1
|
Marois L, Le Gal C, Cros G, Falcone EL, Chapdelaine H. Refractory wound healing and cytopenias treated with a sodium-glucose cotransporter-2 inhibitor in a patient with glucose-6-phosphatase catalytic subunit 3 deficiency. JAAD Case Rep 2024; 49:22-24. [PMID: 38883182 PMCID: PMC11179171 DOI: 10.1016/j.jdcr.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Affiliation(s)
- Louis Marois
- Department of Medicine, Université de Montréal, Montréal, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Canada
- Department of Medicine, Université Laval, Québec, Canada
| | - Caridad Le Gal
- Department of Medicine, Gatineau Hospital, Gatineau, Canada
| | - Guilhem Cros
- Department of Medicine, Université de Montréal, Montréal, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Canada
| | - Emilia Liana Falcone
- Department of Medicine, Université de Montréal, Montréal, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Canada
| | - Hugo Chapdelaine
- Department of Medicine, Université de Montréal, Montréal, Canada
- Institut de Recherches Cliniques de Montréal (IRCM), Montréal, Canada
| |
Collapse
|
2
|
Hu C, Liao S, Lv L, Li C, Mei Z. Intestinal Immune Imbalance is an Alarm in the Development of IBD. Mediators Inflamm 2023; 2023:1073984. [PMID: 37554552 PMCID: PMC10406561 DOI: 10.1155/2023/1073984] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/06/2023] [Accepted: 07/08/2023] [Indexed: 08/10/2023] Open
Abstract
Immune regulation plays a crucial role in human health and disease. Inflammatory bowel disease (IBD) is a chronic relapse bowel disease with an increasing incidence worldwide. Clinical treatments for IBD are limited and inefficient. However, the pathogenesis of immune-mediated IBD remains unclear. This review describes the activation of innate and adaptive immune functions by intestinal immune cells to regulate intestinal immune balance and maintain intestinal mucosal integrity. Changes in susceptible genes, autophagy, energy metabolism, and other factors interact in a complex manner with the immune system, eventually leading to intestinal immune imbalance and the onset of IBD. These events indicate that intestinal immune imbalance is an alarm for IBD development, further opening new possibilities for the unprecedented development of immunotherapy for IBD.
Collapse
Affiliation(s)
- Chunli Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
3
|
Moradian N, Zoghi S, Rayzan E, Seyedpour S, Jimenez Heredia R, Boztug K, Rezaei N. Severe congenital neutropenia due to G6PC3 deficiency: early and delayed phenotype of a patient. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:51. [PMID: 37296469 DOI: 10.1186/s13223-023-00804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/06/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Severe Congenital Neutropenia type 4 (SCN4), is a rare autosomal recessive condition, due to mutations in the G6PC3 gene. The phenotype comprises neutropenia of variable severity and accompanying anomalies. CASE PRESENTATION We report a male patient with confirmed G6PC3 deficiency presented with recurrent bacterial infections and multi-systemic complications. Our case was the first with a novel homozygous frameshift mutation in G6PC3. The patient demonstrated large platelets on his peripheral blood smear which is a rare presentation of this disease. CONCLUSION As SCN4 patients could be easily missed, it is recommended to consider G6PC3 mutation for any case of congenital, unexplained neutropenia.
Collapse
Affiliation(s)
- Negar Moradian
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Zoghi
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Elham Rayzan
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- International Hematology/Oncology of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Simin Seyedpour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
- St Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
4
|
Krzyzanowski D, Oszer A, Madzio J, Zdunek M, Kolodrubiec J, Urbanski B, Mlynarski W, Janczar S. The paradox of autoimmunity and autoinflammation in inherited neutrophil disorders - in search of common patterns. Front Immunol 2023; 14:1128581. [PMID: 37350970 PMCID: PMC10283154 DOI: 10.3389/fimmu.2023.1128581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/18/2023] [Indexed: 06/24/2023] Open
Abstract
Congenital defects of neutrophil number or function are associated with a severe infectious phenotype that may require intensive medical attention and interventions to be controlled. While the infectious complications in inherited neutrophil disorders are easily understood much less clear and explained are autoimmune and autoinflammatory phenomena. We survey the clinical burden of autoimmunity/autoinflammation in this setting, search for common patterns, discuss potential mechanisms and emerging treatments.
Collapse
Affiliation(s)
- Damian Krzyzanowski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
- Laboratory of Epigenetics, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Aleksandra Oszer
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Joanna Madzio
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Maciej Zdunek
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Julia Kolodrubiec
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Bartosz Urbanski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Mlynarski
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| | - Szymon Janczar
- Department of Pediatrics, Oncology and Hematology, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
5
|
Boulanger C, Stephenne X, Diederich J, Mounkoro P, Chevalier N, Ferster A, Van Schaftingen E, Veiga‐da‐Cunha M. Successful use of empagliflozin to treat neutropenia in two G6PC3-deficient children: Impact of a mutation in SGLT5. J Inherit Metab Dis 2022; 45:759-768. [PMID: 35506446 PMCID: PMC9540799 DOI: 10.1002/jimd.12509] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Neutropenia and neutrophil dysfunction found in deficiencies in G6PC3 and in the glucose-6-phosphate transporter (G6PT/SLC37A4) are due to accumulation of 1,5-anhydroglucitol-6-phosphate (1,5-AG6P), an inhibitor of hexokinase made from 1,5-anhydroglucitol (1,5-AG), an abundant polyol present in blood. Lowering blood 1,5-AG with an SGLT2 inhibitor greatly improved neutrophil counts and function in G6PC3-deficient mice and in patients with G6PT-deficiency. We evaluate this treatment in two G6PC3-deficient children. While neutropenia was severe in one child (PT1), which was dependent on granulocyte cololony-stimulating factor (GCSF), it was significantly milder in the other one (PT2), which had low blood 1,5-AG levels and only required GCSF during severe infections. Treatment with the SGLT2-inhibitor empagliflozin decreased 1,5-AG in blood and 1,5-AG6P in neutrophils and improved (PT1) or normalized (PT2) neutrophil counts, allowing to stop GCSF. On empagliflozin, both children remained infection-free (>1 year - PT2; >2 years - PT1) and no side effects were reported. Remarkably, sequencing of SGLT5, the gene encoding the putative renal transporter for 1,5-AG, disclosed a rare heterozygous missense mutation in PT2, replacing the extremely conserved Arg401 by a histidine. The higher urinary clearance of 1,5-AG explains the more benign neutropenia and the outstanding response to empagliflozin treatment found in this child. Our data shows that SGLT2 inhibitors are an excellent alternative to treat the neutropenia present in G6PC3-deficiency.
Collapse
Affiliation(s)
- Cécile Boulanger
- Biologie HématologiqueCliniques Universitaires Saint‐Luc, UCLouvainBrusselsBelgium
| | - Xavier Stephenne
- Service de Gastro‐Entérologie et Hépatologie PédiatriqueCliniques Universitaires Saint‐Luc, UCLouvainBrusselsBelgium
| | - Jennifer Diederich
- Groupe de Recherches Metaboliquesde Duve Institute, UCLouvainBrusselsBelgium
| | - Pierre Mounkoro
- Groupe de Recherches Metaboliquesde Duve Institute, UCLouvainBrusselsBelgium
| | - Nathalie Chevalier
- Groupe de Recherches Metaboliquesde Duve Institute, UCLouvainBrusselsBelgium
| | - Alina Ferster
- Department of Hematology/OncologyHôpital Universitaire des Enfants Reine Fabiola, Université Libre de BruxellesBrusselsBelgium
| | | | | |
Collapse
|
6
|
Velez-Tirado N, Yamazaki-Nakashimada MA, Lopez Valentín E, Partida-Gaytan A, Scheffler-Mendoza SC, Chaia Semerena GM, Alvarez-Cardona A, Suárez Gutiérrez MA, Medina Torres EA, Baeza Capetillo P, Hirschmugl T, Garncarz W, Espinosa-Padilla SE, Aguirre Hernández J, Klein C, Boztug K, Lugo Reyes SO. Severe congenital neutropenia due to G6PC3 deficiency: Case series of five patients and literature review. Scand J Immunol 2021; 95:e13136. [PMID: 34964150 DOI: 10.1111/sji.13136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/20/2021] [Accepted: 12/26/2021] [Indexed: 12/01/2022]
Abstract
BACKGROUND AND OBJECTIVES Glucose-6-phosphate catalytic subunit 3 (G6PC3) deficiency is characterized by severe congenital neutropenia with recurrent pyogenic infections, a prominent superficial venous pattern, and cardiovascular and urogenital malformations, caused by an alteration of glucose homeostasis, with increased endoplasmic reticulum stress and cell apoptosis. METHODS We reviewed our patients with G6PC3 deficiency diagnosed along the last decade in Mexico; we also searched the PubMed/Medline database for the terms ("G6PC3 deficiency" OR "Dursun syndrome" OR "Severe congenital neutropenia type 4"), and selected articles published in English from 2009 to 2020. Results We found 89 patients reported from at least 14 countries in 4 continents. We describe five new cases from Mexico. Of the 94 patients 56% are male, 48% from Middle East countries, none of them had adverse reactions to live vaccines; all presented with at least one severe infection prior to age 2. 75% had syndromic features, mainly atrial septal defect in 55%, and prominent superficial veins in 62%. CONCLUSIONS With a total of 94 patients reported in the past decade, we delineate the most frequent laboratory and genetic features, their treatment, and outcomes, and to expand the knowledge of syndromic and non-syndromic phenotypes in these patients.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Patricia Baeza Capetillo
- Genetics Department, Genetics and Bioinformatics, Hospital Infantil de Mexico "Federico Gómez", Mexico City, Mexico.,Laboratory of Genomics, Genetics and Bioinformatics, Hospital Infantil de Mexico "Federico Gómez", Mexico City, Mexico
| | - Tatjana Hirschmugl
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences
| | - Wojciech Garncarz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences
| | | | - Jesús Aguirre Hernández
- Laboratory of Genomics, Genetics and Bioinformatics, Hospital Infantil de Mexico "Federico Gómez", Mexico City, Mexico
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences.,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases.,St. Anna Children's Cancer Research Institute (CCRI).,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna.,St. Anna Children's Hospital, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
7
|
Dai R, Lv G, Li W, Tang W, Chen J, Liu Q, Yang L, Zhang M, Tian Z, Zhou L, Yan X, Wang Y, Ding Y, An Y, Zhang Z, Tang X, Zhao X. Altered Functions of Neutrophils in Two Chinese Patients With Severe Congenital Neutropenia Type 4 Caused by G6PC3 Mutations. Front Immunol 2021; 12:699743. [PMID: 34305938 PMCID: PMC8296982 DOI: 10.3389/fimmu.2021.699743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/14/2021] [Indexed: 12/05/2022] Open
Abstract
Background SCN4 is an autosomal recessive disease caused by mutations in the G6PC3 gene. The clinical, molecular, and immunological features; function of neutrophils; and prognosis of patients with SCN4 have not been fully elucidated. Methods Two Chinese pediatric patients with G6PC3 mutations were enrolled in this study. Clinical data, genetic and immunologic characteristics, and neutrophil function were evaluated in patients and controls before and after granulocyte colony-stimulating factor (G-CSF) treatment. Results Both patients had histories of pneumonia, inguinal hernia, cryptorchidism, and recurrent oral ulcers. Patient 1 also had asthma and otitis media, and patient 2 presented with prominent ectatic superficial veins and inflammatory bowel disease. DNA sequencing demonstrated that both patients harbored heterozygous G6PC3 gene mutations. Spontaneous and FAS-induced neutrophil apoptosis were significantly increased in patients, and improved only slightly after G-CSF treatment, while neutrophil respiratory burst and neutrophil extracellular traps production remained impaired in patients after G-CSF treatment. Conclusion G-CSF treatment is insufficient for patients with SCN4 patients, who remain at risk of infection. Where possible, regular G-CSF treatment, long-term prevention of infection, are the optimal methods for cure of SCN4 patients. It is important to monitor closely for signs of leukemia in SCN4 patients. Once leukemia occurs in SCN4 patients, hematopoietic stem cell transplantation is the most important choice of treatment.
Collapse
Affiliation(s)
- Rongxin Dai
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ge Lv
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyan Li
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjing Tang
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junjie Chen
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qiao Liu
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lu Yang
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhang
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhirui Tian
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xin Yan
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yating Wang
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Ding
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.,National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
8
|
Kvedaraite E. Neutrophil-T cell crosstalk in inflammatory bowel disease. Immunology 2021; 164:657-664. [PMID: 34240423 PMCID: PMC8561100 DOI: 10.1111/imm.13391] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Neutrophils are the most abundant leucocytes in human blood, promptly recruited to the site of tissue injury, where they orchestrate inflammation and tissue repair. The multifaceted functions of neutrophils have been more appreciated during the recent decade, and these cells are now recognized as sophisticated and essential players in infection, cancer and chronic inflammatory diseases. Consequently, our understanding of the role of neutrophils in inflammatory bowel disease (IBD), their immune responses and their ability to shape adaptive immunity in the gut have been recognized. Here, current knowledge on neutrophil responses in IBD and their capacity to influence T cells are summarized with an emphasis on the role of these cells in human disease.
Collapse
Affiliation(s)
- Egle Kvedaraite
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.,Department of Clinical Pathology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Comprehensive multi-omics analysis of G6PC3 deficiency-related congenital neutropenia with inflammatory bowel disease. iScience 2021; 24:102214. [PMID: 33748703 PMCID: PMC7960940 DOI: 10.1016/j.isci.2021.102214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/29/2020] [Accepted: 02/17/2021] [Indexed: 11/26/2022] Open
Abstract
Autosomal recessive mutations in G6PC3 cause isolated and syndromic congenital neutropenia which includes congenital heart disease and atypical inflammatory bowel disease (IBD). In a highly consanguineous pedigree with novel mutations in G6PC3 and MPL, we performed comprehensive multi-omics analyses. Structural analysis of variant G6PC3 and MPL proteins suggests a damaging effect. A distinct molecular cytokine profile (cytokinome) in the affected proband with IBD was detected. Liquid chromatography-mass spectrometry-based proteomics analysis of the G6PC3-deficient plasma samples identified 460 distinct proteins including 75 upregulated and 73 downregulated proteins. Specifically, the transcription factor GATA4 and LST1 were downregulated while platelet factor 4 (PF4) was upregulated. GATA4 and PF4 have been linked to congenital heart disease and IBD respectively, while LST1 may have perturbed a variety of essential cell functions as it is required for normal cell-cell communication. Together, these studies provide potentially novel insights into the pathogenesis of syndromic congenital G6PC3 deficiency. Multi-omics approaches identify unique signatures Whole-exome sequencing reveals distinct cytokine profiles Expression of GATA4, PF4, and LST1 is dysregulated
Collapse
|
10
|
Goenka A, Doherty JA, Al-Farsi T, Jagger C, Banka S, Cheesman E, Fagbemi A, Hughes SM, Wynn RF, Hussell T, Arkwright PD. Neutrophil dysfunction triggers inflammatory bowel disease in G6PC3 deficiency. J Leukoc Biol 2020; 109:1147-1154. [PMID: 32930428 DOI: 10.1002/jlb.5ab1219-699rr] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 11/06/2022] Open
Abstract
The glucose-6-phosphatase catalytic subunit 3 (G6PC3) encodes a ubiquitously expressed enzyme that regulates cytoplasmic glucose availability. Loss-of-function biallelic G6PC3 mutations cause severe congenital neutropenia and a diverse spectrum of extra-hematological manifestations, among which inflammatory bowel disease (IBD) has been anecdotally reported. Neutrophil function and clinical response to granulocyte colony-stimulating factor (G-CSF) and hematopoietic stem cell transplantation (HSCT) were investigated in 4 children with G6PC3 deficiency-associated IBD. G6PC3 deficiency was associated with early-onset IBD refractory to treatment with steroids and infliximab. The symptoms of IBD progressed despite G-CSF treatment. In vitro studies on the patients' blood showed that neutrophils displayed higher levels of activation markers (CD11b, CD66b, and CD14), excessive IL-8 and reactive oxygen species, and increased apoptosis and secondary necrosis. Secondary necrosis was exaggerated after stimulation with Escherichia coli and could be partially rescued with supplemental exogenous glucose. HSCT led to normalization of neutrophil function and remission of gastrointestinal symptoms. We conclude that neutrophils in G6PC3 deficiency release pro-inflammatory mediators when exposed to gut bacteria, associated with intestinal inflammation, despite treatment with G-CSF. HSCT is an effective therapeutic option in patients with G6PC3 deficiency-associated IBD refractory to immune suppressants.
Collapse
Affiliation(s)
- Anu Goenka
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,Department of Paediatric Allergy & Immunology, Royal Manchester Children's Hospital, Manchester, UK.,School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - John A Doherty
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Tariq Al-Farsi
- Department of Paediatric Allergy & Immunology, Royal Manchester Children's Hospital, Manchester, UK
| | - Christopher Jagger
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Siddharth Banka
- Division of Evolution and Genomic Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK.,Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester, UK
| | - Edmund Cheesman
- Department of Paediatric Histopathology, Royal Manchester Children's Hospital, Manchester, UK
| | - Andrew Fagbemi
- Department of Paediatric Gastroenterology, Royal Manchester Children's Hospital, Manchester, UK
| | - Stephen M Hughes
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,Department of Paediatric Allergy & Immunology, Royal Manchester Children's Hospital, Manchester, UK
| | - Robert F Wynn
- Department of Paediatric Haematology Royal Manchester Children's Hospital, Manchester, UK
| | - Tracy Hussell
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Peter D Arkwright
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK.,Department of Paediatric Allergy & Immunology, Royal Manchester Children's Hospital, Manchester, UK
| |
Collapse
|
11
|
Rahmani F, Rayzan E, Rahmani MR, Shahkarami S, Zoghi S, Rezaei A, Aryan Z, Najafi M, Rohlfs M, Jeske T, Aflatoonian M, Chavoshzadeh Z, Farahmand F, Motamed F, Rohani P, Alimadadi H, Mahdaviani A, Mansouri M, Tavakol M, Vanderberg M, Kotlarz D, Klein C, Rezaei N. Clinical and Mutation Description of the First Iranian Cohort of Infantile Inflammatory Bowel Disease: The Iranian Primary Immunodeficiency Registry (IPIDR). Immunol Invest 2020; 50:445-459. [PMID: 32633164 DOI: 10.1080/08820139.2020.1776725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We describe a cohort of 25 Iranian patients with infantile inflammatory bowel disease (IBD), 14 (56%) of whom had monogenic defects. After proper screening, patients were referred for whole exome sequencing (WES). Four patients had missense mutations in the IL10 RA, and one had a large deletion in the IL10 RB. Four patients had mutations in genes implicated in host:microbiome homeostasis, including TTC7A deficiency, and two patients with novel mutations in the TTC37 and NOX1. We found a novel homozygous mutation in the SRP54 in a deceased patient and the heterozygous variant in his sibling with a milder phenotype. Three patients had combined immunodeficiency: one with ZAP-70 deficiency (T+B+NK-), and two with atypical SCID due to mutations in RAG1 and LIG4. One patient had a G6PC3 mutation without neutropenia. Eleven of the 14 patients with monogenic defects were results of consanguinity and only 4 of them were alive to this date.
Collapse
Affiliation(s)
- Farzaneh Rahmani
- Department of Radiology, Washington University School of Medicine, St Louis, Missouri, USA.,Student's Scientific Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,NeuroImaging Network (NIN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Elham Rayzan
- International Hematology/Oncology of Pediatrics' Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Rahmani
- Department of Immunology & Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sepideh Shahkarami
- Medical Genetics Network (Megene), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Samaneh Zoghi
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Arezoo Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Aryan
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Najafi
- Department of Gastroenterology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Meino Rohlfs
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Tim Jeske
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Majid Aflatoonian
- Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Chavoshzadeh
- Pediatric Infectious Research Center, Mofid Children's Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Farahmand
- Department of Gastroenterology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzaneh Motamed
- Department of Gastroenterology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Pejman Rohani
- Pediatric Gastroenterology, Hepatology and Nutrition Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Alimadadi
- Department of Gastroenterology, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Mahdaviani
- Pediatric Congenital Hematologic Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahboubeh Mansouri
- Immunology and Allergy Department, Mofid Children Hospital, Shahid Behehshti University of Medical Sciences, Tehran, Iran
| | - Marzieh Tavakol
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mirjam Vanderberg
- Laboratory for Immunology, Dept. Of Pediatrics, Leiden University Medical Center, Netherlands
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. Von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Nima Rezaei
- Research Center for Immunodeficiencies (RCID), Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
12
|
Ouahed J, Spencer E, Kotlarz D, Shouval DS, Kowalik M, Peng K, Field M, Grushkin-Lerner L, Pai SY, Bousvaros A, Cho J, Argmann C, Schadt E, Mcgovern DPB, Mokry M, Nieuwenhuis E, Clevers H, Powrie F, Uhlig H, Klein C, Muise A, Dubinsky M, Snapper SB. Very Early Onset Inflammatory Bowel Disease: A Clinical Approach With a Focus on the Role of Genetics and Underlying Immune Deficiencies. Inflamm Bowel Dis 2020; 26:820-842. [PMID: 31833544 PMCID: PMC7216773 DOI: 10.1093/ibd/izz259] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Indexed: 12/12/2022]
Abstract
Very early onset inflammatory bowel disease (VEO-IBD) is defined as IBD presenting before 6 years of age. When compared with IBD diagnosed in older children, VEO-IBD has some distinct characteristics such as a higher likelihood of an underlying monogenic etiology or primary immune deficiency. In addition, patients with VEO-IBD have a higher incidence of inflammatory bowel disease unclassified (IBD-U) as compared with older-onset IBD. In some populations, VEO-IBD represents the age group with the fastest growing incidence of IBD. There are contradicting reports on whether VEO-IBD is more resistant to conventional medical interventions. There is a strong need for ongoing research in the field of VEO-IBD to provide optimized management of these complex patients. Here, we provide an approach to diagnosis and management of patients with VEO-IBD. These recommendations are based on expert opinion from members of the VEO-IBD Consortium (www.VEOIBD.org). We highlight the importance of monogenic etiologies, underlying immune deficiencies, and provide a comprehensive description of monogenic etiologies identified to date that are responsible for VEO-IBD.
Collapse
Affiliation(s)
- Jodie Ouahed
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Elizabeth Spencer
- Division of Gastroenterology, Hepatology and Nutrition, Mount Sinai Hospital, New York City, NY, USA
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. Von Haunder Children’s Hospital, University Hospital, Ludwig-Maximillians-University Munich, Munich, Germany
| | - Dror S Shouval
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthew Kowalik
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Kaiyue Peng
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA,Department of Gastroenterology, Pediatric Inflammatory Bowel Disease Research Center, Children’s Hospital of Fudan University, Shanghai, China
| | - Michael Field
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Leslie Grushkin-Lerner
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Sung-Yun Pai
- Division of Hematology-Oncology, Boston Children’s Hospital, Dana-Farber Cancer Institute, Boston, MA USA
| | - Athos Bousvaros
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA
| | - Judy Cho
- Icahn School of Medicine at Mount Sinai, Dr. Henry D. Janowitz Division of Gastroenterology, New York, NY, USA
| | - Carmen Argmann
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Eric Schadt
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, USA,Sema4, Stamford, CT, USA
| | - Dermot P B Mcgovern
- F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Michal Mokry
- Division of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Edward Nieuwenhuis
- Division of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute-Royal Netherlands Academy of Arts and Sciences, Utrecht, the Netherlands
| | - Fiona Powrie
- University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| | - Holm Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, UK; Department of Pediatrics, University of Oxford, Oxford, UK
| | - Christoph Klein
- Pediatric Gastroenterology Unit, Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Ramat-Gan, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aleixo Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, ON, Canada. Department of Pediatrics and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, ON, Canada
| | - Marla Dubinsky
- Division of Gastroenterology, Hepatology and Nutrition, Mount Sinai Hospital, New York City, NY, USA
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Boston Children’s Hospital, Boston, MA, USA,Address correspondence to: Scott B. Snapper, MD, PhD, Children's Hospital Boston, Boston, Massachusetts, USA.
| |
Collapse
|
13
|
Abstract
There are now 354 inborn errors of immunity (primary immunodeficiency diseases (PIDDs)) with 344 distinct molecular etiologies reported according to the International Union of Immunological Sciences (IUIS) (Clin Gastroenterol Hepatol 11: p. 1050-63, 2013, Semin Gastrointest Dis 8: p. 22-32, 1997, J Clin Immunol 38: p. 96-128, 2018). Using the IUIS document as a reference and cross-checking PubMed ( www.ncbi.nlm.nih.pubmed.gov ), we found that approximately one third of the 354 diseases of impaired immunity have a gastrointestinal component [J Clin Immunol 38: p. 96-128, 2018]. Often, the gastrointestinal symptomatology and pathology is the heralding sign of a PIDD; therefore, it is important to recognize patterns of disease which may manifest along the gastrointestinal tract as a more global derangement of immune function. As such, holistic consideration of immunity is warranted in patients with clinically significant gastrointestinal disease. Here, we discuss the manifold presentations and GI-specific complications of PIDDs which could lead patients to seek advice from a variety of clinician specialists. Often, patients with these medical problems will engage general pediatricians, surgeons, gastroenterologists, rheumatologists, and clinical immunologists among others. Following delineation of the presenting concern, accurate and often molecular diagnosis is imperative and a multi-disciplinary approach warranted for optimal management. In this review, we will summarize the current state of understanding of PIDD gastrointestinal disease involvement. We will do so by focusing upon gastrointestinal disease categories (i.e., inflammatory, diarrhea, nodular lymphoid hyperplasia, liver/biliary tract, structural disease, and oncologic disease) with an intent to aid the healthcare provider who may encounter a patient with an as-yet undiagnosed PIDD who presents initially with a gastrointestinal symptom, sign, or problem.
Collapse
|
14
|
Pascoal C, Francisco R, Ferro T, Dos Reis Ferreira V, Jaeken J, Videira PA. CDG and immune response: From bedside to bench and back. J Inherit Metab Dis 2020; 43:90-124. [PMID: 31095764 DOI: 10.1002/jimd.12126] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
Abstract
Glycosylation is an essential biological process that adds structural and functional diversity to cells and molecules, participating in physiological processes such as immunity. The immune response is driven and modulated by protein-attached glycans that mediate cell-cell interactions, pathogen recognition and cell activation. Therefore, abnormal glycosylation can be associated with deranged immune responses. Within human diseases presenting immunological defects are congenital disorders of glycosylation (CDG), a family of around 130 rare and complex genetic diseases. In this review, we have identified 23 CDG with immunological involvement, characterized by an increased propensity to-often life-threatening-infection. Inflammatory and autoimmune complications were found in 7 CDG types. CDG natural history(ies) and the mechanisms behind the immunological anomalies are still poorly understood. However, in some cases, alterations in pathogen recognition and intracellular signaling (eg, TGF-β1, NFAT, and NF-κB) have been suggested. Targeted therapies to restore immune defects are only available for PGM3-CDG and SLC35C1-CDG. Fostering research on glycoimmunology may elucidate the involved pathophysiological mechanisms and open new therapeutic avenues, thus improving CDG patients' quality of life.
Collapse
Affiliation(s)
- Carlota Pascoal
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Rita Francisco
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Tiago Ferro
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Vanessa Dos Reis Ferreira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
| | - Jaak Jaeken
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- Center for Metabolic Diseases, Department of Development and Regeneration, UZ and KU Leuven, Leuven, Belgium
| | - Paula A Videira
- Portuguese Association for CDG, Lisbon, Portugal
- CDG & Allies - Professionals and Patient Associations International Network (CDG & Allies - PPAIN), Caparica, Portugal
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| |
Collapse
|
15
|
Bolton C, Burch N, Morgan J, Harrison B, Pandey S, Pagnamenta AT, Taylor JC, Taylor JM, Marsh JCW, Potter V, Travis S, Uhlig HH. Remission of Inflammatory Bowel Disease in Glucose-6-Phosphatase 3 Deficiency by Allogeneic Haematopoietic Stem Cell Transplantation. J Crohns Colitis 2020; 14:142-147. [PMID: 31157858 PMCID: PMC6930000 DOI: 10.1093/ecco-jcc/jjz112] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mendelian disorders in glucose-6-phosphate metabolism can present with inflammatory bowel disease [IBD]. Using whole genome sequencing we identified a homozygous variant in the glucose-6-phosphatase G6PC3 gene [c.911dupC; p.Q305fs*82] in an adult patient with congenital neutropenia, lymphopenia and childhood-onset, therapy-refractory Crohn's disease. Because G6PC3 is expressed in several haematopoietic and non-haematopoietic cells it was unclear whether allogeneic stem cell transplantation [HSCT] would benefit this patient with intestinal inflammation. We show that HSCT resolves G6PC3-associated immunodeficiency and the Crohn's disease phenotype. It illustrates how even in adulthood, next-generation sequencing can have a significant impact on clinical practice and healthcare utilization in patients with immunodeficiency and monogenic IBD.
Collapse
Affiliation(s)
- Chrissy Bolton
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nicola Burch
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - James Morgan
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Beth Harrison
- University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| | - Sumeet Pandey
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Alistair T Pagnamenta
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Jenny C Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - John M Taylor
- Oxford NIHR Biomedical Research Centre, Oxford, UK
- Oxford Medical Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Judith C W Marsh
- Department of Haematological Medicine, King’s College Hospital/King’s College London, London, UK
| | - Victoria Potter
- Department of Haematological Medicine, King’s College Hospital/King’s College London, London, UK
| | - Simon Travis
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, Nuffield Department of Experimental Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
16
|
Genetics on early onset inflammatory bowel disease: An update. Genes Dis 2019; 7:93-106. [PMID: 32181280 PMCID: PMC7063406 DOI: 10.1016/j.gendis.2019.10.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 09/23/2019] [Accepted: 10/07/2019] [Indexed: 12/30/2022] Open
Abstract
Inflammatory bowel disease (IBD) is more common in adults than in children. Onset of IBD before 17 years of age is referred as pediatric onset IBD and is further categorized as very early onset IBD (VEO-IBD) for children who are diagnosed before 6 years of age, infantile IBD who had the disease before 2 years of age and neonatal onset IBD for children less than 28 days of life. Children presenting with early onset disease may have a monogenic basis. Knowledge and awareness of the clinical manifestations facilitates early evaluation and diagnosis. Next generation sequencing is helpful in making the genetic diagnosis. Treatment of childhood IBD is difficult; targeted therapies and hematopoietic stem cell transplantation form the mainstay. In this review we aim to summarize the genetic defects associated with IBD phenotype. We describe genetic location and functions of various genetic defect associated with VEO-IBD with their key clinical manifestations. We also provide clinical clues to suspect these conditions and approaches to the diagnosis of these disorders and suitable treatment options.
Collapse
|
17
|
Pazmandi J, Kalinichenko A, Ardy RC, Boztug K. Early-onset inflammatory bowel disease as a model disease to identify key regulators of immune homeostasis mechanisms. Immunol Rev 2019; 287:162-185. [PMID: 30565237 PMCID: PMC7379380 DOI: 10.1111/imr.12726] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Rare, monogenetic diseases present unique models to dissect gene functions and biological pathways, concomitantly enhancing our understanding of the etiology of complex (and often more common) traits. Although inflammatory bowel disease (IBD) is a generally prototypic complex disease, it can also manifest in an early-onset, monogenic fashion, often following Mendelian modes of inheritance. Recent advances in genomic technologies have spurred the identification of genetic defects underlying rare, very early-onset IBD (VEO-IBD) as a disease subgroup driven by strong genetic influence, pinpointing key players in the delicate homeostasis of the immune system in the gut and illustrating the intimate relationships between bowel inflammation, systemic immune dysregulation, and primary immunodeficiency with increased susceptibility to infections. As for other human diseases, it is likely that adult-onset diseases may represent complex diseases integrating the effects of host genetic susceptibility and environmental triggers. Comparison of adult-onset IBD and VEO-IBD thus provides beautiful models to investigate the relationship between monogenic and multifactorial/polygenic diseases. This review discusses the present and novel findings regarding monogenic IBD as well as key questions and future directions of IBD research.
Collapse
Affiliation(s)
- Julia Pazmandi
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Artem Kalinichenko
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Rico Chandra Ardy
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed DiseasesViennaAustria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Department of Pediatrics and Adolescent MedicineMedical University of ViennaViennaAustria
- Department of PediatricsSt. Anna Kinderspital and Children's Cancer Research InstituteMedical University of ViennaViennaAustria
| |
Collapse
|
18
|
Shim JO. Recent Advance in Very Early Onset Inflammatory Bowel Disease. Pediatr Gastroenterol Hepatol Nutr 2019; 22:41-49. [PMID: 30671372 PMCID: PMC6333591 DOI: 10.5223/pghn.2019.22.1.41] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 12/12/2022] Open
Abstract
Recent studies on pediatric inflammatory bowel disease (IBD) have revealed that early-onset IBD has distinct phenotypic differences compared with adult-onset IBD. In particular, very early-onset IBD (VEO-IBD) differs in many aspects, including the disease type, location of the lesions, disease behavior, and genetically attributable risks. Several genetic defects that disturb intestinal epithelial barrier function or affect immune function have been noted in these patients from the young age groups. In incidence of pediatric IBD in Korea has been increasing since the early 2000s. Neonatal or infantile-onset IBD develops in less than 1% of pediatric patients. Children with "neonatal IBD" or "infantile-onset IBD" have higher rates of affected first-degree relatives, severe disease course, and a high rate of resistance to immunosuppressive treatment. The suspicion of a monogenic cause of VEO-IBD was first confirmed by the discovery of mutations in the genes encoding the interleukin 10 (IL-10) receptors that cause impaired IL-10 signaling. Patients with such mutations typically presented with perianal fistulae, shows a poor response to medical management, and require early surgical interventions in the first year of life. To date, 60 monogenic defects have been identified in children with IBD-like phenotypes. The majority of monogenic defects presents before 6 years of age, and many present before 1 year of age. Next generation sequencing could become an important diagnostic tool in children with suspected genetic defects especially in children with VEO-IBD with severe disease phenotypes. VEO-IBD is a phenotypically and genetically distinct disease entity from adult-onset or older pediatric IBD.
Collapse
Affiliation(s)
- Jung Ok Shim
- Department of Pediatrics, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
19
|
Congenital neutropenia and primary immunodeficiency diseases. Crit Rev Oncol Hematol 2019; 133:149-162. [DOI: 10.1016/j.critrevonc.2018.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023] Open
|
20
|
Shim JO. Recent advance in very early-onset inflammatory bowel disease. Intest Res 2018; 17:9-16. [PMID: 30419637 PMCID: PMC6361014 DOI: 10.5217/ir.2018.00130] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 10/01/2018] [Indexed: 12/17/2022] Open
Abstract
Recent studies on pediatric inflammatory bowel disease (IBD) have revealed that early-onset IBD has distinct phenotypic differences compared with adult-onset IBD. In particular, very early-onset IBD (VEO-IBD) differs in many aspects, including the disease type, location of the lesions, disease behavior, and genetically attributable risks. Neonatal or infantile-onset IBD develops in less than 1% of pediatric patients. Children with infantile-onset IBD have high rates of affected first-degree relatives and severe disease course. The suspicion of a monogenic cause of VEO-IBD was first confirmed by the discovery of mutations in the genes encoding the interleukin 10 (IL-10) receptors that cause impaired IL-10 signaling. Patients with such mutations typically presented with perianal fistulae, shows a poor response to medical management, and require early surgical interventions in the first year of life. To date, 60 monogenic defects have been identified in children with IBD-like phenotypes. The majority of monogenic defects presents before 6 years of age, and many present before 1 year of age. Next generation sequencing could become an important diagnostic tool in children with suspected genetic defects especially in children with VEO-IBD with severe disease phenotypes. VEO-IBD is a phenotypically and genetically distinct disease entity from adult-onset or older pediatric IBD.
Collapse
Affiliation(s)
- Jung Ok Shim
- Department of Pediatrics, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Korea
| |
Collapse
|
21
|
You JY. [Features and management of very early onset inflammatory bowel disease]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2018; 20:341-345. [PMID: 29764567 PMCID: PMC7389054 DOI: 10.7499/j.issn.1008-8830.2018.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic nonspecific intestinal inflammatory disease of unknown etiology. This disease includes three main types: Crohn′s disease (CD), ulcerative colitis (UC), and IBD-unclassified (IBD-U). IBD is frequently presented in adults, but in recent years, there is a rising incidence in pediatric populations. Very early onset IBD (VEO-IBD) is a fraction of pediatric IBD, but they have exclusive phenotypic and genetic characteristics such that they are accompanied by severe disease course and resistance to conventional therapy. The purpose of this review is to provide a contemporary overview of the clinical features, pathogenesis, and management of VEO-IBD.
Collapse
Affiliation(s)
- Jie-Yu You
- Department of Gastroenterology, Hunan Children′s Hospital, Changsha 410000, China.
| |
Collapse
|
22
|
Mistry A, Scambler T, Parry D, Wood M, Barcenas-Morales G, Carter C, Doffinger R, Savic S. Glucose-6-Phosphatase Catalytic Subunit 3 ( G6PC3) Deficiency Associated With Autoinflammatory Complications. Front Immunol 2017; 8:1485. [PMID: 29163546 PMCID: PMC5681747 DOI: 10.3389/fimmu.2017.01485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 10/23/2017] [Indexed: 01/02/2023] Open
Abstract
G6PC3 deficiency typically causes severe congenital neutropenia, associated with susceptibility to infections, cardiac and urogenital abnormalities. However, here we describe two boys of Pakistani origin who were found to have G6PC3 deficiency due to c.130 C>T mutation, but who have clinical phenotypes that are typical for a systemic autoinflammatory syndrome. The index case presented with combination of unexplained fevers, severe mucosal ulcers, abdominal symptoms, and inflammatory arthritis. He eventually fully responded to anti-TNF therapy. In this study, we show that compared with healthy controls, neutrophils and monocytes from patients have reduced glycolytic reserve. Considering that healthy myeloid cells have been shown to switch their metabolic pathways to glycolysis in response to inflammatory cues, we studied what impact this might have on production of the inflammatory cytokines. We have demonstrated that patients’ monocytes, in response to lipopolysaccharide, show significantly increased production of IL-1β and IL-18, which is NLRP3 inflammasome dependent. Furthermore, additional whole blood assays have also shown an enhanced production of IL-6 and TNF from the patients’ cells. These cases provide further proof that autoinflammatory complications are also seen within the spectrum of primary immune deficiencies, and resulting from a wider dysregulation of the immune responses.
Collapse
Affiliation(s)
- Anoop Mistry
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - Thomas Scambler
- National Institute for Health Research-Leeds Biomedical Research Centre (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), St James's University Hospital, Leeds, United Kingdom
| | - David Parry
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark Wood
- Department of Paediatrics Rheumatology, Leeds General Infirmary, Leeds, United Kingdom
| | - Gabriela Barcenas-Morales
- Laboratorio de Inmunologia, FES-Cuautitlan, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Clive Carter
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Sinisa Savic
- Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom.,National Institute for Health Research-Leeds Biomedical Research Centre (NIHR-LMBRU), Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), St James's University Hospital, Leeds, United Kingdom
| |
Collapse
|
23
|
Petersen BS, Fredrich B, Hoeppner MP, Ellinghaus D, Franke A. Opportunities and challenges of whole-genome and -exome sequencing. BMC Genet 2017; 18:14. [PMID: 28193154 PMCID: PMC5307692 DOI: 10.1186/s12863-017-0479-5] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 01/26/2017] [Indexed: 01/08/2023] Open
Abstract
Recent advances in the development of sequencing technologies provide researchers with unprecedented possibilities for genetic analyses. In this review, we will discuss the history of genetic studies and the progress driven by next-generation sequencing (NGS), using complex inflammatory bowel diseases as an example. We focus on the opportunities, but also challenges that researchers are facing when working with NGS data to unravel the genetic causes underlying diseases.
Collapse
Affiliation(s)
| | - Broder Fredrich
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Marc P Hoeppner
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - David Ellinghaus
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany.
| |
Collapse
|
24
|
Klein C. Children with rare diseases of neutrophil granulocytes: from therapeutic orphans to pioneers of individualized medicine. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2016; 2016:33-37. [PMID: 27913459 PMCID: PMC6142513 DOI: 10.1182/asheducation-2016.1.33] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Neutrophil granulocytes are the most abundant immune cells in the blood yet the pathways orchestrating their differentiation and biological function remain incompletely understood. Studying (ultra-) rare patients with monogenetic defects of neutrophil granulocytes may open new horizons to understand basic principles of hematopoiesis and innate immunity. Here, recent insights into genetic factors controlling myelopoiesis and their more general role in biology will be presented in a clinical perspective. Advances in supportive care, first and foremost the use of recombinant human granulocyte-colony stimulating factor, has made a substantial difference for the quality of life and life expectancy of patients with congenital neutropenia (CN). Up to date, the only definitive cure can be provided by transplantation of allogeneic hematopoietic stem cells. The elucidation of the underlying molecular factors contributing to defective differentiation and function of neutrophil granulocytes nurtures new ideas of targeted individualized therapies.
Collapse
Affiliation(s)
- Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
25
|
Bianco AM, Girardelli M, Tommasini A. Genetics of inflammatory bowel disease from multifactorial to monogenic forms. World J Gastroenterol 2015; 21:12296-12310. [PMID: 26604638 PMCID: PMC4649114 DOI: 10.3748/wjg.v21.i43.12296] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 08/13/2015] [Accepted: 10/26/2015] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a group of chronic multifactorial disorders. According to a recent study, the number of IBD association loci is increased to 201, of which 37 and 27 loci contribute specifically to the development of Crohn’s disease and ulcerative colitis respectively. Some IBD associated genes are involved in innate immunity, in the autophagy and in the inflammatory response such as NOD2, ATG16L1 and IL23R, while other are implicated in immune mediated disease (STAT3) and in susceptibility to mycobacterium infection (IL12B). In case of early onset of IBD (VEO-IBD) within the 6th year of age, the disease may be caused by mutations in genes responsible for severe monogenic disorders such as the primary immunodeficiency diseases. In this review we discuss how these monogenic disorders through different immune mechanisms can similarly be responsible of VEO-IBD phenotype. Moreover we would highlight how the identification of pathogenic genes by Next Generation Sequencing technologies can allow to obtain a rapid diagnosis and to apply specific therapies.
Collapse
|
26
|
Abstract
Glucose-6-phosphatase catalytic subunit 3 (G6PC3) deficiency was recently defined as a new severe congenital neutropenia subgroup remarkable with congenital heart defects, urogenital malformations, endocrine abnormalities, and prominent superficial veins. Here, we report 3 patients with G6PC3 deficiency presenting with recurrent diarrhea, failure to thrive, and sinopulmonary infections leading to bronchiectasis. In patient I and II, a combined immune deficiency was suspected due to early-onset disease with lymphopenia, neutropenia, and thrombocytopenia, along with variable reductions in lymphocyte subpopulations and favorable response to intravenous γ-globulin therapy. Apart from neutropenia, all 3 patients had intermittent thrombocytopenia, anemia, and lymphopenia. All patients had failure to thrive and some of the classic syndromic features of G6PC3 deficiency, including cardiac abnormalities and visibility of superficial veins in all, endocrinologic problems in PI and PIII, and urogenital abnormalities in PII. Our experience suggests that a diagnosis of congenital neutropenia due to G6PC3 may not be as straightforward in such patients with combined lymphopenia and thrombocytopenia. A high index of suspicion and the other syndromic features of G6PC3 were clues to diagnosis. Screening of all combined immune deficiencies with neutropenia may help to uncover the whole spectra of G6PC3 deficiency.
Collapse
|
27
|
Cardiovascular abnormalities in primary immunodeficiency diseases. LYMPHOSIGN JOURNAL-THE JOURNAL OF INHERITED IMMUNE DISORDERS 2015. [DOI: 10.14785/lpsn-2014-0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In recent years, increasing numbers of patients with primary immune deficiency (PID) are being recognized as also suffering from cardiovascular system (CVS) abnormalities. These CVS defects might be explained by infectious or autoimmune etiologies, as well as by the role of specific genes and the immune system in the development and function of CVS tissues. Here, we provide the first comprehensive review of the clinical, potentially pathogenic mechanisms, and the management of PID, as well as the associated immune and CVS defects. In addition to some well-known associations of PID with CVS abnormalities, such as DiGeorge syndrome and CHARGE anomaly, we describe the cardiac defects associated with Omenn syndrome, calcium channel deficiencies, DNA repair defects, common variable immunodeficiency, Roifman syndrome, various neutrophil/macrophage defects, FADD deficiency, and HOIL1 deficiency. Moreover, we detail the vascular abnormalities recognized in chronic mucocutaneous candidiasis, chronic granulomatous disease, Wiskott–Aldrich syndrome, Schimke immuno-osseus dysplasia, hyper-IgE syndrome, MonoMAC syndrome, and X-linked lymphoproliferative disease. In conclusion, the expanding spectrum of PID requires increased alertness to the possibility of CVS involvement as an important contributor to the diagnosis and management of these patients.
Collapse
|
28
|
Desplantes C, Fremond ML, Beaupain B, Harousseau JL, Buzyn A, Pellier I, Roques G, Morville P, Paillard C, Bruneau J, Pinson L, Jeziorski E, Vannier JP, Picard C, Bellanger F, Romero N, de Pontual L, Lapillonne H, Lutz P, Chantelot CB, Donadieu J. Clinical spectrum and long-term follow-up of 14 cases with G6PC3 mutations from the French Severe Congenital Neutropenia Registry. Orphanet J Rare Dis 2014; 9:183. [PMID: 25491320 PMCID: PMC4279596 DOI: 10.1186/s13023-014-0183-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/05/2014] [Indexed: 12/16/2022] Open
Abstract
Background The purpose of this study was to describe the natural history of severe congenital neutropenia (SCN) in 14 patients with G6PC3 mutations and enrolled in the French SCN registry. Methods Among 605 patients included in the French SCN registry, we identified 8 pedigrees that included 14 patients with autosomal recessive G6PC3 mutations. Results Median age at the last visit was 22.4 years. All patients had developed various comordibities, including prominent veins (n = 12), cardiac malformations (n = 12), intellectual disability (n = 7), and myopathic syndrome with recurrent painful cramps (n = 1). Three patients developed Crohn’s disease, and five had chronic diarrhea with steatorrhea. Neutropenia was profound (<0.5 × 109/l) in almost all cases at diagnosis and could marginally fluctuate. The bone marrow smears exhibited mild late-stage granulopoeitic defects. One patient developed myelodysplasia followed by acute myelogenous leukemia with translocation (18, 21) at age 14 years, cured by chemotherapy and hematopoietic stem cell transplantation. Four deaths occurred, including one from sepsis at age 5, one from pulmonary late-stage insufficiency at age 19, and two from sudden death, both at age 30 years. A new homozygous mutation (c.249G > A /p.Trp83*) was detected in one pedigree. Conclusions Severe congenital neutropenia with autosomal recessive G6PC3 mutations is associated with considerable clinical heterogeneity. This series includes the first described case of malignancy in this neutropenia.
Collapse
|
29
|
Uhlig HH, Schwerd T, Koletzko S, Shah N, Kammermeier J, Elkadri A, Ouahed J, Wilson DC, Travis SP, Turner D, Klein C, Snapper SB, Muise AM. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology 2014; 147:990-1007.e3. [PMID: 25058236 PMCID: PMC5376484 DOI: 10.1053/j.gastro.2014.07.023] [Citation(s) in RCA: 468] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 07/13/2014] [Accepted: 07/15/2014] [Indexed: 02/07/2023]
Abstract
Patients with a diverse spectrum of rare genetic disorders can present with inflammatory bowel disease (monogenic IBD). Patients with these disorders often develop symptoms during infancy or early childhood, along with endoscopic or histological features of Crohn's disease, ulcerative colitis, or IBD unclassified. Defects in interleukin-10 signaling have a Mendelian inheritance pattern with complete penetrance of intestinal inflammation. Several genetic defects that disturb intestinal epithelial barrier function or affect innate and adaptive immune function have incomplete penetrance of the IBD-like phenotype. Several of these monogenic conditions do not respond to conventional therapy and are associated with high morbidity and mortality. Due to the broad spectrum of these extremely rare diseases, a correct diagnosis is frequently a challenge and often delayed. In many cases, these diseases cannot be categorized based on standard histological and immunologic features of IBD. Genetic analysis is required to identify the cause of the disorder and offer the patient appropriate treatment options, which include medical therapy, surgery, or allogeneic hematopoietic stem cell transplantation. In addition, diagnosis based on genetic analysis can lead to genetic counseling for family members of patients. We describe key intestinal, extraintestinal, and laboratory features of 50 genetic variants associated with IBD-like intestinal inflammation. In addition, we provide approaches for identifying patients likely to have these disorders. We also discuss classic approaches to identify these variants in patients, starting with phenotypic and functional assessments that lead to analysis of candidate genes. As a complementary approach, we discuss parallel genetic screening using next-generation sequencing followed by functional confirmation of genetic defects.
Collapse
Affiliation(s)
- Holm H Uhlig
- Translational Gastroenterology Unit, University of Oxford, Oxford, England; Department of Pediatrics, University of Oxford, Oxford, England.
| | - Tobias Schwerd
- Translational Gastroenterology Unit, University of Oxford, Oxford, England
| | - Sibylle Koletzko
- Dr von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Neil Shah
- Great Ormond Street Hospital London, London, England; Catholic University, Leuven, Belgium
| | | | - Abdul Elkadri
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Jodie Ouahed
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts; Division of Gastroenterology and Hepatology, Brigham & Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - David C Wilson
- Child Life and Health, University of Edinburgh, Edinburgh, Scotland; Department of Pediatric Gastroenterology, Hepatology, and Nutrition, Royal Hospital for Sick Children, Edinburgh, Scotland
| | - Simon P Travis
- Translational Gastroenterology Unit, University of Oxford, Oxford, England
| | - Dan Turner
- Pediatric Gastroenterology Unit, Shaare Zedek Medical Center, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Christoph Klein
- Dr von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | - Scott B Snapper
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts; Division of Gastroenterology and Hepatology, Brigham & Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
30
|
Primary immunodeficiencies appearing as combined lymphopenia, neutropenia, and monocytopenia. Immunol Lett 2014; 161:222-5. [DOI: 10.1016/j.imlet.2013.11.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 11/24/2013] [Indexed: 12/11/2022]
|
31
|
Testicular failure in a patient with G6PC3 deficiency. Pediatr Res 2014; 76:197-201. [PMID: 24796372 DOI: 10.1038/pr.2014.64] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 01/30/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND Glucose-6-phosphatase-β (G6PC3) deficiency is characterized by congenital neutropenia and variable developmental disorders, including those of the cardiovascular system and the urogenital system (e.g., cryptorchidism) and a peculiar visibility of subcutaneous veins. METHODS A patient with clinical findings suggestive of G6PC3 deficiency was investigated. Genetic, hematopathologic, immunologic, and endocrine work-up were performed. RESULTS The reported patient had binucleotide deletion mutation in G6PC3 and displayed the full spectrum of clinical manifestations associated with G6PC3 deficiency including neutropenia. The reported patient had normal bone marrow cellularity without increased apoptosis, and his neutrophils displayed normal respiratory burst activity. Endocrine work-up revealed low testosterone levels, which did not respond to human chorionic gonadotropin stimulation, extremely elevated luteinizing hormone (LH) and follicle-stimulating hormone (FSH) levels, and undetectable anti-Müllerian hormone, all of which are suggestive of testicular failure or anorchia. CONCLUSION Our report extends the knowledge about this syndrome and suggests a role for G6PC3 in testicular differentiation and formation. Urogenital dysmorphism could indeed be unrelated to G6PC3 and secondary to consanguinity. However, given the similar description of urogenital anomalies in previous reports of this syndrome, the dysmorphism in our patient is likely related.
Collapse
|
32
|
Arikoglu T, Kuyucu N, Germeshausen M, Kuyucu S. A novel G6PC3 gene mutation in severe congenital neutropenia: pancytopenia and variable bone marrow phenotype can also be part of this syndrome. Eur J Haematol 2014; 94:79-82. [DOI: 10.1111/ejh.12349] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2014] [Indexed: 01/13/2023]
Affiliation(s)
- Tugba Arikoglu
- Department of Pediatric Allergy and Immunology; Faculty of Medicine; Mersin University; Mersin Turkey
| | - Necdet Kuyucu
- Department of Pediatric Infectious Diseases; Faculty of Medicine; Mersin University; Mersin Turkey
| | - Manuela Germeshausen
- Department of Pediatric Hematology and Oncology; Hannover Medical University; Hannover Germany
| | - Semanur Kuyucu
- Department of Pediatric Allergy and Immunology; Faculty of Medicine; Mersin University; Mersin Turkey
| |
Collapse
|
33
|
Salzer E, Kansu A, Sic H, Májek P, Ikincioğullari A, Dogu FE, Prengemann NK, Santos-Valente E, Pickl WF, Bilic I, Ban SA, Kuloğlu Z, Demir AM, Ensari A, Colinge J, Rizzi M, Eibel H, Boztug K. Early-onset inflammatory bowel disease and common variable immunodeficiency-like disease caused by IL-21 deficiency. J Allergy Clin Immunol 2014; 133:1651-9.e12. [PMID: 24746753 DOI: 10.1016/j.jaci.2014.02.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/16/2014] [Accepted: 02/05/2014] [Indexed: 02/06/2023]
Abstract
BACKGROUND Alterations of immune homeostasis in the gut can result in development of inflammatory bowel disease (IBD). Recently, Mendelian forms of IBD have been discovered, as exemplified by deficiency of IL-10 or its receptor subunits. In addition, other types of primary immunodeficiency disorders might be associated with intestinal inflammation as one of their leading clinical presentations. OBJECTIVE We investigated a large consanguineous family with 3 children who presented with early-onset IBD within the first year of life, leading to death in infancy in 2 of them. METHODS Homozygosity mapping combined with exome sequencing was performed to identify the molecular cause of the disorder. Functional experiments were performed to assess the effect of IL-21 on the immune system. RESULTS A homozygous mutation in IL21 was discovered that showed perfect segregation with the disease. Deficiency of IL-21 resulted in reduced numbers of circulating CD19(+) B cells, including IgM(+) naive and class-switched IgG memory B cells, with a concomitant increase in transitional B-cell numbers. In vitro assays demonstrated that mutant IL-21(Leu49Pro) did not induce signal transducer and activator of transcription 3 phosphorylation and immunoglobulin class-switch recombination. CONCLUSION Our study uncovers IL-21 deficiency as a novel cause of early-onset IBD in human subjects accompanied by defects in B-cell development similar to those found in patients with common variable immunodeficiency. IBD might mask an underlying primary immunodeficiency, as illustrated here with IL-21 deficiency.
Collapse
Affiliation(s)
- Elisabeth Salzer
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Aydan Kansu
- Department of Pediatric Gastroenterology, Ankara University, Ankara, Turkey
| | - Heiko Sic
- Center for Chronic Immunodeficiency, University Medical Center, Freiburg, Germany
| | - Peter Májek
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Figen E Dogu
- Department of Pediatric Immunology, Ankara University, Ankara, Turkey
| | - Nina Kathrin Prengemann
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Winfried F Pickl
- Christian Doppler Laboratory for Immunomodulation and Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Ivan Bilic
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sol A Ban
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Zarife Kuloğlu
- Department of Pediatric Gastroenterology, Ankara University, Ankara, Turkey
| | - Arzu Meltem Demir
- Department of Pediatric Gastroenterology, Ankara University, Ankara, Turkey
| | - Arzu Ensari
- Department of Pathology, Ankara University, Ankara, Turkey
| | - Jacques Colinge
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Marta Rizzi
- Center for Chronic Immunodeficiency, University Medical Center, Freiburg, Germany
| | - Hermann Eibel
- Center for Chronic Immunodeficiency, University Medical Center, Freiburg, Germany
| | - Kaan Boztug
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria; Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
34
|
Murugan D, Albert MH, Langemeier J, Bohne J, Puchalka J, Järvinen PM, Hauck F, Klenk AK, Prell C, Schatz S, Diestelhorst J, Sciskala B, Kohistani N, Belohradsky BH, Müller S, Kirchner T, Walter MR, Bufler P, Muise AM, Snapper SB, Koletzko S, Klein C, Kotlarz D. Very early onset inflammatory bowel disease associated with aberrant trafficking of IL-10R1 and cure by T cell replete haploidentical bone marrow transplantation. J Clin Immunol 2014; 34:331-9. [PMID: 24519095 DOI: 10.1007/s10875-014-9992-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/20/2014] [Indexed: 12/19/2022]
Abstract
PURPOSE Loss-of-function mutations in IL10 and IL10R cause very early onset inflammatory bowel disease (VEO-IBD). Here, we investigated the molecular pathomechanism of a novel intronic IL10RA mutation and describe a new therapeutic approach of T cell replete haploidentical hematopoietic stem cell transplantation (HSCT). METHODS Clinical data were collected by chart review. Genotypes of IL10 and IL10R genes were determined by Sanger sequencing. Expression and function of mutated IL-10R1 were assessed by quantitative PCR, Western blot analysis, enzyme-linked immunosorbent assays, confocal microscopy, and flow cytometry. RESULTS We identified a novel homozygous point mutation in intron 3 of the IL10RA (c.368-10C > G) in three related children with VEO-IBD. Bioinformatical analysis predicted an additional 3' splice site created by the mutation. Quantitative PCR analysis showed normal mRNA expression of mutated IL10RA. Sequencing of the patient's cDNA revealed an insertion of the last nine nucleotides of intron 3 as a result of aberrant splicing. Structure-based modeling suggested misfolding of mutated IL-10R1. Western blot analysis demonstrated a different N-linked glycosylation pattern of mutated protein. Immunofluorescence and FACS analysis revealed impaired expression of mutated IL-10R1 at the plasma membrane. In the absence of HLA-identical donors, T cell replete haploidentical HSCT was successfully performed in two patients. CONCLUSIONS Our findings expand the spectrum of IL10R mutations in VEO-IBD and emphasize the need for genetic diagnosis of mutations in conserved non-coding sequences of candidate genes. Transplantation of haploidentical stem cells represents a curative therapy in IL-10R-deficient patients, but may be complicated by non-engraftment.
Collapse
Affiliation(s)
- Dhaarini Murugan
- Dr. von Hauner Children's Hospital, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Uhlig HH. Monogenic diseases associated with intestinal inflammation: implications for the understanding of inflammatory bowel disease. Gut 2013; 62:1795-805. [PMID: 24203055 DOI: 10.1136/gutjnl-2012-303956] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, has multifactorial aetiology with complex interactions between genetic and environmental factors. Over 150 genetic loci are associated with IBD. The genetic contribution of the majority of those loci towards explained heritability is low. Recent studies have reported an increasing spectrum of human monogenic diseases that can present with IBD-like intestinal inflammation. A substantial proportion of patients with those genetic defects present with very early onset of intestinal inflammation. The 40 monogenic defects with IBD-like pathology selected in this review can be grouped into defects in intestinal epithelial barrier and stress response, immunodeficiencies affecting granulocyte and phagocyte activity, hyper- and autoinflammatory disorders as well as defects with disturbed T and B lymphocyte selection and activation. In addition, there are defects in immune regulation affecting regulatory T cell activity and interleukin (IL)-10 signalling. Related to the variable penetrance of the IBD-like phenotype, there is a likely role for modifier genes and gene-environment interactions. Treatment options in this heterogeneous group of disorders range from anti-inflammatory and immunosuppressive therapy to blockade of tumour necrosis factor α and IL-1β, surgery, haematopoietic stem cell transplantation or gene therapy. Understanding of prototypic monogenic 'orphan' diseases cannot only provide treatment options for the affected patients but also inform on immunological mechanisms and complement the functional understanding of the pathogenesis of IBD.
Collapse
|
36
|
Banka S, Newman WG. A clinical and molecular review of ubiquitous glucose-6-phosphatase deficiency caused by G6PC3 mutations. Orphanet J Rare Dis 2013; 8:84. [PMID: 23758768 PMCID: PMC3718741 DOI: 10.1186/1750-1172-8-84] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/22/2013] [Indexed: 12/14/2022] Open
Abstract
The G6PC3 gene encodes the ubiquitously expressed glucose-6-phosphatase enzyme (G-6-Pase β or G-6-Pase 3 or G6PC3). Bi-allelic G6PC3 mutations cause a multi-system autosomal recessive disorder of G6PC3 deficiency (also called severe congenital neutropenia type 4, MIM 612541). To date, at least 57 patients with G6PC3 deficiency have been described in the literature. G6PC3 deficiency is characterized by severe congenital neutropenia, recurrent bacterial infections, intermittent thrombocytopenia in many patients, a prominent superficial venous pattern and a high incidence of congenital cardiac defects and uro-genital anomalies. The phenotypic spectrum of the condition is wide and includes rare manifestations such as maturation arrest of the myeloid lineage, a normocellular bone marrow, myelokathexis, lymphopaenia, thymic hypoplasia, inflammatory bowel disease, primary pulmonary hypertension, endocrine abnormalities, growth retardation, minor facial dysmorphism, skeletal and integument anomalies amongst others. Dursun syndrome is part of this extended spectrum. G6PC3 deficiency can also result in isolated non-syndromic severe neutropenia. G6PC3 mutations in result in reduced enzyme activity, endoplasmic reticulum stress response, increased rates of apoptosis of affected cells and dysfunction of neutrophil activity. In this review we demonstrate that loss of function in missense G6PC3 mutations likely results from decreased enzyme stability. The condition can be diagnosed by sequencing the G6PC3 gene. A number of G6PC3 founder mutations are known in various populations and a possible genotype-phenotype relationship also exists. G6PC3 deficiency should be considered as part of the differential diagnoses in any patient with unexplained congenital neutropenia. Treatment with G-CSF leads to improvement in neutrophil numbers, prevents infections and improves quality of life. Mildly affected patients can be managed with prophylactic antibiotics. Untreated G6PC3 deficiency can be fatal. Echocardiogram, renal and pelvic ultrasound scans should be performed in all cases of suspected or confirmed G6PC3 deficiency. Routine assessment should include biochemical profile, growth profile and monitoring for development of varicose veins or venous ulcers.
Collapse
Affiliation(s)
- Siddharth Banka
- Manchester Centre for Genomic Medicine, Institute of Human Development, University of Manchester, Manchester, UK.
| | | |
Collapse
|