1
|
Bose S, Do V, Testini C, Jadhav SS, Sailliet N, Kho AT, Komatsu M, Boneschansker L, Kong SW, Wedel J, Briscoe DM. Immunomodulation by allograft endothelial cells. FRONTIERS IN TRANSPLANTATION 2025; 4:1518772. [PMID: 39967861 PMCID: PMC11832486 DOI: 10.3389/frtra.2025.1518772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
It is increasingly appreciated that the expression of immunoregulatory molecules within tumors have potential to shape a microenvironment that promotes local immunoevasion and immunoregulation. However, little is known about tissue-intrinsic immunomodulatory mechanisms following transplantation. We propose that differences in the phenotype of microvascular endothelial cells impact the alloantigenicity of the graft and its potential to promote immunoregulation following transplantation. We focus this review on the concept that graft-dependent immunoregulation may evolve post-transplantation, and that it is dependent on the phenotype of select subsets of intragraft endothelial cells. We also discuss evidence that long-term graft survival is critically dependent on adaptive interactions among immune cells and endothelial cells within the transplanted tissue microenvironment.
Collapse
Affiliation(s)
- Sayantan Bose
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Vicki Do
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
| | - Chiara Testini
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Suchita S. Jadhav
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Nicolas Sailliet
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Alvin T. Kho
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | - Masaki Komatsu
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Leo Boneschansker
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| | - Sek Won Kong
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | - Johannes Wedel
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, United States
| | - David M. Briscoe
- Transplant Research Program, Boston Children’s Hospital, Boston, MA, United States
- Division of Nephrology, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Boston Children’s Hospital, Boston, MA, United States
- The Department of Pediatrics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Komatsu K, Ko JA, Shimizu A, Okumichi H, Kiuchi Y. Functional Analysis of Semaphorin 3A in Retinal Ganglion Cells under Hypoxia In Vitro. BIOL BULL+ 2023. [DOI: 10.1134/s1062359022700017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
3
|
Lu Q, Cai P, Yu Y, Liu Z, Chen G, Zeng Z. Sema4D correlates with tumour immune infiltration and is a prognostic biomarker in bladder cancer, renal clear cell carcinoma, melanoma and thymoma. Autoimmunity 2021; 54:294-302. [PMID: 33974462 DOI: 10.1080/08916934.2021.1925885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Sema4D, a member of the immune semaphorin family, plays crucial roles in the immune regulation, bone resorption and nervous system. It is also involved in angiogenesis and tumour progression. However, systemic studies on the correlation between Sema4D expression and the immune infiltration or clinical outcomes in tumours are still limited. Here, we analysed the landscape of Sema4D expression and its prognostic value in the cancer genome atlas pan-cancer as well as the correlation between Sema4D and immune cell infiltration by Tumour Immune Estimation Resource and Gene Expression Profiling interactive analysis online tools. Results showed that a higher Sema4D expression was significantly correlated with a favourable overall survival in diverse solid tumours including bladder cancer (Hazards Ratio (HR)=0.68, p = .0095), kidney renal clear cell carcinoma (HR = 0.61, p = .0016), melanoma (HR = 0.58, p = 6.6e-05) and thymoma (HR = 0.1, p = .011). Interestingly, Sema4D expression has positive correlation with various tumour infiltrating immune cells and immune cell biomarkers in these tumours. These results suggest that Sema4D could be a prospective biomarker for calculating hazard ratio of tumour patients and their tumour immune infiltration levels.
Collapse
Affiliation(s)
- Qiongyu Lu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Ping Cai
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yan Yu
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| | - Ziting Liu
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Guona Chen
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology of Jiangsu Province, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Zhao Zeng
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China.,Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
4
|
Immune semaphorins: Crucial regulatory signals and novel therapeutic targets in asthma and allergic diseases. Eur J Pharmacol 2020; 881:173209. [PMID: 32454117 DOI: 10.1016/j.ejphar.2020.173209] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 11/20/2022]
Abstract
Asthma and allergic diseases are a group of chronic inflammatory disorders that arise as a result of excessive responses of the immune system against intrinsically harmless environmental substances. It is well known that substantial joint characteristics exist between the immune and nervous systems. The semaphorins (Semas) were initially characterized as axon-guidance molecules that play a crucial role during the development of the nervous system. However, increasing evidence indicates that a subset of Semas, termed "immune Semas", acting through their cognate receptors, namely, plexins (Plxns), and neuropilins (Nrps), also contributes to both physiological and pathological responses of the immune system. Notably, immune Semas exert critical roles in regulating a broad spectrum of biological processes, including immune cell-cell interactions, activation, differentiation, cell migration and mobility, angiogenesis, tumor progression, as well as inflammatory responses. Accumulating evidence indicates that the modification in the signaling of immune Semas could lead to various immune-mediated inflammatory diseases, ranging from cancer to autoimmunity and allergies. This review summarizes the recent evidence regarding the role of immune Semas in the pathogenesis of asthma and allergic diseases and discusses their therapeutic potential for treating these diseases.
Collapse
|
5
|
Iragavarapu-Charyulu V, Wojcikiewicz E, Urdaneta A. Semaphorins in Angiogenesis and Autoimmune Diseases: Therapeutic Targets? Front Immunol 2020; 11:346. [PMID: 32210960 PMCID: PMC7066498 DOI: 10.3389/fimmu.2020.00346] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/12/2020] [Indexed: 01/17/2023] Open
Abstract
The axonal guidance molecules, semaphorins, have been described to function both physiologically and pathologically outside of the nervous system. In this review, we focus on the vertebrate semaphorins found in classes 3 through 7 and their roles in vascular development and autoimmune diseases. Recent studies indicate that while some of these vertebrate semaphorins promote angiogenesis, others have an angiostatic function. Since some semaphorins are also expressed by different immune cells and are known to modulate immune responses, they have been implicated in autoimmune disorders such as multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus and systemic sclerosis. We conclude this review by addressing strategies targeting semaphorins as potential therapeutic agents for angiogenesis and autoimmune diseases.
Collapse
Affiliation(s)
| | - Ewa Wojcikiewicz
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| | - Alexandra Urdaneta
- Department of Biomedical Sciences, Florida Atlantic University, Boca Raton, FL, United States
| |
Collapse
|
6
|
Liu LN, Wang P, Zou YF, Xu Z, Cheng J, Zhang Y, Hu W, Pan HF. Semaphorin-3A, semaphorin-7A gene single nucleotide polymorphisms, and systemic lupus erythematosus susceptibility. Autoimmunity 2019; 52:161-167. [DOI: 10.1080/08916934.2019.1642333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Li-Na Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, PR China
| | - Peng Wang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, PR China
| | - Yan-Feng Zou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, PR China
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Zhiwei Xu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Jian Cheng
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Yuzhou Zhang
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Wenbiao Hu
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, PR China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, PR China
- School of Public Health and Social Work, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
7
|
Garcia S. Role of Semaphorins in Immunopathologies and Rheumatic Diseases. Int J Mol Sci 2019; 20:ijms20020374. [PMID: 30654587 PMCID: PMC6359241 DOI: 10.3390/ijms20020374] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/14/2019] [Accepted: 01/14/2019] [Indexed: 12/17/2022] Open
Abstract
Rheumatic diseases are disorders characterized by joint inflammation, in which other organs are also affected. There are more than two hundred rheumatic diseases, the most studied so far are rheumatoid arthritis, osteoarthritis, spondyloarthritis, systemic lupus erythematosus, and systemic sclerosis. The semaphorin family is a large group of proteins initially described as axon guidance molecules involved in nervous system development. Studies have demonstrated that semaphorins play a role in other processes such as the regulation of immunity, angiogenesis, bone remodeling, apoptosis, and cell migration and invasion. Moreover, semaphorins have been related to the pathogenesis of multiple sclerosis, asthma, Alzheimer, myocarditis, atherosclerosis, fibrotic diseases, osteopetrosis, and cancer. The aim of this review is to summarize current knowledge regarding the role of semaphorins in rheumatic diseases, and discuss their potential applications as therapeutic targets to treat these disorders.
Collapse
Affiliation(s)
- Samuel Garcia
- Department of Rheumatology and Clinical Immunology and Laboratory of Translational Immunology, University Medical Center Utrecht, University of Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands.
| |
Collapse
|
8
|
Lotfi R, Yari K. The Role of Semaphorins and their Receptors in the Immune System and their Relation to Multiple Sclerosis. ACTA ACUST UNITED AC 2018. [DOI: 10.29252/shefa.6.4.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
9
|
Luque MCA, Galuppo MK, Capelli-Peixoto J, Stolf BS. CD100 Effects in Macrophages and Its Roles in Atherosclerosis. Front Cardiovasc Med 2018; 5:136. [PMID: 30324109 PMCID: PMC6173139 DOI: 10.3389/fcvm.2018.00136] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 09/07/2018] [Indexed: 12/31/2022] Open
Abstract
CD100 or Sema4D is a protein from the semaphorin family with important roles in the vascular, nervous and immune systems. It may be found as a membrane bound dimer or as a soluble molecule originated by proteolytic cleavage. Produced by the majority of hematopoietic cells including B and T lymphocytes, natural killer and myeloid cells, as well as endothelial cells, CD100 exerts its actions by binding to different receptors depending on the cell type and on the organism. Cell-to-cell adhesion, angiogenesis, phagocytosis, T cell priming, and antibody production are examples of the many functions of this molecule. Of note, high CD100 serum levels has been found in inflammatory as well as in infectious diseases, but the roles of the protein in the pathogenesis of these diseases has still to be clarified. Macrophages are highly heterogeneous cells present in almost all tissues, which may change their functions in response to microenvironmental conditions. They are key players in the innate and adaptive immune responses and have decisive roles in sterile conditions but also in several diseases such as atherosclerosis, autoimmunity, tumorigenesis, and antitumor responses, among others. Although it is known that macrophages express CD100 and its receptors, few studies have focused on the role of this semaphorin in this cell type or in macrophage-associated diseases. The aim of this review is to critically revise the available data about CD100 and atherosclerosis, with special emphasis on its roles in macrophages and monocytes. We will also describe the few available data on treatments with anti-CD100 antibodies in different diseases. We hope that this review stimulates future studies on the effects of such an important molecule in a cell type with decisive roles in inflammatory diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Maria C A Luque
- Heart Institute, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | |
Collapse
|
10
|
Galuppo MK, de Rezende E, Forti FL, Cortez M, Cruz MC, Teixeira AA, Giordano RJ, Stolf BS. CD100/Sema4D Increases Macrophage Infection by Leishmania (Leishmania) amazonensis in a CD72 Dependent Manner. Front Microbiol 2018; 9:1177. [PMID: 29922261 PMCID: PMC5996280 DOI: 10.3389/fmicb.2018.01177] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 05/15/2018] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is caused by trypanosomatid protozoa of the genus Leishmania, which infect preferentially macrophages. The disease affects 12 million people worldwide, who may present cutaneous, mucocutaneous or visceral forms. Several factors influence the form and severity of the disease, and the main ones are the Leishmania species and the host immune response. CD100 is a membrane bound protein that can also be shed. It was first identified in T lymphocytes and latter shown to be induced in macrophages by inflammatory stimuli. The soluble CD100 (sCD100) reduces migration and expression of inflammatory cytokines in human monocytes and dendritic cells, as well as the intake of oxidized low-density lipoprotein (oxLDL) by human macrophages. Considering the importance of macrophages in Leishmania infection and the potential role of sCD100 in the modulation of macrophage phagocytosis and activation, we analyzed the expression and distribution of CD100 in murine macrophages and the effects of sCD100 on macrophage infection by Leishmania (Leishmania) amazonensis. Here we show that CD100 expression in murine macrophages increases after infection with Leishmania. sCD100 augments infection and phagocytosis of Leishmania (L.) amazonensis promastigotes by macrophages, an effect dependent on macrophage CD72 receptor. Besides, sCD100 enhances phagocytosis of zymosan particles and infection by Trypanosoma cruzi.
Collapse
Affiliation(s)
- Mariana K Galuppo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eloiza de Rezende
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fabio L Forti
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Mauro Cortez
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mario C Cruz
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Andre A Teixeira
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ricardo J Giordano
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Beatriz S Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
11
|
Liu LN, Li XM, Ye DQ, Pan HF. Emerging role of semaphorin-3A in autoimmune diseases. Inflammopharmacology 2018; 26:655-665. [PMID: 29696565 DOI: 10.1007/s10787-018-0484-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 04/16/2018] [Indexed: 12/24/2022]
Abstract
Autoimmune diseases (ADs) are featured by the body's immune responses being directed against its own tissues, resulting in prolonged inflammation and subsequent tissue damage. Currently, the exact pathogenesis of ADs remains not fully elucidated. Semaphorin-3A (Sema3A), a secreted member of semaphorin family, is a potent immunoregulator during all immune response stages. Sema3A has wide expression, such as in bone, connective tissue, kidney, neurons, and cartilage. Sema3A can downregulate ADs by suppressing the over-activity of both T-cell and B-cell autoimmunity. Moreover, Sema3A shows the ability to enhance T-cell and B-cell regulatory properties that control ADs, including systemic lupus erythematosus, rheumatoid arthritis, multiple sclerosis, and systemic sclerosis. However, it can also induce ADs when overexpressed. Together, these data strongly suggest that Sema3A plays a pivotal role in ADs, and it may be a promising treatment target for these diseases. In the present review, we focus on the immunological functions of Sema3A and summarize recent studies on the involvement of Sema3A in the pathogenesis of ADs; the discoveries obtained from recent findings may translate into novel therapeutic agent for ADs.
Collapse
Affiliation(s)
- Li-Na Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Xiao-Mei Li
- Department of Rheumatology, Anhui Provincial Hospital, 17 Lujiang Road, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, 81 Meishan Road, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
12
|
Takada H, Ibaragi S, Eguchi T, Okui T, Obata K, Masui M, Morisawa A, Takabatake K, Kawai H, Yoshioka N, Hassan NMM, Shimo T, Hu GF, Nagatsuka H, Sasaki A. Semaphorin 4D promotes bone invasion in head and neck squamous cell carcinoma. Int J Oncol 2017; 51:625-632. [PMID: 28656278 DOI: 10.3892/ijo.2017.4050] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/15/2017] [Indexed: 12/11/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) frequently invade the bones of the facial skeleton. Semaphorin 4D (Sema4D) is an axon guidance molecule produced by oligodendrocytes. Sema4D was also identified in the bone microenvironment and many cancer tissues including HNSCC. To date, however, the role of Sema4D in cancer-associated bone disease is still unknown. This is the first study to demonstrate the role of Sema4D in bone invasion of cancer. In the clinical tissue samples of bone lesion of HNSCC, Sema4D was detected at high levels, and its expression was correlated with insulin-like growth factor-I (IGF-I) expression. In vitro experiments showed that IGF-I regulates Sema4D expression and Sema4D increased proliferation, migration and invasion in HNSCC cells. Sema4D also regulated the expression of receptor activator of nuclear factor κβ ligand (RANKL) in osteoblasts, and this stimulated osteoclastgenesis. Furthermore, knockdown of Sema4D in HNSCC cells inhibited tumor growth and decreased the number of osteoclasts in a mouse xenograft model. Taken together, IGF-I-driven production of Sema4D in HNSCCs promotes osteoclastogenesis and bone invasion.
Collapse
Affiliation(s)
- Hiroyuki Takada
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Takanori Eguchi
- Department of Dental Pharmacology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Tatsuo Okui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kyoichi Obata
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Masanori Masui
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Ayaka Morisawa
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Kiyofumi Takabatake
- Departments of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Hotaka Kawai
- Departments of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Norie Yoshioka
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | | | - Tsuyoshi Shimo
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Guo-Fu Hu
- Molecular Oncology Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Hitoshi Nagatsuka
- Departments of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita-ku, Okayama, Japan
| |
Collapse
|
13
|
Rezaeepoor M, Shapoori S, Ganjalikhani-Hakemi M, Etemadifar M, Alsahebfosoul F, Eskandari N, Mansourian M. Decreased expression of Sema3A, an immune modulator, in blood sample of multiple sclerosis patients. Gene 2017; 610:59-63. [PMID: 28188869 DOI: 10.1016/j.gene.2017.02.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/12/2017] [Accepted: 02/06/2017] [Indexed: 02/08/2023]
Abstract
Semaphorin 3A (Sema3A) as an immune modulator could participate in the pathogenesis of autoimmune diseases. In the current study, we aimed to investigate Sema3A expression in peripheral blood mononuclear cells (PBMCs) and its serum level in relapsing-remitting multiple sclerosis (RRMS) patients. Fifteen newly determined and untreated RRMS patients were chosen and assessed in relapsing and remitting phases in compare with fifteen healthy individuals. In consistent with previous findings in other autoimmune diseases, our results revealed that serum level of Sema3A and its expression in PBMCs of RRMS patients were significantly lower than in normal subjects. We also evaluated this down regulation predictive value with ROC analysis. According to our data, we suggest that Sema3A could be involved in pathogenesis of MS and might be a potential diagnostic biomarker for the disease.
Collapse
Affiliation(s)
- Mahsa Rezaeepoor
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shima Shapoori
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Masoud Etemadifar
- Multiple Sclerosis and Neuroimmunology Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fereshteh Alsahebfosoul
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nahid Eskandari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marjan Mansourian
- Department of Biostatistics and Epidemiology, Faculty of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
14
|
Chen G, Doumatey AP, Zhou J, Lei L, Bentley AR, Tekola-Ayele F, Adebamowo SN, Baker JL, Fasanmade O, Okafor G, Eghan B, Agyenim-Boateng K, Amoah A, Adebamowo C, Acheampong J, Johnson T, Oli J, Shriner D, Adeyemo AA, Rotimi CN. Genome-wide analysis identifies an african-specific variant in SEMA4D associated with body mass index. Obesity (Silver Spring) 2017; 25:794-800. [PMID: 28296344 PMCID: PMC5373947 DOI: 10.1002/oby.21804] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The prevalence of obesity varies between ethnic groups. No genome-wide association study (GWAS) for body mass index (BMI) has been conducted in continental Africans. METHODS We performed a GWAS for BMI in 1,570 West Africans (WA). Replication was conducted in independent samples of WA (n = 1,411) and African Americans (AA) (n = 9,020). RESULTS We identified a novel genome-wide significant African-specific locus for BMI (SEMA4D, rs80068415; minor allele frequency = 0.008, P = 2.10 × 10-8 ). This finding was replicated in independent samples of WA (P = 0.013) and AA (P = 0.017). Individuals with obesity had higher serum SEMA4D levels compared to those without obesity (P < 0.0001), and elevated levels of serum SEMA4D were associated with increased obesity risk (OR = 4.2, P < 1 × 10-4 ). The prevalence of obesity was higher in individuals with the CT versus TT genotypes (55.6% vs. 22.9%). CONCLUSIONS A novel variant in SEMA4D was significantly associated with BMI. Carriers of the C allele were 4.6 BMI units heavier than carriers of the T allele (P = 0.0007). This variant is monomorphic in Europeans and Asians, highlighting the importance of studying diverse populations. While there is evidence for the involvement of SEMA4D in inflammatory processes, this study is the first to implicate SEMA4D in obesity pathophysiology.
Collapse
Affiliation(s)
- Guanjie Chen
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Ayo P Doumatey
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Jie Zhou
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Lin Lei
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Fasil Tekola-Ayele
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Sally N Adebamowo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Jennifer L Baker
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Olufemi Fasanmade
- University of Lagos, College of Medicine, Endocrine and Metabolic Unit, Lagos, Nigeria
| | - Godfrey Okafor
- University of Nigeria Teaching Hospital, Department of Hematology, Enugu, Nigeria
| | - Benjamin Eghan
- University of Science and Technology, Department of Medicine, Kumasi, Ghana
| | | | - Albert Amoah
- University of Ghana Medical School, Department of Medicine and Therapeutics, Accra, Ghana
| | | | - Joseph Acheampong
- University of Science and Technology, Department of Medicine, Kumasi, Ghana
| | - Thomas Johnson
- University of Lagos, College of Medicine, Endocrine and Metabolic Unit, Lagos, Nigeria
| | - Johnnie Oli
- University of Nigeria Teaching Hospital, Department of Hematology, Enugu, Nigeria
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA, 20892
| |
Collapse
|
15
|
Peng SX, Yao L, Cui C, Zhao HD, Liu CJ, Li YH, Wang LF, Huang SB, Shen YQ. Semaphorin4D promotes axon regrowth and swimming ability during recovery following zebrafish spinal cord injury. Neuroscience 2017; 351:36-46. [PMID: 28347780 DOI: 10.1016/j.neuroscience.2017.03.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 03/16/2017] [Accepted: 03/19/2017] [Indexed: 01/03/2023]
Abstract
Semaphorins comprise a family of proteins involved in axon guidance during development. Semaphorin4D (Sema4D) has both neuroregenerative and neurorepressive functions, being able to stimulate both axonal outgrowth and growth cone collapse during development, and therefore could play an important role in neurological recovery from traumatic injury. Here, we used a zebrafish spinal cord transection model to study the role of Sema4D in a system capable of neuroregeneration. Real-time qPCR and in situ hybridization showed upregulated Sema4D expression in the acute response phase (within 3days post SCI), and downregulated levels in the chronic response phase (11-21days after SCI). Double-immunostaining for Sema4D and either Islet-1 (motoneuron marker) or Iba-1 (microglial marker) showed that microglia surrounded Sema4D-positive motoneurons along the central canal at 4h post injury (hpi) and 12hpi. Following administration of Sema4D morpholino (MO) to transected zebrafish, double-immunostaining showed that Sema4D-positive motoneurons surrounded by microglia decreased at 7days and 11days compared with standard control MO. Anterograde and retrograde tracing indicate that Sema4D participates in axon regeneration in the spinal cord following spinal cord injury (SCI) in the zebrafish. Swim tracking shows that MO-mediated inhibition of Sema4D retarded the recovery of swimming function when compared to standard control MO. The combined results indicate that Sema4D expression in motoneurons enhances locomotor recovery and axon regeneration, possibly by regulating microglia function, after SCI in adult zebrafish.
Collapse
Affiliation(s)
- Shi-Xiao Peng
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Li Yao
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chun Cui
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Hou-de Zhao
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Chun-Jie Liu
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yu-Hong Li
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Lin-Fang Wang
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Shu-Bing Huang
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yan-Qin Shen
- Wuxi Medical College, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
16
|
Kuklina EM, Nekrasova IV. New aspects of the Seam4D-dependent control of lymphocyte activation. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2017; 473:84-88. [PMID: 28508207 DOI: 10.1134/s0012496617020028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 06/07/2023]
Abstract
Novel targets for action of the class IV semaphorin Seam4D have been identified in the immune system. The low-affinity CD72 receptor for Seam4D was detected not only on B lymphocytes, but also in a proportion of T cells, whereas the high-affinity semaphorin receptor, plexin B1, originally considered to belong to non-immune cells, proved to be in a great proportion of intact T and B cells. Seam4D is constitutively expressed in B cells, which, along with T cells, can serve as a source of both membrane and soluble semaphorin. The results obtained make significant adjustments in understanding of Seam4D effects in lymphoid cells.
Collapse
Affiliation(s)
- E M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Ural Division, Russian Academy of Sciences, Perm, Russia.
| | - I V Nekrasova
- Institute of Ecology and Genetics of Microorganisms, Ural Division, Russian Academy of Sciences, Perm, Russia
| |
Collapse
|
17
|
The intragraft microenvironment as a central determinant of chronic rejection or local immunoregulation/tolerance. Curr Opin Organ Transplant 2016; 22:55-63. [PMID: 27898465 DOI: 10.1097/mot.0000000000000373] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE OF REVIEW Chronic rejection is associated with persistent mononuclear cell recruitment, endothelial activation and proliferation, local tissue hypoxia and related biology that enhance effector immune responses. In contrast, the tumor microenvironment elicits signals/factors that inhibit effector T cell responses and rather promote immunoregulation locally within the tissue itself. The identification of immunoregulatory check points and/or secreted factors that are deficient within allografts is of great importance in the understanding and prevention of chronic rejection. RECENT FINDINGS The relative deficiency of immunomodulatory molecules (cell surface and secreted) on microvascular endothelial cells within the intragraft microenvironment, is of functional importance in shaping the phenotype of rejection. These regulatory molecules include coinhibitory and/or intracellular regulatory signals/factors that enhance local activation of T regulatory cells. For example, semaphorins may interact with endothelial cells and CD4 T cells to promote local tolerance. Additionally, metabolites and electrolytes within the allograft microenvironment may regulate local effector and regulatory cell responses. SUMMARY Multiple factors within allografts shape the microenvironment either towards local immunoregulation or proinflammation. Promoting the expression of intragraft cell surface or secreted molecules that support immunoregulation will be critical for long-term graft survival and/or alloimmune tolerance.
Collapse
|
18
|
Anderson JE, Do MKQ, Daneshvar N, Suzuki T, Dort J, Mizunoya W, Tatsumi R. The role of semaphorin3A in myogenic regeneration and the formation of functional neuromuscular junctions on new fibres. Biol Rev Camb Philos Soc 2016; 92:1389-1405. [PMID: 27296513 DOI: 10.1111/brv.12286] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 01/03/2023]
Abstract
Current research on skeletal muscle injury and regeneration highlights the crucial role of nerve-muscle interaction in the restoration of innervation during that process. Activities of muscle satellite or stem cells, recognized as the 'currency' of myogenic repair, have a pivotal role in these events, as shown by ongoing research. More recent investigation of myogenic signalling events reveals intriguing roles for semaphorin3A (Sema3A), secreted by activated satellite cells, in the muscle environment during development and regeneration. For example, Sema3A makes important contributions to regulating the formation of blood vessels, balancing bone formation and bone remodelling, and inflammation, and was recently implicated in the establishment of fibre-type distribution through effects on myosin heavy chain gene expression. This review highlights the active or potential contributions of satellite-cell-derived Sema3A to regulation of the processes of motor neurite ingrowth into a regenerating muscle bed. Successful restoration of functional innervation during muscle repair is essential; this review emphasizes the integrative role of satellite-cell biology in the progressive coordination of adaptive cellular and tissue responses during the injury-repair process in voluntary muscle.
Collapse
Affiliation(s)
- Judy E Anderson
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Mai-Khoi Q Do
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Nasibeh Daneshvar
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Takahiro Suzuki
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Junio Dort
- Department of Biological Sciences, Faculty of Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University, Higashi-ku Fukuoka, 8128581, Japan
| |
Collapse
|
19
|
Battistini C, Tamagnone L. Transmembrane semaphorins, forward and reverse signaling: have a look both ways. Cell Mol Life Sci 2016; 73:1609-22. [PMID: 26794845 PMCID: PMC11108563 DOI: 10.1007/s00018-016-2137-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 01/06/2023]
Abstract
Semaphorins are signaling molecules playing pivotal roles not only as axon guidance cues, but are also involved in the regulation of a range of biological processes, such as immune response, angiogenesis and invasive tumor growth. The main functional receptors for semaphorins are plexins, which are large single-pass transmembrane molecules. Semaphorin signaling through plexins-the "classical" forward signaling-affects cytoskeletal remodeling and integrin-dependent adhesion, consequently influencing cell migration. Intriguingly, semaphorins and plexins can interact not only in trans, but also in cis, leading to differentiated and highly regulated signaling outputs. Moreover, transmembrane semaphorins can also mediate a so-called "reverse" signaling, by acting not as ligands but rather as receptors, and initiate a signaling cascade through their own cytoplasmic domains. Semaphorin reverse signaling has been clearly demonstrated in fruit fly Sema1a, which is required to control motor axon defasciculation and target recognition during neuromuscular development. Sema1a invertebrate semaphorin is most similar to vertebrate class-6 semaphorins, and examples of semaphorin reverse signaling in mammalians have been described for these family members. Reverse signaling is also reported for other vertebrate semaphorin subsets, e.g. class-4 semaphorins, which bear potential PDZ-domain interaction motifs in their cytoplasmic regions. Therefore, thanks to their various signaling abilities, transmembrane semaphorins can play multifaceted roles both in developmental processes and in physiological as well as pathological conditions in the adult.
Collapse
Affiliation(s)
- Chiara Battistini
- Department of Oncology, University of Torino c/o IRCCS, Str. Prov. 142, 10060, Candiolo (TO), Italy
- Candiolo Cancer Institute, IRCCS-FPO, Str. Prov. 142, 10060, Candiolo (TO), Italy
| | - Luca Tamagnone
- Department of Oncology, University of Torino c/o IRCCS, Str. Prov. 142, 10060, Candiolo (TO), Italy.
- Candiolo Cancer Institute, IRCCS-FPO, Str. Prov. 142, 10060, Candiolo (TO), Italy.
| |
Collapse
|
20
|
Leitner DF, Todorich B, Zhang X, Connor JR. Semaphorin4A Is Cytotoxic to Oligodendrocytes and Is Elevated in Microglia and Multiple Sclerosis. ASN Neuro 2015; 7:7/3/1759091415587502. [PMID: 26024919 PMCID: PMC4449839 DOI: 10.1177/1759091415587502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We have previously established that T cell immunoglobulin and mucin domain containing 2 (Tim2) is an H-ferritin receptor on oligodendrocytes (OLs). Tim2 also binds Semaphorin4A (Sema4A). Sema4A is expressed by lymphocytes, and its role in immune activation is known; however, its relationship to diseases that are known to have myelin damage has not been studied. In this study, we demonstrate that Sema4A is cytotoxic to OLs in culture: an effect accompanied by process collapse, membrane blebbing, and phosphatidylserine inversion. We further demonstrate that Sema4A preferentially binds to primary OLs but not astrocytes: an observation consistent with the lack of expression of Tim2 on astrocytes. We found that Sema4A protein levels are increased within multiple sclerosis plaques compared with normal-appearing white matter and that Sema4A induces lactate dehydrogenase release in a human OL cell line. The chief cellular source of Sema4A within the multiple sclerosis plaques appears to be infiltrating lymphocytes and microglia. Macrophages are known to express Sema4A, so we interrogated microglia as a potential source of Sema4A in the brain. We found that rat primary microglia express Sema4A which increased after lipopolysaccharide activation. Because activated microglia accumulate iron, we determined whether iron status influenced Sema4A and found that iron chelation decreased Sema4A and iron loading increased Sema4A in activated microglia. Overall, our data implicate Sema4A in the destruction of OLs and reveal that its expression is sensitive to iron levels.
Collapse
Affiliation(s)
- Dominique F Leitner
- Department of Neurosurgery, Penn State University College of Medicine, Hershey, PA, USA
| | - Bozho Todorich
- Duke Eye Center, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Xuesheng Zhang
- Department of Pediatrics, Penn State University College of Medicine, Hershey, PA, USA
| | - James R Connor
- Department of Neurosurgery, Penn State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
21
|
Malik MFA, Ye L, Jiang WG. Reduced expression of semaphorin 4D and plexin-B in breast cancer is associated with poorer prognosis and the potential linkage with oestrogen receptor. Oncol Rep 2015; 34:1049-57. [PMID: 26035216 DOI: 10.3892/or.2015.4015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 03/30/2015] [Indexed: 11/06/2022] Open
Abstract
Involvement of semaphorin 4D (Sema4D) and the receptor proteins of the plexins B family (plexin-B1, -B2 and -B3) in solid tumours suggests they play a role in breast cancer. In the present study, the expression of Sema4D and plexin-Bs was examined in a breast cancer cohort. The expression of Sema4D and plexin-Bs was examined in 147 tumours together with 22 normal mammary tissues using quantitative PCR along with clinicopathological patient data, as well as in MCF-7 and MDA-MB-231 cell lines treated with selective oestrogen receptor modulators (SERMs). The expression of Sema4D, plexin-B1 and -B2 was markedly reduced in tumours with local recurrence, compared to the patients that remained disease-free. The reduced Sema4D expression was associated with poorer disease-free survival (median, 111.6 months, 95% CI, 96.5-126.7), compared to the patients with a higher expression (median, 144.0 months; 95% CI, 130.8-157.3; p=0.033). A reduced expression of plexin-B1 was observed in tumours with poorer differentiation and was associated with poorer overall and disease-free survival. No similar association was identified in relation to plexin-B2 and -B3. A higher expression of Sema4D and plexin-B1 was observed in the ERα-positive tumours compared to the ERα-negative tumours. The expression of these molecules was largely regulated in breast cancer cells exposed to SERMs. A decreased expression of Sema4D, plexin-B1 and -B2 was associated with local recurrence and poor prognosis. Response to SERMs indicated potential perspectives of these molecules in clinical assessment and management of diseases.
Collapse
Affiliation(s)
- Muhammad Faraz Arshad Malik
- Metastasis and Angiogenesis Research Group, Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Lin Ye
- Metastasis and Angiogenesis Research Group, Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Wen G Jiang
- Metastasis and Angiogenesis Research Group, Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| |
Collapse
|
22
|
Mecollari V, Nieuwenhuis B, Verhaagen J. A perspective on the role of class III semaphorin signaling in central nervous system trauma. Front Cell Neurosci 2014; 8:328. [PMID: 25386118 PMCID: PMC4209881 DOI: 10.3389/fncel.2014.00328] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 09/29/2014] [Indexed: 01/07/2023] Open
Abstract
Traumatic injury of the central nervous system (CNS) has severe impact on the patients’ quality of life and initiates many molecular and cellular changes at the site of insult. Traumatic CNS injury results in direct damage of the axons of CNS neurons, loss of myelin sheaths, destruction of the surrounding vascular architecture and initiation of an immune response. Class III semaphorins (SEMA3s) are present in the neural scar and influence a wide range of molecules and cell types in and surrounding the injured tissue. SEMA3s and their receptors, neuropilins (NRPs) and plexins (PLXNs) were initially studied because of their involvement in repulsive axon guidance. To date, SEMA3 signaling is recognized to be of crucial importance for re-vascularization, the immune response and remyelination. The purpose of this review is to summarize and discuss how SEMA3s modulate these processes that are all crucial components of the tissue response to injury. Most of the functions for SEMA3s are achieved through their binding partners NRPs, which are also co-receptors for a variety of other molecules implicated in the above processes. The most notable ligands are members of the vascular endothelial growth factor (VEGF) family and the transforming growth factor family. Therefore, a second aim is to highlight the overlapping or competing signaling pathways that are mediated through NRPs in the same processes. In conclusion, we show that the role of SEMA3s goes beyond inhibiting axonal regeneration, since they are also critical modulators of re-vascularization, the immune response and re-myelination.
Collapse
Affiliation(s)
- Vasil Mecollari
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | - Bart Nieuwenhuis
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience Amsterdam, Netherlands
| | - Joost Verhaagen
- Laboratory for Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience Amsterdam, Netherlands ; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam Amsterdam, Netherlands
| |
Collapse
|
23
|
Kuklina EM, Nekrasova IV, Baidina TV, Danchenko IY. The role of the Sema4d/CD72-dependent signal in the regulation of B-cell activity in multiple sclerosis. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2014; 458:316-318. [PMID: 25371262 DOI: 10.1134/s001249661405007x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Indexed: 06/04/2023]
Affiliation(s)
- E M Kuklina
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Sciences, Perm', Russia,
| | | | | | | |
Collapse
|
24
|
Sharma A, LeVaillant CJ, Plant GW, Harvey AR. Changes in expression of Class 3 Semaphorins and their receptors during development of the rat retina and superior colliculus. BMC DEVELOPMENTAL BIOLOGY 2014; 14:34. [PMID: 25062604 PMCID: PMC4121511 DOI: 10.1186/s12861-014-0034-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 07/15/2014] [Indexed: 12/28/2022]
Abstract
Background Members of the Semaphorin 3 family (Sema3s) influence the development of the central nervous system, and some are implicated in regulating aspects of visual system development. However, we lack information about the timing of expression of the Sema3s with respect to different developmental epochs in the mammalian visual system. In this time-course study in the rat, we document for the first time changes in the expression of RNAs for the majority of Class 3 Semaphorins (Sema3s) and their receptor components during the development of the rat retina and superior colliculus (SC). Results During retinal development, transcript levels changed for all of the Sema3s examined, as well as Nrp2, Plxna2, Plxna3, and Plxna4a. In the SC there were also changes in transcript levels for all Sema3s tested, as well as Nrp1, Nrp2, Plxna1, Plxna2, Plxna3, and Plxna4a. These changes correlate with well-established epochs, and our data suggest that the Sema3s could influence retinal ganglion cell (RGC) apoptosis, patterning and connectivity in the maturing retina and SC, and perhaps guidance of RGC and cortical axons in the SC. Functionally we found that SEMA3A, SEMA3C, SEMA3E, and SEMA3F proteins collapsed purified postnatal day 1 RGC growth cones in vitro. Significantly this is a developmental stage when RGCs are growing into and within the SC and are exposed to Sema3 ligands. Conclusion These new data describing the overall temporal regulation of Sema3 expression in the rat retina and SC provide a platform for further work characterising the functional impact of these proteins on the development and maturation of mammalian visual pathways.
Collapse
Affiliation(s)
- Anil Sharma
- School of Anatomy, Physiology and Human Biology, The University of Western Australia, 35 Stirling Highway, Crawley 6009, WA, Australia.
| | | | | | | |
Collapse
|
25
|
Kuklina EM, Baidina TV, Danchenko IY, Nekrasova IV. Semaforin Sema4D in the immune system in multiple sclerosis. Bull Exp Biol Med 2014; 157:234-7. [PMID: 24952493 DOI: 10.1007/s10517-014-2533-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Indexed: 11/24/2022]
Abstract
The expression of class IV semaforin Sema4D and its CD72 receptor on lymphocytes was studied in patients with multiple sclerosis. The disease was associated with an increase in Sema4D level on intact T lymphocytes and with its more intense shedding from the membrane of activated cell. Multiple sclerosis was also associated with a decrease of CD72 receptor expression by B lymphocytes. Possible contribution of Sema4D to the disease development via the direct effects in the CNS and the immunomodulatory effect, specifically, B cell activity regulation, was discussed.
Collapse
Affiliation(s)
- E M Kuklina
- Institute of Ecology and Genetics of Micro-Organisms, Ural Division of the Russian Academy of Sciences, Perm', Russia,
| | | | | | | |
Collapse
|
26
|
CAMPOS MARCELO, DE CAMPOS SILVANAGISELEPEGORIN, RIBEIRO GUILHERMEGOMES, EGUCHI FLÁVIACOLTRI, SILVA SANDRAREGINAMORINIDA, DE OLIVEIRA CLEYTONZANARDO, DA COSTA ALLINIMAFRA, CURCELLI EMÍLIOCARLOS, NUNES MARCOSCEITA, PENNA VALTER, LONGATTO-FILHO ADHEMAR. Ki-67 and CD100 immunohistochemical expression is associated with local recurrence and poor prognosis in soft tissue sarcomas, respectively. Oncol Lett 2013; 5:1527-1535. [PMID: 23759874 PMCID: PMC3678859 DOI: 10.3892/ol.2013.1226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Accepted: 10/22/2012] [Indexed: 11/29/2022] Open
Abstract
Soft tissue sarcomas (STSs) are a heterogeneous group of mesenchymal tumors of >50 subtypes. However, STSs represent <1% of types of cancer. Despite this low frequency, the disease is aggressive and treatment, when possible, is based on traditional chemotherapies. A number of cases of resistance to adjuvant therapies have been reported. Metastases are commonly identified in STS patients during diagnosis and the development of effective clinical parameters is crucial for correct management of the disease. The use of biological markers in cancer is a useful tool to determine patient prognosis. Ki-67 is a protein marker for proliferation of somatic cells and is widely used in prognostic studies of various types of tumor, including STSs. Cluster of differentiation 100 (CD100) is a member of the semaphorin family. The family was initially described as axon guidance molecules important for angiogenesis, organogenesis, apoptosis and neoplasia. CD100 was previously utilized as a prognostic factor in tumors and also in STSs. In the present study, protein expression of Ki-67 and CD100 was analyzed by immunohistochemistry in samples of STS patients of the Barretos Cancer Hospital (Barretos, Brazil) to establish prognostic criteria of the disease. Results demonstrate a correlation between CD100 expression and poor prognosis, consistent with a previous study. Moreover, the expression of Ki-67 was identified to correlate with presence of local or locoregional recurrence. To the best of our knowledge, no large casuistic study has revealed this correlation between Ki-67 and local recurrence in STSs. The use of Ki-67 and CD100 as markers in clinical pathological analysis may be suitable as a prognostic criterion in disease progression.
Collapse
Affiliation(s)
- MARCELO CAMPOS
- Molecular Oncology Research Center, Barretos Cancer Hospital, Pio XII Foundation, Barretos 14780-000
| | | | - GUILHERME GOMES RIBEIRO
- Molecular Oncology Research Center, Barretos Cancer Hospital, Pio XII Foundation, Barretos 14780-000
| | - FLÁVIA COLTRI EGUCHI
- Molecular Oncology Research Center, Barretos Cancer Hospital, Pio XII Foundation, Barretos 14780-000
| | | | | | - ALLINI MAFRA DA COSTA
- Molecular Oncology Research Center, Barretos Cancer Hospital, Pio XII Foundation, Barretos 14780-000
| | | | - MARCOS CEITA NUNES
- Molecular Oncology Research Center, Barretos Cancer Hospital, Pio XII Foundation, Barretos 14780-000
| | - VALTER PENNA
- Molecular Oncology Research Center, Barretos Cancer Hospital, Pio XII Foundation, Barretos 14780-000
| | - ADHEMAR LONGATTO-FILHO
- Molecular Oncology Research Center, Barretos Cancer Hospital, Pio XII Foundation, Barretos 14780-000
- Laboratory of Medical Investigation 14, Faculty of Medicine, University of São Paulo, São Paulo 01246-903,
Brazil
- Life and Health Sciences Research Institute, School of Health Sciences (ICVS), University of Minho, Braga 4710-057, Guimarães,
Portugal
| |
Collapse
|
27
|
Eixarch H, Gutiérrez-Franco A, Montalban X, Espejo C. Semaphorins 3A and 7A: potential immune and neuroregenerative targets in multiple sclerosis. Trends Mol Med 2013; 19:157-64. [PMID: 23419749 DOI: 10.1016/j.molmed.2013.01.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/18/2012] [Accepted: 01/23/2013] [Indexed: 11/30/2022]
Abstract
Semaphorins have been classically defined as axonal signalling cues involved in central nervous system (CNS) development, but in adults these molecules are expressed in distinct tissues and exert various functions under several physiological and pathological contexts. Semaphorins capable of modulating the immune system are particularly relevant in autoimmune diseases, especially multiple sclerosis (MS), which is a demyelinating, neurodegenerative disease. In this article, we compile recent insights into the specific roles of semaphorin (sema)3A and sema7A to clarify the details of their possible participation in the inflammatory and neurodegenerative phases of MS.
Collapse
Affiliation(s)
- Herena Eixarch
- Servei de Neurologia-Neuroimmunologia, Centre d'Esclerosi Múltiple de Catalunya (Cemcat), Vall d'Hebron Institut de Recerca (VHIR), Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Ps. Vall d'Hebron, 119-129, 08035 Barcelona, Spain
| | | | | | | |
Collapse
|
28
|
|
29
|
Tran A, Gual P. Non-alcoholic steatohepatitis in morbidly obese patients. Clin Res Hepatol Gastroenterol 2013; 37:17-29. [PMID: 23347840 DOI: 10.1016/j.clinre.2012.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 07/10/2012] [Accepted: 07/18/2012] [Indexed: 02/07/2023]
Abstract
The hepatic complications of morbid obesity range from steatosis to steatohepatitis (Non-alcoholic steatohepatitis [NASH]), fibrosis, cirrhosis and finally hepatocellular carcinoma. The pathophysiological mechanisms of the progression of a normal liver to a liver showing steatosis and then steatohepatitis are complex, including, per se, insulin-resistance, iron accumulation, oxidative stress and hepatocyte death. An imbalance in anti- and pro-inflammatory factors may be the trigger. These factors can originate from intra- or extrahepatic sites, particularly the adipose tissue and the gut. This review will provide insight into the current diagnosis and understanding of hepatic inflammation including non-invasive markers of NASH (markers of hepatocyte death), intrahepatic mechanisms (regulation of the immune and inflammatory response, hepatocellular iron deposition, hepatocyte death) and extrahepatic factors (from adipose tissue and gut) in morbidly obese patients.
Collapse
Affiliation(s)
- Albert Tran
- Inserm, U1065, Équipe 8 Complications hépatiques de l'obésité, Nice, France
| | | |
Collapse
|
30
|
Roney K, Holl E, Ting J. Immune plexins and semaphorins: old proteins, new immune functions. Protein Cell 2013; 4:17-26. [PMID: 23307780 DOI: 10.1007/s13238-012-2108-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 10/25/2012] [Indexed: 12/24/2022] Open
Abstract
Plexins and semaphorins are a large family of proteins that are involved in cell movement and response. The importance of plexins and semaphorins has been emphasized by their discovery in many organ systems including the nervous (Nkyimbeng-Takwi and Chapoval, 2011; McCormick and Leipzig, 2012; Yaron and Sprinzak, 2012), epithelial (Miao et al., 1999; Fujii et al., 2002), and immune systems (Takamatsu and Kumanogoh, 2012) as well as diverse cell processes including angiogenesis (Serini et al., 2009; Sakurai et al., 2012), embryogenesis (Perala et al., 2012), and cancer (Potiron et al., 2009; Micucci et al., 2010). Plexins and semaphorins are transmembrane proteins that share a conserved extracellular semaphorin domain (Hota and Buck, 2012). The plexins and semaphorins are divided into four and eight subfamilies respectively based on their structural homology. Semaphorins are relatively small proteins containing the extracellular semaphorin domain and short intracellular tails. Plexins contain the semaphorin domain and long intracellular tails (Hota and Buck, 2012). The majority of plexin and semaphorin research has focused on the nervous system, particularly the developing nervous system, where these proteins are found to mediate many common neuronal cell processes including cell movement, cytoskeletal rearrangement, and signal transduction (Choi et al., 2008; Takamatsu et al., 2010). Their roles in the immune system are the focus of this review.
Collapse
Affiliation(s)
- Kelly Roney
- Department of Microbiology and Immunology, 22-004 Lineberger Comprehensive Cancer Center, University of Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
31
|
Hota PK, Buck M. Plexin structures are coming: opportunities for multilevel investigations of semaphorin guidance receptors, their cell signaling mechanisms, and functions. Cell Mol Life Sci 2012; 69:3765-805. [PMID: 22744749 PMCID: PMC11115013 DOI: 10.1007/s00018-012-1019-0] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 04/09/2012] [Accepted: 04/11/2012] [Indexed: 01/13/2023]
Abstract
Plexin transmembrane receptors and their semaphorin ligands, as well as their co-receptors (Neuropilin, Integrin, VEGFR2, ErbB2, and Met kinase) are emerging as key regulatory proteins in a wide variety of developmental, regenerative, but also pathological processes. The diverse arenas of plexin function are surveyed, including roles in the nervous, cardiovascular, bone and skeletal, and immune systems. Such different settings require considerable specificity among the plexin and semaphorin family members which in turn are accompanied by a variety of cell signaling networks. Underlying the latter are the mechanistic details of the interactions and catalytic events at the molecular level. Very recently, dramatic progress has been made in solving the structures of plexins and of their complexes with associated proteins. This molecular level information is now suggesting detailed mechanisms for the function of both the extracellular as well as the intracellular plexin regions. Specifically, several groups have solved structures for extracellular domains for plexin-A2, -B1, and -C1, many in complex with semaphorin ligands. On the intracellular side, the role of small Rho GTPases has been of particular interest. These directly associate with plexin and stimulate a GTPase activating (GAP) function in the plexin catalytic domain to downregulate Ras GTPases. Structures for the Rho GTPase binding domains have been presented for several plexins, some with Rnd1 bound. The entire intracellular domain structure of plexin-A1, -A3, and -B1 have also been solved alone and in complex with Rac1. However, key aspects of the interplay between GTPases and plexins remain far from clear. The structural information is helping the plexin field to focus on key questions at the protein structural, cellular, as well as organism level that collaboratoria of investigations are likely to answer.
Collapse
Affiliation(s)
- Prasanta K. Hota
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| | - Matthias Buck
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Neuroscience, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Department of Pharmacology, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Comprehensive Cancer Center, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
- Center for Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106 USA
| |
Collapse
|
32
|
Morihana T, Goya S, Mizui M, Yasui T, Prasad DVR, Kumanogoh A, Tamura M, Shikina T, Maeda Y, Iwamoto Y, Inohara H, Kikutani H. An inhibitory role for Sema4A in antigen-specific allergic asthma. J Clin Immunol 2012; 33:200-9. [PMID: 23007237 DOI: 10.1007/s10875-012-9798-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/10/2012] [Indexed: 03/08/2023]
Abstract
PURPOSE The class IV semaphorin Sema4A is critical for efficient Th1 differentiation and Sema4a (-/-) mice exhibit impaired Th1 immune responses. However, the role of Sema4A in Th2 cell-mediated allergic diseases has not been fully studied. The aim of this study was to clarify the regulatory role possessed by Sema4A in mouse models of allergic diseases, particularly allergic asthma. METHODS Sema4a (-/-) mice on a BALB/c background were examined for the development of allergic diseases. To induce experimental asthma, mice were sensitized with ovalbumin (OVA) followed by intranasal challenges with OVA. After challenge, airway hyperreactivity (AHR) and airway inflammation were evaluated. The role of Sema4A in asthma was examined using Sema4a (-/-) mice and Sema4A-Fc fusion proteins. The direct effects of Sema4A-Fc on antigen-specific effector CD4(+) T cells were also examined. RESULTS A fraction of Sema4a (-/-) BALB/c mice spontaneously developed skin lesions that resembled atopic dermatitis (AD) in humans. Furthermore, AHR, airway inflammation, and Th2-type immune responses were enhanced in Sema4a (-/-) mice compared to wild type (WT) mice when immunized and challenged with OVA. In vivo systemic administration of Sema4A-Fc during the challenge period ameliorated AHR and lung inflammation and reduced the production of Th2-type cytokines in WT mice. The inhibitory effects of Sema4A on airway inflammation were also observed in mice deficient in Tim-2, a Sema4A receptor. Finally, we showed that Sema4A-Fc directly inhibited IL-4-producing OVA-specific CD4(+) T cells. CONCLUSION These results demonstrate that Sema4A plays an inhibitory role in Th2-type allergic diseases, such as allergic asthma.
Collapse
Affiliation(s)
- Tetsuo Morihana
- Department of Molecular Immunology, Research Institute for Microbial Diseases, WPI Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Holl EK, Roney KE, Allen IC, Steinbach E, Arthur JC, Buntzman A, Plevy S, Frelinger J, Ting JPY. Plexin-B2 and Plexin-D1 in dendritic cells: expression and IL-12/IL-23p40 production. PLoS One 2012; 7:e43333. [PMID: 22916243 PMCID: PMC3419716 DOI: 10.1371/journal.pone.0043333] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 07/19/2012] [Indexed: 02/07/2023] Open
Abstract
Plexins are a family of genes (A,B,C, and D) that are expressed in many organ systems. Plexins expressed in the immune system have been implicated in cell movement and cell-cell interaction during the course of an immune response. In this study, the expression pattern of Plexin-B2 and Plexin-D1 in dendritic cells (DCs), which are central in immune activation, was investigated. Plexin-B2 and Plexin-D1 are reciprocally expressed in myeloid and plasmacytoid DC populations. Plasmacytoid DCs have high Plexin-B2 but low Plexin-D1, while the opposite is true of myeloid DCs. Expression of Plexin-B2 and Plexin-D1 is modulated upon activation of DCs by TLR ligands, TNFα, and anti-CD40, again in a reciprocal fashion. Semaphorin3E, a ligand for Plexin-D1 and Plexin-B2, is expressed by T cells, and interestingly, is dramatically higher on Th2 cells and on DCs. The expression of Plexins and their ligands on DCs and T cells suggest functional relevance. To explore this, we utilized chimeric mice lacking Plxnb2 or Plxnd1. Absence of Plexin-B2 and Plexin-D1 on DCs did not affect the ability of these cells to upregulate costimulatory molecules or the ability of these cells to activate antigen specific T cells. Additionally, Plexin-B2 and Plexin-D1 were dispensable for chemokine-directed in-vitro migration of DCs towards key DC chemokines, CXCL12 and CCL19. However, the absence of either Plexin-B2 or Plexin-D1 on DCs leads to constitutive expression of IL-12/IL-23p40. This is the first report to show an association between Plexin-B2 and Plexin-D1 with the negative regulation of IL-12/IL-23p40 in DCs. This work also shows the presence of Plexin-B2 and Plexin-D1 on mouse DC subpopulations, and indicates that these two proteins play a role in IL-12/IL-23p40 production that is likely to impact the immune response.
Collapse
Affiliation(s)
- Eda K. Holl
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Kelly E. Roney
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Irving C. Allen
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Erin Steinbach
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Janelle C. Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Adam Buntzman
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Scott Plevy
- Department of Medicine, University of North Carolina Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Jeffrey Frelinger
- Department of Immunobiology, University of Arizona, Tucson, Arizona, United States of America
| | - Jenny P.-Y. Ting
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
34
|
Bruneau S, Woda CB, Daly KP, Boneschansker L, Jain NG, Kochupurakkal N, Contreras AG, Seto T, Briscoe DM. Key Features of the Intragraft Microenvironment that Determine Long-Term Survival Following Transplantation. Front Immunol 2012; 3:54. [PMID: 22566935 PMCID: PMC3342046 DOI: 10.3389/fimmu.2012.00054] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 03/02/2012] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss how changes in the intragraft microenvironment serve to promote or sustain the development of chronic allograft rejection. We propose two key elements within the microenvironment that contribute to the rejection process. The first is endothelial cell proliferation and angiogenesis that serve to create abnormal microvascular blood flow patterns as well as local tissue hypoxia, and precedes endothelial-to-mesenchymal transition. The second is the overexpression of local cytokines and growth factors that serve to sustain inflammation and, in turn, function to promote a leukocyte-induced angiogenesis reaction. Central to both events is overexpression of vascular endothelial growth factor (VEGF), which is both pro-inflammatory and pro-angiogenic, and thus drives progression of the chronic rejection microenvironment. In our discussion, we focus on how inflammation results in angiogenesis and how leukocyte-induced angiogenesis is pathological. We also discuss how VEGF is a master control factor that fosters the development of the chronic rejection microenvironment. Overall, this review provides insight into the intragraft microenvironment as an important paradigm for future direction in the field.
Collapse
Affiliation(s)
- Sarah Bruneau
- The Division of Nephrology, Transplantation Research Center, Children's Hospital Boston Boston, MA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gourdain P, Ballerini C, Nicot AB, Carnaud C. Exacerbation of experimental autoimmune encephalomyelitis in prion protein (PrPc)-null mice: evidence for a critical role of the central nervous system. J Neuroinflammation 2012; 9:25. [PMID: 22281016 PMCID: PMC3305405 DOI: 10.1186/1742-2094-9-25] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/26/2012] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND The cellular prion protein (PrPc) is a host-encoded glycoprotein whose transconformation into PrP scrapie (PrPSc) initiates prion diseases. The role of PrPc in health is still obscure, but many candidate functions have been attributed to the protein, both in the immune and the nervous systems. Recent data show that experimental autoimmune encephalomyelitis (EAE) is worsened in mice lacking PrPc. Disease exacerbation has been attributed to T cells that would differentiate into more aggressive effectors when deprived of PrPc. However, alternative interpretations such as reduced resistance of neurons to autoimmune insult and exacerbated gliosis leading to neuronal deficits were not considered. METHOD To better discriminate the contribution of immune cells versus neural cells, reciprocal bone marrow chimeras with differential expression of PrPc in the lymphoid or in the central nervous system (CNS) were generated. Mice were subsequently challenged with MOG35-55 peptide and clinical disease as well as histopathology were compared in both groups. Furthermore, to test directly the T cell hypothesis, we compared the encephalitogenicity of adoptively transferred PrPc-deficient versus PrPc-sufficient, anti-MOG T cells. RESULTS First, EAE exacerbation in PrPc-deficient mice was confirmed. Irradiation exacerbated EAE in all the chimeras and controls, but disease was more severe in mice with a PrPc-deleted CNS and a normal immune system than in the reciprocal construction. Moreover, there was no indication that anti-MOG responses were different in PrPc-sufficient and PrPc-deficient mice. Paradoxically, PrPc-deficient anti-MOG 2D2 T cells were less pathogenic than PrPc-expressing 2D2 T cells. CONCLUSIONS In view of the present data, it can be concluded that the origin of EAE exacerbation in PrPc-ablated mice resides in the absence of the prion protein in the CNS. Furthermore, the absence of PrPc on both neural and immune cells does not synergize for disease worsening. These conclusions highlight the critical role of PrPc in maintaining the integrity of the CNS in situations of stress, especially during a neuroinflammatory insult.
Collapse
Affiliation(s)
- Pauline Gourdain
- INSERM, UMR S 938, Centre de Recherche Hôpital Saint-Antoine, Paris, France
| | | | | | | |
Collapse
|
36
|
Kamata M, Tada Y, Uratsuji H, Kawashima T, Asano Y, Sugaya M, Kadono T, Tamaki K, Sato S. Semaphorin 7A on keratinocytes induces interleukin-8 production by monocytes. J Dermatol Sci 2011; 62:176-82. [PMID: 21524887 DOI: 10.1016/j.jdermsci.2011.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 02/08/2011] [Accepted: 02/21/2011] [Indexed: 12/26/2022]
Abstract
BACKGROUND Semaphorin 7A (Sema7A) expressed on activated T cells stimulates cytokine production in monocytes through its receptor, α1β1 integrin. OBJECTIVE To study the significance of Sema7A expressed on keratinocytes in skin inflammation where interaction between keratinocytes and β1-integrin expressing inflammatory cells, such as monocytes, takes place. METHODS The regulation of Sema7A expression on keratinocytes by various cytokines was studied by flow cytometry and immunoblot. β1-integrin expressing human monocyte cell line, THP-1 cells, were co-cultured with paraformaldehyde-fixed normal human epidermal keratinocytes (NHK) and IL-8 production by THP-1 cells was studied. The significance of β1-integrin or Sema7A within this cell interaction was examined by the experiments using β1-integrin blocking antibody or Sema7A siRNA. RESULTS IFN-γ and TNF-α slightly increased Sema7A expression, while IL-4 decreased it. Among cytokines tested, TGF-β1 most strikingly increased the Sema7A expression on NHK. When NHK was stimulated by TGF-β1, paraformaldehyde-fixed, and co-cultured with THP-1 cells, IL-8 production by THP-1 cells was increased compared to THP-1 cells only. When THP-1 cells were pretreated with β1-integrin blocking antibody, this increase in IL-8 production by THP-1 cells was inhibited. Likewise, when NHK were pretreated with Sema7A siRNA before fixation and co-cultured with THP-1 cells, increase in IL-8 production by THP-1 cells was inhibited. CONCLUSION Our results suggest that Sema7A on keratinocytes and β1-integrin on monocytes contribute to monocyte activation by keratinocytes within skin inflammation, such as psoriasis or wound.
Collapse
Affiliation(s)
- Masahiro Kamata
- Department of Dermatology, Faculty of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Flannery E, VanZomeren-Dohm A, Beach P, Holland WS, Duman-Scheel M. Induction of cellular growth by the axon guidance regulators netrin A and semaphorin-1a. Dev Neurobiol 2010; 70:473-84. [PMID: 20162636 DOI: 10.1002/dneu.20788] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Although neurite outgrowth has been linked to axon guidance regulators, the effects of guidance molecules on cellular growth are not well understood. Use of the Drosophila wing imaginal disc, an epithelial tissue and a well-characterized system for analysis of cellular growth regulation, permits analysis of the impacts of guidance molecules on cellular growth in a setting in which axon guidance is not a confounding factor. In this investigation, the impacts of Netrin A (NetA) and Semaphorin-1a (Sema1a) signaling on cellular growth are examined during wing development. Levels of these genes were modulated in somatic clones in the developing wing disc, and clone areas, as well as individual sizes of clonal cells were assessed. NetA and Sema1a signaling were found to induce cellular growth in these assays. Furthermore, immunohistochemical analyses indicated that NetA and Sema1a signaling induce expression of several growth regulators, including myc, cycD, cdk4, PCNA, and MapK in the wing disc. These data illustrate that NetA and Sema1a can specifically promote growth through induction of key cellular growth regulators. The abilities of NetA and Sema1a to regulate cellular growth are likely critical to their functions in both nervous system development and oncogenesis.
Collapse
Affiliation(s)
- Ellen Flannery
- Department of Biological Sciences, Walther Cancer Institute, Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | | | | | | | |
Collapse
|
38
|
Hepatic expression patterns of inflammatory and immune response genes associated with obesity and NASH in morbidly obese patients. PLoS One 2010; 5:e13577. [PMID: 21042596 PMCID: PMC2962651 DOI: 10.1371/journal.pone.0013577] [Citation(s) in RCA: 197] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 09/11/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Obesity modulates inflammation and activation of immune pathways which can lead to liver complications. We aimed at identifying expression patterns of inflammatory and immune response genes specifically associated with obesity and NASH in the liver of morbidly obese patients. METHODOLOGY/PRINCIPAL FINDINGS Expression of 222 genes was evaluated by quantitative RT-PCR in the liver of morbidly obese patients with histologically normal liver (n = 6), or with severe steatosis without (n = 6) or with NASH (n = 6), and in lean controls (n = 5). Hepatic expression of 58 out of 222 inflammatory and immune response genes was upregulated in NASH patients. The most notable changes occurred in genes encoding chemokines and chemokine receptors involved in leukocyte recruitment, CD and cytokines involved in the T cell activation towards a Th1 phenotype, and immune semaphorins. This regulation seems to be specific for the liver since visceral adipose tissue expression and serum levels of MCP1, IP10, TNFα and IL6 were not modified. Importantly, 47 other genes were already upregulated in histologically normal liver (e.g. CRP, Toll-like receptor (TLR) pathway). Interestingly, serum palmitate, known to activate the TLR pathway, was increased with steatosis. CONCLUSION/SIGNIFICANCE The liver of obese patients without histological abnormalities already displayed a low-grade inflammation and could be more responsive to activators of the TLR pathway. NASH was then characterized by a specific gene signature. These findings help to identify new potential actors of the pathogenesis of NAFLD.
Collapse
|
39
|
Ch'ng ES, Kumanogoh A. Roles of Sema4D and Plexin-B1 in tumor progression. Mol Cancer 2010; 9:251. [PMID: 20858260 PMCID: PMC2955613 DOI: 10.1186/1476-4598-9-251] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Accepted: 09/21/2010] [Indexed: 12/20/2022] Open
Abstract
Sema4D, also known as CD100, is a protein belonging to class IV semaphorin. Its physiologic roles in the immune and nervous systems have been extensively explored. However, the roles of Sema4D have extended beyond these traditionally studied territories. Via interaction with its high affinity receptor Plexin-B1, Sema4D-Plexin-B1 involvement in tumor progression is strongly implied. Here, we critically review and delineate the Sema4D-Plexin-B1 interaction in many facets of tumor progression: tumor angiogenesis, regulation of tumor-associated macrophages and control of invasive growth. We correlate the in vitro and in vivo experimental data with the clinical study outcomes, and present a molecular mechanistic basis accounting for the intriguingly contradicting results from these recent studies.
Collapse
Affiliation(s)
- Ewe Seng Ch'ng
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Malaysia.
| | | |
Collapse
|
40
|
Diminished contact-dependent reinforcement of Syk activation underlies impaired thrombus growth in mice lacking Semaphorin 4D. Blood 2010; 116:5707-15. [PMID: 20855865 DOI: 10.1182/blood-2010-04-279943] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
We recently reported that Semaphorin 4D (Sema4D) and its receptors are expressed on the platelet surface and showed that Sema4D((-/-)) mice have a selective defect in collagen-induced platelet aggregation and an impaired vascular injury response. Here we investigated the mechanisms involved, tested the role of platelet-platelet contacts in Sema4D-mediated events, and examined the relationship between Sema4D-dependent signaling and integrin α(IIb)β(3) outside-in signaling. The results show that spleen tyrosine kinase (Syk) activation, an early step in collagen signaling via the glycoprotein VI (GPVI)/FcRγ complex, is greatly reduced in Sema4D((-/-)) platelets and can be restored by adding soluble Sema4D. Earlier events, including FcRγ phosphorylation, occur normally; later events are impaired. In contrast, when engagement of α(IIb)β(3) was blocked, Sema4D((-/-)) and control platelets were indistinguishable in assays of Syk activation, adhesion, spreading on collagen, and activation of α(IIb)β(3). Finally, we found that, unlike the Sema4D knockout, α(IIb)β(3) blockade inhibited FcRγ phosphorylation and that stimulating aggregation with Mn(2+) failed to normalize Syk activation in the absence of Sema4D. Collectively, these results show that α(IIb)β(3) and Sema4D jointly promote collagen responses by amplifying Syk activation, partly by forming integrin-mediated contacts that enable the binding of Sema4D to its receptors and partly through integrin outside-in signaling. These 2 processes are interdependent, but distinguishable.
Collapse
|
41
|
Milet J, Nuel G, Watier L, Courtin D, Slaoui Y, Senghor P, Migot-Nabias F, Gaye O, Garcia A. Genome wide linkage study, using a 250K SNP map, of Plasmodium falciparum infection and mild malaria attack in a Senegalese population. PLoS One 2010; 5:e11616. [PMID: 20657648 PMCID: PMC2904701 DOI: 10.1371/journal.pone.0011616] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 06/06/2010] [Indexed: 12/22/2022] Open
Abstract
Multiple factors are involved in the variability of host's response to P. falciparum infection, like the intensity and seasonality of malaria transmission, the virulence of parasite and host characteristics like age or genetic make-up. Although admitted nowadays, the involvement of host genetic factors remains unclear. Discordant results exist, even concerning the best-known malaria resistance genes that determine the structure or function of red blood cells. Here we report on a genome-wide linkage and association study for P. falciparum infection intensity and mild malaria attack among a Senegalese population of children and young adults from 2 to 18 years old. A high density single nucleotide polymorphisms (SNP) genome scan (Affimetrix GeneChip Human Mapping 250K-nsp) was performed for 626 individuals: i.e. 249 parents and 377 children out of the 504 ones included in the follow-up. The population belongs to a unique ethnic group and was closely followed-up during 3 years. Genome-wide linkage analyses were performed on four clinical and parasitological phenotypes and association analyses using the family based association tests (FBAT) method were carried out in regions previously linked to malaria phenotypes in literature and in the regions for which we identified a linkage peak. Analyses revealed three strongly suggestive evidences for linkage: between mild malaria attack and both the 6p25.1 and the 12q22 regions (empirical p-value = 5×10−5 and 9×10−5 respectively), and between the 20p11q11 region and the prevalence of parasite density in asymptomatic children (empirical p-value = 1.5×10−4). Family based association analysis pointed out one significant association between the intensity of plasmodial infection and a polymorphism located in ARHGAP26 gene in the 5q31–q33 region (p-value = 3.7×10−5). This study identified three candidate regions, two of them containing genes that could point out new pathways implicated in the response to malaria infection. Furthermore, we detected one gene associated with malaria infection in the 5q31–q33 region.
Collapse
Affiliation(s)
- Jacqueline Milet
- UMR 216 - Mère et Enfant face aux infections tropicales, Institut de Recherche pour le Développement (IRD), Paris, France
- Laboratoire de parasitologie, Université Paris Descartes, Paris, France
| | - Gregory Nuel
- UMR CNRS 8145 - Mathématiques Appliquées Paris 5 (MAP5), Université Paris Descartes, Paris, France
| | - Laurence Watier
- U 657, Institut National de la Santé et de la Recherche Médicale (INSERM), Garches, France
| | - David Courtin
- UMR 216 - Mère et Enfant face aux infections tropicales, Institut de Recherche pour le Développement (IRD), Paris, France
- Laboratoire de parasitologie, Université Paris Descartes, Paris, France
| | - Yousri Slaoui
- UMR CNRS 8145 - Mathématiques Appliquées Paris 5 (MAP5), Université Paris Descartes, Paris, France
| | - Paul Senghor
- Laboratoire de Parasitologie et de Mycologie, Département de Biologie et d'Explorations fonctionnelles, Faculté de Médecine, Université Cheikh Anta Diop, Dakar, Sénégal
| | - Florence Migot-Nabias
- UMR 216 - Mère et Enfant face aux infections tropicales, Institut de Recherche pour le Développement (IRD), Paris, France
- Laboratoire de parasitologie, Université Paris Descartes, Paris, France
| | - Oumar Gaye
- Laboratoire de Parasitologie et de Mycologie, Département de Biologie et d'Explorations fonctionnelles, Faculté de Médecine, Université Cheikh Anta Diop, Dakar, Sénégal
| | - André Garcia
- UMR 216 - Mère et Enfant face aux infections tropicales, Institut de Recherche pour le Développement (IRD), Paris, France
- Laboratoire de parasitologie, Université Paris Descartes, Paris, France
- * E-mail:
| |
Collapse
|
42
|
Abstract
The regenerative capacity of injured adult mammalian central nervous system (CNS) tissue is very limited. Disease or injury that causes destruction or damage to neuronal networks typically results in permanent neurological deficits. Injury to the spinal cord, for example, interrupts vital ascending and descending fiber tracts of spinally projecting neurons. Because neuronal structures located proximal or distal to the injury site remain largely intact, a major goal of spinal cord injury research is to develop strategies to reestablish innervation lost as a consequence of injury. The growth inhibitory nature of injured adult CNS tissue is a major barrier to regenerative axonal growth and sprouting. An increasing complexity of molecular players is being recognized. CNS inhibitors fall into three general classes: members of canonical axon guidance molecules (e.g., semaphorins, ephrins, netrins), prototypic myelin inhibitors (Nogo, MAG, and OMgp) and chondroitin sulfate proteoglycans (lecticans, NG2). On the other end of the spectrum are molecules that promote neuronal growth and sprouting. These include growth promoting extracellular matrix molecules, cell adhesion molecules, and neurotrophic factors. In addition to environmental (extrinsic) growth regulatory cues, cell intrinsic regulatory mechanisms exist that greatly influence injury-induced neuronal growth. Various degrees of growth and sprouting of injured CNS neurons have been achieved by lowering extrinsic inhibitory cues, increasing extrinsic growth promoting cues, or by activation of cell intrinsic growth programs. More recently, combination therapies that activate growth promoting programs and at the same time attenuate growth inhibitory pathways have met with some success. In experimental animal models of spinal cord injury (SCI), mono and combination therapies have been shown to promote neuronal growth and sprouting. Anatomical growth often correlates with improved behavioral outcomes. Challenges ahead include testing whether some of the most promising treatment strategies in animal models are also beneficial for human patients suffering from SCI.
Collapse
|
43
|
Abstract
Strong evidence is emerging that the nervous and immune systems share mechanisms of gene regulation, signaling, cell communication, and supracellular organization. This brings to the fore many questions, not least of which is the developmental and evolutionary origin of the commonalities between the two systems. By providing answers to these questions, immunologists and neurobiologists increasingly expose the mechanistic and conceptual affinities of their respective fields and facilitate the understanding of fundamental principles that govern the organization of complex cellular systems. The current essay and reviews in Immunity and Neuron attempt to communicate to the wider scientific community a series of examples relating to commonalities between the immune and nervous system and enhance the dialog and exchange of ideas between the two fields.
Collapse
|