1
|
Pereira RA, Dantas EO, Loekmanwidjaja J, Mazzucchelli JTL, Aranda CS, Serrano MEG, De La Cruz Córdoba EA, Bezrodnik L, Moreira I, Ferreira JFS, Dantas VM, Sales VSF, Fernandez CC, Vilela MMS, Motta IP, Franco JL, Arango JCO, Álvarez-Álvarez JA, Cardozo LRR, Orellana JC, Condino-Neto A, Kokron CM, Barros MT, Regairaz L, Cabanillas D, Suarez CLN, Rosario NA, Chong-Neto HJ, Takano OA, Nadaf MISV, Moraes LSL, Tavares FS, Rabelo F, Pino J, Calderon WC, Mendoza-Quispe D, Goudouris ES, Patiño V, Montenegro C, Souza MS, Branco ABXCC, Forte WCN, Carvalho FAA, Segundo G, Cheik MFA, Roxo-Junior P, Peres M, Oliveira AM, Neto ACP, Ortega-López MC, Lozano A, Lozano NA, Nieto LH, Grumach AS, Costa DC, Antunes NMN, Nudelman V, Pereira CTM, Martinez MDM, Quiroz FJR, Cardona AA, Nuñez-Nuñez ME, Rodriguez JA, Cuellar CM, Vijoditz G, Bichuetti-Silva DC, Prando CCM, Amantéa SL, Costa-Carvalho BT. Ataxia-telangiectasia in Latin America: clinical features, immunodeficiency, and mortality in a multicenter study. Immunol Res 2024; 72:864-873. [PMID: 38834764 DOI: 10.1007/s12026-024-09494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Ataxia-telangiectasia (AT) is a rare genetic disorder leading to neurological defects, telangiectasias, and immunodeficiency. We aimed to study the clinical and immunological features of Latin American patients with AT and analyze factors associated with mortality. Referral centers from 9 Latin American countries participated in this retrospective cohort study, and 218 patients were included. Median (IQR) ages at symptom onset and diagnosis were 1.0 (1.0-2.0) and 5.0 (3.0-8.0) years, respectively. Most patients presented recurrent airway infections, which was significantly associated with IgA deficiency. IgA deficiency was observed in 60.8% of patients and IgG deficiency in 28.6%. T- and B-lymphopenias were also present in most cases. Mean survival was 24.2 years, and Kaplan-Meier 20-year-survival rate was 52.6%, with higher mortality associated with female gender and low IgG levels. These findings suggest that immunologic status should be investigated in all patients with AT.
Collapse
Affiliation(s)
- Renan A Pereira
- Universidade Federal de Ciências da Saúde, Porto Alegre, Brazil.
| | | | | | | | | | | | | | | | - Ileana Moreira
- Hospital de Niños Ricardo Gutierrez, Buenos Aires, Argentina
| | | | - Vera M Dantas
- Universidade Federal Do Rio Grande Do Norte, Natal, Brazil
| | | | | | | | | | | | | | | | | | | | - Antonio Condino-Neto
- Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Cristina M Kokron
- Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Myrthes T Barros
- Hospital das Clínicas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Lorena Regairaz
- Hospital de Niños Sor Maria Ludovica, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | - Flaviane Rabelo
- Hospital da Criança de Brasília José de Alencar, Brasília, Brazil
| | - Jessica Pino
- Clinica Fundación Valle del Lili, Cale, Colombia
| | - Wilmer C Calderon
- Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | | | | - Virginia Patiño
- Hospital de Pediatría del Centro Hospitalario Pereira Rossell, Montevideo, Uruguay
| | - Cecilia Montenegro
- Hospital de Pediatría del Centro Hospitalario Pereira Rossell, Montevideo, Uruguay
| | - Monica S Souza
- Hospital Federal Dos Servidores Do Estado, Rio De Janeiro, Brazil
| | | | - Wilma C N Forte
- Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | - Flavia A A Carvalho
- Instituto Nacional de Saúde da Mulher, da Criança E Do Adolescente Fernandes Figueira (IFF/Fiocruz), Rio de Janeiro, Brazil
| | | | | | - Persio Roxo-Junior
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Maryanna Peres
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | | | | | | - Anete S Grumach
- Faculdade de Medicina Do ABC, Santo André, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | - Carolina C M Prando
- Hospital Pequeno Príncipe, Curitiba, Brazil
- Faculdades Pequeno Príncipe, Curitiba, Brazil
- Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, Brazil
| | | | | |
Collapse
|
2
|
Aditi, McKinnon PJ. Genome integrity and inflammation in the nervous system. DNA Repair (Amst) 2022; 119:103406. [PMID: 36148701 PMCID: PMC9844216 DOI: 10.1016/j.dnarep.2022.103406] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 01/19/2023]
Abstract
Preservation of genomic integrity is crucial for nervous system development and function. DNA repair deficiency results in several human diseases that are characterized by both neurodegeneration and neuroinflammation. Recent research has highlighted a role for compromised genomic integrity as a key factor driving neuropathology and triggering innate immune signaling to cause inflammation. Here we review the mechanisms by which DNA damage engages innate immune signaling and how this may promote neurological disease. We also consider the contributions of different neural cell types towards DNA damage-driven neuroinflammation. A deeper knowledge of genome maintenance mechanisms that prevent aberrant immune activation in neural cells will guide future therapies to ameliorate neurological disease.
Collapse
Affiliation(s)
- Aditi
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Peter J McKinnon
- Center for Pediatric Neurological Disease Research, St. Jude Pediatric Translational Neuroscience Initiative, Dept. Cell & Mol. Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
3
|
Petley E, Yule A, Alexander S, Ojha S, Whitehouse WP. The natural history of ataxia-telangiectasia (A-T): A systematic review. PLoS One 2022; 17:e0264177. [PMID: 35290391 PMCID: PMC9049793 DOI: 10.1371/journal.pone.0264177] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 02/06/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ataxia-telangiectasia is an autosomal recessive, multi-system, and life-shortening disease caused by mutations in the ataxia-telangiectasia mutated gene. Although widely reported, there are no studies that give a comprehensive picture of this intriguing condition. OBJECTIVES Understand the natural history of ataxia-telangiectasia (A-T), as reported in scientific literature. SEARCH METHODS 107 search terms were identified and divided into 17 searches. Each search was performed in PubMed, Ovid SP (MEDLINE) 1946-present, OVID EMBASE 1980 -present, Web of Science core collection, Elsevier Scopus, and Cochrane Library. SELECTION CRITERIA All human studies that report any aspect of A-T. DATA COLLECTION AND ANALYSIS Search results were de-duplicated, data extracted (including author, publication year, country of origin, study design, population, participant characteristics, and clinical features). Quality of case-control and cohort studies was assessed by the Newcastle-Ottawa tool. Findings are reported descriptively and where possible data collated to report median (interquartile range, range) of outcomes of interest. MAIN RESULTS 1314 cases reported 2134 presenting symptoms. The most common presenting symptom was abnormal gait (1160 cases; 188 studies) followed by recurrent infections in classical ataxia-telangiectasia and movement disorders in variant ataxia-telangiectasia. 687 cases reported 752 causes of death among which malignancy was the most frequently reported cause. Median (IQR, range) age of death (n = 294) was 14 years 0 months (10 years 0 months to 23 years 3 months, 1 year 3 months to 76 years 0 months). CONCLUSIONS This review demonstrates the multi-system involvement in A-T, confirms that neurological symptoms are the most frequent presenting features in classical A-T but variants have diverse manifestations. We found that most individuals with A-T have life limited to teenage or early adulthood. Predominance of case reports, and case series demonstrate the lack of robust evidence to determine the natural history of A-T. We recommend population-based studies to fill this evidence gap.
Collapse
Affiliation(s)
- Emily Petley
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
| | - Alexander Yule
- United Lincolnshire Hospitals NHS Trust, Lincoln, United
Kingdom
| | - Shaun Alexander
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
| | - Shalini Ojha
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
- Children’s Hospital, University Hospitals of Derby and Burton, NHS
Foundation Trust, Derby, United Kingdom
| | - William P. Whitehouse
- School of Medicine, University of Nottingham, Nottingham, United
Kingdom
- Nottingham Children’s Hospital, Nottingham University Hospital NHS Trust,
Nottingham, United Kingdom
| |
Collapse
|
4
|
Chen K, Wang P, Chen J, Ying Y, Chen Y, Gilson E, Lu Y, Ye J. Loss of atm in Zebrafish as a Model of Ataxia-Telangiectasia Syndrome. Biomedicines 2022; 10:392. [PMID: 35203601 PMCID: PMC8962326 DOI: 10.3390/biomedicines10020392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022] Open
Abstract
Ataxia-telangiectasia mutated (ATM) is a key DNA damage signaling kinase that is mutated in humans with ataxia-telangiectasia (A-T) syndrome. This syndrome is characterized by neurodegeneration, immune abnormality, cancer predisposition, and premature aging. To better understand the function of ATM in vivo, we engineered a viable zebrafish model with a mutated atm gene. Zebrafish atm loss-of-function mutants show characteristic features of A-T-like motor disturbance, including coordination disorders, immunodeficiency, and tumorigenesis. The immunological disorder of atm homozygote fish is linked to the developmental blockade of hematopoiesis, which occurs at the adulthood stage and results in a decrease in infection defense but, with little effect on wound healing. Malignant neoplasms found in atm mutant fish were mainly nerve sheath tumors and myeloid leukemia, which rarely occur in A-T patients or Atm-/- mice. These results underscore the importance of atm during immune cell development. This zebrafish A-T model opens up a pathway to an improved understanding of the molecular basis of tumorigenesis in A-T and the cellular role of atm.
Collapse
Affiliation(s)
- Kehua Chen
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Peng Wang
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Jingrun Chen
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
| | - Yiling Ying
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Yi Chen
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Eric Gilson
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
- Faculty of Medicine, University Côte d’Azur, CNRS, INSERM, IRCAN, 06107 Nice, France
- Department of Medical Genetics, CHU, 06107 Nice, France
| | - Yiming Lu
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| | - Jing Ye
- Department of Geriatrics, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China; (K.C.); (P.W.); (J.C.); (Y.Y.)
- Medical Center on Aging of Ruijin Hospital, Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200001, China
- International Laboratory in Hematology and Cancer, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China; (Y.C.); (E.G.)
| |
Collapse
|
5
|
B cell repertoire in patients with a novel BTK mutation: expanding the spectrum of atypical X-linked agammaglobulinemia. Immunol Res 2022; 70:216-223. [PMID: 35001352 DOI: 10.1007/s12026-022-09263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/04/2022] [Indexed: 11/05/2022]
Abstract
X-linked agammaglobulinemia (XLA) is caused by mutations in the Bruton tyrosine kinase) BTK) gene. Affected patients have severely reduced amounts of circulating B cells. Patients with atypical XLA may have residual circulating B cells, and there are few studies exploring these cells' repertoire. We aimed to study the B cell repertoire of a novel hypomorphic mutation in the BTK gene, using the next generation sequencing (NGS) technology. Clinical data was collected from our clinical records. Real-time PCR was used to determine KREC copies, and NGS was used to determine the immunoglobulin (Ig) heavy chain (IgH) repertoire diversity. Both patients had a relatively mild clinical and laboratory phenotype, residual BTK protein expression, and the same novel mutation in the BTK gene, c.1841 T > C, p. L614P. Signal-joint kappa-deleting recombination excision circles (sj-KREC) for both patients were completely absent reflecting lack of naïve B cells. The intron RSS-Kde coding joints (cj) were significantly reduced, reflecting residual replicating B cells. NGS displayed restricted IgH repertoire with highly uneven distribution of clones, especially for Pt2. We report a novel BTK mutation, c.1841 T > C (p. L614P) that is associated with a relatively mild phenotype. We conclude that the IgH repertoire in atypical XLA is restricted with highly uneven distribution of clones. This phenomenon may be explained by extremely reduced to non-existent levels of BTK in B cells. This report sheds further light on atypical cases of XLA.
Collapse
|
6
|
Szczawińska-Popłonyk A, Tąpolska-Jóźwiak K, Schwartzmann E, Pietrucha B. Infections and immune dysregulation in ataxia-telangiectasia children with hyper-IgM and non-hyper-IgM phenotypes: A single-center experience. Front Pediatr 2022; 10:972952. [PMID: 36340711 PMCID: PMC9631935 DOI: 10.3389/fped.2022.972952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/28/2022] [Indexed: 11/23/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is a severe syndromic neurodegenerative inborn error of immunity characterized by DNA reparation defect, chromosomal instability, and hypersensitivity to ionizing radiation, thereby predisposing affected individuals to malignant transformation. While the leading disease symptomatology is associated with progressively debilitating cerebellar ataxia accompanied by central and peripheral nervous system dysfunctions, A-T is a multisystemic disorder manifesting with the heterogeneity of phenotypic features. These include airway and interstitial lung disease, chronic liver disease, endocrine abnormalities, and cutaneous and deep-organ granulomatosis. The impaired thymic T cell production, defective B cell development and antibody production, as well as bone marrow failure, contribute to a combined immunodeficiency predisposing to infectious complications, immune dysregulation, and organ-specific immunopathology, with the A-T hyper-IgM (HIGM) phenotype determining the more severe disease course. This study aimed to clarify the immunodeficiency and associated immune dysregulation as well as organ-specific immunopathology in children with A-T. We also sought to determine whether the hyper-IgM and non-hyper-IgM phenotypes play a discriminatory role and have prognostic significance in anticipating the clinical course and outcome of the disease. We retrospectively reviewed the medical records of twelve A-T patients, aged from two to eighteen years. The patients' infectious history, organ-specific symptomatology, and immunological workup including serum alpha-fetoprotein, immunoglobulin isotypes, IgG subclasses, and lymphocyte compartments were examined. For further comparative analysis, all the subjects were divided into two groups, HIGM A-T and non-HIGM A-T. The clinical evaluation of the study group showed that recurrent respiratory tract infections due to viral and bacterial pathogens and a chronic obstructive airway disease along with impaired humoral immunity, in particular complete IgA deficiency, were noted in all the A-T patients, with both HIGM and non-HIGM phenotypes. The most important features with the discriminatory role between groups, were autoimmune disorders, observable four times more frequently in HIGM than in non-HIGM A-T. Two patients with the HIGM A-T phenotype were deceased due to liver failure and chronic Epstein-Barr virus (EBV) infection. It may therefore be assumed that the HIGM form of A-T is associated with more profound T cell dysfunction, defective immunoglobulin class switching, chronic EBV expansion, and poorer prognosis.
Collapse
Affiliation(s)
- Aleksandra Szczawińska-Popłonyk
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Katarzyna Tąpolska-Jóźwiak
- Department of Pediatric Pneumonology, Allergy and Clinical Immunology, Institute of Pediatrics, Poznań University of Medical Sciences, Poznań, Poland
| | - Eyal Schwartzmann
- Poznań University of Medical Sciences, Medical Student, Poznań, Poland
| | - Barbara Pietrucha
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
7
|
Weitering TJ, Melsen JE, van Ostaijen-Ten Dam MM, Weemaes CMR, Schilham MW, van der Burg M. Normal Numbers of Stem Cell Memory T Cells Despite Strongly Reduced Naive T Cells Support Intact Memory T Cell Compartment in Ataxia Telangiectasia. Front Immunol 2021; 12:686333. [PMID: 34248969 PMCID: PMC8264762 DOI: 10.3389/fimmu.2021.686333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/26/2021] [Indexed: 11/22/2022] Open
Abstract
Ataxia Telangiectasia (AT) is a rare inherited disorder characterized by progressive cerebellar ataxia, chromosomal instability, cancer susceptibility and immunodeficiency. AT is caused by mutations in the ATM gene, which is involved in multiple processes linked to DNA double strand break repair. Immunologically, ATM mutations lead to hampered V(D)J recombination and consequently reduced numbers of naive B and T cells. In addition, class switch recombination is disturbed resulting in antibody deficiency causing common, mostly sinopulmonary, bacterial infections. Yet, AT patients in general have no clinical T cell associated infections and numbers of memory T cells are usually normal. In this study we investigated the naive and memory T cell compartment in five patients with classical AT and compared them with five healthy controls using a 24-color antibody panel and spectral flow cytometry. Multidimensional analysis of CD4 and CD8 TCRαβ+ cells revealed that early naive T cell populations, i.e. CD4+CD31+ recent thymic emigrants and CD8+CCR7++CD45RA++ T cells, were strongly reduced in AT patients. However, we identified normal numbers of stem cell memory T cells expressing CD95, which are antigen-experienced T cells that can persist for decades because of their self-renewal capacity. We hypothesize that the presence of stem cell memory T cells explains why AT patients have an intact memory T cell compartment. In line with this novel finding, memory T cells of AT patients were normal in number and expressed chemokine receptors, activating and inhibitory receptors in comparable percentages as controls. Comparing memory T cell phenotypes by Boolean gating revealed similar diversity indices in AT compared to controls. We conclude that AT patients have a fully developed memory T cell compartment despite strongly reduced naive T cells. This could be explained by the presence of normal numbers of stem cell memory T cells in the naive T cell compartment, which support the maintenance of the memory T cells. The identification of stem cell memory T cells via our spectral flow cytometric approach is highly relevant for better understanding of T cell immunity in AT. Moreover, it provides possibilities for further research on this recently identified T cell population in other inborn errors of immunity.
Collapse
Affiliation(s)
- Thomas J Weitering
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Janine E Melsen
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Monique M van Ostaijen-Ten Dam
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Corry M R Weemaes
- Department of Pediatrics, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Marco W Schilham
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Mirjam van der Burg
- Laboratory for Pediatric Immunology, Department of Pediatrics, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Wingard MC, Dalal S, Shook PL, Myers R, Connelly BA, Thewke DP, Singh M, Singh K. Deficiency of ataxia-telangiectasia mutated kinase modulates functional and biochemical parameters of the heart in response to Western-type diet. Am J Physiol Heart Circ Physiol 2021; 320:H2324-H2338. [PMID: 33929897 PMCID: PMC8289354 DOI: 10.1152/ajpheart.00990.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 03/31/2021] [Accepted: 04/14/2021] [Indexed: 02/08/2023]
Abstract
Ataxia-telangiectasia mutated (ATM) kinase deficiency exacerbates heart dysfunction late after myocardial infarction. Here, we hypothesized that ATM deficiency modulates Western-type diet (WD)-induced cardiac remodeling with an emphasis on functional and biochemical parameters of the heart. Weight gain was assessed in male wild-type (WT) and ATM heterozygous knockout (hKO) mice on weekly basis, whereas cardiac functional and biochemical parameters were measured 14 wk post-WD. hKO-WD mice exhibited rapid body weight gain at weeks 5, 6, 7, 8, and 10 versus WT-WD. WD decreased percent fractional shortening and ejection fraction, and increased end-systolic volumes and diameters to a similar extent in both genotypes. However, WD decreased stroke volume, cardiac output, peak velocity of early ventricular filling, and aortic ejection time and increased isovolumetric relaxation time (IVRT) and Tei index versus WT-NC (normal chow). Conversely, IVRT, isovolumetric contraction time, and Tei index were lower in hKO-WD versus hKO-NC and WT-WD. Myocyte apoptosis and hypertrophy were higher in hKO-WD versus WT-WD. WD increased fibrosis and expression of collagen-1α1, matrix metalloproteinase (MMP)-2, and MMP-9 in WT. WD enhanced AMPK activation, while decreasing mTOR activation in hKO. Akt and IKK-α/β activation, and Bax, PARP-1, and Glut-4 expression were higher in WT-WD versus WT-NC, whereas NF-κB activation and Glut-4 expression were lower in hKO-WD versus hKO-NC. Circulating concentrations of IL-12(p70), eotaxin, IFN-γ, macrophage inflammatory protein (MIP)-1α, and MIP-1β were higher in hKO-WD versus WT-WD. Thus, ATM deficiency accelerates weight gain, induces systolic dysfunction with increased preload, and associates with increased apoptosis, hypertrophy, and inflammation in response to WD.NEW & NOTEWORTHY Ataxia-telangiectasia mutated (ATM) kinase deficiency in humans associates with enhanced susceptibility to ischemic heart disease. Here, we provide evidence that ATM deficiency accelerates body weight gain and associates with increased cardiac preload, hypertrophy, and apoptosis in mice fed with Western-type diet (WD). Further investigations of the role of ATM deficiency in WD-induced alterations in function and biochemical parameters of the heart may provide clinically applicable information on treatment and/or nutritional counseling for patients with ATM deficiency.
Collapse
Affiliation(s)
- Mary C Wingard
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Suman Dalal
- Department of Health Sciences, East Tennessee State University, Johnson City, Tennessee
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
| | - Paige L Shook
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Rachel Myers
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Barbara A Connelly
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
- James H Quillen Veterans Affairs Medical Center, East Tennessee State University, Johnson City, Tennessee
| | - Douglas P Thewke
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Mahipal Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Krishna Singh
- Department of Biomedical Sciences, James H Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
- Center of Excellence in Inflammation, Infectious Disease and Immunity, East Tennessee State University, Johnson City, Tennessee
- James H Quillen Veterans Affairs Medical Center, East Tennessee State University, Johnson City, Tennessee
| |
Collapse
|
9
|
ATM: Translating the DNA Damage Response to Adaptive Immunity. Trends Immunol 2021; 42:350-365. [PMID: 33663955 DOI: 10.1016/j.it.2021.02.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/22/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
ATM is often dubbed the master regulator of the DNA double stranded break (DSB) response. Since proper induction and repair of DNA DSBs forms the core of immunological diversity, it is surprising that patients with ataxia telangiectasia generally have a mild immunodeficiency in contrast to other DSB repair syndromes. In this review, we address this discrepancy by delving into the functions of ATM in DSB repair and cell cycle control and translate these to adaptive immunity. We conclude that ATM, despite its myriad functions, is not an absolute requirement for acquiring sufficient levels of immunological diversity to prevent severe viral and opportunistic infections. There is, however, a more clinically pronounced antibody deficiency in ataxia telangiectasia due to disturbed class switch recombination.
Collapse
|
10
|
Cutaneous and systemic granulomatosis in ataxia-telangiectasia: a clinico-pathological study. Postepy Dermatol Alergol 2020; 37:760-765. [PMID: 33240017 PMCID: PMC7675092 DOI: 10.5114/ada.2020.100485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/25/2019] [Indexed: 12/14/2022] Open
Abstract
Introduction The development of granulomas is a well-recognized manifestation of immunodeficiency in ataxia-telangiectasia (A-T), resulting from lymphocyte developmental abnormalities, impaired immunosurveillance, and inappropriate innate immune response-driven inflammation. Aim To better understand pathological and immunological phenomena involved in development of cutaneous and visceral granulomatosis observable in patients with ataxia-telangiectasia. Material and methods We retrospectively reviewed medical records of eight A-T children, aged from 2 to 13 years, with regard to clinical, immunological and histopathological features of cutaneous and visceral granulomatosis. Results In four out of eight A-T patients studied, cutaneous granulomas clinically presented as skin nodules and ulcerated erythematous plaques disseminated on the face, and on trauma-prone areas of upper and lower extremities. Visceral granulomatosis had a severe clinical course and involved the lungs, the spleen, the liver and the larynx. Histologically, cutaneous and laryngeal granulomas showed extensive cellular infiltrations containing T lymphocytes with predominating CD8+ phenotype and with CD68+ histiocytes. The immunological profile with the hyper-IgM phenotype, markedly reduced numbers of B and naive CD4+ and CD8+ T cells with predominating IgM-only memory B cells and skewed repertoire of a T cell receptor was observable in patients with skin and visceral granulomatosis. Conclusions In the setting of combined immunodeficiency in A-T, cutaneous and systemic granulomatosis reflects a granulomatous reaction pattern, as a result of inappropriate immune regulation.
Collapse
|
11
|
Sharma R, Lewis S, Wlodarski MW. DNA Repair Syndromes and Cancer: Insights Into Genetics and Phenotype Patterns. Front Pediatr 2020; 8:570084. [PMID: 33194896 PMCID: PMC7644847 DOI: 10.3389/fped.2020.570084] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
DNA damage response is essential to human physiology. A broad spectrum of pathologies are displayed by individuals carrying monoallelic or biallelic loss-of-function mutations in DNA damage repair genes. DNA repair syndromes with biallelic disturbance of essential DNA damage response pathways manifest early in life with multi-systemic involvement and a high propensity for hematologic and solid cancers, as well as bone marrow failure. In this review, we describe classic biallelic DNA repair cancer syndromes arising from faulty single- and double-strand DNA break repair, as well as dysfunctional DNA helicases. These clinical entities include xeroderma pigmentosum, constitutional mismatch repair deficiency, ataxia telangiectasia, Nijmegen breakage syndrome, deficiencies of DNA ligase IV, NHEJ/Cernunnos, and ERCC6L2, as well as Bloom, Werner, and Rothmund-Thompson syndromes. To give an in-depth understanding of these disorders, we provide historical overview and discuss the interplay between complex biology and heterogeneous clinical manifestations.
Collapse
Affiliation(s)
- Richa Sharma
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Sara Lewis
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Marcin W. Wlodarski
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, United States
- Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
12
|
Giżewska M, Durda K, Winter T, Ostrowska I, Ołtarzewski M, Klein J, Blankenstein O, Romanowska H, Krzywińska-Zdeb E, Patalan MF, Bartkowiak E, Szczerba N, Seiberling S, Birkenfeld B, Nauck M, von Bernuth H, Meisel C, Bernatowska EA, Walczak M, Pac M. Newborn Screening for SCID and Other Severe Primary Immunodeficiency in the Polish-German Transborder Area: Experience From the First 14 Months of Collaboration. Front Immunol 2020; 11:1948. [PMID: 33178177 PMCID: PMC7596351 DOI: 10.3389/fimmu.2020.01948] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
In 2017, in the Polish-German transborder area of West Pomerania, Mecklenburg-Western Pomerania, and Brandenburg, in collaboration with two centers in Warsaw, a partnership in the field of newborn screening (NBS) for severe primary immunodeficiency diseases (PID), mainly severe combined immunodeficiency (SCID), was initiated. SCID, but also some other severe PID, is a group of disorders characterized by the absence of T and/or B and NK cells. Affected infants are susceptible to life-threatening infections, but early detection gives a chance for effective treatment. The prevalence of SCID in the Polish and German populations is unknown but can be comparable to other countries (1:50,000–100,000). SCID NBS tests are based on real-time polymerase chain reaction (qPCR) and the measurement of a number of T cell receptor excision circles (TREC), kappa-deleting recombination excision circles (KREC), and beta-actin (ACTB) as a quality marker of DNA. This method can also be effective in NBS for other severe PID with T- and/or B-cell lymphopenia, including combined immunodeficiency (CID) or agammaglobulinemia. During the 14 months of collaboration, 44,287 newborns were screened according to the ImmunoIVD protocol. Within 65 positive samples, seven were classified to immediate recall and 58 requested a second sample. Examination of the 58 second samples resulted in recalling one newborn. Confirmatory tests included immunophenotyping of lymphocyte subsets with extension to TCR repertoire, lymphoproliferation tests, radiosensitivity tests, maternal engraftment assays, and molecular tests. Final diagnosis included: one case of T-BlowNK+ SCID, one case of atypical Tlow BlowNK+ CID, one case of autosomal recessive agammaglobulinemia, and one case of Nijmegen breakage syndrome. Among four other positive results, three infants presented with T- and/or B-cell lymphopenia due to either the mother's immunosuppression, prematurity, or unknown reasons, which resolved or almost normalized in the first months of life. One newborn was classified as truly false positive. The overall positive predictive value (PPV) for the diagnosis of severe PID was 50.0%. This is the first population screening study that allowed identification of newborns with T and/or B immunodeficiency in Central and Eastern Europe.
Collapse
Affiliation(s)
- Maria Giżewska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Katarzyna Durda
- Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Theresa Winter
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,Integrated Research Biobank (IRB), University Medicine Greifswald, Greifswald, Germany
| | - Iwona Ostrowska
- Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Mariusz Ołtarzewski
- Department of Screening and Metabolic Diagnostics, Institute of Mother and Child, Warsaw, Poland
| | - Jeannette Klein
- Newbornscreening Laboratory, Charité Universitaetsmedizin, Berlin, Germany
| | | | - Hanna Romanowska
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Elżbieta Krzywińska-Zdeb
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Michał Filip Patalan
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | | | | | - Stefan Seiberling
- Research Support Center, University of Greifswald, Greifswald, Germany
| | - Bożena Birkenfeld
- Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland.,Department of Nuclear Medicine, Pomeranian Medical University, Szczecin, Poland
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, University Medicine Greifswald, Greifswald, Germany
| | - Horst von Bernuth
- Department of Pediatric Pulmonology, Immunology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Labor Berlin - Charité Vivantes Services GmbH, Berlin, Germany.,BIH Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christian Meisel
- Labor Berlin - Charité Vivantes Services GmbH, Berlin, Germany.,Institute of Medical Immunology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ewa Anna Bernatowska
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Mieczysław Walczak
- Department of Pediatrics, Endocrinology, Diabetology, Metabolic Diseases and Cardiology, Pomeranian Medical University, Szczecin, Poland.,Independent Public Clinical Hospital nr 1 PUM, Szczecin, Poland
| | - Małgorzata Pac
- Department of Immunology, The Children's Memorial Health Institute, Warsaw, Poland
| |
Collapse
|
13
|
Moeini Shad T, Yousefi B, Amirifar P, Delavari S, Rae W, Kokhaei P, Abolhassani H, Aghamohammadi A, Yazdani R. Variable Abnormalities in T and B Cell Subsets in Ataxia Telangiectasia. J Clin Immunol 2020; 41:76-88. [PMID: 33052516 DOI: 10.1007/s10875-020-00881-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND Ataxia-telangiectasia (AT) is a rare genetic condition, caused by biallelic deleterious variants in the ATM gene, and has variable immunological abnormalities. This study aimed to examine immunologic parameters reflecting cell development, activation, proliferation, and class switch recombination (CSR) and determine their relationship to the clinical phenotype in AT patients. METHODS In this study, 40 patients with a confirmed diagnosis of AT from the Iranian immunodeficiency registry center and 28 age-sex matched healthy controls were enrolled. We compared peripheral B and T cell subsets and T cell proliferation response to CD3/CD28 stimulation in AT patients with and without CSR defects using flow cytometry. RESULTS A significant decrease in naïve, transitional, switched memory, and IgM only memory B cells, along with a sharp increase in the marginal zone-like and CD21low B cells was observed in the patients. We also found CD4+ and CD8+ naïve, central memory, and terminally differentiated effector memory CD4+ (TEMRA) T cells were decreased. CD4+ and CD8+ effector memory, CD8+ TEMRA, and CD4+ regulatory T cells were significantly elevated in our patients. CD4+ T cell proliferation was markedly impaired compared to the healthy controls. Moreover, immunological investigations of 15 AT patients with CSR defect revealed a significant reduction in the marginal zone, switched memory, and more intense defects in IgM only memory B cells, CD4+ naïve and central memory T cells. CONCLUSION The present study revealed that patients with AT have a broad spectrum of cellular and humoral deficiencies. Therefore, a detailed evaluation of T and B cell subsets increases understanding of the disease in patients and the risk of infection.
Collapse
Affiliation(s)
- Tannaz Moeini Shad
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Parisa Amirifar
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Delavari
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - William Rae
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, Cambridge, UK.,Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Parviz Kokhaei
- Cancer Research Center, Semnan University of Medical Sciences, Semnan, Iran.,Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institutet, Stockholm, Sweden
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Primary Immunodeficiencies, Iran University of Medical Sciences, Tehran, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Reza Yazdani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Human genetic dissection of papillomavirus-driven diseases: new insight into their pathogenesis. Hum Genet 2020; 139:919-939. [PMID: 32435828 DOI: 10.1007/s00439-020-02183-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Human papillomaviruses (HPVs) infect mucosal or cutaneous stratified epithelia. There are 5 genera and more than 200 types of HPV, each with a specific tropism and virulence. HPV infections are typically asymptomatic or result in benign tumors, which may be disseminated or persistent in rare cases, but a few oncogenic HPVs can cause cancers. This review deals with the human genetic and immunological basis of interindividual clinical variability in the course of HPV infections of the skin and mucosae. Typical epidermodysplasia verruciformis (EV) is characterized by β-HPV-driven flat wart-like and pityriasis-like cutaneous lesions and non-melanoma skin cancers in patients with inborn errors of EVER1-EVER2-CIB1-dependent skin-intrinsic immunity. Atypical EV is associated with other infectious diseases in patients with inborn errors of T cells. Severe cutaneous or anogenital warts, including anogenital cancers, are also driven by certain α-, γ-, μ or ν-HPVs in patients with inborn errors of T lymphocytes and antigen-presenting cells. The genetic basis of HPV diseases at other mucosal sites, such as oral multifocal epithelial hyperplasia or juvenile recurrent respiratory papillomatosis (JRRP), remains poorly understood. The human genetic dissection of HPV-driven lesions will clarify the molecular and cellular basis of protective immunity to HPVs, and should lead to novel diagnostic, preventive, and curative approaches in patients.
Collapse
|
15
|
McGrath-Morrow SA, Ndeh R, Helmin KA, Khuder B, Rothblum-Oviatt C, Collaco JM, Wright J, Reyfman PA, Lederman HM, Singer BD. DNA methylation and gene expression signatures are associated with ataxia-telangiectasia phenotype. Sci Rep 2020; 10:7479. [PMID: 32366930 PMCID: PMC7198504 DOI: 10.1038/s41598-020-64514-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 04/13/2020] [Indexed: 12/19/2022] Open
Abstract
People with ataxia-telangiectasia (A-T) display phenotypic variability with regard to progression of immunodeficiency, sino-pulmonary disease, and neurologic decline. To determine the association between differential gene expression, epigenetic state, and phenotypic variation among people with A-T, we performed transcriptional and genome-wide DNA methylation profiling in patients with mild and classic A-T progression as well as healthy controls. RNA and genomic DNA were isolated from peripheral blood mononuclear cells for transcriptional and DNA methylation profiling with RNA-sequencing and modified reduced representation bisulfite sequencing, respectively. We identified 555 genes that were differentially expressed among the control, mild A-T, and classic A-T groups. Genome-wide DNA methylation profiling revealed differential promoter methylation in cis with 146 of these differentially expressed genes. Functional enrichment analysis identified significant enrichment in immune, growth, and apoptotic pathways among the methylation-regulated genes. Regardless of clinical phenotype, all A-T participants exhibited downregulation of critical genes involved in B cell function (PAX5, CD79A, CD22, and FCRL1) and upregulation of several genes associated with senescence and malignancy, including SERPINE1. These findings indicate that gene expression differences may be associated with phenotypic variability and suggest that DNA methylation regulates expression of critical immune response genes in people with A-T.
Collapse
Affiliation(s)
- Sharon A McGrath-Morrow
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Roland Ndeh
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Basil Khuder
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | - Joseph M Collaco
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jennifer Wright
- Eudowood Division of Pediatric, Allergy and Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Paul A Reyfman
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Howard M Lederman
- Eudowood Division of Pediatric, Allergy and Immunology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Center for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
16
|
Warren R, Domm W, Yee M, Campbell A, Malone J, Wright T, Mayer-Pröschel M, O'Reilly MA. Ataxia-telangiectasia mutated is required for the development of protective immune memory after influenza A virus infection. Am J Physiol Lung Cell Mol Physiol 2019; 317:L591-L601. [PMID: 31509427 PMCID: PMC6879906 DOI: 10.1152/ajplung.00031.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 08/21/2019] [Accepted: 09/01/2019] [Indexed: 01/26/2023] Open
Abstract
Ataxia-telangiectasia (A-T), caused by mutations in the A-T mutated (ATM) gene, is a neurodegenerative disorder affecting ∼1 in 40,000-100,000 children. Recurrent respiratory infections are a common and challenging comorbidity, often leading to the development of bronchiectasis in individuals with A-T. The role of ATM in development of immune memory in response to recurrent respiratory viral infections is not well understood. Here, we infect wild-type (WT) and Atm-null mice with influenza A virus (IAV; HKx31, H3N2) and interrogate the immune memory with secondary infections designed to challenge the B cell memory response with homologous infection (HKx31) and the T cell memory response with heterologous infection (PR8, H1N1). Although Atm-null mice survived primary and secondary infections, they lost more weight than WT mice during secondary infections. This enhanced morbidity to secondary infections was not attributed to failure to effectively clear virus during the primary IAV infection. Instead, Atm-null mice developed persistent peribronchial inflammation, characterized in part by clusters of B220+ B cells. Additionally, levels of select serum antibodies to hemagglutinin-specific IAV were significantly lower in Atm-null than WT mice. These findings reveal that Atm is required to mount a proper memory response to a primary IAV infection, implying that vaccination of children with A-T by itself may not be sufficiently protective against respiratory viral infections.
Collapse
Affiliation(s)
- Rachel Warren
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - William Domm
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Min Yee
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Andrew Campbell
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Jane Malone
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Terry Wright
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Margot Mayer-Pröschel
- Department of Biomedical Genetics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| | - Michael A O'Reilly
- Department of Pediatrics, School of Medicine and Dentistry, University of Rochester, Rochester, New York
| |
Collapse
|
17
|
Marcus N, Stauber T, Lev A, Simon AJ, Stein J, Broides A, Somekh I, Almashanu S, Somech R. MHC II deficient infant identified by newborn screening program for SCID. Immunol Res 2019; 66:537-542. [PMID: 30084052 DOI: 10.1007/s12026-018-9019-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Newborn screening (NBS) programs for severe combined immunodeficiency (SCID), using the TREC-based assay, have enabled early diagnosis, prompt treatment, and eventually changed the natural history of affected infants. Nevertheless, it was believed that some affected infants with residual T cell, such as patients with MHC II deficiency, will be misdiagnosed by this assay. A full immune workup and genetic analysis using direct Sanger sequencing and whole exome sequencing have been performed to a patient that was identified by the Israeli NBS program for SCID. The patient was found to have severe CD4 lymphopenia with an inverted CD4/CD8 ratio, low TREC levels in peripheral blood, abnormal response to mitogen stimulation, and a skewed T cell receptor repertoire. HLA-DR expression on peripheral blood lymphocytes was undetectable suggesting a diagnosis of MHC II deficiency. Direct sequencing of the RFX5 gene revealed a stop codon change (p. R239X, c. C715T), which could cause the patient's immune phenotype. His parents were found to be heterozygote carriers for the mutation. Whole exome sequencing could not identify other potential mutations to explain his immunodeficiency. The patient underwent successful conditioned hematopoietic stem cell transplantation from healthy matched unrelated donor and is currently well and alive with full chimerism. Infants with MHC class II deficiency can potentially be identified by the TREC-based assay NBS for SCID. Therefore, MHC II molecules (e.g., HLA-DR) measurement should be part of the confirmatory immune-phenotyping for patients with positive screening results. This will make the diagnosis of such patients straightforward.
Collapse
Affiliation(s)
- Nufar Marcus
- Allergy and Immunology Unit, Felsenstein Medical Research Center, Kipper Institute of Immunology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Tali Stauber
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel
| | - Atar Lev
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel
| | - Amos J Simon
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel
| | - Jerry Stein
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department for Hemato-Oncology, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Arnon Broides
- Pediatric Immunology Clinic, Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ido Somekh
- Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Shlomo Almashanu
- The National Center for Newborn Screening, Ministry of Health, 52621, Tel HaShomer, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Pediatric Department A, Pediatric Immunology Service, Jeffrey Modell Foundation Center, 52621, Tel Hashomer, Israel.
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, 52621, Tel Hashomer, Israel.
- The National Lab for Confirming Primary Immunodeficiency in Newborn Screening Center for Newborn Screening, Ministry of Health, Tel HaShomer, Israel.
| |
Collapse
|
18
|
Cao J, Shen R, Zhang W, Mao B, Shi Q, Zhou R, Liu Z, Zeng B, Chen X, Zhang C, Lu M, Han P, Wu J, Zhou A, Tan X. Clinical diagnosis and genetic counseling of atypical ataxia‑telangiectasia in a Chinese family. Mol Med Rep 2019; 19:3441-3448. [PMID: 30816533 PMCID: PMC6471340 DOI: 10.3892/mmr.2019.9992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 12/14/2018] [Indexed: 12/23/2022] Open
Abstract
Ataxia-telangiectasia (A-T) is an autosomal recessive chromosome breakage disorder caused by mutations in the ATM serine/threonine kinase (ATM) gene. Typically, it presents in early childhood with progressive cerebellar dysfunction, accompanied by immunodeficiency and oculocutaneous telangiectasia. In the present study, the clinical and genetic findings of a Chinese family affected with A-T in two live siblings, the proband (II-2) and his elder brother (II-1), as well as a fetus (II-3) were reported. General health, clinical neurological, electrophysiological (motor and sensory nerve conduction) and magnetic resonance imaging evaluations revealed that patients II-1 and II-2 had similar symptoms of ataxia, dysarthria, conjunctival hyperemia and elevated serum α-fetoprotein, whereas patient II-1 had earlier A-T onset at 2 years old and more serious problems with movement and intelligence. Targeted sequencing followed by Sanger sequencing revealed that these two patients carried the compound heterozygotes of a novel nonsense mutation c.5170G>T (p.Glu1724Ter) and a known nonsense mutation c.748C>T (p.Arg250Ter) in the ATM gene. Each mutation was inherited from an asymptomatic parent, which therefore confirmed the diagnosis of A-T. Given this, proband's mother performed prenatal diagnosis in her third pregnancy. Unfortunately, the fetus had the same causal mutations as its siblings and the pregnancy was terminated. The findings of the present study expanded the mutation spectrum of the ATM gene and may help in understanding the genetic basis of A-T, in order to guide genetic counseling and prenatal diagnosis.
Collapse
Affiliation(s)
- Jiangxia Cao
- Center for Prenatal Diagnosis, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, P.R. China
| | - Ruiqin Shen
- BGI Genomics, BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Wenqian Zhang
- BGI Genomics, BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Bing Mao
- Department of Neurology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, P.R. China
| | - Qirong Shi
- BGI Genomics, BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Rui Zhou
- BGI Genomics, BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Zijing Liu
- BGI Genomics, BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Bing Zeng
- BGI Genomics, BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Xiaoling Chen
- BGI Genomics, BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Cai Zhang
- BGI Genomics, BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Min Lu
- BGI Genomics, BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Peng Han
- BGI Genomics, BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Jing Wu
- BGI Genomics, BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| | - Aifen Zhou
- Center for Prenatal Diagnosis, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, P.R. China
| | - Xuemei Tan
- BGI Genomics, BGI‑Shenzhen, Shenzhen, Guangdong 518083, P.R. China
| |
Collapse
|
19
|
Pereira CTM, Bichuetti-Silva DC, da Mota NVF, Salomão R, Brunialti MKC, Costa-Carvalho BT. B-cell subsets imbalance and reduced expression of CD40 in ataxia-telangiectasia patients. Allergol Immunopathol (Madr) 2018; 46:438-446. [PMID: 29739685 DOI: 10.1016/j.aller.2017.09.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 09/14/2017] [Indexed: 12/31/2022]
Abstract
BACKGROUND Ataxia-telangiectasia (AT) is a well-known primary immunodeficiency with recurrent sinopulmonary infections and variable abnormalities in both the humoral and cellular immune system. Dysfunctions in immunoglobulin production, reduced number of B cells, and B-cell receptor excision circles copies have been reported. We aimed to understand the immunological mechanisms involving the humoral compartment in AT patients by analysing peripheral blood B cells subsets, B-T lymphocyte cooperation through the expression of CD40 and CD40 ligand (CD40L), and cytokines involved in class-switch recombination production. METHODS We compared the proportion of B-cell subsets, the expression of CD40/CD40L, and the plasma levels of IL-6 and IFN-γ of 18 AT patients and 15 healthy age-sex-matched controls using flow cytometry. RESULTS We found that some steps in peripheral B cell development were altered in AT with a pronounced reduction of cell-surface CD40 expression. The proportions of transitional and naïve-mature B cells were reduced, whereas CD21-low, natural effector memory, IgM-only memory, and IgG atypical memory B cells were present in a higher proportion. CONCLUSIONS These findings revealed a disturbed B-cell homeostasis with unconventional maturation of B lymphocyte memory cells, which can explain the consequent impairment of humoral immunity.
Collapse
Affiliation(s)
- C T M Pereira
- Department of Pediatrics, Federal University of Sao Paulo Medical School, 598, Botucatu Street, Vila Clementino, São Paulo, SP 04023-062, Brazil
| | - D C Bichuetti-Silva
- Department of Pediatrics, Federal University of Sao Paulo Medical School, 598, Botucatu Street, Vila Clementino, São Paulo, SP 04023-062, Brazil
| | - N V F da Mota
- Division of Infectious Diseases, Federal University of Sao Paulo Medical School, 669, Pedro de Toledo Street, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - R Salomão
- Division of Infectious Diseases, Federal University of Sao Paulo Medical School, 669, Pedro de Toledo Street, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - M K C Brunialti
- Division of Infectious Diseases, Federal University of Sao Paulo Medical School, 669, Pedro de Toledo Street, Vila Clementino, São Paulo, SP 04039-032, Brazil
| | - B T Costa-Carvalho
- Department of Pediatrics, Federal University of Sao Paulo Medical School, 598, Botucatu Street, Vila Clementino, São Paulo, SP 04023-062, Brazil.
| |
Collapse
|
20
|
Weyand CM, Shen Y, Goronzy JJ. Redox-sensitive signaling in inflammatory T cells and in autoimmune disease. Free Radic Biol Med 2018; 125:36-43. [PMID: 29524605 PMCID: PMC6128787 DOI: 10.1016/j.freeradbiomed.2018.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/01/2018] [Accepted: 03/04/2018] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) are byproducts of oxygen metabolism best known for their damaging potential, but recent evidence has exposed their role as secondary messengers, which regulate cell function through redox-activatable signaling systems. In immune cells, specifically in T cells, redox-sensitive signaling pathways have been implicated in controlling several functional domains; including cell cycle progression, T effector cell differentiation, tissue invasion and inflammatory behavior. T cells from patients with the autoimmune disease rheumatoid arthritis (RA) have emerged as a valuable model system to examine the functional impact of ROS on T cell function. Notably, RA T cells are distinguished from healthy T cells based on reduced ROS production and undergo "reductive stress". Upstream defects leading to the ROSlow status of RA T cells are connected to metabolic reorganization. RA T cells shunt glucose away from pyruvate and ATP production towards the pentose phosphate pathway, where they generate NADPH and consume cellular ROS. Downstream consequences of the ROSlow conditions in RA T cells include insufficient activation of the DNA repair kinase ATM, bypassing of the G2/M cell cycle checkpoint and biased differentiation of T cells into IFN-γ and IL-17-producing inflammatory cells. Also, ROSlow T cells rapidly invade into peripheral tissue due to dysregulated lipogenesis, excessive membrane ruffling, and overexpression of a motility module dominated by the scaffolding protein Tks5. These data place ROS into a pinnacle position in connecting cellular metabolism and protective versus auto-aggressive T cell immunity. Therapeutic interventions for targeted ROS enhancement instead of ROS depletion should be developed as a novel strategy to treat autoimmune tissue inflammation.
Collapse
Affiliation(s)
- Cornelia M Weyand
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Veterans Affairs Palo Alto Health Care System Palo Alto, CA 94306, USA.
| | - Yi Shen
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Veterans Affairs Palo Alto Health Care System Palo Alto, CA 94306, USA
| | - Jorg J Goronzy
- Department of Medicine, Division of Immunology and Rheumatology, Stanford University, Stanford, CA 94305, USA; Department of Medicine, Veterans Affairs Palo Alto Health Care System Palo Alto, CA 94306, USA
| |
Collapse
|
21
|
Nourizadeh M, Shakerian L, Borte S, Fazlollahi M, Badalzadeh M, Houshmand M, Alizadeh Z, Dalili H, Rashidi-Nezhad A, Kazemnejad A, Moin M, Hammarström L, Pourpak Z. Newborn screening using TREC/KREC assay for severe T and B cell lymphopenia in Iran. Scand J Immunol 2018; 88:e12699. [PMID: 29943473 DOI: 10.1111/sji.12699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/11/2018] [Accepted: 06/20/2018] [Indexed: 01/01/2023]
Abstract
T-cell receptor excision circles (TRECs) and κ-deleting recombination excision circles (KRECs) are recently used for detection of T or B cell lymphopenia in neonates based on region-specific cutoff levels. Here, we report cutoffs for TREC and KREC copies useful for newborn screening and/or diagnosis of primary immunodeficiency diseases (PID) in Iran. DNA was extracted from a single 3.2 mm punch of dried blood spots collected from 2160 anonymized newborns referred to two major referral health centres between 2014 and 2016. For refinement of the cutoffs, 51 patients with a definite diagnosis of severe combined immunodeficiency, X-linked agammaglobulinaemia and combined immunodeficiency, including ataxia telangiectasia, human phosphoglucomutase 3 and Janus kinase-3 deficiency, as well as 47 healthy controls were included. Samples from patients with an X-linked hyper-IgM-syndrome, Wiskott-Aldrich syndrome and DNA ligase 4 deficiency were considered as disease controls. Triplex-quantitative real-time PCR was used. Cutoffs were calculated as TRECs < 11 and KRECs < 6 copies with an ACTB > 700 copies with sensitivity of 100% for TREC and 97% for KREC. Among thirty anonymized newborn samples (1.5%) with abnormal results for TREC and/or KREC, only twenty-one available cases were retested and shown to be in the normal range except for three samples (0.15%). All of the patients with a definitive diagnosis were correctly identified based on our established TREC/KREC copy numbers. Determining cutoffs for TREC/KREC is essential for correctly identifying children with PID in newborn screening. Early diagnosis of PID patients enables appropriate measures and therapies like stem cell transplantation.
Collapse
Affiliation(s)
- Maryam Nourizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Shakerian
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Stephan Borte
- ImmunoDeficiencyCenter Leipzig (IDCL), Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Municipal Hospital, Leipzig, Germany
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Mohammadreza Fazlollahi
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Badalzadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Massoud Houshmand
- Medical Genetics Department, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Zahra Alizadeh
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Dalili
- Breastfeeding Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Rashidi-Nezhad
- Maternal, Fetal and Neonatal Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mostafa Moin
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology and Allergy, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Lennart Hammarström
- Department of Laboratory Medicine, Division of Clinical Immunology, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Zahra Pourpak
- Immunology, Asthma and Allergy Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology and Allergy, Children Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Krauthammer A, Lahad A, Goldberg L, Sarouk I, Weiss B, Somech R, Soudack M, Pessach IM. Elevated IgM levels as a marker for a unique phenotype in patients with Ataxia telangiectasia. BMC Pediatr 2018; 18:185. [PMID: 29866155 PMCID: PMC5987459 DOI: 10.1186/s12887-018-1156-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 05/22/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ataxia telangiectasia (AT) is a rare, multi-systemic, genetic disorder. Mutations in the ATM gene cause dysfunction in cell-cycle, apoptosis and V (D) J recombination leading to neurodegeneration, cellular, humoral immunodeficiencies and predisposition to malignancies. Previous studies have suggested that a sub-group of AT patients with elevated IgM levels have a distinct and more severe phenotype. In the current study we aimed to better characterize this group of patients. METHODS We performed a retrospective review of 46 patient records, followed from January 1986 to January 2015 at the Israeli National AT Center. Demographic, clinical, radiological, laboratory data was reviewed and compared between AT patients with elevated IgM levels (EIgM) and patients with normal IgM levels (NIgM). RESULTS 15/46(32.6%) patients had significantly elevated IgM levels. This group had a unique phenotype characterized mainly by increased risk of infection and early mortality. Colonization of lower respiratory tract with Mycobacterium gordonae and Pseudomonas aeruginosa as well as viral skin infections were more frequent in EIgM patients. Patients with NIgM had a significantly longer survival as compared to patients with EIgM but had an increased incidence of fatty liver or cirrhosis. T-cell recombination excision circles and kappa-deleting element recombination circle levels were significantly lower in the EIgM group, suggesting an abnormal class switching in this group. CONCLUSIONS EIgM in AT patients are indicative of a more severe phenotype that probably results from a specific immune dysfunction. EIgM in AT should be considered a unique AT phenotype that may require different management.
Collapse
Affiliation(s)
- Alexander Krauthammer
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, 52625 Tel- Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Avishay Lahad
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, 52625 Tel- Hashomer, Israel
- Pediatric Gastroenterology Unit, The Edmond and Lily Safra Children’s Hospital, Tel- Hashomer, Israel
| | - Lior Goldberg
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, 52625 Tel- Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ifat Sarouk
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, 52625 Tel- Hashomer, Israel
- Pediatric Pulmonary Unit, The Edmond and Lily Safra Children’s Hospital, Tel- Hashomer, Israel
| | - Batia Weiss
- Pediatric Gastroenterology Unit, The Edmond and Lily Safra Children’s Hospital, Tel- Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Raz Somech
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, 52625 Tel- Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Michalle Soudack
- Department of Pediatrics, The Edmond and Lily Safra Children’s Hospital, 52625 Tel- Hashomer, Israel
- Pediatric Radiology Unit, The Edmond and Lily Safra Children’s Hospital, Tel- Hashomer, Israel
| | - Itai M. Pessach
- The Claudio Cohen Department of Pediatric Intensive Care, The Edmond and Lily Safra Children’s Hospital, Tel- Hashomer, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
23
|
Zaki-Dizaji M, Akrami SM, Azizi G, Abolhassani H, Aghamohammadi A. Inflammation, a significant player of Ataxia-Telangiectasia pathogenesis? Inflamm Res 2018; 67:559-570. [PMID: 29582093 DOI: 10.1007/s00011-018-1142-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 02/03/2018] [Accepted: 03/21/2018] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Ataxia-Telangiectasia (A-T) syndrome is an autosomal recessive neurodegenerative disorder characterized by cerebellar ataxia, oculocutaneous telangiectasia, immunodeficiency, chromosome instability, radiosensitivity, and predisposition to malignancy. There is growing evidence that A-T patients suffer from pathologic inflammation that is responsible for many symptoms of this syndrome, including neurodegeneration, autoimmunity, cardiovascular disease, accelerated aging, and insulin resistance. In addition, epidemiological studies have shown A-T heterozygotes, somewhat like deficient patients, are susceptible to ionizing irradiation and have a higher risk of cancers and metabolic disorders. AREA COVERED This review summarizes clinical and molecular findings of inflammation in A-T syndrome. CONCLUSION Ataxia-Telangiectasia Mutated (ATM), a master regulator of the DNA damage response is the protein known to be associated with A-T and has a complex nuclear and cytoplasmic role. Loss of ATM function may induce immune deregulation and systemic inflammation.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran
| | - Seyed Mohammad Akrami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Azizi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.,Department of Laboratory Medicine, Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences, Karaj, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.,Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Asghar Aghamohammadi
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Science, 62 Qarib St., Keshavarz Blvd., Tehran, 14194, Iran.
| |
Collapse
|
24
|
Zaki-Dizaji M, Akrami SM, Abolhassani H, Rezaei N, Aghamohammadi A. Ataxia telangiectasia syndrome: moonlighting ATM. Expert Rev Clin Immunol 2017; 13:1155-1172. [PMID: 29034753 DOI: 10.1080/1744666x.2017.1392856] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Ataxia-telangiectasia (A-T) a multisystem disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. Identification of the gene defective in this syndrome, ataxia-telangiectasia mutated gene (ATM), and further characterization of the disorder together with a greater insight into the function of the ATM protein have expanded our knowledge about the molecular pathogenesis of this disease. Area covered: In this review, we have attempted to summarize the different roles of ATM signaling that have provided new insights into the diverse clinical phenotypes exhibited by A-T patients. Expert commentary: ATM, in addition to DNA repair response, is involved in many cytoplasmic roles that explain diverse phenotypes of A-T patients. It seems accumulation of DNA damage, persistent DNA damage response signaling, and chronic oxidative stress are the main players in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Majid Zaki-Dizaji
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| | - Seyed Mohammad Akrami
- a Department of Medical Genetics, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,c Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden.,d Primary Immunodeficiency Diseases Network (PIDNet ), Universal Scientific Education and Research Network (USERN) , Stockholm , Sweden
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran.,e Department of Immunology and Biology, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran.,f Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA) , Universal Scientific Education and Research Network (USERN) , Tehran , Iran
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Children's Medical Center , Tehran University of Medical Science , Tehran , Iran
| |
Collapse
|
25
|
Levy-Mendelovich S, Lev A, Rechavi E, Barel O, Golan H, Bielorai B, Neumann Y, Simon AJ, Somech R. T and B cell clonal expansion in Ras-associated lymphoproliferative disease (RALD) as revealed by next-generation sequencing. Clin Exp Immunol 2017; 189:310-317. [PMID: 28500641 DOI: 10.1111/cei.12986] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
Ras-associated lymphoproliferative disease (RALD) is an autoimmune lymphoproliferative syndrome (ALPS)-like disease caused by mutations in Kirsten rat sarcoma viral oncogene homologue (KRAS) or neuroblastoma RAS viral (V-Ras) oncogene homologue (NRAS). The immunological phenotype and pathogenesis of RALD have yet to be studied extensively. Here we report a thorough immunological investigation of a RALD patient with a somatic KRAS mutation. Patient lymphocytes were analysed for phenotype, immunoglobulin levels and T cell proliferation capacity. T and B cell receptor excision circles (TREC and KREC, respectively), markers of naive T and B cell production, were measured serially for 3 years. T and B cell receptor repertoires were studied using both traditional assays as well as next-generation sequencing (NGS). TREC and KREC declined dramatically with time, as did T cell receptor diversity. NGS analysis demonstrated T and B clonal expansions and marked restriction of T and B cell receptor repertoires compared to healthy controls. Our results demonstrate, at least for our reported RALD patient, how peripheral T and B clonal expansions reciprocally limit lymphocyte production and restrict the lymphocyte receptor repertoire in this disease. Decreased naive lymphocyte production correlated with a clinical deterioration in our patient's immune status, suggesting that TREC and KREC may be used as an aid in monitoring disease progression. Both the methodologies used here and the conclusions regarding immune homeostasis may be applicable to the research of ALPS and other immune dysregulation syndromes.
Collapse
Affiliation(s)
- S Levy-Mendelovich
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Department of Pediatric Hematology-Oncology and BMT, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel.,National Hemophilia and Thrombosis institute, Sheba Medical center, Tel Hashomer, Ramat Gan, Israel
| | - A Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel
| | - E Rechavi
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel
| | - O Barel
- Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel.,Cancer Research Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - H Golan
- Department of Pediatric Hematology-Oncology and BMT, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel
| | - B Bielorai
- Department of Pediatric Hematology-Oncology and BMT, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel
| | - Y Neumann
- Department of Pediatric Hematology-Oncology and BMT, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel
| | - A J Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Sackler School of Medicine, Tel Aviv University, Israel, Ramat Gan, Israel.,Cancer Research Center, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel.,Hematology Laboratories, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - R Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, "Edmond and Lily Safra" Children's Hospital, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| |
Collapse
|
26
|
Barbaro M, Ohlsson A, Borte S, Jonsson S, Zetterström RH, King J, Winiarski J, von Döbeln U, Hammarström L. Newborn Screening for Severe Primary Immunodeficiency Diseases in Sweden-a 2-Year Pilot TREC and KREC Screening Study. J Clin Immunol 2017; 37:51-60. [PMID: 27873105 PMCID: PMC5226987 DOI: 10.1007/s10875-016-0347-5] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/18/2016] [Indexed: 12/16/2022]
Abstract
Newborn screening for severe primary immunodeficiencies (PID), characterized by T and/or B cell lymphopenia, was carried out in a pilot program in the Stockholm County, Sweden, over a 2-year period, encompassing 58,834 children. T cell receptor excision circles (TREC) and kappa-deleting recombination excision circles (KREC) were measured simultaneously using a quantitative PCR-based method on DNA extracted from dried blood spots (DBS), with beta-actin serving as a quality control for DNA quantity. Diagnostic cutoff levels enabling identification of newborns with milder and reversible T and/or B cell lymphopenia were also evaluated. Sixty-four children were recalled for follow-up due to low TREC and/or KREC levels, and three patients with immunodeficiency (Artemis-SCID, ATM, and an as yet unclassified T cell lymphopenia/hypogammaglobulinemia) were identified. Of the positive samples, 24 were associated with prematurity. Thirteen children born to mothers treated with immunosuppressive agents during pregnancy (azathioprine (n = 9), mercaptopurine (n = 1), azathioprine and tacrolimus (n = 3)) showed low KREC levels at birth, which spontaneously normalized. Twenty-nine newborns had no apparent cause identified for their abnormal results, but normalized with time. Children with trisomy 21 (n = 43) showed a lower median number of both TREC (104 vs. 174 copies/μL blood) and KREC (45 vs. 100 copies/3.2 mm blood spot), but only one, born prematurely, fell below the cutoff level. Two children diagnosed with DiGeorge syndrome were found to have low TREC levels, but these were still above the cutoff level. This is the first large-scale screening study with a simultaneous detection of both TREC and KREC, allowing identification of newborns with both T and B cell defects.
Collapse
Affiliation(s)
- Michela Barbaro
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Annika Ohlsson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, SE-17177, Stockholm, Sweden
| | - Stephan Borte
- Department of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186, Stockholm, Sweden
- ImmunoDeficiencyCenter Leipzig (IDCL) at Hospital St. Georg Leipzig, Delitzscher Strasse 141, 04129, Leipzig, Germany
| | - Susanne Jonsson
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
| | - Rolf H Zetterström
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-17176, Stockholm, Sweden
| | - Jovanka King
- Department of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186, Stockholm, Sweden
- Department of Immunopathology, SA Pathology, Women's and Children's Hospital Campus, North Adelaide, South Australia, 5006, Australia
- Robinson Research Institute and Discipline of Paediatrics, School of Medicine, University of Adelaide, North Adelaide, South Australia, 5006, Australia
| | - Jacek Winiarski
- Department of Clinical Technology and Intervention, Karolinska Institutet, SE-14186, Stockholm, Sweden
- Department of Pediatrics, Karolinska University Hospital Huddinge, SE-14186, Stockholm, Sweden
| | - Ulrika von Döbeln
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital Solna, SE-17176, Stockholm, Sweden.
- Department of Medical Biochemistry and Biophysics, Division of Molecular Metabolism, Karolinska Institutet, SE-17177, Stockholm, Sweden.
| | - Lennart Hammarström
- Department of Clinical Immunology, Karolinska University Hospital Huddinge, SE-14186, Stockholm, Sweden.
| |
Collapse
|
27
|
Rothblum-Oviatt C, Wright J, Lefton-Greif MA, McGrath-Morrow SA, Crawford TO, Lederman HM. Ataxia telangiectasia: a review. Orphanet J Rare Dis 2016; 11:159. [PMID: 27884168 PMCID: PMC5123280 DOI: 10.1186/s13023-016-0543-7] [Citation(s) in RCA: 389] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 11/16/2016] [Indexed: 12/15/2022] Open
Abstract
DEFINITION OF THE DISEASE Ataxia telangiectasia (A-T) is an autosomal recessive disorder primarily characterized by cerebellar degeneration, telangiectasia, immunodeficiency, cancer susceptibility and radiation sensitivity. A-T is often referred to as a genome instability or DNA damage response syndrome. EPIDEMIOLOGY The world-wide prevalence of A-T is estimated to be between 1 in 40,000 and 1 in 100,000 live births. CLINICAL DESCRIPTION A-T is a complex disorder with substantial variability in the severity of features between affected individuals, and at different ages. Neurological symptoms most often first appear in early childhood when children begin to sit or walk. They have immunological abnormalities including immunoglobulin and antibody deficiencies and lymphopenia. People with A-T have an increased predisposition for cancers, particularly of lymphoid origin. Pulmonary disease and problems with feeding, swallowing and nutrition are common, and there also may be dermatological and endocrine manifestations. ETIOLOGY A-T is caused by mutations in the ATM (Ataxia Telangiectasia, Mutated) gene which encodes a protein of the same name. The primary role of the ATM protein is coordination of cellular signaling pathways in response to DNA double strand breaks, oxidative stress and other genotoxic stress. DIAGNOSIS The diagnosis of A-T is usually suspected by the combination of neurologic clinical features (ataxia, abnormal control of eye movement, and postural instability) with one or more of the following which may vary in their appearance: telangiectasia, frequent sinopulmonary infections and specific laboratory abnormalities (e.g. IgA deficiency, lymphopenia especially affecting T lymphocytes and increased alpha-fetoprotein levels). Because certain neurological features may arise later, a diagnosis of A-T should be carefully considered for any ataxic child with an otherwise elusive diagnosis. A diagnosis of A-T can be confirmed by the finding of an absence or deficiency of the ATM protein or its kinase activity in cultured cell lines, and/or identification of the pathological mutations in the ATM gene. DIFFERENTIAL DIAGNOSIS There are several other neurologic and rare disorders that physicians must consider when diagnosing A-T and that can be confused with A-T. Differentiation of these various disorders is often possible with clinical features and selected laboratory tests, including gene sequencing. ANTENATAL DIAGNOSIS Antenatal diagnosis can be performed if the pathological ATM mutations in that family have been identified in an affected child. In the absence of identifying mutations, antenatal diagnosis can be made by haplotype analysis if an unambiguous diagnosis of the affected child has been made through clinical and laboratory findings and/or ATM protein analysis. GENETIC COUNSELING Genetic counseling can help family members of a patient with A-T understand when genetic testing for A-T is feasible, and how the test results should be interpreted. MANAGEMENT AND PROGNOSIS Treatment of the neurologic problems associated with A-T is symptomatic and supportive, as there are no treatments known to slow or stop the neurodegeneration. However, other manifestations of A-T, e.g. immunodeficiency, pulmonary disease, failure to thrive and diabetes can be treated effectively.
Collapse
Affiliation(s)
| | - Jennifer Wright
- The Ataxia Telangiectasia Clinical Center, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Maureen A. Lefton-Greif
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Pediatric Respiratory Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Sharon A. McGrath-Morrow
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Pediatric Respiratory Sciences, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Thomas O. Crawford
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics and Neurology, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| | - Howard M. Lederman
- The Ataxia Telangiectasia Clinical Center, Departments of Pediatrics, Medicine and Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland USA
| |
Collapse
|
28
|
Rechavi E, Lev A, Eyal E, Barel O, Kol N, Barhom SF, Pode-Shakked B, Anikster Y, Somech R, Simon AJ. A Novel Mutation in a Critical Region for the Methyl Donor Binding in DNMT3B Causes Immunodeficiency, Centromeric Instability, and Facial Anomalies Syndrome (ICF). J Clin Immunol 2016; 36:801-809. [PMID: 27734333 DOI: 10.1007/s10875-016-0340-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/21/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE Immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome is an extremely rare autosomal recessive disease. The immune phenotype is characterized by hypogammaglobulinemia in the presence of B cells. T cell lymphopenia also develops in some patients. We sought to further investigate the immune defect in an ICF patient with a novel missense mutation in DNMT3B and a severe phenotype. METHODS Patient lymphocytes were examined for subset counts, immunoglobulin levels, T and B cell de novo production (via excision circles) and receptor repertoire diversity. Mutated DNMT3B protein structure was modeled to assess the effect of a mutation located outside of the catalytic region on protein function. RESULTS A novel homozygous missense mutation, Ala585Thr, was found in DNMT3B. The patient had decreased B cell counts with hypogammaglobulinemia, and normal T cell counts. CD4+ T cells decreased over time, leading to an inversion of the CD4+ to CD8+ ratio. Excision circle copy numbers were normal, signifying normal de novo lymphocyte production, but the ratio between naïve and total B cells was low, indicating decreased in vivo B cell replication. T and B cell receptor repertoires displayed normal diversity. Computerized modeling of the mutated Ala585 residue suggested reduced thermostability, possibly affecting the enzyme kinetics. CONCLUSIONS Our results highlight the existence of a T cell defect that develops over time in ICF patient, in addition to the known B cell dysfunction. With intravenous immunoglobulin (IVIG) treatment ameliorating the B cell defect, the extent of CD4+ lymphopenia may determine the severity of ICF immunodeficiency.
Collapse
Affiliation(s)
- Erez Rechavi
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Edmond and Lily Safra Children's Hospital, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Atar Lev
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Eran Eyal
- Cancer Research Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Ortal Barel
- Cancer Research Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Nitzan Kol
- Cancer Research Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Sarit Farage Barhom
- Cancer Research Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Ben Pode-Shakked
- Edmond and Lily Safra Children's Hospital, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Yair Anikster
- Edmond and Lily Safra Children's Hospital, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Metabolic Disease Unit, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel
| | - Raz Somech
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
- Edmond and Lily Safra Children's Hospital, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
| | - Amos J Simon
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
- Cancer Research Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
- Institute of Hematology, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
- Sheba Medical Center, affiliated to the Sackler Faculty of Medicine, Tel Aviv University, Tel-Hashomer, Ramat Gan, Israel.
| |
Collapse
|
29
|
Milligan KL, Schirm K, Leonard S, Hussey AA, Agharahimi A, Kleiner DE, Fuss I, Lingala S, Heller T, Rosenzweig SD. Ataxia telangiectasia associated with nodular regenerative hyperplasia. J Clin Immunol 2016; 36:739-742. [PMID: 27671921 DOI: 10.1007/s10875-016-0334-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/05/2016] [Indexed: 01/22/2023]
Affiliation(s)
- Ki L Milligan
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, USA.,Primary Immunodeficiency Clinic, NIAID, NIH, Building 10, Room 2C410, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Karen Schirm
- Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD, USA
| | - Stephanie Leonard
- Division of Allergy and Immunology, University of California, San Diego, Rady Children's Hospital, San Diego, CA, USA
| | - Ashleigh A Hussey
- Primary Immunodeficiency Clinic, NIAID, NIH, Building 10, Room 2C410, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Anahita Agharahimi
- Primary Immunodeficiency Clinic, NIAID, NIH, Building 10, Room 2C410, 10 Center Drive, Bethesda, MD, 20892, USA
| | | | - Ivan Fuss
- Mucosal Immunity Section, NIAID NIH, Bethesda, MD, USA
| | | | - Theo Heller
- Liver Diseases Branch, NIDDK, NIH, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Primary Immunodeficiency Clinic, NIAID, NIH, Building 10, Room 2C410, 10 Center Drive, Bethesda, MD, 20892, USA. .,Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Building 10, Room 2C410, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
30
|
Abstract
Monosomy 21 is an extremely rare genetic disorder presenting with a wide array of symptoms. Recurrent infections, some life threatening, have been reported in several monosomy 21 patients and attributed to an, as of yet, undefined immunodeficiency. Here we report on a 3-year-old boy with mosaic monosomy 21 who presented with clinical and laboratory evidence of immunodeficiency. Despite suffering from infections highly suggestive of a cell-mediated immune defect, the patient's T cells displayed normal counts, subsets and proliferation capability. T cell receptor repertoire was diverse, and de novo T cell production was intact. Consistent with earlier case reports, our patient displayed mildly low B cell counts with hypogammaglobulinemia. B cell subsets demonstrated mainly naïve and marginal zone B cells that have not undergone class switch. Subsequently, IgG, IgA and IgE levels were near absent, whereas IgM level was normal. De novo B cell production and B cell receptor diversity were normal. Together, these results are indicative of a defect in immunoglobulin class switching as the principal cause of immunodeficiency in monosomy 21. A better understanding of the immunodeficiency in this syndrome will enable targeted treatment and prevention of infections in order to prevent morbidity and mortality in these patients.
Collapse
|
31
|
TREC Based Newborn Screening for Severe Combined Immunodeficiency Disease: A Systematic Review. J Clin Immunol 2015; 35:416-30. [PMID: 25893636 PMCID: PMC4438204 DOI: 10.1007/s10875-015-0152-6] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/16/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Newborn screening (NBS) by quantifying T cell receptor excision circles (TRECs) in neonatal dried blood spots (DBS) enables early diagnosis of severe combined immunodeficiency disease (SCID). In recent years, different screening algorithms for TREC based SCID screening were reported. PURPOSE To systematically review the diagnostic performance of published algorithms for TREC based NBS for SCID. METHODS PubMed, EMBASE and the Cochrane Library were systematically searched for case series and prospective cohort studies describing TREC based NBS for SCID. We extracted TREC content and cut-off values, number of retests, repeat DBS and referrals, and type and number of typical SCID and other T cell lymphopenia (TCL) cases. We calculated positive predictive value (PPV), test sensitivity and SCID incidence. RESULTS Thirteen studies were included, re-confirming 89 known SCID cases in case series and reporting 53 new SCID cases in 3.15 million newborns. In case series, the sensitivity for typical SCID was 100%. In the prospective cohort studies, SCID incidence was ~1.7:100,000, re-test rate was 0.20-3.26%, repeat DBS rate 0.0-0.41% and referral rate 0.01-1.35%. PPV within the five largest cohorts was 0.8-11.2% for SCID and 18.3-81.0% for TCL. Individual TREC contents in all SCID patients was <25 TRECs/μl (except in those evaluated with the New York State assay). CONCLUSIONS The sensitivity of TREC based NBS for typical SCID was 100 %. The TREC cut-off score determines the percentage of non-SCID TCL cases detected in newborn screening for TCL. Adapting the screening algorithm for pre-term/ill infants reduces the amount of false positive test results.
Collapse
|