells, DNA double-strand breaks are predominantly repaired by non-homologous end joining (NHEJ). During repair, the Ku70/80 heterodimer (Ku), XRCC4 in complex with DNA Ligase 4 (X4L4), and XLF form a flexible scaffold that holds the broken DNA ends together. Insights into the architectural organization of the NHEJ scaffold and its regulation by the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) have recently been obtained by single-particle cryo-electron microscopy analysis. However, several regions, especially the C-terminal regions (CTRs) of the XRCC4 and XLF scaffolding proteins, have largely remained unresolved in experimental structures, which hampers the understanding of their functions. Here, we used magnetic resonance techniques and biochemical assays to comprehensively characterize the interactions and dynamics of the XRCC4 and XLF CTRs at atomic resolution. We show that the CTRs of XRCC4 and XLF are intrinsically disordered and form a network of multivalent heterotypic and homotypic interactions that promotes robust cellular NHEJ activity. Importantly, we demonstrate that the multivalent interactions of these CTRs led to the formation of XLF and X4L4 condensates in vitro which can recruit relevant effectors and critically stimulate DNA end ligation. Our work highlights the role of disordered regions in the mechanism and dynamics of NHEJ and lays the groundwork for the investigation of NHEJ protein disorder and its associated condensates inside cells with implications in cancer biology, immunology and the development of genome editing strategies.
Collapse
Affiliation(s)
- Duc-Duy Vu
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Alessio Bonucci
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Manon Brenière
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, Marseille, France
| | - Metztli Cisneros-Aguirre
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| | - Philippe Pelupessy
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ziqing Wang
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Ludovic Carlier
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Guillaume Bouvignies
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| | - Patricia Cortes
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine at City College of New York, 160 Convent Avenue, New York, NY 10029, USA
| | - Aneel K Aggarwal
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Martin Blackledge
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Zoher Gueroui
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris, France
| | - Valérie Belle
- Aix Marseille Univ, CNRS UMR 7281, BIP Bioénergétique et Ingénierie des Protéines, IMM, Marseille, France
| | - Jeremy M Stark
- Department of Cancer Genetics and Epigenetics, Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1500 E Duarte Rd., Duarte, CA 91010 USA
| | - Mauro Modesti
- Cancer Research Center of Marseille, Department of Genome Integrity, CNRS UMR7258, Inserm U1068, Institut Paoli-Calmettes, Aix Marseille Univ, Marseille, France
| | - Fabien Ferrage
- Département de Chimie, LBM, CNRS UMR 7203, École Normale Supérieure, PSL University, Sorbonne University, Paris, France
| |
Collapse
|
19
|
Neblik J, Kirupakaran A, Beuck C, Mieres-Perez J, Niemeyer F, Le MH, Telgheder U, Schmuck JF, Dudziak A, Bayer P, Sanchez-Garcia E, Westermann S, Schrader T. Multivalent Molecular Tweezers Disrupt the Essential NDC80 Interaction with Microtubules. J Am Chem Soc 2023. [PMID: 37392180 DOI: 10.1021/jacs.3c02186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2023]
Abstract
Binding of microtubule filaments by the conserved Ndc80 protein is required for kinetochore-microtubule attachments in cells and the successful distribution of the genetic material during cell division. The reversible inhibition of microtubule binding is an important aspect of the physiological error correction process. Small molecule inhibitors of protein-protein interactions involving Ndc80 are therefore highly desirable, both for mechanistic studies of chromosome segregation and also for their potential therapeutic value. Here, we report on a novel strategy to develop rationally designed inhibitors of the Ndc80 Calponin-homology domain using Supramolecular Chemistry. With a multiple-click approach, lysine-specific molecular tweezers were assembled to form covalently fused dimers to pentamers with a different overall size and preorganization/stiffness. We identified two dimers and a trimer as efficient Ndc80 CH-domain binders and have shown that they disrupt the interaction between Ndc80 and microtubules at low micromolar concentrations without affecting microtubule dynamics. NMR spectroscopy allowed us to identify the biologically important lysine residues 160 and 204 as preferred tweezer interaction sites. Enhanced sampling molecular dynamics simulations provided a rationale for the binding mode of multivalent tweezers and the role of pre-organization and secondary interactions in targeting multiple lysine residues across a protein surface.
Collapse
Affiliation(s)
- Jonas Neblik
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Abbna Kirupakaran
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Christine Beuck
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Joel Mieres-Perez
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
- Computational Bioengineering, Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, North Rhine-Westfalia 44227, Germany
| | - Felix Niemeyer
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - My-Hue Le
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Ursula Telgheder
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Jessica Felice Schmuck
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Alexander Dudziak
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Peter Bayer
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Elsa Sanchez-Garcia
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
- Computational Bioengineering, Faculty of Biochemical and Chemical Engineering, Technical University Dortmund, Dortmund, North Rhine-Westfalia 44227, Germany
| | - Stefan Westermann
- Faculty of Biology, Center of Medical Biotechnology, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| | - Thomas Schrader
- Faculty of Chemistry, University of Duisburg-Essen, Essen, North Rhine-Westfalia 45141, Germany
| |
Collapse
|
20
|
Frewein MPK, Piller P, Semeraro EF, Czakkel O, Gerelli Y, Porcar L, Pabst G. Distributing aminophospholipids asymmetrically across leaflets causes anomalous membrane stiffening. Biophys J 2023; 122:2445-2455. [PMID: 37120716 PMCID: PMC10322881 DOI: 10.1016/j.bpj.2023.04.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023] Open
Abstract
We studied the mechanical leaflet coupling of prototypic mammalian plasma membranes using neutron spin-echo spectroscopy. In particular, we examined a series of asymmetric phospholipid vesicles with phosphatidylcholine and sphingomyelin enriched in the outer leaflet and inner leaflets composed of phosphatidylethanolamine/phosphatidylserine mixtures. The bending rigidities of most asymmetric membranes were anomalously high, exceeding even those of symmetric membranes formed from their cognate leaflets. Only asymmetric vesicles with outer leaflets enriched in sphingolipid displayed bending rigidities in conformity with these symmetric controls. We performed complementary small-angle neutron and x-ray experiments on the same vesicles to examine possible links to structural coupling mechanisms, which would show up in corresponding changes in membrane thickness. In addition, we estimated differential stress between leaflets originating either from a mismatch of their lateral areas or spontaneous curvatures. However, no correlation with asymmetry-induced membrane stiffening was observed. To reconcile our findings, we speculate that an asymmetric distribution of charged or H-bond forming lipids may induce an intraleaflet coupling, which increases the weight of hard undulatory modes of membrane fluctuations and hence the overall membrane stiffness.
Collapse
Affiliation(s)
- Moritz P K Frewein
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; Institut Laue-Langevin, Grenoble, France; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth, Graz, Austria
| | - Paulina Piller
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth, Graz, Austria
| | - Enrico F Semeraro
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth, Graz, Austria
| | | | - Yuri Gerelli
- CNR Institute for Complex Systems, Uos Sapienza, Roma, Italy; Department of Physics, Sapienza University of Rome, Roma, Italy
| | | | - Georg Pabst
- Biophysics, Institute of Molecular Biosciences, University of Graz, NAWI Graz, Graz, Austria; BioTechMed Graz, Graz, Austria; Field of Excellence BioHealth, Graz, Austria.
| |
Collapse
|
21
|
Malard F, Sizun C, Thureau A, Carlier L, Lescop E. Structural transitions in TCTP tumor protein upon binding to the anti-apoptotic protein family member Mcl-1. J Biol Chem 2023:104830. [PMID: 37201583 PMCID: PMC10333598 DOI: 10.1016/j.jbc.2023.104830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/20/2023] Open
Abstract
Translationally Controlled Tumor Protein (TCTP) serves as a pro-survival factor in tumor cells, inhibiting the mitochondrial apoptosis pathway by enhancing the function of anti-apoptotic Bcl-2 family members Mcl-1 and Bcl-xL. TCTP specifically binds to Bcl-xL, preventing Bax-dependent Bcl-xL-induced cytochrome c release, and it reduces Mcl-1 turnover by inhibiting its ubiquitination, thereby decreasing Mcl-1-mediated apoptosis. TCTP harbors a BH3-like motif that forms a β-strand buried in the globular domain of the protein. In contrast, the crystal structure of the TCTP BH3-like peptide in complex with the Bcl-2 family member Bcl-xL reveals an α-helical conformation for the BH3-like motif, suggesting significant structural changes upon complex formation. Employing biochemical and biophysical methods, including limited proteolysis, circular dichroism NMR, and SAXS, we describe the TCTP complex with the Bcl-2 homolog Mcl-1. Our findings demonstrate that full-length TCTP binds to the BH3 binding groove of Mcl-1 via its BH3-like motif, experiencing conformational exchange at the interface on a micro- to milli-second timescale. Concurrently, the TCTP globular domain becomes destabilized, transitioning into a molten-globule state. Furthermore, we establish that the non-canonical residue D16 within TCTP BH3-like motif reduces stability while enhancing the dynamics of the intermolecular interface. In conclusion, we detail the structural plasticity of TCTP and discuss its implications for partner interactions and future anticancer drug design strategies aimed at targeting TCTP complexes.
Collapse
Affiliation(s)
- Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | | | - Ludovic Carlier
- Laboratoire Des Biomolécules, LBM, Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS, Paris, France
| | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, LabEx LERMIT, 1 avenue de la Terrasse, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
22
|
Vallet A, Martin-Laffon J, Favier A, Revel B, Bonnot T, Vidaud C, Armengaud J, Gaillard JC, Delangle P, Devime F, Figuet S, Serre NBC, Erba EB, Brutscher B, Ravanel S, Bourguignon J, Alban C. The plasma membrane-associated cation-binding protein PCaP1 of Arabidopsis thaliana is a uranyl-binding protein. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130668. [PMID: 36608581 DOI: 10.1016/j.jhazmat.2022.130668] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Uranium (U) is a naturally-occurring radionuclide that is toxic to living organisms. Given that proteins are primary targets of U(VI), their identification is an essential step towards understanding the mechanisms of radionuclide toxicity, and possibly detoxification. Here, we implemented a chromatographic strategy including immobilized metal affinity chromatography to trap protein targets of uranyl in Arabidopsis thaliana. This procedure allowed the identification of 38 uranyl-binding proteins (UraBPs) from root and shoot extracts. Among them, UraBP25, previously identified as plasma membrane-associated cation-binding protein 1 (PCaP1), was further characterized as a protein interacting in vitro with U(VI) and other metals using spectroscopic and structural approaches, and in planta through analyses of the fate of U(VI) in Arabidopsis lines with altered PCaP1 gene expression. Our results showed that recombinant PCaP1 binds U(VI) in vitro with affinity in the nM range, as well as Cu(II) and Fe(III) in high proportions, and that Ca(II) competes with U(VI) for binding. U(VI) induces PCaP1 oligomerization through binding at the monomer interface, at both the N-terminal structured domain and the C-terminal flexible region. Finally, U(VI) translocation in Arabidopsis shoots was affected in pcap1 null-mutant, suggesting a role for this protein in ion trafficking in planta.
Collapse
Affiliation(s)
- Alicia Vallet
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, 38000 Grenoble, France
| | | | - Adrien Favier
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, IBS, 38000 Grenoble, France
| | - Benoît Revel
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Titouan Bonnot
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Claude Vidaud
- BIAM, CEA, CNRS, Univ. Aix-Marseille, 13108 Saint-Paul-lez-Durance, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-F-30200 Bagnols-sur-Cèze, France
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, F-F-30200 Bagnols-sur-Cèze, France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, GRE-INP, IRIG, SyMMES, 38000 Grenoble, France
| | - Fabienne Devime
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Sylvie Figuet
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | - Nelson B C Serre
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | | | | | - Stéphane Ravanel
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France
| | | | - Claude Alban
- Univ. Grenoble Alpes, CNRS, CEA, INRAE, IRIG, LPCV, 38000 Grenoble, France.
| |
Collapse
|
23
|
Dazzoni R, Li Y, López-Castilla A, Brier S, Mechaly A, Cordier F, Haouz A, Nilges M, Francetic O, Bardiaux B, Izadi-Pruneyre N. Structure and dynamic association of an assembly platform subcomplex of the bacterial type II secretion system. Structure 2023; 31:152-165.e7. [PMID: 36586404 DOI: 10.1016/j.str.2022.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/20/2022] [Accepted: 11/29/2022] [Indexed: 12/31/2022]
Abstract
Type II secretion systems (T2SSs) allow diderm bacteria to secrete hydrolytic enzymes, adhesins, or toxins important for growth and virulence. To promote secretion of folded proteins, T2SSs assemble periplasmic filaments called pseudopili or endopili at an inner membrane subcomplex, the assembly platform (AP). Here, we combined biophysical approaches, nuclear magnetic resonance (NMR) and X-ray crystallography, to study the Klebsiella AP components PulL and PulM. We determined the structure and associations of their periplasmic domains and describe the structure of the heterodimer formed by their ferredoxin-like domains. We show how structural complementarity and plasticity favor their association during the secretion process. Cysteine scanning and crosslinking data provided additional constraints to build a structural model of the PulL-PulM assembly in the cellular context. Our structural and functional insights, together with the relative cellular abundance of its components, support the role of AP as a dynamic hub that orchestrates pilus polymerization.
Collapse
Affiliation(s)
- Régine Dazzoni
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France
| | - Yuanyuan Li
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - Aracelys López-Castilla
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France
| | - Sébastien Brier
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Ariel Mechaly
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Crystallography Platform, 75015 Paris, France
| | - Florence Cordier
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biological NMR and HDX-MS Technological Platform, 75015 Paris, France
| | - Ahmed Haouz
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Crystallography Platform, 75015 Paris, France
| | - Michael Nilges
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France
| | - Olivera Francetic
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Biochemistry of Macromolecular Interactions Unit, 75015 Paris, France
| | - Benjamin Bardiaux
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, 75015 Paris.
| | - Nadia Izadi-Pruneyre
- Institut Pasteur, Université Paris Cité, CNRS UMR3528, Structural Bioinformatics Unit, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3528, Bacterial Transmembrane Systems Unit, 75015 Paris.
| |
Collapse
|
24
|
Jacobsen T, Dazzoni R, Renault MG, Bardiaux B, Nilges M, Shevchik V, Izadi-Pruneyre N. Secondary structure and 1H, 15 N & 13C resonance assignments of the periplasmic domain of OutG, major pseudopilin from Dickeya dadantii type II secretion system. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:231-236. [PMID: 35482172 PMCID: PMC9510105 DOI: 10.1007/s12104-022-10085-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The ability to interact and adapt to the surrounding environment is vital for bacteria that colonise various niches and organisms. One strategy developed by Gram-negative bacteria is to secrete exoprotein substrates via the type II secretion system (T2SS). The T2SS is a proteinaceous complex spanning the bacterial envelope that translocates folded proteins such as toxins and enzymes from the periplasm to the extracellular milieu. In the T2SS, a cytoplasmic ATPase elongates in the periplasm the pseudopilus, a non-covalent polymer composed of protein subunits named pseudopilins, and anchored in the inner membrane by a transmembrane helix. The pseudopilus polymerisation is coupled to the secretion of substrates. The T2SS of Dickeya dadantii secretes more than 15 substrates, essentially plant cell wall degrading enzymes. In D. dadantii, the major pseudopilin or the major subunit of the pseudopilus is called OutG. To better understand the mechanism of secretion of these numerous substrates via the pseudopilus, we have been studying the structure of OutG by NMR. Here, as the first part of this study, we report the 1H, 15N and 13C backbone and sidechain chemical shift assignment of the periplasmic domain of OutG and its NMR derived secondary structure.
Collapse
Affiliation(s)
- Theis Jacobsen
- CNRS UMR3528, Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, 75015, Paris, France
- Sorbonne Université, Complexité du Vivant, 75005, Paris, France
| | - Régine Dazzoni
- CNRS UMR3528, Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Melvin G Renault
- Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, Microbiologie Adaptation et Pathogénie, 69622, Villeurbanne, France
| | - Benjamin Bardiaux
- CNRS UMR3528, Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Michael Nilges
- CNRS UMR3528, Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, 75015, Paris, France
| | - Vladimir Shevchik
- Université Claude Bernard Lyon 1, INSA-Lyon, CNRS, UMR5240 MAP, Microbiologie Adaptation et Pathogénie, 69622, Villeurbanne, France
| | - Nadia Izadi-Pruneyre
- CNRS UMR3528, Structural Bioinformatics Unit, Institut Pasteur, Université Paris Cité, 75015, Paris, France.
| |
Collapse
|
25
|
Yang Y, Delcourte L, Fogeron ML, Böckmann A, Lecoq L. 1H, 15N and 13C backbone and side chain solution NMR assignments of the truncated small hepatitis delta antigen Δ60-S-HDAg. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:311-316. [PMID: 35749039 DOI: 10.1007/s12104-022-10096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Hepatitis D virus (HDV) is a defective virus that relies on hepatitis B virus envelope proteins to complete its replication cycle. The HDV genome contains two isoforms of hepatitis delta antigen: the small and the large hepatitis delta antigens (S- and L-HDAg). Here we report the 1H, 13C and 15 N backbone and side chain resonance assignments of an N-terminally truncated form of S-HDAg (SΔ60), which lacks the 1-60 oligomerization domain. We derived secondary structures based on NMR chemical shifts, which will be used in further structural and functional studies. We show that SΔ60 is partially disordered, and that the central structured part contains two well-defined α-helices of 22 and 17 residues, respectively. A temperature titration allowed to identify the residues involved in hydrogen bonds.
Collapse
Affiliation(s)
- Yang Yang
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086, CNRS, Université de Lyon, Labex Ecofect, 7 passage du Vercors, 69367, Lyon, France
| | - Loïc Delcourte
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086, CNRS, Université de Lyon, Labex Ecofect, 7 passage du Vercors, 69367, Lyon, France
| | - Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086, CNRS, Université de Lyon, Labex Ecofect, 7 passage du Vercors, 69367, Lyon, France
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086, CNRS, Université de Lyon, Labex Ecofect, 7 passage du Vercors, 69367, Lyon, France.
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry (MMSB), UMR 5086, CNRS, Université de Lyon, Labex Ecofect, 7 passage du Vercors, 69367, Lyon, France.
| |
Collapse
|
26
|
Henot F, Crublet E, Frech M, Boisbouvier J. NMR assignment of human HSP90 N-terminal domain bound to a long residence time resorcinol ligand. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:257-266. [PMID: 35701717 DOI: 10.1007/s12104-022-10089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
HSP90 is a major molecular chaperone that helps both folding and stabilization of various client proteins often implicated in growth control and cell survival such as kinases and transcription factors. However, among HSP90 clients are also found numerous oncoproteins and, through its assistance to them, HSP90 has consequently been reported as a promising anticancer target. Several ligand chemotypes, including resorcinol type ligands, were found to inhibit HSP90, most of them in an ATP competitive manner. Binding of some of these ligands modify significantly the NMR spectrum of the HSP90 ATP binding domain compared to the apo protein spectrum, hampering assignment transfer from the previously assigned human HSP90 apo state. Here we report the assignment of the 1HN, 15N, 13C', 13Cα, 13Cβ, 1Hmethyl, and 13Cmethyl chemical shifts of the 29 kDa HSP90 N-terminal domain bound to a long residence time resorcinol type inhibitor: 5-[4-(2-Fluoro-phenyl)-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl]-N-furan-2-ylmethyl-2,4-dihydroxy-N-methyl-benzamide. 92% of the backbone resonances and 100% of the [1H, 13C]-resonances of Aβ, Mε, Tγ, Lδ2, Vγ2 and Iδ1 methyl groups were successfully assigned, including for the first time the assignment of the segment covering the nucleotide/drug binding site. Secondary structure predictions based on the NMR assignment reveal a structural rearrangement of HSP90 N-terminal domain upon ligand binding. The long residence time ligand induces the formation of a continuous helix covering the ligand binding site of HSP90 N-terminal domain accounting for the large differences observed in the NMR spectra between the apo and bound proteins.
Collapse
Affiliation(s)
- Faustine Henot
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CNRS, CEA, 71, avenue des martyrs, 38044, Grenoble, France.
| | - Elodie Crublet
- NMR-Bio, 5 place Robert Schuman, 38025, Grenoble, France
| | - Matthias Frech
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Jerome Boisbouvier
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CNRS, CEA, 71, avenue des martyrs, 38044, Grenoble, France.
| |
Collapse
|
27
|
Gopinathan Nair A, Rabas N, Lejon S, Homiski C, Osborne MJ, Cyr N, Sverzhinsky A, Melendy T, Pascal JM, Laue ED, Borden KLB, Omichinski JG, Verreault A. Unorthodox PCNA Binding by Chromatin Assembly Factor 1. Int J Mol Sci 2022; 23:11099. [PMID: 36232396 PMCID: PMC9570017 DOI: 10.3390/ijms231911099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 11/29/2022] Open
Abstract
The eukaryotic DNA replication fork is a hub of enzymes that continuously act to synthesize DNA, propagate DNA methylation and other epigenetic marks, perform quality control, repair nascent DNA, and package this DNA into chromatin. Many of the enzymes involved in these spatiotemporally correlated processes perform their functions by binding to proliferating cell nuclear antigen (PCNA). A long-standing question has been how the plethora of PCNA-binding enzymes exert their activities without interfering with each other. As a first step towards deciphering this complex regulation, we studied how Chromatin Assembly Factor 1 (CAF-1) binds to PCNA. We demonstrate that CAF-1 binds to PCNA in a heretofore uncharacterized manner that depends upon a cation-pi (π) interaction. An arginine residue, conserved among CAF-1 homologs but absent from other PCNA-binding proteins, inserts into the hydrophobic pocket normally occupied by proteins that contain canonical PCNA interaction peptides (PIPs). Mutation of this arginine disrupts the ability of CAF-1 to bind PCNA and to assemble chromatin. The PIP of the CAF-1 p150 subunit resides at the extreme C-terminus of an apparent long α-helix (119 amino acids) that has been reported to bind DNA. The length of that helix and the presence of a PIP at the C-terminus are evolutionarily conserved among numerous species, ranging from yeast to humans. This arrangement of a very long DNA-binding coiled-coil that terminates in PIPs may serve to coordinate DNA and PCNA binding by CAF-1.
Collapse
Affiliation(s)
- Amogh Gopinathan Nair
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
- Molecular Biology Program, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Nick Rabas
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Sara Lejon
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Caleb Homiski
- Departments of Biochemistry and Microbiology & Immunology, University at Buffalo Jacobs School of Medicine & Biomedical Sciences, 955 Main Street, Buffalo, NY 14210, USA
| | - Michael J. Osborne
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Normand Cyr
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Aleksandr Sverzhinsky
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Thomas Melendy
- Departments of Biochemistry and Microbiology & Immunology, University at Buffalo Jacobs School of Medicine & Biomedical Sciences, 955 Main Street, Buffalo, NY 14210, USA
| | - John M. Pascal
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Ernest D. Laue
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | - Katherine L. B. Borden
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - James G. Omichinski
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada
| | - Alain Verreault
- Institute for Research in Immunology and Cancer, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
28
|
Léger C, Pitard I, Sadi M, Carvalho N, Brier S, Mechaly A, Raoux-Barbot D, Davi M, Hoos S, Weber P, Vachette P, Durand D, Haouz A, Guijarro JI, Ladant D, Chenal A. Dynamics and structural changes of calmodulin upon interaction with the antagonist calmidazolium. BMC Biol 2022; 20:176. [PMID: 35945584 PMCID: PMC9361521 DOI: 10.1186/s12915-022-01381-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/29/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Calmodulin (CaM) is an evolutionarily conserved eukaryotic multifunctional protein that functions as the major sensor of intracellular calcium signaling. Its calcium-modulated function regulates the activity of numerous effector proteins involved in a variety of physiological processes in diverse organs, from proliferation and apoptosis, to memory and immune responses. Due to the pleiotropic roles of CaM in normal and pathological cell functions, CaM antagonists are needed for fundamental studies as well as for potential therapeutic applications. Calmidazolium (CDZ) is a potent small molecule antagonist of CaM and one the most widely used inhibitors of CaM in cell biology. Yet, CDZ, as all other CaM antagonists described thus far, also affects additional cellular targets and its lack of selectivity hinders its application for dissecting calcium/CaM signaling. A better understanding of CaM:CDZ interaction is key to design analogs with improved selectivity. Here, we report a molecular characterization of CaM:CDZ complexes using an integrative structural biology approach combining SEC-SAXS, X-ray crystallography, HDX-MS, and NMR. RESULTS We provide evidence that binding of a single molecule of CDZ induces an open-to-closed conformational reorientation of the two domains of CaM and results in a strong stabilization of its structural elements associated with a reduction of protein dynamics over a large time range. These CDZ-triggered CaM changes mimic those induced by CaM-binding peptides derived from physiological protein targets, despite their distinct chemical natures. CaM residues in close contact with CDZ and involved in the stabilization of the CaM:CDZ complex have been identified. CONCLUSION Our results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists. Calmidazolium is a potent and widely used inhibitor of calmodulin, a major mediator of calcium-signaling in eukaryotic cells. Structural characterization of calmidazolium-binding to calmodulin reveals that it triggers open-to-closed conformational changes similar to those induced by calmodulin-binding peptides derived from enzyme targets. These results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists.
Collapse
Affiliation(s)
- Corentin Léger
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Irène Pitard
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Mirko Sadi
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
- Université Paris Cité, Paris, France
| | - Nicolas Carvalho
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
- Université Paris Cité, Paris, France
| | - Sébastien Brier
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Ariel Mechaly
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Dorothée Raoux-Barbot
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Maryline Davi
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France
| | - Sylviane Hoos
- Plateforme de Biophysique Moléculaire, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Patrick Weber
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - Patrice Vachette
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Dominique Durand
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ahmed Haouz
- Plate-forme de Cristallographie-C2RT, Université Paris Cité, CNRS UMR3528, Institut Pasteur, Paris, France
| | - J Iñaki Guijarro
- Biological NMR and HDX-MS Technological Platform, CNRS UMR3528, Université Paris Cité, Institut Pasteur, Paris, 75015, France
| | - Daniel Ladant
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France.
| | - Alexandre Chenal
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, Paris, 75015, France.
| |
Collapse
|
29
|
Erdmann D, Contreras J, Le Meur RA, Vitorge B, Saverat V, Tafit A, Jallet C, Cadet-Daniel V, Bon C, Phansavath P, Ratovelomanana-Vidal V, Jeltsch A, Vichier-Guerre S, Guijarro JI, Arimondo PB. Identification of Chemical Probes Targeting MBD2. ACS Chem Biol 2022; 17:1415-1426. [PMID: 35649238 DOI: 10.1021/acschembio.1c00959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Epigenetics has received much attention in the past decade. Many insights on epigenetic (dys)regulation in diseases have been obtained, and clinical therapies targeting them are in place. However, the readers of the epigenetic marks are lacking enlightenment behind this revolution, and it is poorly understood how DNA methylation is being read and translated to chromatin function and cellular responses. Chemical probes targeting the methyl-CpG readers, such as the methyl-CpG binding domain proteins (MBDs), could be used to study this mechanism. We have designed analogues of 5-methylcytosine to probe the MBD domain of human MBD2. By setting up a protein thermal shift assay and an AlphaScreen-based test, we were able to identify three fragments that bind MBD2 alone and disrupt the MBD2-methylated DNA interactions. Two-dimensional NMR experiments and virtual docking gave valuable insights into the interaction of the ligands with the protein showing that the compounds interact with residues that are important for DNA recognition. These constitute the starting point for the design of potent chemical probes for MBD proteins.
Collapse
Affiliation(s)
- Diane Erdmann
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3523, 75015 Paris, France
| | - Jean Contreras
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3523, 75015 Paris, France
| | - Rémy A. Le Meur
- Biological NMR and HDX-MS Technological Platform, Institut Pasteur, Université Paris Cité, CNRS UMR3528, 75015 Paris, France
| | - Bruno Vitorge
- Biological NMR and HDX-MS Technological Platform, Institut Pasteur, Université Paris Cité, CNRS UMR3528, 75015 Paris, France
| | - Vincent Saverat
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3523, 75015 Paris, France
| | - Ambre Tafit
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3523, 75015 Paris, France
| | - Corinne Jallet
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3523, 75015 Paris, France
| | - Véronique Cadet-Daniel
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3523, 75015 Paris, France
| | - Corentin Bon
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3523, 75015 Paris, France
| | - Phannarath Phansavath
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, 75005 Paris, France
| | - Virginie Ratovelomanana-Vidal
- PSL University, Chimie ParisTech, Institute of Chemistry for Life & Health Sciences, CNRS UMR8060, 75005 Paris, France
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Sophie Vichier-Guerre
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3523, 75015 Paris, France
| | - J. Iñaki Guijarro
- Biological NMR and HDX-MS Technological Platform, Institut Pasteur, Université Paris Cité, CNRS UMR3528, 75015 Paris, France
| | - Paola B. Arimondo
- Epigenetic Chemical Biology, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR3523, 75015 Paris, France
| |
Collapse
|
30
|
Dubini RA, Korytiaková E, Schinkel T, Heinrichs P, Carell T, Rovó P. 1H NMR Chemical Exchange Techniques Reveal Local and Global Effects of Oxidized Cytosine Derivatives. ACS PHYSICAL CHEMISTRY AU 2022; 2:237-246. [PMID: 35637781 PMCID: PMC9137243 DOI: 10.1021/acsphyschemau.1c00050] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 11/29/2022]
Abstract
5-Carboxycytosine (5caC) is a rare epigenetic modification found in nucleic acids of all domains of life. Despite its sparse genomic abundance, 5caC is presumed to play essential regulatory roles in transcription, maintenance and base-excision processes in DNA. In this work, we utilize nuclear magnetic resonance (NMR) spectroscopy to address the effects of 5caC incorporation into canonical DNA strands at multiple pH and temperature conditions. Our results demonstrate that 5caC has a pH-dependent global destabilizing and a base-pair mobility enhancing local impact on dsDNA, albeit without any detectable influence on the ground-state B-DNA structure. Measurement of hybridization thermodynamics and kinetics of 5caC-bearing DNA duplexes highlighted how acidic environment (pH 5.8 and 4.7) destabilizes the double-stranded structure by ∼10-20 kJ mol-1 at 37 °C when compared to the same sample at neutral pH. Protonation of 5caC results in a lower activation energy for the dissociation process and a higher barrier for annealing. Studies on conformational exchange on the microsecond time scale regime revealed a sharply localized base-pair motion involving exclusively the modified site and its immediate surroundings. By direct comparison with canonical and 5-formylcytosine (5fC)-edited strands, we were able to address the impact of the two most oxidized naturally occurring cytosine derivatives in the genome. These insights on 5caC's subtle sensitivity to acidic pH contribute to the long-standing questions of its capacity as a substrate in base excision repair processes and its purpose as an independent, stable epigenetic mark.
Collapse
Affiliation(s)
- Romeo
C. A. Dubini
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 5th floor, 80799 Munich, Germany
| | - Eva Korytiaková
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Thea Schinkel
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Pia Heinrichs
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Thomas Carell
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Petra Rovó
- Faculty
of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center
for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 5th floor, 80799 Munich, Germany
- Institute
of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria
| |
Collapse
|
31
|
Törner R, Kupreichyk T, Gremer L, Debled EC, Fenel D, Schemmert S, Gans P, Willbold D, Schoehn G, Hoyer W, Boisbouvier J. Structural basis for the inhibition of IAPP fibril formation by the co-chaperonin prefoldin. Nat Commun 2022; 13:2363. [PMID: 35501361 PMCID: PMC9061850 DOI: 10.1038/s41467-022-30042-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/13/2022] [Indexed: 01/16/2023] Open
Abstract
Chaperones, as modulators of protein conformational states, are key cellular actors to prevent the accumulation of fibrillar aggregates. Here, we integrated kinetic investigations with structural studies to elucidate how the ubiquitous co-chaperonin prefoldin inhibits diabetes associated islet amyloid polypeptide (IAPP) fibril formation. We demonstrated that both human and archaeal prefoldin interfere similarly with the IAPP fibril elongation and secondary nucleation pathways. Using archaeal prefoldin model, we combined nuclear magnetic resonance spectroscopy with electron microscopy to establish that the inhibition of fibril formation is mediated by the binding of prefoldin's coiled-coil helices to the flexible IAPP N-terminal segment accessible on the fibril surface and fibril ends. Atomic force microscopy demonstrates that binding of prefoldin to IAPP leads to the formation of lower amounts of aggregates, composed of shorter fibrils, clustered together. Linking structural models with observed fibrillation inhibition processes opens perspectives for understanding the interference between natural chaperones and formation of disease-associated amyloids.
Collapse
Affiliation(s)
- Ricarda Törner
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Tatsiana Kupreichyk
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Elisa Colas Debled
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Daphna Fenel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Sarah Schemmert
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Pierre Gans
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Guy Schoehn
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Wolfgang Hoyer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| | - Jerome Boisbouvier
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France.
| |
Collapse
|
32
|
Fogeron ML, Lecoq L, Cole L, Montserret R, David G, Page A, Delolme F, Nassal M, Böckmann A. Phosphorylation of the Hepatitis B Virus Large Envelope Protein. Front Mol Biosci 2022; 8:821755. [PMID: 35282608 PMCID: PMC8904964 DOI: 10.3389/fmolb.2021.821755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/22/2021] [Indexed: 01/05/2023] Open
Abstract
We here establish the phosphorylation sites in the human hepatitis B virus (HBV) large envelope protein (L). L is involved in several functionally important interactions in the viral life cycle, including with the HBV cellular receptor, HBV capsid, Hsc70 chaperone, and cellular membranes during fusion. We have recently shown that cell-free synthesis of the homologous L protein of duck HBV in wheat germ extract results in very similar phosphorylation events to those previously observed in animal cells. Here, we used mass spectrometry and NMR to establish the phosphorylation patterns of human HBV L protein produced by both in vitro cell-free synthesis and in E. coli with the co-expression of the human MAPK14 kinase. While in the avian virus the phosphorylation of L has been shown to be dispensable for infectivity, the identified locations in the human virus protein, both in the PreS1 and PreS2 domains, raise the intriguing possibility that they might play a functional role, since they are found at strategic sites predicted to be involved in L interactions. This would warrant the further investigation of a possible function in virion formation or cell entry.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Roland Montserret
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Guillaume David
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Adeline Page
- Protein Science Facility, SFR BioSciences CNRS UAR 3444, Inserm US8, UCBL, ENS de Lyon, Lyon, France
| | - Frédéric Delolme
- Protein Science Facility, SFR BioSciences CNRS UAR 3444, Inserm US8, UCBL, ENS de Lyon, Lyon, France
| | - Michael Nassal
- Department of Medicine II / Molecular Biology, Medical Center, University Hospital Freiburg, University of Freiburg, Freiburg im Breisgau, Germany
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
- *Correspondence: Anja Böckmann,
| |
Collapse
|
33
|
Structural basis for effector recognition by an antibacterial type IV secretion system. Proc Natl Acad Sci U S A 2022; 119:2112529119. [PMID: 34983846 PMCID: PMC8740702 DOI: 10.1073/pnas.2112529119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2021] [Indexed: 11/19/2022] Open
Abstract
Type IV secretion systems (T4SSs) have been studied for more than 70 y because of their roles in mediating horizontal DNA transfer, responsible for the spread of antibiotic resistance, and the injection of virulence factors into animal and plant hosts. Another important function is the contact-dependent injection of toxic effectors into competing bacteria of different species during bacterial warfare. The present study reveals how T4SSs use a specific domain of the VirD4 coupling protein to recruit antibacterial toxins for secretion by recognizing conserved carboxyl-terminal secretion signal domains. The molecular structure of the secretion signal domain described in this work will serve as a model for thousands of homologs encountered in several hundred distinct bacterial species. Many soil-, water-, and plant-associated bacterial species from the orders Xanthomonadales, Burkholderales, and Neisseriales carry a type IV secretion system (T4SS) specialized in translocating effector proteins into other gram-negative species, leading to target cell death. These effectors, known as X-Tfes, carry a carboxyl-terminal domain of ∼120 residues, termed XVIPCD, characterized by several conserved motifs and a glutamine-rich tail. Previous studies showed that the XVIPCD is required for interaction with the T4SS coupling protein VirD4 and for T4SS-dependent translocation. However, the structural basis of the XVIPCD–VirD4 interaction is unknown. Here, we show that the XVIPCD interacts with the central all-alpha domain of VirD4 (VirD4AAD). We used solution NMR spectroscopy to solve the structure of the XVIPCD of X-TfeXAC2609 from Xanthomonas citri and to map its interaction surface with VirD4AAD. Isothermal titration calorimetry and in vivo Xanthomonas citri versus Escherichia coli competition assays using wild-type and mutant X-TfeXAC2609 and X-TfeXAC3634 indicate that XVIPCDs can be divided into two regions with distinct functions: the well-folded N-terminal region contains specific conserved motifs that are responsible for interactions with VirD4AAD, while both N- and carboxyl-terminal regions are required for effective X-Tfe translocation into the target cell. The conformational stability of the N-terminal region is reduced at and below pH 7.0, a property that may facilitate X-Tfe unfolding and translocation through the more acidic environment of the periplasm.
Collapse
|
34
|
De novo protein design by deep network hallucination. Nature 2021; 600:547-552. [PMID: 34853475 DOI: 10.1038/s41586-021-04184-w] [Citation(s) in RCA: 269] [Impact Index Per Article: 67.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 10/21/2021] [Indexed: 12/25/2022]
Abstract
There has been considerable recent progress in protein structure prediction using deep neural networks to predict inter-residue distances from amino acid sequences1-3. Here we investigate whether the information captured by such networks is sufficiently rich to generate new folded proteins with sequences unrelated to those of the naturally occurring proteins used in training the models. We generate random amino acid sequences, and input them into the trRosetta structure prediction network to predict starting residue-residue distance maps, which, as expected, are quite featureless. We then carry out Monte Carlo sampling in amino acid sequence space, optimizing the contrast (Kullback-Leibler divergence) between the inter-residue distance distributions predicted by the network and background distributions averaged over all proteins. Optimization from different random starting points resulted in novel proteins spanning a wide range of sequences and predicted structures. We obtained synthetic genes encoding 129 of the network-'hallucinated' sequences, and expressed and purified the proteins in Escherichia coli; 27 of the proteins yielded monodisperse species with circular dichroism spectra consistent with the hallucinated structures. We determined the three-dimensional structures of three of the hallucinated proteins, two by X-ray crystallography and one by NMR, and these closely matched the hallucinated models. Thus, deep networks trained to predict native protein structures from their sequences can be inverted to design new proteins, and such networks and methods should contribute alongside traditional physics-based models to the de novo design of proteins with new functions.
Collapse
|
35
|
Liu B, Chan H, Bauda E, Contreras-Martel C, Bellard L, Villard AM, Mas C, Neumann E, Fenel D, Favier A, Serrano M, Henriques AO, Rodrigues CDA, Morlot C. Structural insights into ring-building motif domains involved in bacterial sporulation. J Struct Biol 2021; 214:107813. [PMID: 34808342 DOI: 10.1016/j.jsb.2021.107813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
Components of specialized secretion systems, which span the inner and outer membranes in Gram-negative bacteria, include ring-forming proteins whose oligomerization was proposed to be promoted by domains called RBM for "Ring-Building Motifs". During spore formation in Gram-positive bacteria, a transport system called the SpoIIIA-SpoIIQ complex also assembles in the double membrane that surrounds the forespore following its endocytosis by the mother cell. The presence of RBM domains in some of the SpoIIIA proteins led to the hypothesis that they would assemble into rings connecting the two membranes and form a conduit between the mother cell and forespore. Among them, SpoIIIAG forms homo-oligomeric rings in vitro but the oligomerization of other RBM-containing SpoIIIA proteins, including SpoIIIAH, remains to be demonstrated. In this work, we identified RBM domains in the YhcN/YlaJ family of proteins that are not related to the SpoIIIA-SpoIIQ complex. We solved the crystal structure of YhcN from Bacillus subtilis, which confirmed the presence of a RBM fold, flanked by additional secondary structures. As the protein did not show any oligomerization ability in vitro, we investigated the structural determinants of ring formation in SpoIIIAG, SpoIIIAH and YhcN. We showed that in vitro, the conserved core of RBM domains alone is not sufficient for oligomerization while the β-barrel forming region in SpoIIIAG forms rings on its own. This work suggests that some RBMs might indeed participate in the assembly of homomeric rings but others might have evolved toward other functions.
Collapse
Affiliation(s)
- Bowen Liu
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Helena Chan
- The ithree institute, University of Technology Sydney, 2007 Ultimo, NSW, Australia
| | - Elda Bauda
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Laure Bellard
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Caroline Mas
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | | | - Daphna Fenel
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Adrien Favier
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France
| | - Monica Serrano
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Adriano O Henriques
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | - Cecile Morlot
- Univ. Grenoble Alpes, CNRS, CEA, IBS, 38000 Grenoble, France.
| |
Collapse
|
36
|
Dazzoni R, López-Castilla A, Cordier F, Bardiaux B, Nilges M, Francetic O, Izadi-Pruneyre N. 1H, 15 N and 13C resonance assignments of the C-terminal domain of PulL, a component of the Klebsiella oxytoca type II secretion system. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:455-459. [PMID: 34410621 DOI: 10.1007/s12104-021-10045-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Type II secretion systems (T2SS) allow Gram-negative bacteria to transport toxins and enzymes from the periplasm to the external milieu, and are thus important for the pathogenicity of bacteria. To drive secretion, T2SS assemble filaments called pseudopili closely related to bacterial type IV pili. These filaments are non-covalent polymers of proteins that are assembled by an inner membrane complex called the assembly platform connected to a cytoplasmic ATPase motor. In the Klebsiella oxytoca T2SS, the PulL protein from the assembly platform is essential for pseudopilus assembly and protein secretion. However, its role in these processes is not well understood. To decipher the molecular basis of PulL function, we used solution NMR to study its structure and interactions with other components of the machinery. Here as a first step, we report the 1H, 15 N and 13C backbone and side-chain chemical shift assignments of the C-terminal periplasmic domain of PulL and its secondary structure based on NMR data.
Collapse
Affiliation(s)
- Régine Dazzoni
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris, France
| | - Aracelys López-Castilla
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris, France
| | - Florence Cordier
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris, France
- Biological NMR Technological Platform, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, 75724, Paris, France
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris, France
| | - Michael Nilges
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris, France
| | - Olivera Francetic
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 28 rue du Dr Roux, 75724, Paris, France
| | - Nadia Izadi-Pruneyre
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, CNRS UMR3528, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris, France.
| |
Collapse
|
37
|
Törner R, Henot F, Awad R, Macek P, Gans P, Boisbouvier J. Backbone and methyl resonances assignment of the 87 kDa prefoldin from Pyrococcus horikoshii. BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:351-360. [PMID: 33988824 DOI: 10.1007/s12104-021-10029-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Prefoldin is a heterohexameric protein assembly which acts as a co-chaperonin for the well conserved Hsp60 chaperonin, present in archaebacteria and the eukaryotic cell cytosol. Prefoldin is a holdase, capturing client proteins and subsequently transferring them to the Hsp60 chamber for refolding. The chaperonin family is implicated in the early stages of protein folding and plays an important role in proteostasis in the cytosol. Here, we report the assignment of 1HN, 15N, 13C', 13Cα, 13Cβ, 1Hmethyl, and 13Cmethyl chemical shifts of the 87 kDa prefoldin from the hyperthermophilic archaeon Pyrococcus horikoshii, consisting of two α and four β subunits. 100% of the [13C, 1H]-resonances of Aβ, Iδ1, Iδ2, Tγ2, Vγ2 methyl groups were successfully assigned for both subunits. For the β subunit, showing partial peak doubling, 80% of the backbone resonances were assigned. In the α subunit, large stretches of backbone resonances were not detectable due to slow (μs-ms) time scale dynamics. This conformational exchange limited the backbone sequential assignment of the α subunit to 57% of residues, which corresponds to 84% of visible NMR signals.
Collapse
Affiliation(s)
- Ricarda Törner
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71, Avenue des Martyrs, 38044, Grenoble, France.
| | - Faustine Henot
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71, Avenue des Martyrs, 38044, Grenoble, France
| | - Rida Awad
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71, Avenue des Martyrs, 38044, Grenoble, France
| | - Pavel Macek
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71, Avenue des Martyrs, 38044, Grenoble, France
| | - Pierre Gans
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71, Avenue des Martyrs, 38044, Grenoble, France
| | - Jerome Boisbouvier
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, 71, Avenue des Martyrs, 38044, Grenoble, France.
| |
Collapse
|
38
|
Malard F, Jacquet E, Nhiri N, Sizun C, Chabrier A, Messaoudi S, Dejeu J, Betzi S, Zhang X, Thureau A, Lescop E. Revisiting the Molecular Interactions between the Tumor Protein TCTP and the Drugs Sertraline/Thioridazine. ChemMedChem 2021; 17:e202100528. [PMID: 34472703 DOI: 10.1002/cmdc.202100528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 11/07/2022]
Abstract
TCTP protein is a pharmacological target in cancer and TCTP inhibitors such as sertraline have been evaluated in clinical trials. The direct interaction of TCTP with the drugs sertraline and thioridazine has been reported in vitro by SPR experiments to be in the ∼30-50 μM Kd range (Amson et al. Nature Med 2012), supporting a TCTP-dependent mode of action of the drugs on tumor cells. However, the molecular details of the interaction remain elusive although they are crucial to improve the efforts of on-going medicinal chemistry. In addition, TCTP can be phosphorylated by the Plk-1 kinase, which is indicative of poor prognosis in several cancers. The impact of phosphorylation on TCTP structure/dynamics and binding with therapeutical ligands remains unexplored. Here, we combined NMR, TSA, SPR, BLI and ITC techniques to probe the molecular interactions between TCTP with the drugs sertraline and thioridazine. We reveal that drug binding is much weaker than reported with an apparent ∼mM Kd and leads to protein destabilization that obscured the analysis of the published SPR data. We further demonstrate by NMR and SAXS that TCTP S46 phosphorylation does not promote tighter interaction between TCTP and sertraline. Accordingly, we question the supported model in which sertraline and thioridazine directly interact with isolated TCTP in tumor cells and discuss alternative modes of action for the drugs in light of current literature.
Collapse
Affiliation(s)
- Florian Malard
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| | - Amélie Chabrier
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| | - Samir Messaoudi
- Université Paris-Saclay, BioCIS, Faculté de Pharmacie, CNRS, 92290, Châtenay-Malabry, France
| | - Jérôme Dejeu
- Univ. Grenoble Alpes, CNRS, DCM, 38000, Grenoble, France
| | - Stéphane Betzi
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, Aix-Marseille Université, Inserm, Institut Paoli-Calmettes, 27 bd Lei Roure, 13273, Marseille CEDEX 9, France
| | - Xu Zhang
- Centre de Recherche en Cancérologie de Marseille (CRCM), CNRS, Aix-Marseille Université, Inserm, Institut Paoli-Calmettes, 27 bd Lei Roure, 13273, Marseille CEDEX 9, France
| | | | - Ewen Lescop
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris-Saclay, 1 av. de la terrasse, 91198, Gif-sur-Yvette, France
| |
Collapse
|
39
|
Wang X, Chen X, Nonin-Lecomte S, Bouaziz S. Acetonitrile allows indirect replacement of nondeuterated lipid detergents by deuterated lipid detergents for the nuclear magnetic resonance study of detergent-soluble proteins. Protein Sci 2021; 30:2324-2332. [PMID: 34462977 DOI: 10.1002/pro.4174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
Detergent-soluble proteins (DSPs) are commonly dissolved in lipid buffers for NMR experiments, but the huge lipid proton signal prevents recording of high-quality spectra. The use of costly deuterated lipids is thus required to replace nondeuterated ones. With conventional methods, detergents like dodecylphosphocholine (DPC) cannot be fully exchanged due to their high binding affinity to hydrophobic proteins. We propose an original and simple protocol which combines the use of acetonitrile, dialysis and lyophilization to disrupt the binding of lipids to the protein and allow their indirect replacement by their deuterated equivalents, while maintaining the native structure of the protein. Moreover, by this protocol, the detergent-to-protein molar ratio can be controlled as it challenges the protein structure. This protocol was applied to solubilize the Vpx protein that was followed upon addition of DPC-d38 by 1 H-15 N SOFAST-HMQC spectra and the best detergent-to-DSPs molar ratio was obtained for structural studies.
Collapse
Affiliation(s)
- Xiao Wang
- CiTCoM, CNRS, UMR 8038, Université de Paris, Paris, France
| | - Xiaowei Chen
- CiTCoM, CNRS, UMR 8038, Université de Paris, Paris, France
| | | | - Serge Bouaziz
- CiTCoM, CNRS, UMR 8038, Université de Paris, Paris, France
| |
Collapse
|
40
|
Cardone C, Caseau CM, Bardiaux B, Thureaux A, Galloux M, Bajorek M, Eléouët JF, Litaudon M, Bontems F, Sizun C. A Structural and Dynamic Analysis of the Partially Disordered Polymerase-Binding Domain in RSV Phosphoprotein. Biomolecules 2021; 11:biom11081225. [PMID: 34439894 PMCID: PMC8392014 DOI: 10.3390/biom11081225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 12/11/2022] Open
Abstract
The phosphoprotein P of Mononegavirales (MNV) is an essential co-factor of the viral RNA polymerase L. Its prime function is to recruit L to the ribonucleocapsid composed of the viral genome encapsidated by the nucleoprotein N. MNV phosphoproteins often contain a high degree of disorder. In Pneumoviridae phosphoproteins, the only domain with well-defined structure is a small oligomerization domain (POD). We previously characterized the differential disorder in respiratory syncytial virus (RSV) phosphoprotein by NMR. We showed that outside of RSV POD, the intrinsically disordered N-and C-terminal regions displayed a structural and dynamic diversity ranging from random coil to high helical propensity. Here we provide additional insight into the dynamic behavior of PCα, a domain that is C-terminal to POD and constitutes the RSV L-binding region together with POD. By using small phosphoprotein fragments centered on or adjacent to POD, we obtained a structural picture of the POD–PCα region in solution, at the single residue level by NMR and at lower resolution by complementary biophysical methods. We probed POD–PCα inter-domain contacts and showed that small molecules were able to modify the dynamics of PCα. These structural properties are fundamental to the peculiar binding mode of RSV phosphoprotein to L, where each of the four protomers binds to L in a different way.
Collapse
Affiliation(s)
- Christophe Cardone
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - Claire-Marie Caseau
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - Benjamin Bardiaux
- Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, 78015 Paris, France;
| | | | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, 78352 Jouy-en-Josas, France; (M.G.); (M.B.); (J.-F.E.)
| | - Monika Bajorek
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, 78352 Jouy-en-Josas, France; (M.G.); (M.B.); (J.-F.E.)
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRAE, Université Paris Saclay, 78352 Jouy-en-Josas, France; (M.G.); (M.B.); (J.-F.E.)
| | - Marc Litaudon
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - François Bontems
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
| | - Christina Sizun
- Institut de Chimie des Substances Naturelles, CNRS, Université Paris Saclay, 91190 Gif-sur-Yvette, France; (C.C.); (C.-M.C.); (M.L.); (F.B.)
- Correspondence:
| |
Collapse
|
41
|
Henot F, Kerfah R, Törner R, Macek P, Crublet E, Gans P, Frech M, Hamelin O, Boisbouvier J. Optimized precursor to simplify assignment transfer between backbone resonances and stereospecifically labelled valine and leucine methyl groups: application to human Hsp90 N-terminal domain. JOURNAL OF BIOMOLECULAR NMR 2021; 75:221-232. [PMID: 34041691 DOI: 10.1007/s10858-021-00370-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Methyl moieties are highly valuable probes for quantitative NMR studies of large proteins. Hence, their assignment is of the utmost interest to obtain information on both interactions and dynamics of proteins in solution. Here, we present the synthesis of a new precursor that allows connection of leucine and valine pro-S methyl moieties to backbone atoms by linear 13C-chains. This optimized 2H/13C-labelled acetolactate precursor can be combined with existing 13C/2H-alanine and isoleucine precursors in order to directly transfer backbone assignment to the corresponding methyl groups. Using this simple approach leucine and valine pro-S methyl groups can be assigned using a single sample without requiring correction of 1H/2H isotopic shifts on 13C resonances. The approach was demonstrated on the N-terminal domain of human HSP90, for which complete assignment of Ala-β, Ile-δ1, Leu-δ2, Met-ε, Thr-γ and Val-γ2 methyl groups was obtained.
Collapse
Affiliation(s)
- Faustine Henot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des martyrs, 38044, Grenoble, France
| | - Rime Kerfah
- NMR-Bio, 5 place Robert Schuman, 38025, Grenoble, France
| | - Ricarda Törner
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des martyrs, 38044, Grenoble, France
| | - Pavel Macek
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des martyrs, 38044, Grenoble, France
- NMR-Bio, 5 place Robert Schuman, 38025, Grenoble, France
| | - Elodie Crublet
- NMR-Bio, 5 place Robert Schuman, 38025, Grenoble, France
| | - Pierre Gans
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des martyrs, 38044, Grenoble, France
| | - Matthias Frech
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Olivier Hamelin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, CBM, 38000, Grenoble, France
| | - Jerome Boisbouvier
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des martyrs, 38044, Grenoble, France.
| |
Collapse
|
42
|
Weinhäupl K, Wang Y, Hessel A, Brennich M, Lindorff-Larsen K, Schanda P. Architecture and assembly dynamics of the essential mitochondrial chaperone complex TIM9·10·12. Structure 2021; 29:1065-1073.e4. [PMID: 33974880 DOI: 10.1016/j.str.2021.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/30/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Abstract
Tim chaperones transport membrane proteins to the two mitochondrial membranes. TIM9·10, a 70 kDa protein complex formed by 3 copies of Tim9 and Tim10, guides its clients across the aqueous compartment. The TIM9·10·12 complex is the anchor point at the inner-membrane insertase TIM22. The subunit composition of TIM9·10·12 remains debated. Joint NMR, small-angle X-ray scattering, and MD simulation data allow us to derive a structural model of the TIM9·10·12 assembly, with a 2:3:1 stoichiometry (Tim9:Tim10:Tim12). Both TIM9·10 and TIM9·10·12 hexamers are in a dynamic equilibrium with their constituent subunits, exchanging on a minutes timescale. NMR data establish that the subunits exhibit large conformational dynamics: when the conserved cysteines of the CX3C-Xn-CX3C motifs are formed, short α helices are formed, and these are fully stabilized only upon formation of the mature hexameric chaperone. We propose that the continuous subunit exchange allows mitochondria to control their level of inter-membrane space chaperones.
Collapse
Affiliation(s)
- Katharina Weinhäupl
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue Des Martyrs, 38044 Grenoble, France
| | - Yong Wang
- Structural Biology and NMR Laboratory, the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Audrey Hessel
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue Des Martyrs, 38044 Grenoble, France
| | - Martha Brennich
- European Molecular Biology Laboratory, 38042 Grenoble, France
| | - Kresten Lindorff-Larsen
- Structural Biology and NMR Laboratory, the Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Paul Schanda
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue Des Martyrs, 38044 Grenoble, France.
| |
Collapse
|
43
|
Kantsadi AL, Cattermole E, Matsoukas MT, Spyroulias GA, Vakonakis I. A COVID moonshot: assessment of ligand binding to the SARS-CoV-2 main protease by saturation transfer difference NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2021; 75:167-178. [PMID: 33856612 PMCID: PMC8047523 DOI: 10.1007/s10858-021-00365-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiological cause of the coronavirus disease 2019, for which no effective antiviral therapeutics are available. The SARS-CoV-2 main protease (Mpro) is essential for viral replication and constitutes a promising therapeutic target. Many efforts aimed at deriving effective Mpro inhibitors are currently underway, including an international open-science discovery project, codenamed COVID Moonshot. As part of COVID Moonshot, we used saturation transfer difference nuclear magnetic resonance (STD-NMR) spectroscopy to assess the binding of putative Mpro ligands to the viral protease, including molecules identified by crystallographic fragment screening and novel compounds designed as Mpro inhibitors. In this manner, we aimed to complement enzymatic activity assays of Mpro performed by other groups with information on ligand affinity. We have made the Mpro STD-NMR data publicly available. Here, we provide detailed information on the NMR protocols used and challenges faced, thereby placing these data into context. Our goal is to assist the interpretation of Mpro STD-NMR data, thereby accelerating ongoing drug design efforts.
Collapse
Affiliation(s)
- Anastassia L Kantsadi
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Emma Cattermole
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | | | - Georgios A Spyroulias
- Department of Pharmacy, University of Patras, Panepistimioupoli Campus, 26504, Patras, Greece
| | - Ioannis Vakonakis
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
44
|
Bersch B, Tarbouriech N, Burmeister WP, Iseni F. Solution Structure of the C-terminal Domain of A20, the Missing Brick for the Characterization of the Interface between Vaccinia Virus DNA Polymerase and its Processivity Factor. J Mol Biol 2021; 433:167009. [PMID: 33901538 DOI: 10.1016/j.jmb.2021.167009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 11/26/2022]
Abstract
Poxviruses are enveloped viruses with a linear, double-stranded DNA genome. Viral DNA synthesis is achieved by a functional DNA polymerase holoenzyme composed of three essential proteins. For vaccinia virus (VACV) these are E9, the catalytic subunit, a family B DNA polymerase, and the heterodimeric processivity factor formed by D4 and A20. The A20 protein links D4 to the catalytic subunit. High-resolution structures have been obtained for the VACV D4 protein in complex with an N-terminal fragment of A20 as well as for E9. In addition, biochemical studies provided evidence that a poxvirus-specific insertion (insert 3) in E9 interacts with the C-terminal residues of A20. Here, we provide solution structures of two different VACV A20 C-terminal constructs containing residues 304-426, fused at their C-terminus to either a BAP (Biotin Acceptor Peptide)-tag or a short peptide containing the helix of E9 insert 3. Together with results from titration studies, these structures shed light on the molecular interface between the catalytic subunit and the processivity factor component A20. The interface comprises hydrophobic residues conserved within the Chordopoxvirinae subfamily. Finally, we constructed a HADDOCK model of the VACV A20304-426-E9 complex, which is in excellent accordance with previous experimental data.
Collapse
Affiliation(s)
- Beate Bersch
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France.
| | - Nicolas Tarbouriech
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Wim P Burmeister
- Institut de Biologie Structurale, Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Frédéric Iseni
- Unité de Virologie, Institut de Recherche Biomédicale des Armées, BP73, F-91223 Brétigny-sur-Orge Cedex, France
| |
Collapse
|
45
|
Freier R, Aragón E, Bagiński B, Pluta R, Martin-Malpartida P, Ruiz L, Condeminas M, Gonzalez C, Macias MJ. Structures of the germline-specific Deadhead and thioredoxin T proteins from Drosophila melanogaster reveal unique features among thioredoxins. IUCRJ 2021; 8:281-294. [PMID: 33708404 PMCID: PMC7924233 DOI: 10.1107/s2052252521000221] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Thioredoxins (Trxs) are ubiquitous enzymes that regulate the redox state in cells. In Drosophila, there are two germline-specific Trxs, Deadhead (Dhd) and thioredoxin T (TrxT), that belong to the lethal(3)malignant brain tumor signature genes and to the 'survival network' of genes that mediate the cellular response to DNA damage. Dhd is a maternal protein required for early embryogenesis that promotes protamine-histone exchange in fertilized eggs and midblastula transition. TrxT is testis-specific and associates with the lampbrush loops of the Y chromosome. Here, the first structures of Dhd and TrxT are presented, unveiling new features of these two thioredoxins. Dhd has positively charged patches on its surface, in contrast to the negatively charged surfaces commonly found in most Trxs. This distinctive charge distribution helps to define initial encounter complexes with DNA/RNA that will lead to final specific interactions with cofactors to promote chromatin remodeling. TrxT contains a C-terminal extension, which is mostly unstructured and highly flexible, that wraps the conserved core through a closed conformation. It is believed that these new structures can guide future work aimed at understanding embryo development and redox homeostasis in Drosophila. Moreover, due to their restricted presence in Schizophora (a section of the true flies), these structures can help in the design of small-molecular binders to modulate native redox homeostasis, thereby providing new applications for the control of plagues that cause human diseases and/or bring about economic losses by damaging crop production.
Collapse
Affiliation(s)
- Regina Freier
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Eric Aragón
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Błażej Bagiński
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Radoslaw Pluta
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Pau Martin-Malpartida
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Lidia Ruiz
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Miriam Condeminas
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Cayetano Gonzalez
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Maria J. Macias
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
- ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
46
|
Vallet A, Favier A, Brutscher B, Schanda P. ssNMRlib: a comprehensive library and tool box for acquisition of solid-state nuclear magnetic resonance experiments on Bruker spectrometers. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2020; 1:331-345. [PMID: 37904819 PMCID: PMC10500710 DOI: 10.5194/mr-1-331-2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/16/2020] [Indexed: 11/01/2023]
Abstract
We introduce ssNMRlib, a comprehensive suite of pulse sequences and jython scripts for user-friendly solid-state nuclear magnetic resonance (NMR) data acquisition, parameter optimization and storage on Bruker spectrometers. ssNMRlib allows the straightforward setup of even highly complex multi-dimensional solid-state NMR experiments with a few clicks from an intuitive graphical interface directly from the Bruker Topspin acquisition software. ssNMRlib allows the setup of experiments in a magnetic-field-independent manner and thus facilitates the workflow in a multi-spectrometer setting with a centralized library. Safety checks furthermore assist the user in experiment setup. Currently hosting more than 140 1D to 4D experiments, primarily for biomolecular solid-state NMR, the library can be easily customized and new experiments are readily added as new templates. ssNMRlib is part of the previously introduced NMRlib library, which comprises many solution-NMR pulse sequences and macros.
Collapse
Affiliation(s)
- Alicia Vallet
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Adrien Favier
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Bernhard Brutscher
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044 Grenoble, France
| | - Paul Schanda
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, 38044 Grenoble, France
| |
Collapse
|
47
|
Christou NE, Ayala I, Giandoreggio-Barranco K, Byrdin M, Adam V, Bourgeois D, Brutscher B. NMR Reveals Light-Induced Changes in the Dynamics of a Photoswitchable Fluorescent Protein. Biophys J 2019; 117:2087-2100. [PMID: 31733726 DOI: 10.1016/j.bpj.2019.10.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 09/20/2019] [Accepted: 10/25/2019] [Indexed: 12/22/2022] Open
Abstract
The availability of fluorescent proteins with distinct phototransformation properties is crucial for a wide range of applications in advanced fluorescence microscopy and biotechnology. To rationally design new variants optimized for specific applications, a detailed understanding of the mechanistic features underlying phototransformation is essential. At present, little is known about the conformational dynamics of fluorescent proteins at physiological temperature and how these dynamics contribute to the observed phototransformation properties. Here, we apply high-resolution NMR spectroscopy in solution combined with in situ sample illumination at different wavelengths to investigate the conformational dynamics of rsFolder, a GFP-derived protein that can be reversibly switched between a green fluorescent state and a nonfluorescent state. Our results add a dynamic view to the static structures obtained by x-ray crystallography. Including a custom-tailored NMR toolbox in fluorescent protein research provides new opportunities for investigating the effect of mutations or changes in the environmental conditions on the conformational dynamics of phototransformable fluorescent proteins and their correlation with the observed photochemical and photophysical properties.
Collapse
Affiliation(s)
- Nina-Eleni Christou
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Isabel Ayala
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | | | - Martin Byrdin
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Virgile Adam
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Dominique Bourgeois
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Bernhard Brutscher
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|