1
|
Shaverskyi A, Hegermann J, Brand K, Lee KH, Föger N. Coronin 1a-mediated F-actin disassembly controls effector function in murine neutrophils. Redox Biol 2025; 82:103618. [PMID: 40158258 PMCID: PMC11997354 DOI: 10.1016/j.redox.2025.103618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025] Open
Abstract
The double-edged role of neutrophils in effective host defense and harmful pathology is an emerging topic in clinical research. Neutrophils release highly potent antimicrobial granule compounds and reactive oxygen species (ROS) that can also be detrimental to the host and promote inflammatory diseases and cancer. Here we show that disassembly of F-actin greatly facilitates ROS production and degranulation in neutrophils. Utilizing neutrophils from Coronin 1a (Coro1a)-deficient mice, our data reveal that the actin-regulatory protein Coro1a controls this spatial F-actin deconstruction and concomitantly forms a signaling complex with Rac-GTPases, thereby promoting activation and translocation of Rac to the membrane during neutrophil activation. This functional activity of Coro1a was critical for neutrophil granule exocytosis and the activation of the NADPH oxidase complex. Consistent with these findings, impaired ROS production in Coro1a-deficient neutrophils was rescued by pharmacological promotion of actin depolymerization or activation of Rac. Together, our findings suggest that the Coro1a/Rac signaling hub acts as a central regulatory element that coordinates actin cytoskeletal reorganization required for the execution of neutrophil effector functions. Since Coro1a is highly conserved between mice and humans and associated with human immunodeficiency, our results are also relevant for human biomedical studies.
Collapse
Affiliation(s)
- Anton Shaverskyi
- Inflammation Research Group, Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Jan Hegermann
- Central Research Facility Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Korbinian Brand
- Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany
| | - Kyeong-Hee Lee
- Inflammation Research Group, Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany.
| | - Niko Föger
- Inflammation Research Group, Institute of Clinical Chemistry, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
2
|
Ndinyanka Fabrice T, Buczak K, Schmidt A, Pieters J. T cell population size control by coronin 1 uncovered: from a spot identified by two-dimensional gel electrophoresis to quantitative proteomics. Expert Rev Proteomics 2025; 22:35-44. [PMID: 39849824 DOI: 10.1080/14789450.2025.2450812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/28/2024] [Accepted: 12/19/2024] [Indexed: 01/25/2025]
Abstract
INTRODUCTION Recent work identified members of the evolutionarily conserved coronin protein family as key regulators of cell population size. This work originated ~25 years ago through the identification, by two-dimensional gel electrophoresis, of coronin 1 as a host protein involved in the virulence of Mycobacterium tuberculosis. We here describe the journey from a spot on a 2D gel to the recent realization that coronin proteins represent key controllers of eukaryotic cell population sizes, using ever more sophisticated proteomic techniques. AREAS COVERED We discuss the value of 'old school' proteomics using relatively simple and cost-effective technologies that allowed to gain insights into subcellular proteomes and describe how label-free quantitative (phospho)proteomics using mass spectrometry allowed to disentangle the role for coronin 1 in eukaryotic cell population size control. Finally, we mention potential implications of coronin-mediated cell population size control for health and disease. EXPERT OPINION Proteome analysis has been revolutionized by the advent of modern-day mass spectrometers and is indispensable for a better understanding of biology. Here, we discuss how careful dissection of physio-pathological processes by a combination of proteomics, genomics, biochemistry and cell biology may allow to zoom in on the unexplored, thereby possibly tackling hitherto unasked questions and defining novel mechanisms.
Collapse
|
3
|
Montoya-Garcia A, Guerrero-Fonseca IM, Chanez-Paredes SD, Hernandez-Almaraz KB, Leon-Vega II, Silva-Olivares A, Betanzos A, Mondragon-Castelan M, Mondragon-Flores R, Salinas-Lara C, Vargas-Robles H, Schnoor M. Arpin deficiency increases actomyosin contractility and vascular permeability. eLife 2024; 12:RP90692. [PMID: 39298260 PMCID: PMC11412691 DOI: 10.7554/elife.90692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024] Open
Abstract
Arpin was discovered as an inhibitor of the Arp2/3 complex localized at the lamellipodial tip of fibroblasts, where it regulated migration steering. Recently, we showed that arpin stabilizes the epithelial barrier in an Arp2/3-dependent manner. However, the expression and functions of arpin in endothelial cells (EC) have not yet been described. Arpin mRNA and protein are expressed in EC and downregulated by pro-inflammatory cytokines. Arpin depletion in Human Umbilical Vein Endothelial Cells causes the formation of actomyosin stress fibers leading to increased permeability in an Arp2/3-independent manner. Instead, inhibitors of ROCK1 and ZIPK, kinases involved in the generation of stress fibers, normalize the loss-of-arpin effects on actin filaments and permeability. Arpin-deficient mice are viable but show a characteristic vascular phenotype in the lung including edema, microhemorrhage, and vascular congestion, increased F-actin levels, and vascular permeability. Our data show that, apart from being an Arp2/3 inhibitor, arpin is also a regulator of actomyosin contractility and endothelial barrier integrity.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis, CINVESTAV-IPN, Mexico City, Mexico
| | | | | | - Citlaltepetl Salinas-Lara
- Laboratorio de Patogénesis Molecular, Facultad de Estudios Superiores de Iztacala, Tlalnepantla de Baz, Mexico
| | | | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
| |
Collapse
|
4
|
Khoreva A, Butov KR, Nikolaeva EI, Martyanov A, Kulakovskaya E, Pershin D, Alexenko M, Kurnikova M, Abasov R, Raykina E, Abramov D, Arnaudova K, Rodina Y, Trubina N, Skvortsova Y, Balashov D, Sveshnikova A, Maschan A, Novichkova G, Panteleev M, Shcherbina A. Novel hemizygous CORO1A variant leads to combined immunodeficiency with defective platelet calcium signaling and cell mobility. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. GLOBAL 2024; 3:100172. [PMID: 37915722 PMCID: PMC10616384 DOI: 10.1016/j.jacig.2023.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 11/03/2023]
Abstract
Background To date, fewer than 20 patients have been identified as having germline biallelic mutations in the coronin-1A gene (CORO1A) and its protein with clinical features of combined immunodeficiency characterized by T-cell lymphopenia ranging from the severe phenotype to the mild phenotype, recurrent infections, and lymphoproliferative disorders. However, the effects of CORO1A protein disruption on actin-dependent functions in primary cells have not been fully delineated. Objective We sought to characterize the underlying defects of actin-dependent cellular functions in a female patient with combined immunodeficiency caused by a novel missense variant in the CORO1A gene in combination with a de novo heterozygous microdeletion of chromosome 16p11.2 and also to provide evidence of the pathogenicity of this gene mutation. Methods To identify the genetic defect, next-generation sequencing followed by Sanger confirmation and array comparative genomic hybridization were performed. Western blot and quantitative PCR tests were used to assess the effects on the protein. Flow cytometry and live microscopy were performed to investigate cellular motility and immune cell counts and function. Results We demonstrated that the CORO1A hemizygous variant c.19C>T, p. A7C induces significant decreases in cellular levels of the CORO1A protein while leaving mRNA concentrations unaffected. The observed mutation resulted in impaired natural killer cell cytotoxicity and platelet calcium signaling. In addition, primary granulocytes and mesenchymal cells showed significant defects in motility. Conclusion Collectively, we added new data about the CORO1A gene as a key player in actin cytoskeleton dynamics and cell signaling. Our findings expand the clinical spectrum regarding CORO1A protein deficiency and confirm the importance of a personalized therapeutic approach for each patient.
Collapse
Affiliation(s)
- Anna Khoreva
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Kirill R. Butov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - Elena I. Nikolaeva
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - Alexey Martyanov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - Elena Kulakovskaya
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Pershin
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maxim Alexenko
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Maria Kurnikova
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Ruslan Abasov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Elena Raykina
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Abramov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | | | - Yulia Rodina
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Natalia Trubina
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Yulia Skvortsova
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Dmitry Balashov
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Anastasia Sveshnikova
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
| | - Alexey Maschan
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Galina Novichkova
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mikhail Panteleev
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
- Center for Theoretical Problems of Physicochemical Pharmacology, Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| |
Collapse
|
5
|
González-Arostegui LG, Muñoz-Prieto A, Rubio CP, Cerón JJ, Bernal L, Rubić I, Mrljak V, González-Sánchez JC, Tvarijonaviciute A. Changes of the salivary and serum proteome in canine hypothyroidism. Domest Anim Endocrinol 2024; 86:106825. [PMID: 37980820 DOI: 10.1016/j.domaniend.2023.106825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/21/2023]
Abstract
In this study, changes in salivary and serum proteome of dogs with hypothyroidism were studied using tandem mass tags (TMT) labelling and liquid chromatography-mass spectrometry (LC-MS/MS). Saliva and serum proteome from 10 dogs with hypothyroidism were compared with 10 healthy dogs. In saliva, a total of seven proteins showed significant changes between the two groups, being six downregulated and one upregulated, meanwhile, in serum, a total of six proteins showed significant changes, being five downregulated and one upregulated. The altered proteins reflected metabolic and immunologic changes, as well as, skin and coagulation alterations, and these proteins were not affected by gender. One of the proteins that were downregulated in saliva, lactate dehydrognease (LDH), was measured by a spectrophotometric assay in saliva samples from 42 dogs with hypothyroidism, 42 dogs with non-thyroid diseases and 46 healthy dogs. The activity of LDH was lower in the saliva of hypothyroid dogs when compared to non-thyroid diseased dogs and healthy controls. This study indicates that canine hypothyroidism can produce changes in the proteome of saliva and serum. These two sample types showed different variations in their proteins reflecting physiopathological changes that occur in this disease, mainly related to the immune system, metabolism, skin and coagulation. In addition, some of the proteins identified in this study, specially LDH in saliva, should be further explored as potential biomarkers of canine hypothyroidism.
Collapse
Affiliation(s)
- L G González-Arostegui
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, 30100 Murcia, Spain
| | - A Muñoz-Prieto
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, 30100 Murcia, Spain
| | - C P Rubio
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, 30100 Murcia, Spain
| | - J J Cerón
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, 30100 Murcia, Spain
| | - L Bernal
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, 30100 Murcia, Spain
| | - I Rubić
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 1000 Zagreb, Croatia
| | - V Mrljak
- Clinic for Internal Diseases, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 1000 Zagreb, Croatia
| | - J C González-Sánchez
- BioQuant, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - A Tvarijonaviciute
- Interlab-UMU, Regional Campus of International Excellence "Mare Nostrum" University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
6
|
Lee H, Park S, Yun JH, Seo C, Ahn JM, Cha HY, Shin YS, Park HR, Lee D, Roh J, Heo HJ, Baek SE, Kim EK, Lee HS, Kim CH, Kim YH, Jang JY. Deciphering head and neck cancer microenvironment: Single-cell and spatial transcriptomics reveals human papillomavirus-associated differences. J Med Virol 2024; 96:e29386. [PMID: 38235919 DOI: 10.1002/jmv.29386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Human papillomavirus (HPV) is a major causative factor of head and neck squamous cell carcinoma (HNSCC), and the incidence of HPV- associated HNSCC is increasing. The role of tumor microenvironment in viral infection and metastasis needs to be explored further. We studied the molecular characteristics of primary tumors (PTs) and lymph node metastatic tumors (LNMTs) by stratifying them based on their HPV status. Eight samples for single-cell RNA profiling and six samples for spatial transcriptomics (ST), composed of matched primary tumors (PT) and lymph node metastases (LNMT), were collected from both HPV- negative (HPV- ) and HPV-positive (HPV+ ) patients. Using the 10x Genomics Visium platform, integrative analyses with single-cell RNA sequencing were performed. Intracellular and intercellular alterations were analyzed, and the findings were confirmed using experimental validation and publicly available data set. The HPV+ tissues were composed of a substantial amount of lymphoid cells regardless of the presence or absence of metastasis, whereas the HPV- tissue exhibited remarkable changes in the number of macrophages and plasma cells, particularly in the LNMT. From both single-cell RNA and ST data set, we discovered a central gene, pyruvate kinase muscle isoform 1/2 (PKM2), which is closely associated with the stemness of cancer stem cell-like populations in LNMT of HPV- tissue. The consistent expression was observed in HPV- HNSCC cell line and the knockdown of PKM2 weakened spheroid formation ability. Furthermore, we found an ectopic lymphoid structure morphology and clinical effects of the structure in ST slide of the HPV+ patients and verified their presence in tumor tissue using immunohistochemistry. Finally, the ephrin-A (EPHA2) pathway was detected as important signals in angiogenesis for HPV- patients from single-cell RNA and ST profiles, and knockdown of EPHA2 declined the cell migration. Our study described the distinct cellular composition and molecular alterations in primary and metastatic sites in HNSCC patients based on their HPV status. These results provide insights into HNSCC biology in the context of HPV infection and its potential clinical implications.
Collapse
Affiliation(s)
- Hansong Lee
- Medical Research Institute, Pusan National University, Yangsan, South Korea
| | - Sohee Park
- Data Science Center, Insilicogen, Inc., Yongin-si, South Korea
| | - Ju Hyun Yun
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Chorong Seo
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Ji Mi Ahn
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Hyun-Young Cha
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Yoo Seob Shin
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Hae Ryoun Park
- Department of Periodontology and Dental Research Institute, Pusan National University Dental Hospital, Yangsan, South Korea
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, South Korea
- Department of Oral Pathology, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Dongjun Lee
- Department of Convergence Medicine, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Jin Roh
- Department of Pathology, School of Medicine, Ajou University, Suwon, South Korea
| | - Hye Jin Heo
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Seung Eun Baek
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Eun Kyoung Kim
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Hae Seul Lee
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
| | - Yun Hak Kim
- Periodontal Disease Signaling Network Research Center, School of Dentistry, Pusan National University, Yangsan, South Korea
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, South Korea
- Department of Biomedical Informatics, School of Medicine, Pusan National University, Yangsan, South Korea
| | - Jeon Yeob Jang
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, South Korea
- Department of Biomedical Sciences, Ajou University Graduate School of Medicine, Suwon, South Korea
- Department of Convergence Healthcare Medicine, Graduate School of Ajou University, Suwon, South Korea
| |
Collapse
|
7
|
Zhan C, Tang T, Wu E, Zhang Y, He M, Wu R, Bi C, Wang J, Zhang Y, Shen B. From multi-omics approaches to personalized medicine in myocardial infarction. Front Cardiovasc Med 2023; 10:1250340. [PMID: 37965091 PMCID: PMC10642346 DOI: 10.3389/fcvm.2023.1250340] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
Myocardial infarction (MI) is a prevalent cardiovascular disease characterized by myocardial necrosis resulting from coronary artery ischemia and hypoxia, which can lead to severe complications such as arrhythmia, cardiac rupture, heart failure, and sudden death. Despite being a research hotspot, the etiological mechanism of MI remains unclear. The emergence and widespread use of omics technologies, including genomics, transcriptomics, proteomics, metabolomics, and other omics, have provided new opportunities for exploring the molecular mechanism of MI and identifying a large number of disease biomarkers. However, a single-omics approach has limitations in understanding the complex biological pathways of diseases. The multi-omics approach can reveal the interaction network among molecules at various levels and overcome the limitations of the single-omics approaches. This review focuses on the omics studies of MI, including genomics, epigenomics, transcriptomics, proteomics, metabolomics, and other omics. The exploration extended into the domain of multi-omics integrative analysis, accompanied by a compilation of diverse online resources, databases, and tools conducive to these investigations. Additionally, we discussed the role and prospects of multi-omics approaches in personalized medicine, highlighting the potential for improving diagnosis, treatment, and prognosis of MI.
Collapse
Affiliation(s)
- Chaoying Zhan
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Tong Tang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Erman Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxin Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mengqiao He
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rongrong Wu
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Bi
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- KeyLaboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiao Wang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Yingbo Zhang
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Bairong Shen
- Department of Cardiology and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Serrath SN, Pontes AS, Paloschi MV, Silva MDS, Lopes JA, Boeno CN, Silva CP, Santana HM, Cardozo DG, Ugarte AVE, Magalhães JGS, Cruz LF, Setubal SS, Soares AM, Cavecci-Mendonça B, Santos LD, Zuliani JP. Exosome Liberation by Human Neutrophils under L-Amino Acid Oxidase of Calloselasma rhodostoma Venom Action. Toxins (Basel) 2023; 15:625. [PMID: 37999488 PMCID: PMC10674320 DOI: 10.3390/toxins15110625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023] Open
Abstract
L-Amino acid oxidase (LAAO) is an enzyme found in snake venom that has multifaceted effects, including the generation of hydrogen peroxide (H2O2) during oxidative reactions, leading to various biological and pharmacological outcomes such as apoptosis, cytotoxicity, modulation of platelet aggregation, hemorrhage, and neutrophil activation. Human neutrophils respond to LAAO by enhancing chemotaxis, and phagocytosis, and releasing reactive oxygen species (ROS) and pro-inflammatory mediators. Exosomes cellular nanovesicles play vital roles in intercellular communication, including immune responses. This study investigates the impact of Calloselasma rhodostoma snake venom-derived LAAO (Cr-LAAO) on human neutrophil exosome release, including activation patterns, exosome formation, and content. Neutrophils isolated from healthy donors were stimulated with Cr-LAAO (100 μg/mL) for 3 h, followed by exosome isolation and analysis. Results show that Cr-LAAO induces the release of exosomes with distinct protein content compared to the negative control. Proteomic analysis reveals proteins related to the regulation of immune responses and blood coagulation. This study uncovers Cr-LAAO's ability to activate human neutrophils, leading to exosome release and facilitating intercellular communication, offering insights into potential therapeutic approaches for inflammatory and immunological disorders.
Collapse
Affiliation(s)
- Suzanne N. Serrath
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Adriana S. Pontes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Mauro V. Paloschi
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Milena D. S. Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Jéssica A. Lopes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Charles N. Boeno
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Carolina P. Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Hallison M. Santana
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Daniel G. Cardozo
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Andrey V. E. Ugarte
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - João G. S. Magalhães
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Larissa F. Cruz
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Sulamita S. Setubal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
| | - Andreimar M. Soares
- Laboratory of Biotechnology of Proteins and Bioactive Compounds Applied to Health (LABIOPROT), National Institute of Science and Technology in Epidemiology of the Occidental Amazonia0 (INCT-EPIAMO), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho 76801-059, RO, Brazil;
| | - Bruna Cavecci-Mendonça
- Biotechonology Institute (IBTEC), São Paulo State University, Botucatu 01049-010, SP, Brazil; (B.C.-M.); (L.D.S.)
| | - Lucilene D. Santos
- Biotechonology Institute (IBTEC), São Paulo State University, Botucatu 01049-010, SP, Brazil; (B.C.-M.); (L.D.S.)
- Graduate Program in Tropical Diseases and Graduate Program in Medical Biotechnology, Botucatu Medical School (FMB), São Paulo State University, Botucatu 18618-687, SP, Brazil
| | - Juliana P. Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ-Rondônia, Porto Velho 76812-245, RO, Brazil; (S.N.S.); (A.S.P.); (M.V.P.); (M.D.S.S.); (J.A.L.); (C.N.B.); (C.P.S.); (H.M.S.); (D.G.C.); (A.V.E.U.); (J.G.S.M.); (L.F.C.); (S.S.S.)
- Departamento de Medicina, Universidade Federal de Rondônia, Porto Velho 76801-059, RO, Brazil
| |
Collapse
|
9
|
Pan-Hammarström Q, Casanova JL. Human genetic and immunological determinants of SARS-CoV-2 and Epstein-Barr virus diseases in childhood: Insightful contrasts. J Intern Med 2023; 294:127-144. [PMID: 36906905 DOI: 10.1111/joim.13628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
Abstract
There is growing evidence to suggest that severe disease in children infected with common viruses that are typically benign in other children can result from inborn errors of immunity or their phenocopies. Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a cytolytic respiratory RNA virus, can lead to acute hypoxemic COVID-19 pneumonia in children with inborn errors of type I interferon (IFN) immunity or autoantibodies against IFNs. These patients do not appear to be prone to severe disease during infection with Epstein-Barr virus (EBV), a leukocyte-tropic DNA virus that can establish latency. By contrast, various forms of severe EBV disease, ranging from acute hemophagocytosis to chronic or long-term illnesses, such as agammaglobulinemia and lymphoma, can manifest in children with inborn errors disrupting specific molecular bridges involved in the control of EBV-infected B cells by cytotoxic T cells. The patients with these disorders do not seem to be prone to severe COVID-19 pneumonia. These experiments of nature reveal surprising levels of redundancy of two different arms of immunity, with type I IFN being essential for host defense against SARS-CoV-2 in respiratory epithelial cells, and certain surface molecules on cytotoxic T cells essential for host defense against EBV in B lymphocytes.
Collapse
Affiliation(s)
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, The Rockefeller University, New York, New York, USA
- Howard Hughes Medical Institute, New York, New York, USA
- Laboratory of Human Genetics of Infectious Diseases, Inserm, Paris, France
- Imagine Institute, Paris Cité University, Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, Paris, France
| |
Collapse
|
10
|
Principi L, Ferrini E, Ciccimarra R, Pagani L, Chinello C, Previtali P, Smith A, Villetti G, Zoboli M, Ravanetti F, Stellari FF, Magni F, Piga I. Proteomic Fingerprint of Lung Fibrosis Progression and Response to Therapy in Bleomycin-Induced Mouse Model. Int J Mol Sci 2023; 24:ijms24054410. [PMID: 36901840 PMCID: PMC10002924 DOI: 10.3390/ijms24054410] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/25/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease characterized by the aberrant accumulation of extracellular matrix in the lungs. nintedanib is one of the two FDA-approved drugs for IPF treatment; however, the exact pathophysiological mechanisms of fibrosis progression and response to therapy are still poorly understood. In this work, the molecular fingerprint of fibrosis progression and response to nintedanib treatment have been investigated by mass spectrometry-based bottom-up proteomics in paraffin-embedded lung tissues from bleomycin-induced (BLM) pulmonary fibrosis mice. Our proteomics results unveiled that (i) samples clustered depending on the tissue fibrotic grade (mild, moderate, and severe) and not on the time course after BLM treatment; (ii) the dysregulation of different pathways involved in fibrosis progression such as the complement coagulation cascades, advanced glycation end products (AGEs) and their receptors (RAGEs) signaling, the extracellular matrix-receptor interaction, the regulation of actin cytoskeleton, and ribosomes; (iii) Coronin 1A (Coro1a) as the protein with the highest correlation when evaluating the progression of fibrosis, with an increased expression from mild to severe fibrosis; and (iv) a total of 10 differentially expressed proteins (padj-value ≤ 0.05 and Fold change ≤-1.5 or ≥1.5), whose abundance varied in the base of the severity of fibrosis (mild and moderate), were modulated by the antifibrotic treatment with nintedanib, reverting their trend. Notably, nintedanib significantly restored lactate dehydrogenase B (Ldhb) expression but not lactate dehydrogenase A (Ldha). Notwithstanding the need for further investigations to validate the roles of both Coro1a and Ldhb, our findings provide an extensive proteomic characterization with a strong relationship with histomorphometric measurements. These results unveil some biological processes in pulmonary fibrosis and drug-mediated fibrosis therapy.
Collapse
Affiliation(s)
- Lucrezia Principi
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Erica Ferrini
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | - Roberta Ciccimarra
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | - Lisa Pagani
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Clizia Chinello
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Paolo Previtali
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Andrew Smith
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Gino Villetti
- Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
| | - Matteo Zoboli
- Department of Veterinary Science, University of Parma, 43122 Parma, Italy
| | | | - Franco Fabio Stellari
- Experimental Pharmacology & Translational Science Department, Chiesi Farmaceutici S.p.A., 43122 Parma, Italy
- Correspondence: (F.F.S.); (I.P.)
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
| | - Isabella Piga
- Clinical Proteomics and Metabolomics Unit, Department of Medicine and Surgery, University of Milano-Bicocca, 20854 Monza, Italy
- Correspondence: (F.F.S.); (I.P.)
| |
Collapse
|
11
|
Muleviciene A, Sekine T, Zondag T, Bryceson YT, Tesi B, Rascon J. Childhood Kaposi sarcoma related to hypomorphic severe combined immunodeficiency caused by a novel CORO1A mutation. Pediatr Blood Cancer 2022; 69:e29487. [PMID: 34913575 DOI: 10.1002/pbc.29487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/06/2022]
Affiliation(s)
- Audrone Muleviciene
- Center for Pediatric Oncology and Hematology, Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Takuya Sekine
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Timo Zondag
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Bianca Tesi
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Genetics, Karolinska University Laboratory, Karolinska University Hospital, Stockholm, Sweden
| | - Jelena Rascon
- Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
12
|
Saha S, Hazra A, Ghatak D, Singh AV, Roy S, BoseDasgupta S. A Bumpy Ride of Mycobacterial Phagosome Maturation: Roleplay of Coronin1 Through Cofilin1 and cAMP. Front Immunol 2021; 12:687044. [PMID: 34630380 PMCID: PMC8495260 DOI: 10.3389/fimmu.2021.687044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 08/17/2021] [Indexed: 11/13/2022] Open
Abstract
Phagosome-lysosome fusion in innate immune cells like macrophages and neutrophils marshal an essential role in eliminating intracellular microorganisms. In microbe-challenged macrophages, phagosome-lysosome fusion occurs 4 to 6 h after the phagocytic uptake of the microbe. However, live pathogenic mycobacteria hinder the transfer of phagosomes to lysosomes, up to 20 h post-phagocytic uptake. This period is required to evade pro-inflammatory response and upregulate the acid-stress tolerant proteins. The exact sequence of events through which mycobacteria retards phagolysosome formation remains an enigma. The macrophage coat protein Coronin1(Cor1) is recruited and retained by mycobacteria on the phagosome membrane to retard its maturation by hindering the access of phagosome maturation factors. Mycobacteria-infected macrophages exhibit an increased cAMP level, and based on receptor stimulus, Cor1 expressing cells show a higher level of cAMP than non-Cor1 expressing cells. Here we have shown that infection of bone marrow-derived macrophages with H37Rv causes a Cor1 dependent rise of intracellular cAMP levels at the vicinity of the phagosomes. This increased cAMP fuels cytoskeletal protein Cofilin1 to depolymerize F-actin around the mycobacteria-containing phagosome. Owing to reduced F-actin levels, the movement of the phagosome toward the lysosomes is hindered, thus contributing to the retarded phagosome maturation process. Additionally, Cor1 mediated upregulation of Cofilin1 also contributes to the prevention of phagosomal acidification, which further aids in the retardation of phagosome maturation. Overall, our study provides first-hand information on Cor1 mediated retardation of phagosome maturation, which can be utilized in developing novel peptidomimetics as part of host-directed therapeutics against tuberculosis.
Collapse
Affiliation(s)
- Saradindu Saha
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Arnab Hazra
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Debika Ghatak
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Ajay Vir Singh
- Department of Microbiology and Molecular Biology, ICMR-National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Agra, India
| | - Sadhana Roy
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Somdeb BoseDasgupta
- Molecular Immunology and Cellular Microbiology Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, India
| |
Collapse
|
13
|
Lino CNR, Ghosh S. Epstein-Barr Virus in Inborn Immunodeficiency-More Than Infection. Cancers (Basel) 2021; 13:cancers13194752. [PMID: 34638238 PMCID: PMC8507541 DOI: 10.3390/cancers13194752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Epstein–Barr Virus (EBV) is a common virus that is readily controlled by a healthy immune system and rarely causes serious problems in infected people. However, patients with certain genetic defects of their immune system might have difficulties controlling EBV and often develop severe and life-threatening conditions, such as severe inflammation and malignancies. In this review, we provide a summary of inherited immune diseases that lead to a high susceptibility to EBV infection and discuss how this infection is associated with cancer development. Abstract Epstein–Barr Virus (EBV) is a ubiquitous virus affecting more than 90% of the world’s population. Upon infection, it establishes latency in B cells. It is a rather benign virus for immune-competent individuals, in whom infections usually go unnoticed. Nevertheless, EBV has been extensively associated with tumorigenesis. Patients suffering from certain inborn errors of immunity are at high risk of developing malignancies, while infection in the majority of immune-competent individuals does not seem to lead to immune dysregulation. Herein, we discuss how inborn mutations in TNFRSF9, CD27, CD70, CORO1A, CTPS1, ITK, MAGT1, RASGRP1, STK4, CARMIL2, SH2D1A, and XIAP affect the development, differentiation, and function of key factors involved in the immunity against EBV, leading to increased susceptibility to lymphoproliferative disease and lymphoma.
Collapse
Affiliation(s)
| | - Sujal Ghosh
- Correspondence: ; Tel.: +49-211-811-6224; Fax: +49-211-811-6191
| |
Collapse
|
14
|
Béziat V, Casanova JL, Jouanguy E. Human genetic and immunological dissection of papillomavirus-driven diseases: new insights into their pathogenesis. Curr Opin Virol 2021; 51:9-15. [PMID: 34555675 DOI: 10.1016/j.coviro.2021.09.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/26/2021] [Accepted: 09/03/2021] [Indexed: 12/23/2022]
Abstract
Human papillomaviruses (HPVs) are responsible for cutaneous and mucosal lesions. Persistent HPV infection remains a leading cause of uterine cancer in women, but also of cutaneous squamous cell carcinoma in patients with epidermodysplasia verruciformis (EV), and of rare and devastating benign tumors, such as 'tree-man' syndrome. HPV infections are usually asymptomatic or benign in the general population. Severe manifestations in otherwise healthy subjects can attest to inherited immunodeficiencies. The human genetic dissection of these cases has identified critical components of the immune response to HPVs, including the non-redundant roles of keratinocyte-intrinsic immunity in controlling β-HPVs, and of T cell-dependent adaptive immunity for controlling all HPV types. A key role of the CD28 T-cell costimulation pathway in controlling common warts due to HPVs was recently discovered. This review summarizes the state of the art in the human genetics of HPV infection, focusing on two key affected cell types: keratinocytes and T cells.
Collapse
Affiliation(s)
- Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA; Howard Hughes Medical Institute, New York, USA
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, Paris, France; University of Paris, Imagine Institute, Paris, France; St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA
| |
Collapse
|
15
|
Curcumin Treatment Identifies Therapeutic Targets within Biomarkers of Liver Colonization by Highly Invasive Mesothelioma Cells-Potential Links with Sarcomas. Cancers (Basel) 2020; 12:cancers12113384. [PMID: 33207594 PMCID: PMC7696465 DOI: 10.3390/cancers12113384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/09/2020] [Accepted: 11/12/2020] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Aggressive sarcomatoid tumors designed in inbred strains of immunocompetent rats represent useful tools for both the identification of biomarkers of invasiveness and evaluation of innovative therapies. Our aim was to investigate the molecular determinants of liver colonization and potential common biomarkers of sarcomas and sarcomatoid tumors, using the most invasive (M5-T1) of our four experimental models of peritoneal sarcomatoid malignant mesothelioma in the F344 rat. Using an advanced and robust technique of quantitative proteomics and a bank of paraffin-embedded tumor and tissue samples, we analyzed changes in the proteotype patterns of the liver from normal rats, adjacent non-tumorous liver from untreated tumor-bearing rats, and liver from tumor-bearing rats positively responding to repeated administrations of curcumin given intraperitoneally. The identification of proteome alterations accounting for the antitumor effects of curcumin and changes in the liver microenvironment, which favored the induction of an immune response, could be useful to the research community. Abstract Investigations of liver metastatic colonization suggest that the microenvironment is preordained to be intrinsically hospitable to the invasive cancer cells. To identify molecular determinants of that organotropism and potential therapeutic targets, we conducted proteomic analyses of the liver in an aggressive model of sarcomatoid peritoneal mesothelioma (M5-T1). The quantitative changes between SWATH-MS (sequential window acquisition of all theoretical fragmentation spectra) proteotype patterns of the liver from normal rats (G1), adjacent non-tumorous liver from untreated tumor-bearing rats (G2), and liver from curcumin-treated rats without hepatic metastases (G3) were compared. The results identified 12 biomarkers of raised immune response against M5-T1 cells in G3 and 179 liver biomarker changes in (G2 vs. G1) and (G3 vs. G2) but not in (G3 vs. G1). Cross-comparing these 179 candidates with proteins showing abundance changes related to increasing invasiveness in four different rat mesothelioma tumor models identified seven biomarkers specific to the M5-T1 tumor. Finally, analysis of correlations between these seven biomarkers, purine nucleoside phosphorylase being the main biomarker of immune response, and the 179 previously identified proteins revealed a network orchestrating liver colonization and treatment efficacy. These results highlight the links between potential targets, raising interesting prospects for optimizing therapies against highly invasive cancer cells exhibiting a sarcomatoid phenotype and sarcoma cells.
Collapse
|
16
|
Induction of Allograft Tolerance While Maintaining Immunity Against Microbial Pathogens: Does Coronin 1 Hold a Key? Transplantation 2020; 104:1350-1357. [PMID: 31895336 DOI: 10.1097/tp.0000000000003101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Selective suppression of graft rejection while maintaining anti-pathogen responses has been elusive. Thus far, the most successful strategies to induce suppression of graft rejection relies on inhibition of T-cell activation. However, the very same mechanisms that induce allograft-specific T-cell suppression are also important for immunity against microbial pathogens as well as oncogenically transformed cells, resulting in significant immunosuppression-associated comorbidities. Therefore, defining the pathways that differentially regulate anti-graft versus antimicrobial T-cell responses may allow the development of regimen to induce allograft-specific tolerance. Recent work has defined a molecular pathway driven by the immunoregulatory protein coronin 1 that regulates the phosphodiesterase/cyclic adenosine monophosphate pathway and modulates T cell responses. Interestingly, disruption of coronin 1 promotes allograft tolerance while immunity towards a range of pathogenic microbes is maintained. Here, we briefly review the work leading up to these findings as well as their possible implications for transplantation medicine.
Collapse
|
17
|
Chronic stepwise cerebral hypoperfusion differentially induces synaptic proteome changes in the frontal cortex, occipital cortex, and hippocampus in rats. Sci Rep 2020; 10:15999. [PMID: 32994510 PMCID: PMC7524772 DOI: 10.1038/s41598-020-72868-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/07/2020] [Indexed: 11/20/2022] Open
Abstract
During chronic cerebral hypoperfusion (CCH), the cerebral blood flow gradually decreases, leading to cognitive impairments and neurodegenerative disorders, such as vascular dementia. The reduced oxygenation, energy supply induced metabolic changes, and insufficient neuroplasticity could be reflected in the synaptic proteome. We performed stepwise bilateral common carotid occlusions on rats and studied the synaptic proteome changes of the hippocampus, occipital and frontal cortices. Samples were prepared and separated by 2-D DIGE and significantly altered protein spots were identified by HPLC–MS/MS. We revealed an outstanding amount of protein changes in the occipital cortex compared to the frontal cortex and the hippocampus with 94, 33, and 17 proteins, respectively. The high alterations in the occipital cortex are probably due to the hypoxia-induced retrograde degeneration of the primary visual cortex, which was demonstrated by electrophysiological experiments. Altered proteins have functions related to cytoskeletal organization and energy metabolism. As CCH could also be an important risk factor for Alzheimer’s disease (AD), we investigated whether our altered proteins overlap with AD protein databases. We revealed a significant amount of altered proteins associated with AD in the two neocortical areas, suggesting a prominent overlap with the AD pathomechanism.
Collapse
|
18
|
Khodzhaev K, Bay SB, Kebudi R, Altindirek D, Kaya A, Erbilgin Y, Ng OH, Kiykim A, Erol FC, Zengin FS, Firtina S, Ng YY, Aksoy BA, Sayitoglu M. Lymphoma Predisposing Gene in an Extended Family: CD70 Signaling Defect. J Clin Immunol 2020; 40:883-892. [PMID: 32620996 DOI: 10.1007/s10875-020-00816-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 06/26/2020] [Indexed: 12/31/2022]
Abstract
Genome-wide sequencing studies in pediatric cancer cohorts indicate that about 10% of patients have germline mutations within cancer predisposition genes. Within this group, primary immune deficiencies take the priority regarding the vulnerability of the patients to infectious agents and the difficulties of cancer management. On the other hand, early recognition of these diseases may offer specific targeted therapies and hematopoietic stem cell transplantation as an option. Besides therapeutic benefits, early diagnosis will provide genetic counseling for the family members. Within this context, an extended family with multiple consanguineous marriages and affected individuals, who presented with combined immune deficiency (CID) and/or Hodgkin lymphoma phenotype, were examined by exome sequencing. A pathogenic homozygous missense CD70 variation was detected (NM_001252.5:c332C>T) in concordance with CD70 phenotype and familial segregation was confirmed. CD70 variations in patients with CID and malignancy have very rarely been reported. This paper reports extended family with multiple affected members with CID and malignancy carrying a missense CD70 variation, and reviews the rare cases reported in the literature. Primary immune deficiencies appear to be a potential cause for pediatric cancers. Better focusing on these inborn disorders to prevent or make an early diagnosis of malignant transformation and reduce mortalities is important.
Collapse
Affiliation(s)
- Khusan Khodzhaev
- Aziz Sancar Institute of Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Sema Buyukkapu Bay
- Oncology Institute, Division of Pediatric Hematology-Oncology, Istanbul University, Istanbul, Turkey
| | - Rejin Kebudi
- Oncology Institute, Division of Pediatric Hematology-Oncology, Istanbul University, Istanbul, Turkey.
| | - Didem Altindirek
- Aziz Sancar Institute of Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
- Institute of Health Sciences, Istanbul University, Istanbul, Turkey
| | - Aysenur Kaya
- Faculty of Medicine, Department of Pediatric Allergy Immunology, Istinye University, Istanbul, Turkey
| | - Yucel Erbilgin
- Aziz Sancar Institute of Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
| | - Ozden Hatirnaz Ng
- Department of Medical Biology, Acıbadem Mehmet Ali Aydınlar University School of Medicine, Istanbul, Turkey
| | - Ayca Kiykim
- Faculty of Medicine, Division of Pediatric Allergy Immunology, Istanbul University Cerrahpasa, Istanbul, Turkey
| | - Funda Cipe Erol
- Faculty of Medicine, Department of Pediatric Allergy Immunology, Istinye University, Istanbul, Turkey
| | - Feride Sen Zengin
- Intensive Care Unit, Erzurum Education and Research Hospital, Erzurum, Turkey
| | - Sinem Firtina
- Faculty of Art and Science, Department of Molecular Biology and Genetics, Istinye University, Istanbul, Turkey
| | - Yuk Yin Ng
- Genetics and Bioengineering Department, Istanbul Bilgi University, Istanbul, Turkey
| | - Basak Adakli Aksoy
- Department of Pediatric Hematology Oncology, Altınbaş University, Istanbul, Turkey
| | - Muge Sayitoglu
- Aziz Sancar Institute of Experimental Medicine, Genetics Department, Istanbul University, Istanbul, Turkey
| |
Collapse
|
19
|
Setiabudi RJ, Mertaniasih NM, Amin M, Artama WT. Gene expression tryptophan aspartate coat protein in determining latent tuberculosis infection using immunocytochemistry and real time polimerase chain reaction. Infect Dis Rep 2020; 12:8733. [PMID: 32874463 PMCID: PMC7447932 DOI: 10.4081/idr.2020.8733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/01/2020] [Indexed: 11/24/2022] Open
Abstract
Background Tuberculosis (TB) remains a major cause of morbidity and mortality worldwide. Problem of Latent Tuberculosis Infection (LTBI) is increasing in number especially in countries with high TB incidence rate, such as Indonesia. Although not every LTBI will become active TB, if untreated and not handled appropriately it can still be a source of transmission and may increase the rate of resistance to the first-line TB drugs. Mycobacterium tuberculosis as a cause of tuberculosis disease is an intracellular pathogens that survives within the phagosome of host macrophages. Several host factors are involved in this process, including the Tryptophan Aspartate-containing Coat Protein (TACO). TACO is a protein recruited and retained by viable Mycobacterium tuberculosis on the surface of the phagosome membrane to maintain its survival in phagosome, because the presence of TACO plays an important role in inhibiting the fusion of phagosomes and lysosomes. Objective the aim of this studyis to assess the difference of gene expression TACO protein in Latent Tuberculosis Infection (LTBI) and healthy people. Method A preliminary studyof mRNA examination of TACO protein using Immunocytochemistry (ICC) and Real Time-Polimerase Chain Reaction (RT-PCR) method by a PCR Light Cycler 2.0 machine (Roche) in LTBI and healthy groups. Results 18 samples of peripheral blood monocyte cells (PBMCs) were collected and divided into 2 groups. We found that there was a significantly difference between the 2 groups of samples. Conclusion Further research is required to consider that the measurement of TACO expression using RT-PCRcan used as one of the other method to determine LTBI.
Collapse
Affiliation(s)
- Rebekah J Setiabudi
- Department of Medical Microbiology, TB Laboratory Institute of Tropical Disease
| | - Ni Made Mertaniasih
- Department of Medical Microbiology, TB Laboratory Institute of Tropical Disease
| | - Muhammad Amin
- Department of Medical Microbiology, TB Laboratory Institute of Tropical Disease
| | | |
Collapse
|
20
|
Nicolaou O, Sokratous K, Makowska Z, Morell M, De Groof A, Montigny P, Hadjisavvas A, Michailidou K, Oulas A, Spyrou GM, Demetriou C, Alarcón-Riquelme ME, Psarellis S, Kousios A, Lauwerys B, Kyriacou K. Proteomic analysis in lupus mice identifies Coronin-1A as a potential biomarker for lupus nephritis. Arthritis Res Ther 2020; 22:147. [PMID: 32552896 PMCID: PMC7301983 DOI: 10.1186/s13075-020-02236-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Approximately 50% of systemic lupus erythematosus (SLE) patients develop nephritis, which is among the most severe and frequent complications of the disease and a leading cause of morbidity and mortality. Despite intensive research, there are still no reliable lupus nephritis (LN) markers in clinical use that can assess renal damage and activity with a high sensitivity and specificity. To this end, the aim of this study was to identify new clinically relevant tissue-specific protein biomarkers and possible underlying molecular mechanisms associated with renal involvement in SLE, using mass spectrometry (MS)-based proteomics. METHODS Kidneys were harvested from female triple congenic B6.NZMsle1/sle2/sle3 lupus mice model, and the respective sex- and age-matched C57BL/6 control mice at 12, 24 and 36 weeks of age, representing pre-symptomatic, established and end-stage LN, respectively. Proteins were extracted from kidneys, purified, reduced, alkylated and digested by trypsin. Purified peptides were separated by liquid chromatography and analysed by high-resolution MS. Data were processed by the Progenesis QIp software, and functional annotation analysis was performed using DAVID bioinformatics resources. Immunofluorescence and multiple reaction monitoring (MRM) MS methods were used to confirm prospective biomarkers in SLE mouse strains as well as human serum samples. RESULTS Proteomic profiling of kidney tissues from SLE and control mice resulted in the identification of more than 3800 unique proteins. Pathway analysis revealed a number of dysregulated molecular pathways that may be mechanistically involved in renal pathology, including phagosome and proximal tubule bicarbonate reclamation pathways. Proteomic analysis supported by human transcriptomic data and pathway analysis revealed Coronin-1A, Ubiquitin-like protein ISG15, and Rho GDP-dissociation inhibitor 2, as potential LN biomarkers. These results were further validated in other SLE mouse strains using MRM-MS. Most importantly, experiments in humans showed that measurement of Coronin-1A in human sera using MRM-MS can segregate LN patients from SLE patients without nephritis with a high sensitivity (100%) and specificity (100%). CONCLUSIONS These preliminary findings suggest that serum Coronin-1A may serve as a promising non-invasive biomarker for LN and, upon validation in larger cohorts, may be employed in the future as a screening test for renal disease in SLE patients.
Collapse
Affiliation(s)
- Orthodoxia Nicolaou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Agios Dometios, 2371, P.O. Box 23462 / 1683, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Iroon Avenue 6, Agios Dometios, 2371, P.O. Box 23462 / 1683, Nicosia, Cyprus
| | - Kleitos Sokratous
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Agios Dometios, 2371, P.O. Box 23462 / 1683, Nicosia, Cyprus
- Bioinformatics Group, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
- Present Address: OMass Therapeutics, The Schrödinger Building, Heatley Road, The Oxford Science Park, Oxford, OX4 4GE, UK
| | | | - María Morell
- Genomic Medicine Department, Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
| | - Aurélie De Groof
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
| | - Pauline Montigny
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- CHU UCL Namur, Yvoir, Belgium
| | - Andreas Hadjisavvas
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Agios Dometios, 2371, P.O. Box 23462 / 1683, Nicosia, Cyprus
- Cyprus School of Molecular Medicine, Iroon Avenue 6, Agios Dometios, 2371, P.O. Box 23462 / 1683, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Cyprus School of Molecular Medicine, Iroon Avenue 6, Agios Dometios, 2371, P.O. Box 23462 / 1683, Nicosia, Cyprus
- Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Anastasis Oulas
- Cyprus School of Molecular Medicine, Iroon Avenue 6, Agios Dometios, 2371, P.O. Box 23462 / 1683, Nicosia, Cyprus
- Bioinformatics Group, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - George M Spyrou
- Cyprus School of Molecular Medicine, Iroon Avenue 6, Agios Dometios, 2371, P.O. Box 23462 / 1683, Nicosia, Cyprus
- Bioinformatics Group, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Christiana Demetriou
- Department of Primary Care and Population Health, University of Nicosia Medical School, Nicosia, Cyprus
| | - Marta E Alarcón-Riquelme
- Genomic Medicine Department, Centre for Genomics and Oncological Research (GENYO), Pfizer-University of Granada-Andalusian Regional Government, Granada, Spain
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Savvas Psarellis
- Department of Rheumatology, Nicosia General Hospital, Nicosia, Cyprus
| | - Andreas Kousios
- Renal and Transplant Centre Hammersmith Hospital Imperial College Healthcare NHS Trust, London, UK
| | - Bernard Lauwerys
- Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain, Brussels, Belgium
- Department of Rheumatology, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Iroon Avenue 6, Agios Dometios, 2371, P.O. Box 23462 / 1683, Nicosia, Cyprus.
- Cyprus School of Molecular Medicine, Iroon Avenue 6, Agios Dometios, 2371, P.O. Box 23462 / 1683, Nicosia, Cyprus.
| |
Collapse
|
21
|
Human genetic dissection of papillomavirus-driven diseases: new insight into their pathogenesis. Hum Genet 2020; 139:919-939. [PMID: 32435828 DOI: 10.1007/s00439-020-02183-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Human papillomaviruses (HPVs) infect mucosal or cutaneous stratified epithelia. There are 5 genera and more than 200 types of HPV, each with a specific tropism and virulence. HPV infections are typically asymptomatic or result in benign tumors, which may be disseminated or persistent in rare cases, but a few oncogenic HPVs can cause cancers. This review deals with the human genetic and immunological basis of interindividual clinical variability in the course of HPV infections of the skin and mucosae. Typical epidermodysplasia verruciformis (EV) is characterized by β-HPV-driven flat wart-like and pityriasis-like cutaneous lesions and non-melanoma skin cancers in patients with inborn errors of EVER1-EVER2-CIB1-dependent skin-intrinsic immunity. Atypical EV is associated with other infectious diseases in patients with inborn errors of T cells. Severe cutaneous or anogenital warts, including anogenital cancers, are also driven by certain α-, γ-, μ or ν-HPVs in patients with inborn errors of T lymphocytes and antigen-presenting cells. The genetic basis of HPV diseases at other mucosal sites, such as oral multifocal epithelial hyperplasia or juvenile recurrent respiratory papillomatosis (JRRP), remains poorly understood. The human genetic dissection of HPV-driven lesions will clarify the molecular and cellular basis of protective immunity to HPVs, and should lead to novel diagnostic, preventive, and curative approaches in patients.
Collapse
|
22
|
Fiedler T, Fabrice TN, Studer V, Vinet A, Faltova L, Kammerer RA, Steinmetz MO, Sharpe T, Pieters J. Homodimerization of coronin A through the C-terminal coiled-coil domain is essential for multicellular differentiation of Dictyostelium discoideum. FEBS Lett 2020; 594:2116-2127. [PMID: 32298460 DOI: 10.1002/1873-3468.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 11/09/2022]
Abstract
Coronin proteins are widely expressed among eukaryotic organisms. Most coronins consist of a WD-repeat domain followed by a C-terminal coiled coil. Dictyostelium discoideum expresses a single short coronin coronin A, which has been implicated in both actin modulation and multicellular differentiation. Whether coronin A's coiled coil is important for functionality, as well as the oligomeric state of coronin A is not known. Here, we show that the coiled-coil domain in Dictyostelium coronin A functions in homodimerization, is dispensable for coronin A stability and localization but essential for multicellular differentiation. These results allow a better understanding of the role for the coiled-coil domain of coronin A in oligomerization and demonstrate that its presence is essential for multicellular differentiation.
Collapse
Affiliation(s)
| | | | - Vera Studer
- Biozentrum, University of Basel, Switzerland
| | | | - Lenka Faltova
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Richard A Kammerer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | - Michel O Steinmetz
- Biozentrum, University of Basel, Switzerland
- Laboratory of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institut, Villigen, Switzerland
| | | | | |
Collapse
|
23
|
Santos-Cortez RLP, Bhutta MF, Earl JP, Hafrén L, Jennings M, Mell JC, Pichichero ME, Ryan AF, Tateossian H, Ehrlich GD. Panel 3: Genomics, precision medicine and targeted therapies. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109835. [PMID: 32007292 PMCID: PMC7155947 DOI: 10.1016/j.ijporl.2019.109835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To review the most recent advances in human and bacterial genomics as applied to pathogenesis and clinical management of otitis media. DATA SOURCES PubMed articles published since the last meeting in June 2015 up to June 2019. REVIEW METHODS A panel of experts in human and bacterial genomics of otitis media was formed. Each panel member reviewed the literature in their respective fields and wrote draft reviews. The reviews were shared with all panel members, and a merged draft was created. The panel met at the 20th International Symposium on Recent Advances in Otitis Media in June 2019, discussed the review and refined the content. A final draft was made, circulated, and approved by the panel members. CONCLUSION Trans-disciplinary approaches applying pan-omic technologies to identify human susceptibility to otitis media and to understand microbial population dynamics, patho-adaptation and virulence mechanisms are crucial to the development of novel, personalized therapeutics and prevention strategies for otitis media. IMPLICATIONS FOR PRACTICE In the future otitis media prevention strategies may be augmented by mucosal immunization, combination vaccines targeting multiple pathogens, and modulation of the middle ear microbiome. Both treatment and vaccination may be tailored to an individual's otitis media phenotype as defined by molecular profiles obtained by using rapidly developing techniques in microbial and host genomics.
Collapse
Affiliation(s)
- Regie Lyn P. Santos-Cortez
- Department of Otolaryngology, School of Medicine, University of Colorado Anschutz Medical Campus, 12700 E. 19 Ave., Aurora, CO 80045, USA
| | - Mahmood F. Bhutta
- Department of ENT, Royal Sussex County Hospital, Eastern Road, Brighton BN2 5BE, UK
| | - Joshua P. Earl
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Tukholmankatu 8A, 00290 Helsinki, Finland
| | - Michael Jennings
- Institute for Glycomics, Gold Coast campus, Griffith University, QLD 4222, Australia
| | - Joshua C. Mell
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| | - Michael E. Pichichero
- Center for Infectious Diseases and Immunology, Rochester General Hospital Research Institute, 1425 Portland Ave., Rochester, NY 14621, USA
| | - Allen F. Ryan
- Department of Surgery/Otolaryngology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Hilda Tateossian
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell, Oxford, Didcot OX11 0RD, UK
| | - Garth D. Ehrlich
- Center for Genomic Sciences, Institute for Molecular Medicine and Infectious Disease; Department of Microbiology and Immunology; Drexel University College of Medicine, 245 N. 15 St., Philadelphia, PA 19102, USA
| |
Collapse
|
24
|
Saeed MB, Record J, Westerberg LS. Two sides of the coin: Cytoskeletal regulation of immune synapses in cancer and primary immune deficiencies. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 356:1-97. [DOI: 10.1016/bs.ircmb.2020.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Janssen E, Geha RS. Primary immunodeficiencies caused by mutations in actin regulatory proteins. Immunol Rev 2019; 287:121-134. [PMID: 30565251 DOI: 10.1111/imr.12716] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 08/31/2018] [Indexed: 12/31/2022]
Abstract
The identification of patients with monogenic gene defects have illuminated the function of different proteins in the immune system, including proteins that regulate the actin cytoskeleton. Many of these actin regulatory proteins are exclusively expressed in leukocytes and regulate the formation and branching of actin filaments. Their absence or abnormal function leads to defects in immune cell shape, cellular projections, migration, and signaling. Through the study of patients' mutations and generation of mouse models that recapitulate the patients' phenotypes, our laboratory and others have gained a better understanding of the role these proteins play in cell biology and the underlying pathogenesis of immunodeficiencies and immune dysregulatory syndromes.
Collapse
Affiliation(s)
- Erin Janssen
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Raif S Geha
- Division of Immunology, Department of Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Nadareishvili Z, Kelley D, Luby M, Simpkins AN, Leigh R, Lynch JK, Hsia AW, Benson RT, Johnson KR, Hallenbeck JM, Latour LL. Molecular signature of penumbra in acute ischemic stroke: a pilot transcriptomics study. Ann Clin Transl Neurol 2019; 6:817-820. [PMID: 31020007 PMCID: PMC6469246 DOI: 10.1002/acn3.757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 02/19/2019] [Accepted: 02/20/2019] [Indexed: 12/29/2022] Open
Abstract
We aimed to characterize peripheral blood gene expression profile of penumbra defined as MRI perfusion–diffusion mismatch (PD MM) in peripheral blood of patients with acute ischemic stroke. We studied 23 patients. Perfusion–diffusion mismatch volume was observed to be associated and significantly correlated with the expression of 34 genes including those related to inflammation, SUMOylation, and coagulation; while lipopolysaccharide inhibition was identified to be a candidate upstream regulator of these processes (z‐score −2.38, P = 0.04). Penumbral volume is correlated with a specific gene expression profile in the peripheral blood characterized by overlap of inflammatory and neuroprotective pathways that are regulated by lipopolysaccharide inhibition.
Collapse
Affiliation(s)
- Zurab Nadareishvili
- Section on Stroke Diagnostics and Therapeutics NINDS NIH Bethesda Maryland.,Department of Neurology George Washington University Washington District of Columbia
| | - Devon Kelley
- Section on Stroke Diagnostics and Therapeutics NINDS NIH Bethesda Maryland
| | - Marie Luby
- Section on Stroke Diagnostics and Therapeutics NINDS NIH Bethesda Maryland
| | - Alexis N Simpkins
- Section on Stroke Diagnostics and Therapeutics NINDS NIH Bethesda Maryland
| | - Richard Leigh
- Section on Stroke Diagnostics and Therapeutics NINDS NIH Bethesda Maryland
| | - John K Lynch
- Section on Stroke Diagnostics and Therapeutics NINDS NIH Bethesda Maryland
| | - Amie W Hsia
- Section on Stroke Diagnostics and Therapeutics NINDS NIH Bethesda Maryland.,Medstar Washington Hospital Center Stroke Center Washington District of Columbia
| | - Richard T Benson
- Section on Stroke Diagnostics and Therapeutics NINDS NIH Bethesda Maryland.,Medstar Washington Hospital Center Stroke Center Washington District of Columbia
| | - Kory R Johnson
- Bioinformatics Section Information Technology Program Division of Intramural Research NINDS NIH Bethesda Maryland
| | - John M Hallenbeck
- Section on Stroke Diagnostics and Therapeutics NINDS NIH Bethesda Maryland
| | - Lawrence L Latour
- Section on Stroke Diagnostics and Therapeutics NINDS NIH Bethesda Maryland
| |
Collapse
|
27
|
Tangye SG, Bucciol G, Casas‐Martin J, Pillay B, Ma CS, Moens L, Meyts I. Human inborn errors of the actin cytoskeleton affecting immunity: way beyond WAS and WIP. Immunol Cell Biol 2019; 97:389-402. [DOI: 10.1111/imcb.12243] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 02/09/2019] [Indexed: 01/02/2023]
Affiliation(s)
- Stuart G Tangye
- Immunology Division Garvan Institute of Medical Research Sydney NSW Australia
- Faculty of Medicine St Vincent's Clinical School UNSW Sydney Sydney NSW Australia
| | - Giorgia Bucciol
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
- Department of Pediatrics University Hospitals Leuven Leuven Belgium
| | - Jose Casas‐Martin
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
| | - Bethany Pillay
- Immunology Division Garvan Institute of Medical Research Sydney NSW Australia
- Faculty of Medicine St Vincent's Clinical School UNSW Sydney Sydney NSW Australia
| | - Cindy S Ma
- Immunology Division Garvan Institute of Medical Research Sydney NSW Australia
- Faculty of Medicine St Vincent's Clinical School UNSW Sydney Sydney NSW Australia
| | - Leen Moens
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity Department of Microbiology and Immunology KU Leuven Leuven Belgium
- Department of Pediatrics University Hospitals Leuven Leuven Belgium
| |
Collapse
|
28
|
Moens L, Gouwy M, Bosch B, Pastukhov O, Nieto-Patlàn A, Siler U, Bucciol G, Mekahli D, Vermeulen F, Desmet L, Maebe S, Flipts H, Corveleyn A, Moshous D, Philippet P, Tangye SG, Boisson B, Casanova JL, Florkin B, Struyf S, Reichenbach J, Bustamante J, Notarangelo LD, Meyts I. Human DOCK2 Deficiency: Report of a Novel Mutation and Evidence for Neutrophil Dysfunction. J Clin Immunol 2019; 39:298-308. [PMID: 30838481 PMCID: PMC6647034 DOI: 10.1007/s10875-019-00603-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/18/2019] [Indexed: 01/19/2023]
Abstract
DOCK2 is a guanine-nucleotide-exchange factor for Rac proteins. Activated Rac serves various cellular functions including the reorganization of the actin cytoskeleton in lymphocytes and neutrophils and production of reactive oxygen species in neutrophils. Since 2015, six unrelated patients with combined immunodeficiency and early-onset severe viral infections caused by bi-allelic loss-of-function mutations in DOCK2 have been described. Until now, the function of phagocytes, specifically neutrophils, has not been assessed in human DOCK2 deficiency. Here, we describe a new kindred with four affected siblings harboring a homozygous splice-site mutation (c.2704-2 A > C) in DOCK2. The mutation results in alternative splicing and a complete loss of DOCK2 protein expression. The patients presented with leaky severe combined immunodeficiency or Omenn syndrome. The novel mutation affects EBV-B cell migration and results in NK cell dysfunction similar to previous observations. Moreover, both cytoskeletal rearrangement and reactive oxygen species production are partially impaired in DOCK2-deficient neutrophils.
Collapse
Affiliation(s)
- Leen Moens
- Laboratory for Inborn Errors of Immunity, Department of Immunology and Microbiology, KU Leuven, Leuven, EU, Belgium
| | - Mieke Gouwy
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, EU, Belgium
| | - Barbara Bosch
- Department of Pediatrics, University Hospitals Leuven, Leuven, EU, Belgium.,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA
| | - Oleksandr Pastukhov
- Institute for Regenerative Medicine associated group, University of Zürich, Zürich, Switzerland
| | - Alejandro Nieto-Patlàn
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Imagine Institute, Paris, EU, France.,Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, México, Mexico
| | - Ulrich Siler
- Institute for Regenerative Medicine associated group, University of Zürich, Zürich, Switzerland
| | - Giorgia Bucciol
- Laboratory for Inborn Errors of Immunity, Department of Immunology and Microbiology, KU Leuven, Leuven, EU, Belgium.,Department of Pediatrics, University Hospitals Leuven, Leuven, EU, Belgium
| | - Djalila Mekahli
- Laboratory of Organ Systems, Department of Development and Regeneration, KU Leuven, Leuven, EU, Belgium.,Department of Pediatric Nephrology, University Hospitals Leuven, Leuven, EU, Belgium
| | - François Vermeulen
- Department of Pediatrics, University Hospitals Leuven, Leuven, EU, Belgium
| | - Lars Desmet
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, University Hospitals Leuven, KU Leuven, Leuven, EU, Belgium
| | - Sophie Maebe
- Clinical Division and Laboratory of Intensive Care Medicine, Department of Cellular and Molecular Medicine, University Hospitals Leuven, KU Leuven, Leuven, EU, Belgium
| | - Helena Flipts
- Center for Human Genetics, University Hospitals Leuven, Leuven, EU, Belgium
| | - Anniek Corveleyn
- Center for Human Genetics, University Hospitals Leuven, Leuven, EU, Belgium
| | - Despina Moshous
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.,INSERM UMR1163, University Paris Descartes Sorbonne Paris Cité, Institut Imagine, Paris, EU, France
| | - Pierre Philippet
- Division of Pediatric Hematology Oncology, Centre Hospitalier Chrétien, Montegnée, Liege, EU, Belgium
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, 2010, Australia.,St. Vincent's Clinical School, Faculty of Medicine, University of NSW Sydney, Darlinghurst, New South Wales, 2010, Australia
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Imagine Institute, Paris, EU, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Imagine Institute, Paris, EU, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, EU, France.,Howard Hughes Medical Institute, New York, NY, USA
| | - Benoit Florkin
- Immuno-Hémato-Rhumatologie Pédiatrique, Service de Pédiatrie, CHR Citadelle, Liège, EU, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute for Medical Research, University of Leuven, Leuven, EU, Belgium
| | - Janine Reichenbach
- Institute for Regenerative Medicine associated group, University of Zürich, Zürich, Switzerland.,Centre for Applied Biotechnology and Molecular Medicine, University of Zürich, Zürich, Switzerland.,Zurich Centre for Integrative Human Physiology, Zürich, Switzerland
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, EU, France.,Paris Descartes University, Imagine Institute, Paris, EU, France.,Study Centre for Immunodeficiency, Necker Hospital for Sick Children, Paris, EU, France
| | - Luigi D Notarangelo
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Isabelle Meyts
- Laboratory for Inborn Errors of Immunity, Department of Immunology and Microbiology, KU Leuven, Leuven, EU, Belgium. .,Department of Pediatrics, University Hospitals Leuven, Leuven, EU, Belgium.
| |
Collapse
|
29
|
Jayachandran R, Gumienny A, Bolinger B, Ruehl S, Lang MJ, Fucile G, Mazumder S, Tchang V, Woischnig AK, Stiess M, Kunz G, Claudi B, Schmaler M, Siegmund K, Li J, Dertschnig S, Holländer G, Medina E, Karrer U, Moshous D, Bumann D, Khanna N, Rossi SW, Pieters J. Disruption of Coronin 1 Signaling in T Cells Promotes Allograft Tolerance while Maintaining Anti-Pathogen Immunity. Immunity 2019; 50:152-165.e8. [PMID: 30611611 DOI: 10.1016/j.immuni.2018.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/18/2018] [Accepted: 12/10/2018] [Indexed: 11/18/2022]
Abstract
The ability of the immune system to discriminate self from non-self is essential for eradicating microbial pathogens but is also responsible for allograft rejection. Whether it is possible to selectively suppress alloresponses while maintaining anti-pathogen immunity remains unknown. We found that mice deficient in coronin 1, a regulator of naive T cell homeostasis, fully retained allografts while maintaining T cell-specific responses against microbial pathogens. Mechanistically, coronin 1-deficiency increased cyclic adenosine monophosphate (cAMP) concentrations to suppress allo-specific T cell responses. Costimulation induced on microbe-infected antigen presenting cells was able to overcome cAMP-mediated immunosuppression to maintain anti-pathogen immunity. In vivo pharmacological modulation of this pathway or a prior transfer of coronin 1-deficient T cells actively suppressed allograft rejection. These results define a coronin 1-dependent regulatory axis in T cells important for allograft rejection and suggest that modulation of this pathway may be a promising approach to achieve long-term acceptance of mismatched allografts.
Collapse
Affiliation(s)
| | | | | | | | | | - Geoffrey Fucile
- Swiss Institute of Bioinformatics, sciCORE Computing Center, University of Basel, Basel, Switzerland
| | | | | | - Anne-Kathrin Woischnig
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | | | | | | | - Mathias Schmaler
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | | | | | - Simone Dertschnig
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - George Holländer
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland; Department of Paediatrics, University of Oxford, Oxford, UK
| | - Eva Medina
- Helmholtz Center for Infection Research, Braunschweig, Germany
| | - Urs Karrer
- Division of Infectious Diseases and Department of Medicine, Cantonal Hospital of Winterthur, Winterthur, Switzerland
| | - Despina Moshous
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine, Paris, France and APHP Hôpital Universitaire Necker-Enfants Malades, Unité d'Immunologie-Hématologie et Rhumatologie Pédiatrique, Paris, France
| | - Dirk Bumann
- Biozentrum, University of Basel, Basel, Switzerland
| | - Nina Khanna
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland; Division of Infectious Diseases, University and University Hospital of Basel, Switzerland
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital of Basel, Basel, Switzerland
| | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
30
|
Induction of Human T-cell and Cytokine Responses Following Vaccination with a Novel Influenza Vaccine. Sci Rep 2018; 8:18007. [PMID: 30573748 PMCID: PMC6301966 DOI: 10.1038/s41598-018-36703-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/22/2018] [Indexed: 11/09/2022] Open
Abstract
Cell mediated immunity plays a vital role in defense against influenza infection in humans. Less is known about the role of vaccine-induced cell mediated immunity and the cytokine responses elicited. We measured CD4+ and CD8+ T-cell reactivity in human subjects following vaccination with licensed trivalent influenza vaccine and a novel virus-like particle based vaccine. We detected influenza-specific CD4+ T-cell responses following vaccination with the licensed trivalent influenza vaccine and found that these correlated with antibody measurements. Administration of the novel virus-like particle based vaccine elicited influenza-specific CD4+ and CD8+ T-cell responses and the induction of the cytokines IFN-γ, IL-17A, IL17F, IL-5, IL-13, IL-9, IL-10 and IL-21. Pre-existing cytokine responses influenced the profile of the cytokine response elicited by vaccination. In a subset of individuals the VLP vaccine changed pre-vaccination production of type 2 cytokines such as IL-5 and IL-13 to a post-vaccination type 1 cytokine signature characterized by IFN-γ. A transcriptional signature to vaccination was found to correlate with antibody titer, IFN-γ production by T-cells and expression of a putative RNA helicase, DDX17, on the surface of immune cells.
Collapse
|
31
|
Hematological Malignancies Associated With Primary Immunodeficiency Disorders. Clin Immunol 2018; 194:46-59. [DOI: 10.1016/j.clim.2018.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/18/2022]
|
32
|
Latour S, Winter S. Inherited Immunodeficiencies With High Predisposition to Epstein-Barr Virus-Driven Lymphoproliferative Diseases. Front Immunol 2018; 9:1103. [PMID: 29942301 PMCID: PMC6004768 DOI: 10.3389/fimmu.2018.01103] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/02/2018] [Indexed: 01/16/2023] Open
Abstract
Epstein–Barr Virus (EBV) is a gamma-herpes virus that infects 90% of humans without any symptoms in most cases, but has an oncogenic potential, especially in immunocompromised individuals. In the past 30 years, several primary immunodeficiencies (PIDs) associated with a high risk to develop EBV-associated lymphoproliferative disorders (LPDs), essentially consisting of virus-associated hemophagocytic syndrome, non-malignant and malignant B-cell LPDs including non-Hodgkin and Hodgkin’s types of B lymphomas have been characterized. Among them are SH2D1A (SAP), XIAP, ITK, MAGT1, CD27, CD70, CTPS1, RASGRP1, and CORO1A deficiencies. Penetrance of EBV infection ranges from 50 to 100% in those PIDs. Description of large cohorts and case reports has refined the specific phenotypes associated with these PIDs helping to the diagnosis. Specific pathways required for protective immunity to EBV have emerged from studies of these PIDs. SLAM-associated protein-dependent SLAM receptors and MAGT1-dependent NKG2D pathways are important for T and NK-cell cytotoxicity toward EBV-infected B-cells, while CD27–CD70 interactions are critical to drive the expansion of EBV-specific T-cells. CTPS1 and RASGRP1 deficiencies further strengthen that T-lymphocyte expansion is a key step in the immune response to EBV. These pathways appear to be also important for the anti-tumoral immune surveillance of abnormal B cells. Monogenic PIDs should be thus considered in case of any EBV-associated LPDs.
Collapse
Affiliation(s)
- Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Equipe de Recherche Labéllisée, Ligue National contre le Cancer, Paris, France
| | - Sarah Winter
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France.,Imagine Institute, Paris Descartes University, Sorbonne Paris Cité, Paris, France.,Equipe de Recherche Labéllisée, Ligue National contre le Cancer, Paris, France
| |
Collapse
|
33
|
Mori M, Mode R, Pieters J. From Phagocytes to Immune Defense: Roles for Coronin Proteins in Dictyostelium and Mammalian Immunity. Front Cell Infect Microbiol 2018; 8:77. [PMID: 29623258 PMCID: PMC5874285 DOI: 10.3389/fcimb.2018.00077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022] Open
Abstract
Microbes have interacted with eukaryotic cells for as long as they have been co-existing. While many of these interactions are beneficial for both the microbe as well as the eukaryotic cell, several microbes have evolved into pathogenic species. For some of these pathogens, host cell invasion results in irreparable damage and thus host cell destruction, whereas others use the host to avoid immune detection and elimination. One of the latter pathogens is Mycobacterium tuberculosis, arguably one of the most notorious pathogens on earth. In mammalian macrophages, M. tuberculosis manages to survive within infected macrophages by avoiding intracellular degradation in lysosomes using a number of different strategies. One of these is based on the recruitment and phagosomal retention of the host protein coronin 1, that is a member of the coronin protein family and a mammalian homolog of coronin A, a protein identified in Dictyostelium. Besides mediating mycobacterial survival in macrophages, coronin 1 is also an important regulator of naïve T cell homeostasis. How, exactly, coronin 1 mediates its activity in immune cells remains unclear. While in lower eukaryotes coronins are involved in cytoskeletal regulation, the functions of the seven coronin members in mammals are less clear. Dictyostelium coronins may have maintained multiple functions, whereas the mammalian coronins may have evolved from regulators of the cytoskeleton to modulators of signal transduction. In this minireview, we will discuss the different studies that have contributed to understand the molecular and cellular functions of coronin proteins in mammals and Dictyostelium.
Collapse
Affiliation(s)
- Mayumi Mori
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Jean Pieters
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
34
|
Cruz-Muñoz ME, Fuentes-Pananá EM. Beta and Gamma Human Herpesviruses: Agonistic and Antagonistic Interactions with the Host Immune System. Front Microbiol 2018; 8:2521. [PMID: 29354096 PMCID: PMC5760548 DOI: 10.3389/fmicb.2017.02521] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 12/04/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses are the most abundant and diverse biological entities in the planet. Historically, our main interest in viruses has focused on their pathogenic role, recognized by pandemics that have decimated the world population. However, viral infections have also played a major role in the evolution of cellular organisms, both through interchanging of genes with novel functions and shaping the immune system. Examples abound of infections that seriously compromise the host integrity, but evidence of plant and insect viruses mutualistic relationships have recently surfaced in which infected hosts are better suited for survival, arguing that virus-host interactions are initially parasitic but become mutualistic over years of co-evolution. A similar mutual help scenario has emerged with commensal gut bacteria. EBV is a herpesvirus that shares more than a hundred million years of co-evolution with humans, today successfully infecting close to 100% of the adult world population. Infection is usually acquired early in childhood persisting for the host lifetime mostly without apparent clinical symptoms. Disturbance of this homeostasis is rare and results in several diseases, of which the best understood are infectious mononucleosis and several EBV-associated cancers. Less understood are recently found inborn errors of the immune system that result in primary immunodeficiencies with an increased predisposition almost exclusive to EBV-associated diseases. Puzzling to these scenarios of broken homeostasis is the co-existence of immunosuppression, inflammation, autoimmunity and cancer. Homologous to EBV, HCMV, HHV-6 and HHV-7 are herpesviruses that also latently infect most individuals. Several lines of evidence support a mutualistic equilibrium between HCMV/EBV and hosts, that when altered trigger diseases in which the immune system plays a critical role. Interestingly, these beta and gamma herpesviruses persistently infect all immune lineages and early precursor cells. In this review, we will discuss the evidence of the benefits that infection of immune cells with these herpesviruses brings to the host. Also, the circumstances in which this positive relationship is broken, predisposing the host to diseases characterized by an abnormal function of the host immune system.
Collapse
Affiliation(s)
- Mario E Cruz-Muñoz
- Laboratorio de Inmunología Molecular, Facultad de Medicina, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Ezequiel M Fuentes-Pananá
- Unidad de Investigación en Virología y Cáncer, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| |
Collapse
|
35
|
Abstract
PURPOSE OF REVIEW Primary immunodeficiencies (PIDs) are inherited conditions where components of the immune system are missing or dysfunctional. Over 300 genes have been causally linked to monogenic forms of PID, including a number that regulate the actin cytoskeleton. The majority of cytoskeletal defects disrupt assembly and disassembly of filamentous actin in multiple immune cell lineages impacting functions such as cell migration and adhesion, pathogen uptake, intercellular communication, intracellular signalling, and cell division. RECENT FINDINGS In the past 24 months, new actin defects have been identified through next generation sequencing technologies. Substantial progress has also been made in understanding the pathogenic mechanisms that contribute to immunological dysfunction, and also how the cytoskeleton participates in normal physiological immune processes. SUMMARY This review summarises recent advances in the field, raising awareness of these conditions and our current understanding of their presentation. Description of further cases and new conditions will extend the clinical phenotype of actin-related disorders, and will promote the development of more effective and targeted therapies.
Collapse
|
36
|
Tang J, Yu Y, Zheng H, Yin L, Sun M, Wang W, Cui J, Liu W, Xie X, Chen F. ITRAQ-based quantitative proteomic analysis of Cynops orientalis limb regeneration. BMC Genomics 2017; 18:750. [PMID: 28938871 PMCID: PMC5610437 DOI: 10.1186/s12864-017-4125-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
Background Salamanders regenerate their limbs after amputation. However, the molecular mechanism of this unique regeneration remains unclear. In this study, isobaric tags for relative and absolute quantification (iTRAQ) coupled with liquid chromatography tandem mass spectrometry (LC-MS/MS) was employed to quantitatively identify differentially expressed proteins in regenerating limbs 3, 7, 14, 30 and 42 days post amputation (dpa). Results Of 2636 proteins detected in total, 253 proteins were differentially expressed during different regeneration stages. Among these proteins, Asporin, Cadherin-13, Keratin, Collagen alpha-1(XI) and Titin were down-regulated. CAPG, Coronin-1A, AnnexinA1, Cathepsin B were up-regulated compared with the control. The identified proteins were further analyzed to obtain information about their expression patterns and functions in limb regeneration. Functional analysis indicated that the differentially expressed proteins were associated with wound healing, immune response, cellular process, metabolism and binding. Conclusions This work indicated that significant proteome alternations occurred during salamander limb regeneration. The results may provide fundamental knowledge to understand the mechanism of limb regeneration. Electronic supplementary material The online version of this article (10.1186/s12864-017-4125-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jie Tang
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.,Shaanxi Institute of Zoology, 88 Xingqing Road, Xi'an, Shaanxi Province, 710032, People's Republic of China
| | - Yuan Yu
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Hanxue Zheng
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Lu Yin
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Mei Sun
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Wenjun Wang
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Jihong Cui
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Wenguang Liu
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China
| | - Xin Xie
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China. .,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| | - Fulin Chen
- Lab of Tissue Engineering, Faculty of Life Science, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China. .,Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China. .,Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Ministry of Education, Northwest University, 229 Taibai North Road, Xi'an, Shaanxi Province, 710069, People's Republic of China.
| |
Collapse
|
37
|
Shabani M, Nichols KE, Rezaei N. Primary immunodeficiencies associated with EBV-Induced lymphoproliferative disorders. Crit Rev Oncol Hematol 2016; 108:109-127. [PMID: 27931829 DOI: 10.1016/j.critrevonc.2016.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 09/10/2016] [Accepted: 10/27/2016] [Indexed: 12/27/2022] Open
Abstract
Primary immunodeficiency diseases (PIDs) are a subgroup of inherited immunological disorders that increase susceptibility to viral infections. Among the range of viral pathogens involved, EBV remains a major threat because of its high prevalence of infection among the adult population and its tendency to progress to life-threatening lymphoproliferative disorders (LPDs) and/or malignancy. The high mortality in immunodeficient patients with EBV-driven LPDs, despite institution of diverse and often intensive treatments, prompts the need to better study these PIDs to identify and understand the affected molecular pathways that increase susceptibility to EBV infection and progression. In this article, we have provided a detailed literature review of the reported cases of EBV-driven LPDs in patients with PID. We discuss the PIDs associated with development of EBV-LPDs. Then, we review the nature and the therapeutic outcome of common EBV- driven LPDs in the PID patients and review the mechanisms common to the major PIDs. Deep study of these common pathways and gaining a better insight into the disease nature and outcomes, may lead to earlier diagnosis of the disease, choosing the best treatment modalities available and development of novel therapeutic strategies to decrease morbidity and mortality brought about by EBV infection.
Collapse
Affiliation(s)
- Mahsima Shabani
- Research Center for Immunodeficiencies, Children's Medical School, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; International Hematology/Oncology Of Pediatrics Experts (IHOPE), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical School, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Boston, MA, USA.
| |
Collapse
|
38
|
Worth AJJ, Houldcroft CJ, Booth C. Severe Epstein-Barr virus infection in primary immunodeficiency and the normal host. Br J Haematol 2016; 175:559-576. [PMID: 27748521 DOI: 10.1111/bjh.14339] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Epstein-Barr virus (EBV) infection is ubiquitous in humans, but the majority of infections have an asymptomatic or self-limiting clinical course. Rarely, individuals may develop a pathological EBV infection with a variety of life threatening complications (including haemophagocytosis and malignancy) and others develop asymptomatic chronic EBV viraemia. Although an impaired ability to control EBV infection has long been recognised as a hallmark of severe T-cell immunodeficiency, the advent of next generation sequencing has identified a series of Primary Immunodeficiencies in which EBV-related pathology is the dominant feature. Chronic active EBV infection is defined as chronic EBV viraemia associated with systemic lymphoproliferative disease, in the absence of immunodeficiency. Descriptions of larger cohorts of patients with chronic active EBV in recent years have significantly advanced our understanding of this clinical syndrome. In this review we summarise the current understanding of the pathophysiology and natural history of these diseases and clinical syndromes, and discuss approaches to the investigation and treatment of severe or atypical EBV infection.
Collapse
Affiliation(s)
- Austen J J Worth
- Department of Immunology, Great Ormond Street Hospital, London, UK.,Molecular and Cellular Immunology Section, UCL Institute of Child Health, London, UK
| | - Charlotte J Houldcroft
- Infection, Inflammation and Rheumatology Section, UCL Institute of Child Health, London, UK
| | - Claire Booth
- Department of Immunology, Great Ormond Street Hospital, London, UK.,Molecular and Cellular Immunology Section, UCL Institute of Child Health, London, UK
| |
Collapse
|
39
|
Siegmund K, Klepsch V, Hermann-Kleiter N, Baier G. Proof of Principle for a T Lymphocyte Intrinsic Function of Coronin 1A. J Biol Chem 2016; 291:22086-22092. [PMID: 27566541 PMCID: PMC5063991 DOI: 10.1074/jbc.m116.748012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/19/2016] [Indexed: 11/06/2022] Open
Abstract
Coronins are evolutionarily conserved proteins that were originally identified as modulators of actin-dependent processes. Studies analyzing complete Coronin 1a knock-out mice have shown that this molecule is an important regulator of naive T cell homeostasis and it has been linked to immune deficiencies as well as autoimmune disorders. Nevertheless, because Coronin 1A is strongly expressed in all leukocyte subsets, it is not conclusive whether or not this phenotype is attributed to a T cell-intrinsic function of Coronin 1A. To address this research question, we have generated a T cell-specific Coronin 1a knock-out mouse (Coro1afl/fl × Cd4[Cre]). Deletion of Coronin 1A specifically in T cells led to a strong reduction in T cell number and a shift toward the effector/memory phenotype in peripheral lymphoid organs when compared with Cd4[Cre] mice expressing wild-type Coronin 1A. In contrast to peripheral lymphoid tissue, thymocyte number and subsets were not affected by the deletion of Coronin 1a Furthermore, T cell-specific Coronin 1a knock-out mice were largely resistant to the induction of autoimmunity when tested in the myelin oligoglycoprotein-induced EAE mouse model of multiple sclerosis. Thus, the phenotype of T cell-specific Coronin 1a deletion resembles the phenotype observed with conventional (whole body) Coronin 1a knock-out mice. In summary, our findings provide formal proof of the predominant T cell-intrinsic role of Coronin 1A.
Collapse
Affiliation(s)
- Kerstin Siegmund
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| | - Victoria Klepsch
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| | - Natascha Hermann-Kleiter
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| | - Gottfried Baier
- From the Department for Pharmacology and Genetics, Medical University Innsbruck, Peter Mayr Strasse 1a, AT-6020 Innsbruck, Austria
| |
Collapse
|
40
|
Janssen WJM, Geluk HCA, Boes M. F-actin remodeling defects as revealed in primary immunodeficiency disorders. Clin Immunol 2016; 164:34-42. [PMID: 26802313 DOI: 10.1016/j.clim.2016.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 10/22/2022]
Abstract
Primary immunodeficiencies (PIDs) are a heterogeneous group of immune-related diseases. PIDs develop due to defects in gene-products that have consequences to immune cell function. A number of PID-proteins is involved in the remodeling of filamentous actin (f-actin) to support the generation of a contact zone between the antigen-specific T cell and antigen presenting cell (APC): the immunological synapse (IS). IS formation is the first step towards T-cell activation and essential for clonal expansion and acquisition of effector function. We here evaluated PIDs in which aberrant f-actin-driven IS formation may contribute to the PID disease phenotypes as seen in patients. We review examples of such contributions to PID phenotypes from literature, and highlight cases in which PID-proteins were evaluated for a role in f-actin polymerization and IS formation. We conclude with the proposition that patient groups might benefit from stratifying them in distinct functional groups in regard to their f-actin remodeling phenotypes in lymphocytes.
Collapse
Affiliation(s)
- W J M Janssen
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - H C A Geluk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands
| | - M Boes
- Laboratory of Translational Immunology, University Medical Center Utrecht, Wilhelmina Children's Hospital, Utrecht, The Netherlands.
| |
Collapse
|
41
|
Jayachandran R, Pieters J. Regulation of immune cell homeostasis and function by coronin 1. Int Immunopharmacol 2015; 28:825-8. [DOI: 10.1016/j.intimp.2015.03.045] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/28/2015] [Indexed: 12/24/2022]
|
42
|
Ojeda V, Robles-Valero J, Barreira M, Bustelo XR. The disease-linked Glu-26-Lys mutant version of Coronin 1A exhibits pleiotropic and pathway-specific signaling defects. Mol Biol Cell 2015; 26:2895-912. [PMID: 26108624 PMCID: PMC4571328 DOI: 10.1091/mbc.e15-01-0052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/18/2015] [Indexed: 11/12/2022] Open
Abstract
Coronin 1A is involved in cell shape dynamics and Rac1 GTPase signaling. Loss-of-function mutations in the Coro1A gene promote severe immunodeficiency. An immunodeficiency-linked Coro1A point mutant is described that becomes dysfunctional due to changes in actin-binding, actin-remodeling, and signaling activities. Coronin 1A (Coro1A) is involved in cytoskeletal and signaling events, including the regulation of Rac1 GTPase– and myosin II–dependent pathways. Mutations that generate truncated or unstable Coro1A proteins cause immunodeficiencies in both humans and rodents. However, in the case of the peripheral T-cell–deficient (Ptcd) mouse strain, the immunodeficiency is caused by a Glu-26-Lys mutation that targets a surface-exposed residue unlikely to affect the intramolecular architecture and stability of the protein. Here we report that this mutation induces pleiotropic effects in Coro1A protein, including the exacerbation of Coro1A-dependent actin-binding and -bundling activities; the formation of large meshworks of Coro1AE26K-decorated filaments endowed with unusual organizational, functional, and staining properties; and the elimination of Coro1A functions associated with both Rac1 and myosin II signaling. By contrast, it does not affect the ability of Coro1A to stimulate the nuclear factor of activated T-cells (NF-AT). Coro1AE26K is not a dominant-negative mutant, indicating that its pathological effects are derived from the inability to rescue the complete loss of the wild-type counterpart in cells. These results indicate that Coro1AE26K behaves as either a recessive gain-of-function or loss-of-function mutant protein, depending on signaling context and presence of the wild-type counterpart in cells.
Collapse
Affiliation(s)
- Virginia Ojeda
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Javier Robles-Valero
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - María Barreira
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas and University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|