1
|
Ribeiro E Ribeiro R, Sung CJ, Quddus MR. Synchronous Epidermodysplasia Verruciformis and Intraepithelial Lesion of the Vulva Is Caused by Coinfection With Alpha-Human Papillomavirus and Beta-Human Papillomavirus Genotypes and Facilitated by Mutations in Cell-Mediated Immunity Genes. Arch Pathol Lab Med 2024; 148:1014-1021. [PMID: 38180082 DOI: 10.5858/arpa.2023-0193-oa] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 01/06/2024]
Abstract
CONTEXT.— There have been exceedingly few reports of epidermodysplasia verruciformis (EV) or EV-like lesions in the vulva. We describe the first observation of vulvar lesions displaying synchronous EV-like histology and conventional high-grade squamous intraepithelial lesion (HSIL), a finding hitherto unreported in medical literature. OBJECTIVES.— To describe this novel vulvar lesion with hybrid features of HSIL and EV, attempt to confirm the hypothesis of coinfection with α and β human papillomavirus (α-HPV and β-HPV) genotypes, and describe relevant underlying genetic mutations. DESIGN.— Cases were retrospectively selected from our institutional archive. Detailed review of clinical information, histologic examination, and whole genome sequencing (WGS) were performed. RESULTS.— Five samples from 4 different patients were included. Three of 4 patients had a history of either iatrogenic immune suppression or prior immune deficiency, and all 3 featured classic HSIL and EV changes within the same lesion. One patient had no history of immune disorders, presented with EV-like changes and multinucleated atypia of the vulva, and was the sole patient without conventional HSIL. By WGS, several uniquely mappable reads pointed toward infection with multiple HPV genotypes, including both α-HPVs and β-HPVs. Mutations in genes implicated in cell-mediated immunity, such as DOCK8, CARMIL2, MST1, and others, were also found. CONCLUSIONS.— We provide the first description of vulvar lesions harboring simultaneous HSIL and EV features in the English-language literature, a phenomenon explained by coinfection with α-HPV and β-HPV genotypes. The finding of EV-like changes in a vulvar specimen should prompt assessment of the patient's immune status.
Collapse
Affiliation(s)
- Renan Ribeiro E Ribeiro
- From the Department of Pathology and Laboratory Medicine, Women & Infants Hospital, Providence, Rhode Island (Ribeiro e Ribeiro, Sung, Quddus)
- the Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, Rhode Island (Ribeiro e Ribeiro, Sung, Quddus)
| | - C James Sung
- From the Department of Pathology and Laboratory Medicine, Women & Infants Hospital, Providence, Rhode Island (Ribeiro e Ribeiro, Sung, Quddus)
- the Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, Rhode Island (Ribeiro e Ribeiro, Sung, Quddus)
| | - M Ruhul Quddus
- From the Department of Pathology and Laboratory Medicine, Women & Infants Hospital, Providence, Rhode Island (Ribeiro e Ribeiro, Sung, Quddus)
- the Department of Pathology and Laboratory Medicine, Alpert Medical School of Brown University, Providence, Rhode Island (Ribeiro e Ribeiro, Sung, Quddus)
| |
Collapse
|
2
|
Krupka S, Hoffmann A, Jasaszwili M, Dietrich A, Guiu-Jurado E, Klöting N, Blüher M. Consequences of COVID-19 on Adipose Tissue Signatures. Int J Mol Sci 2024; 25:2908. [PMID: 38474155 DOI: 10.3390/ijms25052908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/26/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Since the emergence of coronavirus disease-19 (COVID-19) in 2019, it has been crucial to investigate the causes of severe cases, particularly the higher rates of hospitalization and mortality in individuals with obesity. Previous findings suggest that adipocytes may play a role in adverse COVID-19 outcomes in people with obesity. The impact of COVID-19 vaccination and infection on adipose tissue (AT) is currently unclear. We therefore analyzed 27 paired biopsies of visceral and subcutaneous AT from donors of the Leipzig Obesity BioBank that have been categorized into three groups (1: no infection/no vaccination; 2: no infection but vaccinated; 3: infected and vaccinated) based on COVID-19 antibodies to spike (indicating vaccination) and/or nucleocapsid proteins. We provide additional insights into the impact of COVID-19 on AT biology through a comprehensive histological transcriptome and serum proteome analysis. This study demonstrates that COVID-19 infection is associated with smaller average adipocyte size. The impact of infection on gene expression was significantly more pronounced in subcutaneous than in visceral AT and mainly due to immune system-related processes. Serum proteome analysis revealed the effects of the infection on circulating adiponectin, interleukin 6 (IL-6), and carbonic anhydrase 5A (CA5A), which are all related to obesity and blood glucose abnormalities.
Collapse
Affiliation(s)
- Sontje Krupka
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Mariami Jasaszwili
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Arne Dietrich
- Clinic for Visceral, Transplantation and Thorax and Vascular Surgery, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Esther Guiu-Jurado
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Nora Klöting
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG), Helmholtz Zentrum München, University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Biglari S, Moghaddam AS, Tabatabaiefar MA, Sherkat R, Youssefian L, Saeidian AH, Vahidnezhad F, Tsoi LC, Gudjonsson JE, Hakonarson H, Casanova JL, Béziat V, Jouanguy E, Vahidnezhad H. Monogenic etiologies of persistent human papillomavirus infections: A comprehensive systematic review. Genet Med 2024; 26:101028. [PMID: 37978863 PMCID: PMC10922824 DOI: 10.1016/j.gim.2023.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Persistent human papillomavirus infection (PHPVI) causes cutaneous, anogenital, and mucosal warts. Cutaneous warts include common warts, Treeman syndrome, and epidermodysplasia verruciformis, among others. Although more reports of monogenic predisposition to PHPVI have been published with the development of genomic technologies, genetic testing is rarely incorporated into clinical assessments. To encourage broader molecular testing, we compiled a list of the various monogenic etiologies of PHPVI. METHODS We conducted a systematic literature review to determine the genetic, immunological, and clinical characteristics of patients with PHPVI. RESULTS The inclusion criteria were met by 261 of 40,687 articles. In 842 patients, 83 PHPVI-associated genes were identified, including 42, 6, and 35 genes with strong, moderate, and weak evidence for causality, respectively. Autosomal recessive inheritance predominated (69%). PHPVI onset age was 10.8 ± 8.6 years, with an interquartile range of 5 to 14 years. GATA2,IL2RG,DOCK8, CXCR4, TMC6, TMC8, and CIB1 are the most frequently reported PHPVI-associated genes with strong causality. Most genes (74 out of 83) belong to a catalog of 485 inborn errors of immunity-related genes, and 40 genes (54%) are represented in the nonsyndromic and syndromic combined immunodeficiency categories. CONCLUSION PHPVI has at least 83 monogenic etiologies and a genetic diagnosis is essential for effective management.
Collapse
Affiliation(s)
- Sajjad Biglari
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roya Sherkat
- Immunodeficiency Diseases Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Leila Youssefian
- Department of Pathology and Laboratory Medicine, UCLA Clinical Genomics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Amir Hossein Saeidian
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, MI
| | | | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France; Department of Pediatrics, Necker Hospital for Sick Children, Paris, France, EU; Howard Hughes Medical Institute, Chevy Chase, MD
| | - Vivien Béziat
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Emmanuelle Jouanguy
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163, Necker Hospital for Sick Children, Paris, France; Imagine Institute, Paris Cité University, France
| | - Hassan Vahidnezhad
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA.
| |
Collapse
|
4
|
Zamani R, Zoghi S, Shahkarami S, Seyedpour S, Jimenez Heredia R, Boztug K, Rezaei N. Novel CARMIL2 (RLTPR) Mutation Presenting with Hyper-IgE and Eosinophilia: A Case Report. Endocr Metab Immune Disord Drug Targets 2024; 24:596-605. [PMID: 37855284 DOI: 10.2174/0118715303263327230922043929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/28/2023] [Accepted: 08/07/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Inborn errors of immunity are a growing group of disorders with a wide spectrum of genotypic and phenotypic profiles. CARMIL2 (previously named RLTPR) deficiency is a recently described cause of immune dysregulation, mainly presenting with allergy, mucocutaneous infections, and inflammatory bowel disease. CARMIL2 deficiency is categorized under diseases of immune dysregulation with susceptibility to lymphoproliferative conditions. CASE PRESENTATION Here we describe a 29-years-old male from a consanguineous family, with food and sting allergy, allergic rhinitis, facial molluscum contagiosum (viral infection of the skin in the form of umbilicated papules), eosinophilia and highly elevated serum IgE level. Whole exome sequencing revealed numerous homozygous variants, including a CARMIL2 nonsense mutation, a gene regulating actin polymerization, and promoting cell protrusion formation. CONCLUSION The selective role of CARMIL2 in T cell activation and maturation through cytoskeletal organization is proposed to be the cause of immune dysregulation in individuals with CARMIL2 deficiency. CARMIL2 has an important role in immune pathways regulation, through cell maturation and differentiation, giving rise to a balance between Th1, Th2, and Th17 immune response. This case can improve the understanding of the different impacts of CARMIL2 mutations on immune pathways and further guide the diagnosis of patients with similar phenotypes.
Collapse
Affiliation(s)
- Raha Zamani
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Samaneh Zoghi
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sepideh Shahkarami
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians- Universität München (LMU), Munich, Germany
| | - Simin Seyedpour
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Raúl Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
5
|
Sams L, Wijetilleka S, Ponsford M, Gennery A, Jolles S. Atopic manifestations of inborn errors of immunity. Curr Opin Allergy Clin Immunol 2023; 23:478-490. [PMID: 37755421 PMCID: PMC10621644 DOI: 10.1097/aci.0000000000000943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
PURPOSE OF REVIEW Allergy and atopic features are now well recognized manifestations of many inborn errors of immunity (IEI), and indeed may be the hallmark in some, such as DOCK8 deficiency. In this review, we describe the current IEI associated with atopy, using a comprehensive literature search and updates from the IUIS highlighting clinical clues for underlying IEI such as very early onset of atopic disease or treatment resistance to enable early and accurate genetic diagnosis. RECENT FINDINGS We focus on recently described genes, their categories of pathogenic mechanisms and the expanding range of potential therapies. SUMMARY We highlight in this review that patients with very early onset or treatment resistant atopic disorders should be investigated for an IEI, as targeted and effective therapies exist. Early and accurate genetic diagnosis is crucial in this cohort to reduce the burden of disease and mortality.
Collapse
Affiliation(s)
- Laura Sams
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Sonali Wijetilleka
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Mark Ponsford
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| | - Andrew Gennery
- Paediatric Haematopoietic Stem Cell Transplant Unit, Great North Children's Hospital (GNCH), Royal Victoria Infirmary, Queen Victoria Road
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, UK
| |
Collapse
|
6
|
Of Mycelium and Men: Inherent Human Susceptibility to Fungal Diseases. Pathogens 2023; 12:pathogens12030456. [PMID: 36986378 PMCID: PMC10058615 DOI: 10.3390/pathogens12030456] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
In medical mycology, the main context of disease is iatrogenic-based disease. However, historically, and occasionally, even today, fungal diseases affect humans with no obvious risk factors, sometimes in a spectacular fashion. The field of “inborn errors of immunity” (IEI) has deduced at least some of these previously enigmatic cases; accordingly, the discovery of single-gene disorders with penetrant clinical effects and their immunologic dissection have provided a framework with which to understand some of the key pathways mediating human susceptibility to mycoses. By extension, they have also enabled the identification of naturally occurring auto-antibodies to cytokines that phenocopy such susceptibility. This review provides a comprehensive update of IEI and autoantibodies that inherently predispose humans to various fungal diseases.
Collapse
|
7
|
Lévy R, Gothe F, Momenilandi M, Magg T, Materna M, Peters P, Raedler J, Philippot Q, Rack-Hoch AL, Langlais D, Bourgey M, Lanz AL, Ogishi M, Rosain J, Martin E, Latour S, Vladikine N, Distefano M, Khan T, Rapaport F, Schulz MS, Holzer U, Fasth A, Sogkas G, Speckmann C, Troilo A, Bigley V, Roppelt A, Dinur-Schejter Y, Toker O, Bronken Martinsen KH, Sherkat R, Somekh I, Somech R, Shouval DS, Kühl JS, Ip W, McDermott EM, Cliffe L, Ozen A, Baris S, Rangarajan HG, Jouanguy E, Puel A, Bustamante J, Alyanakian MA, Fusaro M, Wang Y, Kong XF, Cobat A, Boutboul D, Castelle M, Aguilar C, Hermine O, Cheminant M, Suarez F, Yildiran A, Bousfiha A, Al-Mousa H, Alsohime F, Cagdas D, Abraham RS, Knutsen AP, Fevang B, Bhattad S, Kiykim A, Erman B, Arikoglu T, Unal E, Kumar A, Geier CB, Baumann U, Neven B, Rohlfs M, Walz C, Abel L, Malissen B, Marr N, Klein C, Casanova JL, Hauck F, Béziat V. Human CARMIL2 deficiency underlies a broader immunological and clinical phenotype than CD28 deficiency. J Exp Med 2023; 220:e20220275. [PMID: 36515678 PMCID: PMC9754768 DOI: 10.1084/jem.20220275] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/17/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022] Open
Abstract
Patients with inherited CARMIL2 or CD28 deficiency have defective T cell CD28 signaling, but their immunological and clinical phenotypes remain largely unknown. We show that only one of three CARMIL2 isoforms is produced and functional across leukocyte subsets. Tested mutant CARMIL2 alleles from 89 patients and 52 families impair canonical NF-κB but not AP-1 and NFAT activation in T cells stimulated via CD28. Like CD28-deficient patients, CARMIL2-deficient patients display recalcitrant warts and low blood counts of CD4+ and CD8+ memory T cells and CD4+ TREGs. Unlike CD28-deficient patients, they have low counts of NK cells and memory B cells, and their antibody responses are weak. CARMIL2 deficiency is fully penetrant by the age of 10 yr and is characterized by numerous infections, EBV+ smooth muscle tumors, and mucocutaneous inflammation, including inflammatory bowel disease. Patients with somatic reversions of a mutant allele in CD4+ T cells have milder phenotypes. Our study suggests that CARMIL2 governs immunological pathways beyond CD28.
Collapse
Affiliation(s)
- Romain Lévy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Florian Gothe
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Mana Momenilandi
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Thomas Magg
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Marie Materna
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Philipp Peters
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Johannes Raedler
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Quentin Philippot
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Anita Lena Rack-Hoch
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - David Langlais
- Dept. of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Mathieu Bourgey
- Dept. of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Anna-Lisa Lanz
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jérémie Rosain
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Emmanuel Martin
- Imagine Institute, University of Paris-Cité, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France
| | - Sylvain Latour
- Imagine Institute, University of Paris-Cité, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV infection, INSERM UMR 1163, Paris, France
| | - Natasha Vladikine
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Marco Distefano
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | | | - Franck Rapaport
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Marian S. Schulz
- Dept. of Women and Child Health, Hospital for Children and Adolescents, Hospitals University of Leipzig, Leipzig, Germany
| | - Ursula Holzer
- Children’s Hospital, University of Tübingen, Tübingen, Germany
| | - Anders Fasth
- Dept. of Pediatrics, Institute of Clinical Sciences, University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Georgios Sogkas
- Dept. of Immunology and Rheumatology, Medical School Hannover, Hanover, Germany
| | - Carsten Speckmann
- Dept. of Pediatrics and Adolescent Medicine, Division of Pediatric Hematology and Oncology and Center for Chronic Immunodeficiency (CCI), Institute for Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Arianna Troilo
- Dept. of Rheumatology and CCI for Chronic Immunodeficiency, Division of Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Venetia Bigley
- Translational and Clinical Research Institute and NIHR Newcastle Biomedical Research Centre, Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Anna Roppelt
- Dept. of Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Yael Dinur-Schejter
- Dept. of Bone Marrow Transplantation, Hadassah Medical Center, Faculty of Medicine, Hebrew University, Jerusalem, Israel
| | - Ori Toker
- Faculty of Medicine, Hebrew University of Jerusalem, The Allergy and Clinical Immunology Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Roya Sherkat
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ido Somekh
- Dept. of Pediatric Hematology/Oncology, Schneider Children’s Medical Center of Israel, Petah Tikva, Israel
| | - Raz Somech
- The Institute of Gastroenterology, Nutrition and Liver diseases, Schneider Children's Medical Center of Israel, Petah Tikva, Israel, and The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dror S. Shouval
- The Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv Israel; The Institute of Gastroenterology, Nutrition and Liver Diseases, Schneider Children's Hospital, Petach-Tikva, Israel; Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Jörn-Sven Kühl
- Dept. of Women and Child Health, Hospital for Children and Adolescents, Hospitals University of Leipzig, Leipzig, Germany
| | - Winnie Ip
- Dept. of Immunology, Great Ormond Street Hospital, London, UK
| | | | - Lucy Cliffe
- Dept. of Pediatrics, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Ahmet Ozen
- Dept. of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Safa Baris
- Dept. of Pediatric Allergy and Immunology, Marmara University, Istanbul, Turkey
| | - Hemalatha G. Rangarajan
- Division of Hematology, Oncology and Bone Marrow Transplant, Dept. of Pediatrics, Nationwide Children’s Hospital, Columbus, OH
| | - Emmanuelle Jouanguy
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Jacinta Bustamante
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | | | - Mathieu Fusaro
- Imagine Institute, University of Paris-Cité, Paris, France
- Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Paris, France
| | - Yi Wang
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Aurélie Cobat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - David Boutboul
- Dept. of Clinical Immunology, AP-HP, Saint-Louis Hospital, Paris, France
| | - Martin Castelle
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Claire Aguilar
- Necker Pasteur Center for Infectious Diseases and Tropical Medicine, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Olivier Hermine
- Imagine Institute, University of Paris-Cité, Paris, France
- Dept. of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Morgane Cheminant
- Imagine Institute, University of Paris-Cité, Paris, France
- Dept. of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Felipe Suarez
- Imagine Institute, University of Paris-Cité, Paris, France
- Dept. of Clinical Hematology, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Alisan Yildiran
- Dept. of Pediatric Immunology and Allergy, Ondokuz Mayis University Medical School, Samsun, Turkey
| | - Aziz Bousfiha
- Clinical Immunology, Inflammation and Auto-immunity Laboratory, Faculty of Medicine and Pharmacy of Casablanca, Hassan II University, Casablanca, Morocco
| | - Hamoud Al-Mousa
- Translational Genomics, Centre for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fahad Alsohime
- Pediatric Intensive Care Unit, Dept. of Pediatrics, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
- Immunology Research Laboratory, Dept. of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Deniz Cagdas
- Section of Pediatric Immunology, Hacettepe University, Ihsan Dogramaci Children’s Hospital, Ankara, Turkey
| | - Roshini S. Abraham
- Dept. of Pathology and Laboratory Medicine, Nationwide Children’s Hospital, Columbus, OH
| | - Alan P. Knutsen
- Pediatric Allergy and Immunology, Cardinal Glennon Children’s Hospital, St. Louis, MO
| | - Borre Fevang
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Sagar Bhattad
- Dept. of Pediatrics, Aster CMI Hospital, Bangalore, India
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Cerrahpasa School of Medicine, Pediatric Immunology and Allergy, Istanbul, Turkey
| | - Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Turkey
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Tugba Arikoglu
- Dept. of Pediatrics, Division of Pediatric Allergy and Immunology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ekrem Unal
- Division of Pediatric Hematology Oncology, Dept. of Pediatrics, Erciyes University Faculty of Medicine, Kayseri, Turkey
| | - Ashish Kumar
- Division of Bone Marrow Transplantation and Immune Deficiency, Dept. of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Christoph B. Geier
- Dept. of Rheumatology and CCI for Chronic Immunodeficiency, Division of Immunodeficiency, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ulrich Baumann
- Dept. of Paediatric Pulmonology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany
| | - Bénédicte Neven
- Imagine Institute, University of Paris-Cité, Paris, France
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France
| | - Meino Rohlfs
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Laurent Abel
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| | - Bernard Malissen
- Centre d’Immunologie de Marseille-Luminy, Aix-Marseille Université, INSERM, CNRS, Marseille, France
| | - Nico Marr
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Christoph Klein
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, New York, NY
- Dept. of Pediatrics, Necker Hospital for Sick Children, Paris, France
| | - Fabian Hauck
- Dept. of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM, Necker Hospital for Sick Children, Paris, France
- Imagine Institute, University of Paris-Cité, Paris, France
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY
| |
Collapse
|
8
|
Purzycka-Bohdan D, Nowicki RJ, Herms F, Casanova JL, Fouéré S, Béziat V. The Pathogenesis of Giant Condyloma Acuminatum (Buschke-Lowenstein Tumor): An Overview. Int J Mol Sci 2022; 23:4547. [PMID: 35562936 PMCID: PMC9100137 DOI: 10.3390/ijms23094547] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 11/18/2022] Open
Abstract
Giant condyloma acuminatum, also known as Buschke-Lowenstein tumor (BLT), is a rare disease of the anogenital region. BLT is considered a locally aggressive tumor of benign histological appearance, but with the potential for destructive growth and high recurrence rates. BLT development is strongly associated with infection with low-risk human papillomaviruses (HPVs), mostly HPV-6 and -11. Immunity to HPVs plays a crucial role in the natural control of various HPV-induced lesions. Large condyloma acuminata are frequently reported in patients with primary (e.g., DOCK8 or SPINK5 deficiencies) and secondary (e.g., AIDS, solid organ transplantation) immune defects. Individuals with extensive anogenital warts, including BLT in particular, should therefore be tested for inherited or acquired immunodeficiency. Research into the genetic basis of unexplained cases is warranted. An understanding of the etiology of BLT would lead to improvements in its management. This review focuses on the role of underlying HPV infections, and human genetic and immunological determinants of BLT.
Collapse
Affiliation(s)
- Dorota Purzycka-Bohdan
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Roman J. Nowicki
- Department of Dermatology, Venereology and Allergology, Medical University of Gdansk, 80-214 Gdansk, Poland;
| | - Florian Herms
- Department of Dermatology, APHP, Saint-Louis Hospital, Université de Paris, 1 Avenue Claude Vellefaux, 75010 Paris, France; (F.H.); (S.F.)
- Centre for Genital and Sexually Transmitted Diseases, APHP, Saint-Louis Hospital, 75010 Paris, France
| | - Jean-Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, 75015 Paris, France;
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
- Imagine Institute, University of Paris Cité, 75015 Paris, France
- Department of Pediatrics, Necker Hospital for Sick Children, AP-HP, 75015 Paris, France
- Howard Hughes Medical Institute, New York, NY 10065, USA
| | - Sébastien Fouéré
- Department of Dermatology, APHP, Saint-Louis Hospital, Université de Paris, 1 Avenue Claude Vellefaux, 75010 Paris, France; (F.H.); (S.F.)
- Centre for Genital and Sexually Transmitted Diseases, APHP, Saint-Louis Hospital, 75010 Paris, France
| | - Vivien Béziat
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) UMR-1163, Necker Hospital for Sick Children, 75015 Paris, France;
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY 10065, USA
- Imagine Institute, University of Paris Cité, 75015 Paris, France
| |
Collapse
|
9
|
Abstract
INTRODUCTION As the prevalence of food allergies (FA) increases worldwide, our understanding of its pathophysiology and risk factors is markedly expanding. In the past decades, an increasing number of genes have been linked to FA. Identification of such genes may help in predicting the genetic risk for FA development, age of onset, clinical manifestation, causative allergen(s), and possibly the optimal treatment strategies. Furthermore, identification of these genetic factors can help to understand the complex interactions between genes and the environment in predisposition to FA. AREAS COVERED We outline the recent important progress in determining genetic variants and disease-associated genes in IgE-mediated FA. We focused on the monogenic inborn errors of immunity (IEI) where FA is one of the clinical manifestations, emphasizing the genes and gene variants which were linked to FA with some of the most robust evidence. EXPERT OPINION Genetics play a significant role, either directly or along with environmental factors, in the development of FA. Since FA is a multifactorial disease, it is expected that multiple genes and genetic loci contribute to the risk for its development. Identification of the involved genes should contribute to the area of FA regarding pathogenesis, prediction, recognition, prognosis, prevention, and possibly therapeutic interventions.
Collapse
Affiliation(s)
- Yesim Demirdag
- Division of Basic and Clinical Immunology, Department of Medicine University of California, Irvine, CA
| | - Sami Bahna
- Division of Basic and Clinical Immunology, Department of Medicine University of California, Irvine, CA
| |
Collapse
|
10
|
Kolukisa B, Baser D, Akcam B, Danielson J, Eltan SB, Haliloglu Y, Sefer AP, Babayeva R, Akgun G, Charbonnier LM, Schmitz-Abe K, Demirkol YK, Zhang Y, Gonzaga-Jauregui C, Heredia RJ, Kasap N, Kiykim A, Yucel EO, Gok V, Unal E, Kisaarslan AP, Nepesov S, Baysoy G, Onal Z, Yesil G, Celkan TT, Cokugras H, Camcioglu Y, Eken A, Boztug K, Lo B, Karakoc-Aydiner E, Su HC, Ozen A, Chatila TA, Baris S. Evolution and long-term outcomes of combined immunodeficiency due to CARMIL2 deficiency. Allergy 2022; 77:1004-1019. [PMID: 34287962 PMCID: PMC9976932 DOI: 10.1111/all.15010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/05/2021] [Accepted: 07/01/2021] [Indexed: 01/07/2023]
Abstract
BACKGROUND Biallelic loss-of-function mutations in CARMIL2 cause combined immunodeficiency associated with dermatitis, inflammatory bowel disease (IBD), and EBV-related smooth muscle tumors. Clinical and immunological characterizations of the disease with long-term follow-up and treatment options have not been previously reported in large cohorts. We sought to determine the clinical and immunological features of CARMIL2 deficiency and long-term efficacy of treatment in controlling different disease manifestations. METHODS The presenting phenotypes, long-term outcomes, and treatment responses were evaluated prospectively in 15 CARMIL2-deficient patients, including 13 novel cases. Lymphocyte subpopulations, protein expression, regulatory T (Treg), and circulating T follicular helper (cTFH ) cells were analyzed. Three-dimensional (3D) migration assay was performed to determine T-cell shape. RESULTS Mean age at disease onset was 38 ± 23 months. Main clinical features were skin manifestations (n = 14, 93%), failure to thrive (n = 10, 67%), recurrent infections (n = 10, 67%), allergic symptoms (n = 8, 53%), chronic diarrhea (n = 4, 27%), and EBV-related leiomyoma (n = 2, 13%). Skin manifestations ranged from atopic and seborrheic dermatitis to psoriasiform rash. Patients had reduced proportions of memory CD4+ T cells, Treg, and cTFH cells. Memory B and NK cells were also decreased. CARMIL2-deficient T cells exhibited reduced T-cell proliferation and cytokine production following CD28 co-stimulation and normal morphology when migrating in a high-density 3D collagen gel matrix. IBD was the most severe clinical manifestation, leading to growth retardation, requiring multiple interventional treatments. All patients were alive with a median follow-up of 10.8 years (range: 3-17 years). CONCLUSION This cohort provides clinical and immunological features and long-term follow-up of different manifestations of CARMIL2 deficiency.
Collapse
Affiliation(s)
- Burcu Kolukisa
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Dilek Baser
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Bengu Akcam
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Jeffrey Danielson
- Human Immunological Diseases Section, Laboratory of
Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA,Clinical Genomics Program, NIAID, NIH, Bethesda, MD,
USA
| | - Sevgi Bilgic Eltan
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Yesim Haliloglu
- Erciyes University School of Medicine, Department of
Medical Biology, Kayseri, Turkey
| | - Asena Pinar Sefer
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Royale Babayeva
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Gamze Akgun
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Louis-Marie Charbonnier
- Boston Children’s Hospital and Department of
Pediatrics, Harvard Medical School, Division of Immunology, Boston, MA, USA
| | - Klaus Schmitz-Abe
- Boston Children’s Hospital, Division of Immunology
and Newborn Medicine, Harvard Medical School, Boston, MA, USA
| | - Yasemin Kendir Demirkol
- Genomic Laboratory (GLAB), Umraniye Teaching and Research
Hospital, University of Health Sciences, Istanbul, Turkey
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of
Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA,Clinical Genomics Program, NIAID, NIH, Bethesda, MD,
USA
| | | | - Raul Jimenez Heredia
- Ludwig Boltzmann Institute for Rare and Undiagnosed
Diseases, Vienna, Austria,St. Anna Children’s Cancer Research Institute
(CCRI), Vienna, Austria
| | - Nurhan Kasap
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Ayca Kiykim
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Esra Ozek Yucel
- Istanbul University, Istanbul Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Veysel Gok
- Erciyes University School of Medicine, Pediatric
Hematology and Oncology, Kayseri, Turkey
| | - Ekrem Unal
- Erciyes University School of Medicine, Pediatric
Hematology and Oncology, Kayseri, Turkey
| | | | - Serdar Nepesov
- Medipol University Medical Faculty, Department of
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Gokhan Baysoy
- Medipol University Medical Faculty, Department of
Pediatric Gastroenterology, Istanbul, Turkey
| | - Zerrin Onal
- Istanbul University, Istanbul Faculty of Medicine,
Department of Pediatric Gastroenterology, Hepatology and Nutrition, Istanbul,
Turkey
| | - Gozde Yesil
- Istanbul University, Istanbul Faculty of Medicine,
Department of Medical Genetics, Istanbul, Turkey
| | - Tulin Tiraje Celkan
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Division of Pediatric Hematology and Oncology, Istanbul, Turkey
| | - Haluk Cokugras
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Yildiz Camcioglu
- Istanbul University-Cerrahpasa, Faculty of Medicine,
Pediatric Allergy and Immunology, Istanbul, Turkey
| | - Ahmet Eken
- Erciyes University School of Medicine, Department of
Medical Biology, Kayseri, Turkey
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed
Diseases, Vienna, Austria,St. Anna Children’s Cancer Research Institute
(CCRI), Vienna, Austria
| | - Bernice Lo
- Sidra Medicine, Research Branch, Division of
Translational Medicine, Doha, Qatar,College of Health and Life Sciences, Hamad Bin Khalifa
University, Doha, Qatar
| | - Elif Karakoc-Aydiner
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Helen C. Su
- Human Immunological Diseases Section, Laboratory of
Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD, USA,Clinical Genomics Program, NIAID, NIH, Bethesda, MD,
USA
| | - Ahmet Ozen
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| | - Talal A. Chatila
- Boston Children’s Hospital and Department of
Pediatrics, Harvard Medical School, Division of Immunology, Boston, MA, USA
| | - Safa Baris
- Marmara University, Faculty of Medicine, Pediatric Allergy
and Immunology, Istanbul, Turkey,Istanbul Jeffrey Modell Diagnostic and Research Center for
Primary Immunodeficiencies, Istanbul, Turkey,The Isil Berat Barlan Center for Translational
Medicine
| |
Collapse
|
11
|
Zhu Y, Ye L, Huang H, Xu X, Liu Y, Wang J, Jin Y. Case report: Primary immunodeficiency due to a novel mutation in CARMIL2 and its response to combined immunomodulatory therapy. Front Pediatr 2022; 10:1042302. [PMID: 36727012 PMCID: PMC9884805 DOI: 10.3389/fped.2022.1042302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/06/2022] [Indexed: 01/18/2023] Open
Abstract
Capping protein regulator and myosin 1 linker 2 (CARMIL2) is necessary for invadopodia formation, cell polarity, lamellipodial assembly, membrane ruffling, acropinocytosis, and collective cell migration. CARMIL2 deficiency is a rare autosomal recessive disease characterized by dysfunction in naïve T-cell activation, proliferation, differentiation, and effector function and insufficient responses in T-cell memory. In this paper, we report a 9-year-old female patient with a novel pathogenic variant in CARMIL2 (c.2063C > G:p.Thr688Arg) who presented with various symptoms of primary immunodeficiencies including recurrent upper and lower respiratory infections, perioral and perineum papules, reddish impetiginized atopic dermatitis, oral ulcer, painful urination and vaginitis, otitis media, and failure to thrive. A missense mutation leading to insufficient CARMIL2 protein expression, reduced absolute T-cell and natural killer cell (NK cell) counts, and marked skewing to the naïve T-cell form was identified and indicated defective maturation of T cells and B cells. Following 1 year of multitargeted treatment with corticosteroids, hydroxychloroquine, mycophenolate mofetil, and thymosin, the patient presented with significant regression in rashes. CD4+ T-cell, CD8+ T-cell, and NK cell counts were significantly improved.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lili Ye
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Hua Huang
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xuemei Xu
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jian Wang
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yanliang Jin
- Department of Rheumatology & Immunology, Shanghai Children's Medical Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Redmond MT, Scherzer R, Prince BT. Novel Genetic Discoveries in Primary Immunodeficiency Disorders. Clin Rev Allergy Immunol 2022; 63:55-74. [PMID: 35020168 PMCID: PMC8753955 DOI: 10.1007/s12016-021-08881-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2021] [Indexed: 01/12/2023]
Abstract
The field of Immunology is one that has undergone great expansion in recent years. With the advent of new diagnostic modalities including a variety of genetic tests (discussed elsewhere in this journal), the ability to diagnose a patient with a primary immunodeficiency disorder (PIDD) has become a more streamlined process. With increased availability of genetic testing for those with suspected or known PIDD, there has been a significant increase in the number of genes associated with this group of disorders. This is of great importance as a misdiagnosis of these rare diseases can lead to a delay in what can be critical treatment options. At times, those options can include life-saving medications or procedures. Presentation of patients with PIDD can vary greatly based on the specific genetic defect and the part(s) of the immune system that is affected by the variation. PIDD disorders lead to varying levels of increased risk of infection ranging from a mild increase such as with selective IgA deficiency to a profound risk with severe combined immunodeficiency. These diseases can also cause a variety of other clinical findings including autoimmunity and gastrointestinal disease.
Collapse
Affiliation(s)
- Margaret T. Redmond
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| | - Rebecca Scherzer
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| | - Benjamin T. Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children’s Hospital, The Ohio State University College of Medicine, Columbus, OH USA
| |
Collapse
|
13
|
Lino CNR, Ghosh S. Epstein-Barr Virus in Inborn Immunodeficiency-More Than Infection. Cancers (Basel) 2021; 13:cancers13194752. [PMID: 34638238 PMCID: PMC8507541 DOI: 10.3390/cancers13194752] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Epstein–Barr Virus (EBV) is a common virus that is readily controlled by a healthy immune system and rarely causes serious problems in infected people. However, patients with certain genetic defects of their immune system might have difficulties controlling EBV and often develop severe and life-threatening conditions, such as severe inflammation and malignancies. In this review, we provide a summary of inherited immune diseases that lead to a high susceptibility to EBV infection and discuss how this infection is associated with cancer development. Abstract Epstein–Barr Virus (EBV) is a ubiquitous virus affecting more than 90% of the world’s population. Upon infection, it establishes latency in B cells. It is a rather benign virus for immune-competent individuals, in whom infections usually go unnoticed. Nevertheless, EBV has been extensively associated with tumorigenesis. Patients suffering from certain inborn errors of immunity are at high risk of developing malignancies, while infection in the majority of immune-competent individuals does not seem to lead to immune dysregulation. Herein, we discuss how inborn mutations in TNFRSF9, CD27, CD70, CORO1A, CTPS1, ITK, MAGT1, RASGRP1, STK4, CARMIL2, SH2D1A, and XIAP affect the development, differentiation, and function of key factors involved in the immunity against EBV, leading to increased susceptibility to lymphoproliferative disease and lymphoma.
Collapse
Affiliation(s)
| | - Sujal Ghosh
- Correspondence: ; Tel.: +49-211-811-6224; Fax: +49-211-811-6191
| |
Collapse
|
14
|
Bosa L, Batura V, Colavito D, Fiedler K, Gaio P, Guo C, Li Q, Marzollo A, Mescoli C, Nambu R, Pan J, Perilongo G, Warner N, Zhang S, Kotlarz D, Klein C, Snapper SB, Walters TD, Leon A, Griffiths AM, Cananzi M, Muise AM. Novel CARMIL2 loss-of-function variants are associated with pediatric inflammatory bowel disease. Sci Rep 2021; 11:5945. [PMID: 33723309 PMCID: PMC7960730 DOI: 10.1038/s41598-021-85399-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/01/2021] [Indexed: 01/31/2023] Open
Abstract
CARMIL2 is required for CD28-mediated co-stimulation of NF-κB signaling in T cells and its deficiency has been associated with primary immunodeficiency and, recently, very early onset inflammatory bowel disease (IBD). Here we describe the identification of novel biallelic CARMIL2 variants in three patients presenting with pediatric-onset IBD and in one with autoimmune polyendocrine syndrome (APS). None manifested overt clinical signs of immunodeficiency before their diagnosis. The first patient presented with very early onset IBD. His brother was found homozygous for the same CARMIL2 null variant and diagnosed with APS. Two other IBD patients were found homozygous for a nonsense and a missense CARMIL2 variant, respectively, and they both experienced a complicated postoperative course marked by severe infections. Immunostaining of bowel biopsies showed reduced CARMIL2 expression in all the three patients with IBD. Western blot and immunofluorescence of transfected cells revealed an altered expression pattern of the missense variant. Our work expands the genotypic and phenotypic spectrum of CARMIL2 deficiency, which can present with either IBD or APS, aside from classic immunodeficiency manifestations. CARMIL2 should be included in the diagnostic work-up of patients with suspected monogenic IBD.
Collapse
Affiliation(s)
- Luca Bosa
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Vritika Batura
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Davide Colavito
- Research & Innovation (R&I Genetics) Srl, C.so Stati Uniti 4, 35127, Padua, Italy
| | - Karoline Fiedler
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Paola Gaio
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Conghui Guo
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Qi Li
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padova University Hospital, 35128, Padua, Italy
- Fondazione Città della Speranza, Istituto di Ricerca Pediatrica, 35127, Padua, Italy
| | - Claudia Mescoli
- Department of Medicine, Padova University Hospital, 35128, Padua, Italy
| | - Ryusuke Nambu
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Division of Gastroenterology and Hepatology, Saitama Children's Medical Center, 1-2 Shintoshin, Chuo-ku, Saitama, Saitama, 330-8777, Japan
| | - Jie Pan
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Giorgio Perilongo
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Neil Warner
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Shiqi Zhang
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Daniel Kotlarz
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, LMU Munich, Munich, Germany
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Thomas D Walters
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, M5G1X8, Canada
| | - Alberta Leon
- Research & Innovation (R&I Genetics) Srl, C.so Stati Uniti 4, 35127, Padua, Italy
| | - Anne M Griffiths
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
- Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, M5G1X8, Canada
| | - Mara Cananzi
- Department of Woman's and Child's Health, University of Padova, 35128, Padua, Italy
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Centre, The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada.
- Department of Paediatrics, University of Toronto, The Hospital for Sick Children, Toronto, ON, M5G1X8, Canada.
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, M5G0A4, Canada.
| |
Collapse
|
15
|
Shayegan LH, Garzon MC, Morel KD, Borlack R, Vuguin PM, Margolis KG, Demirdag YY, Pereira EM, Lauren CT. CARMIL2-related immunodeficiency manifesting with photosensitivity. Pediatr Dermatol 2020; 37:695-697. [PMID: 32342551 PMCID: PMC7599087 DOI: 10.1111/pde.14173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
We report a case of a newly recognized primary immunodeficiency due to biallelic mutations in CARMIL2 manifesting as an actinic prurigo-like photodermatitis, allergic diathesis and recurrent infections in a child. We present this case to highlight a rare phenotype seen in this T-cell immunodeficiency and provide an overview of other dermatologic manifestations among published reports of this condition.
Collapse
Affiliation(s)
- Leila H Shayegan
- Vagelos College of Physicians and Surgeons, Columbia University, New York, New York
| | - Maria C Garzon
- Departments of Dermatology and Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Kimberly D Morel
- Departments of Dermatology and Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Rachel Borlack
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Patricia M Vuguin
- Division of Pediatric Endocrinology, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Kara G Margolis
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Yesim Y Demirdag
- Division of Pediatric Allergy and Immunology, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Elaine M Pereira
- Division of Clinical Genetics, Department of Pediatrics, Columbia University Irving Medical Center, New York, New York
| | - Christine T Lauren
- Departments of Dermatology and Pediatrics, Columbia University Irving Medical Center, New York, New York
| |
Collapse
|
16
|
Yonkof JR, Gupta A, Rueda CM, Mangray S, Prince BT, Rangarajan HG, Alshahrani M, Varga E, Cripe TP, Abraham RS. A Novel Pathogenic Variant in CARMIL2 ( RLTPR) Causing CARMIL2 Deficiency and EBV-Associated Smooth Muscle Tumors. Front Immunol 2020; 11:884. [PMID: 32625199 PMCID: PMC7314954 DOI: 10.3389/fimmu.2020.00884] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
CARMIL2 deficiency is a rare combined immunodeficiency (CID) characterized by defective CD28-mediated T cell co-stimulation, altered cytoskeletal dynamics, and susceptibility to Epstein Barr Virus smooth muscle tumors (EBV-SMTs). Case reports associated with EBV-SMTs are limited. We describe herein a novel homozygous CARMIL2 variant (c.1364_1393del) in two Saudi Arabian male siblings born to consanguineous parents who developed EBV-SMTs. CARMIL2 protein expression was significantly reduced in CD4+ T cells and CD8+ T cells. T cell proliferation on stimulation with soluble (s) anti-CD3 or (s) anti-CD3 plus anti-CD28 antibodies was close to absent in the proband, confirming altered CD28-mediated co-signaling. CD28 expression was substantially reduced in the proband's T cells, and was diminished to a lesser degree in the T cells of the younger sibling, who has a milder clinical phenotype. Defects in both T and B cell compartments were observed, including absent central memory CD8+ T cells, and decreased frequencies of total and class-switched memory B cells. FOXP3+ regulatory T cells (Treg) were also quantitatively decreased, and furthermore CD25 expression within the Treg subset was substantially reduced. These data confirm the pathogenicity of this novel loss-of-function (LOF) variant in CARMIL2 and expand the genotypic and phenotypic spectrum of CIDs associated with EBV-SMTs.
Collapse
Affiliation(s)
- Jennifer R Yonkof
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Ajay Gupta
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Cesar M Rueda
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Shamlal Mangray
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| | - Benjamin T Prince
- Division of Allergy and Immunology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Hemalatha G Rangarajan
- Division of Hematology and Oncology, Department of Pediatrics, Nationwide Children's Hospital, Columbus, OH, United States
| | - Mohammad Alshahrani
- Department of Pediatric Hematology-Oncology, Riyadh Military Hospital, Riyadh, Saudi Arabia
| | - Elizabeth Varga
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Timothy P Cripe
- Division of Hematology, Oncology and Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH, United States
| | - Roshini S Abraham
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH, United States
| |
Collapse
|
17
|
Shamriz O, Simon AJ, Lev A, Megged O, Ledder O, Picard E, Joseph L, Molho-Pessach V, Tal Y, Millman P, Slae M, Somech R, Toker O, Berger M. Exogenous interleukin-2 can rescue in-vitro T cell activation and proliferation in patients with a novel capping protein regulator and myosin 1 linker 2 mutation. Clin Exp Immunol 2020; 200:215-227. [PMID: 32201938 PMCID: PMC7232008 DOI: 10.1111/cei.13432] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 03/04/2020] [Accepted: 03/16/2020] [Indexed: 12/27/2022] Open
Abstract
Capping protein regulator and myosin 1 linker 2 (CARMIL2) deficiency is characterized by impaired T cell activation, which is attributed to defective CD28-mediated co-signaling. Herein, we aimed to analyze the effect of exogenous interleukin (IL)-2 on in-vitro T cell activation and proliferation in a family with CARMIL2 deficiency. This study included four children (one male and three females; aged 2·5-10 years at presentation). The patients presented with inflammatory bowel disease and recurrent viral infections. Genetic analysis revealed a novel homozygous 25-base pairs deletion in CARMIL2. Immunoblotting demonstrated the absence of CARMIL2 protein in all four patients and confirmed the diagnosis of CARMIL2 deficiency. T cells were activated in-vitro with the addition of IL-2 in different concentrations. CD25 and interferon (IFN)-γ levels were measured after 48 h and 5 days of activation. CD25 surface expression on activated CD8+ and CD4+ T cells was significantly diminished in all patients compared to healthy controls. Additionally, CD8+ T cells from all patients demonstrated significantly reduced IFN-γ production. When cells derived from CARMIL2-deficient patients were treated with IL-2, CD25 and IFN-γ production increased in a dose-dependent manner. T cell proliferation, as measured by Cell Trace Violet, was impaired in one patient and it was also rescued with IL-2. In conclusion, we found that IL-2 rescued T cell activation and proliferation in CARMIL2-deficient patients. Thus, IL-2 should be further studied as a potential therapeutic modality for these patients.
Collapse
Affiliation(s)
- O. Shamriz
- The Lautenberg Center for Immunology and Cancer ResearchInstitute of Medical Research Israel‐CanadaHebrew University‐Hadassah Medical SchoolJerusalemIsrael
- Allergy and Clinical Immunology UnitDepartment of MedicineHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - A. J. Simon
- Sheba Cancer Research Center and Institute of HematologySheba Medical CenterTel HaShomerRamat‐GanIsrael
| | - A. Lev
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Pediatric Department A and Immunology ServiceJeffrey Modell Foundation CenterEdmond and Lily Safra Children’s HospitalSheba Medical CenterAffiliated with Tel Aviv UniversityTel AvivIsrael
| | - O. Megged
- Pediatric Infectious diseases UnitShaare Zedek Medical CenterJerusalemIsrael
| | - O. Ledder
- Juliet Keidan Institute of Pediatric Gastroenterology and NutritionShaare Zedek Medical CenterJerusalemIsrael
| | - E. Picard
- Pediatric pulmonology UnitShaare Zedek Medical CenterJerusalemIsrael
| | - L. Joseph
- Pediatric pulmonology UnitShaare Zedek Medical CenterJerusalemIsrael
| | - V. Molho-Pessach
- Department of DermatologyHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - Y. Tal
- Allergy and Clinical Immunology UnitDepartment of MedicineHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - P. Millman
- Pediatric Gastroenterology UnitHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - M. Slae
- Pediatric Gastroenterology UnitHadassah‐Hebrew University Medical CenterJerusalemIsrael
| | - R. Somech
- Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
- Pediatric Department A and Immunology ServiceJeffrey Modell Foundation CenterEdmond and Lily Safra Children’s HospitalSheba Medical CenterAffiliated with Tel Aviv UniversityTel AvivIsrael
| | - O. Toker
- Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
- Allergy and Clinical Immunology UnitShaare Zedek Medical CenterJerusalemIsrael
| | - M. Berger
- The Lautenberg Center for Immunology and Cancer ResearchInstitute of Medical Research Israel‐CanadaHebrew University‐Hadassah Medical SchoolJerusalemIsrael
| |
Collapse
|
18
|
Human genetic dissection of papillomavirus-driven diseases: new insight into their pathogenesis. Hum Genet 2020; 139:919-939. [PMID: 32435828 DOI: 10.1007/s00439-020-02183-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
Human papillomaviruses (HPVs) infect mucosal or cutaneous stratified epithelia. There are 5 genera and more than 200 types of HPV, each with a specific tropism and virulence. HPV infections are typically asymptomatic or result in benign tumors, which may be disseminated or persistent in rare cases, but a few oncogenic HPVs can cause cancers. This review deals with the human genetic and immunological basis of interindividual clinical variability in the course of HPV infections of the skin and mucosae. Typical epidermodysplasia verruciformis (EV) is characterized by β-HPV-driven flat wart-like and pityriasis-like cutaneous lesions and non-melanoma skin cancers in patients with inborn errors of EVER1-EVER2-CIB1-dependent skin-intrinsic immunity. Atypical EV is associated with other infectious diseases in patients with inborn errors of T cells. Severe cutaneous or anogenital warts, including anogenital cancers, are also driven by certain α-, γ-, μ or ν-HPVs in patients with inborn errors of T lymphocytes and antigen-presenting cells. The genetic basis of HPV diseases at other mucosal sites, such as oral multifocal epithelial hyperplasia or juvenile recurrent respiratory papillomatosis (JRRP), remains poorly understood. The human genetic dissection of HPV-driven lesions will clarify the molecular and cellular basis of protective immunity to HPVs, and should lead to novel diagnostic, preventive, and curative approaches in patients.
Collapse
|
19
|
Tangye SG. Genetic susceptibility to EBV infection: insights from inborn errors of immunity. Hum Genet 2020; 139:885-901. [PMID: 32152698 DOI: 10.1007/s00439-020-02145-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/27/2020] [Indexed: 02/07/2023]
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human pathogen, infecting > 90% of the adult population. In the vast majority of healthy individuals, infection with EBV runs a relatively benign course. However, EBV is by no means a benign pathogen. Indeed, apart from being associated with at least seven different types of malignancies, EBV infection can cause severe and often fatal diseases-hemophagocytic lymphohistiocytosis, lymphoproliferative disease, B-cell lymphoma-in rare individuals with specific monogenic inborn errors of immunity. The discovery and detailed investigation of inborn errors of immunity characterized by heightened susceptibility to, or increased frequency of, EBV-induced disease have elegantly revealed cell types and signaling pathways that play critical and non-redundant roles in host-defense against EBV. These analyses have revealed not only mechanisms underlying EBV-induced disease in rare genetic conditions, but also identified molecules and pathways that could be targeted to treat severe EBV infection and pathological consequences in immunodeficient hosts, or even potentially enhance the efficacy of an EBV-specific vaccine.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia. .,St. Vincent's Clinical School, University of NSW Sydney, Darlinghurst, NSW, 2010, Australia. .,Clincial Immunogenomics Research Consortium Australasia (CIRCA), Darlinghurst, NSW, Australia.
| |
Collapse
|
20
|
Sogkas G, Adriawan IR, Ringshausen FC, Baumann U, Schröder C, Klemann C, von Hardenberg S, Schmidt G, Bernd A, Jablonka A, Ernst D, Schmidt RE, Atschekzei F. A novel NFKBIA variant substituting serine 36 of IκBα causes immunodeficiency with warts, bronchiectasis and juvenile rheumatoid arthritis in the absence of ectodermal dysplasia. Clin Immunol 2020; 210:108269. [DOI: 10.1016/j.clim.2019.108269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/06/2019] [Accepted: 10/07/2019] [Indexed: 01/09/2023]
|
21
|
Maccari ME, Speckmann C, Heeg M, Reimer A, Casetti F, Has C, Ehl S, Castro CN. Profound immunodeficiency with severe skin disease explained by concomitant novel CARMIL2 and PLEC1 loss-of-function mutations. Clin Immunol 2019; 208:108228. [DOI: 10.1016/j.clim.2019.06.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/25/2019] [Accepted: 06/09/2019] [Indexed: 12/11/2022]
|