1
|
Meher A, Tandi A, Moharana S, Chakroborty S, Mohapatra SS, Mondal A, Dey S, Chandra P. Silver nanoparticle for biomedical applications: A review. HYBRID ADVANCES 2024; 6:100184. [DOI: 10.1016/j.hybadv.2024.100184] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Al Baloushi KSY, Senthilkumar A, Kandhan K, Subramanian R, Kizhakkayil J, Ramachandran T, Shehab S, Kurup SS, Alyafei MAM, Al Dhaheri AS, Jaleel A. Green Synthesis and Characterization of Silver Nanoparticles Using Moringa Peregrina and Their Toxicity on MCF-7 and Caco-2 Human Cancer Cells. Int J Nanomedicine 2024; 19:3891-3905. [PMID: 38711613 PMCID: PMC11070442 DOI: 10.2147/ijn.s451694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction The synthesis of nanoparticles using naturally occurring reagents such as vitamins, sugars, plant extracts, biodegradable polymers and microorganisms as reductants and capping agents could be considered attractive for nanotechnology. These syntheses have led to the fabrication of limited number of inorganic nanoparticles. Among the reagents mentioned above, plant-based materials seem to be the best candidates, and they are suitable for large-scale biosynthesis of nanoparticles. Methods The aqueous extract of Moringa peregrina leaves was used to synthesize silver nanoparticles. The synthesized nanoparticles were characterized by various spectral studies including FT-IR, SEM, HR-TEM and XRD. In addition, the antioxidant activity of the silver nanoparticles was studied viz. DPPH, ABTS, hydroxyl radical scavenging, superoxide radical scavenging, nitric oxide scavenging potential and reducing power with varied concentrations. The anticancer potential of the nanoparticles was also studied against MCF-7 and Caco-2 cancer cell lines. Results The results showed that silver nanoparticles displayed strong antioxidant activity compared with gallic acid. Furthermore, the anticancer potential of the nanoparticles against MCF-7 and Caco-2 in comparison with the standard Doxorubicin revealed that the silver nanoparticles produced significant toxic effects against the studied cancer cell lines with the IC50 values of 41.59 (Caco-2) and 26.93 (MCF-7) µg/mL. Conclusion In conclusion, the biosynthesized nanoparticles using M. peregrina leaf aqueous extract as a reducing agent showed good antioxidant and anticancer potential on human cancer cells and can be used in biological applications.
Collapse
Affiliation(s)
- Khaled Saeed Yousef Al Baloushi
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Annadurai Senthilkumar
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
- PG and Research Department of Botany, Kandaswami Kandar’s College, Velur, TN, India
| | - Karthishwaran Kandhan
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Radhakrishnan Subramanian
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Jaleel Kizhakkayil
- Department of Nutrition & Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Tholkappiyan Ramachandran
- Department of Physics, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, TN, India
| | - Safa Shehab
- Department of Human Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shyam Sreedhara Kurup
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mohammed Abdul Muhsen Alyafei
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ayesha Salem Al Dhaheri
- Department of Nutrition & Health Sciences, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdul Jaleel
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
3
|
Ravichandran S, Kandaswamy K, Muthu K. Evaluation of lupeol-chitosan nanoparticles infused cellulose acetate membranes for enhanced in-vitro anticancer and antidiabetic activities. CHEMOSPHERE 2024; 351:141149. [PMID: 38218233 DOI: 10.1016/j.chemosphere.2024.141149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 12/23/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
This study utilizes the abundance of pharmacologically active compounds found in natural products and concentrates on the promising anticancer agent lupeol (LUP). The limited water solubility and bioavailability of lupeol have limited its therapeutic utility. To test their potential for treating diabetes and cancer, we synthesized lupeol@chitosan (LUP@CS) nanoparticles encapsulated in cellulose acetate (CA) membranes (LUP@CS/CA). Extensive characterization, including Scanning electron microscopy, Thermogravimetric analysis, X-ray photoelectron spectroscopy, and mechanical strength analysis, confirmed the membrane's structural integrity and drug release capacity. Notably, in vitro experiments utilizing A431 human skin cancer cells revealed remarkable anticancer activity, positioning the membrane as a potential novel therapeutic agent for the treatment of skin cancer. Inhibiting carbohydrate-digesting enzymes effectively, as evidenced by IC50 values as low as 54.56 mg/mL, the membrane also exhibited significant antidiabetic potential. These results demonstrate the multifarious potential of the membrane, which offers promise for both the treatment of skin cancer and the management of diabetes, and has significant implications for nano biological applications.
Collapse
Affiliation(s)
- Siranjeevi Ravichandran
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| | - Kala Kandaswamy
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India.
| | - Kannan Muthu
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 602105, Tamil Nadu, India
| |
Collapse
|
4
|
Bashir I, Khan MA, Dilshad E, Siyo B, Hussain E, Ali I. Antioxidant and anticancer silver nanoparticles of
Mentha asiatica
aerial part extract: a novel study. INORG NANO-MET CHEM 2024; 54:103-109. [DOI: 10.1080/24701556.2021.2021945] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/04/2021] [Accepted: 11/28/2021] [Indexed: 12/23/2022]
Affiliation(s)
- Iqra Bashir
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Mubarak Ali Khan
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan (AWKUM), Mardan, KP, Pakistan
| | - Erum Dilshad
- Department of Bioinformatics and Biosciences, Faculty of Health and Life Sciences, Capital University of Science and Technology (CUST), Islamabad, Pakistan
| | - Bara Siyo
- Chemistry Department, Faculty of Science, Tishreen University, Latakai, Syria
| | - Ejaz Hussain
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Iftikhar Ali
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| |
Collapse
|
5
|
Subramanyam GK, Gaddam SA, Kotakadi VS, Gunti H, Palithya S, Penchalaneni J, Challagundla VN. Green Fabrication of silver nanoparticles by leaf extract of Byttneria Herbacea Roxb and their promising therapeutic applications and its interesting insightful observations in oral cancer. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2023; 51:83-94. [PMID: 36752159 DOI: 10.1080/21691401.2023.2173218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The present research was carried out to look into therapeutic insight of biosynthesized silver nanoparticles (AgNPs) by leaf extract of Byttneria herbacea Roxb (BH). The analysis of biosynthesized BH-AgNPs by UV-visible spectroscopy shows an intense surface plasmon resonance (SPR) peak at 422 nm initially and 437 nm after 30 min which certainly reveals the formation of BH-AgNPs. Fourier Infra-red Spectroscopy (FT-IR) reveals that BH-AgNPs are biosynthesized by using different bioactive compounds like O-H stretch of free hydroxyl alcohol and phenols, N-H bond of primary amines present in the leaf extract. Transmission Electron Microscope (TEM) analysis revealed that BH-AgNPs are almost spherical in nature with an average size range from of 2 nm to 12 nm. The particle size analysis by Dynamic Light Scattering (DLS) reveals that the BH-AgNPs are poly-dispersed in nature with an average size of 8 nm ± 2 nm, with a negative zeta potential value of -21 mV which reveals the biosynthesized BH-AgNPs are very stable. The BH-AgNPs (Byttneria herbacea -AgNPs) revealed excellent free radical scavenging activity and exceptional antimicrobial activity. The anti-proliferative and cytotoxic studies in KB oral cancer cells revealed biosynthesized BH-AgNPs can employ as future novel therapeutic agents in cancer treatment and other biomedical applications.
Collapse
Affiliation(s)
| | - Susmila Aparna Gaddam
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, India
| | | | - Hema Gunti
- Department of Biotechnology, Maharani's Science College for Women, Maharani Cluster University, Bangalore, Karnakataka, India
| | - Sashikiran Palithya
- Department of Biotechnology, Dravidian University, Kuppam, Andhra Pradesh, India
| | - Josthna Penchalaneni
- Department of Biotechnology, Sri Padmavthi Visvavidyalayam (women's University), Tirupati, Andhra Pradesh, India
| | | |
Collapse
|
6
|
Kah G, Chandran R, Abrahamse H. Biogenic Silver Nanoparticles for Targeted Cancer Therapy and Enhancing Photodynamic Therapy. Cells 2023; 12:2012. [PMID: 37566091 PMCID: PMC10417642 DOI: 10.3390/cells12152012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023] Open
Abstract
Different conventional therapeutic procedures are utilized globally to manage cancer cases, yet the mortality rate in patients with cancer remains considerably high. Developments in the field of nanotechnology have included novel therapeutic strategies to deal with cancer. Biogenic (green) metallic silver nanoparticles (AgNPs) obtained using plant-mediated protocols are attractive to researchers exploring cancer treatment. Biogenic AgNPs present advantages, since they are cost-effective, easy to obtain, energy efficient, and less toxic compared to chemically and physically obtained AgNPs. Also, they present excellent anticancer abilities thanks to their unique sizes, shapes, and optical properties. This review provides recent advancements in exploring biogenic AgNPs as a drug or agent for cancer treatment. Thus, great attention was paid to the anticancer efficacy of biogenic AgNPs, their anticancer mechanisms, their efficacy in cancer photodynamic therapy (PDT), their efficacy in targeted cancer therapy, and their toxicity.
Collapse
Affiliation(s)
| | - Rahul Chandran
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Johannesburg 2028, South Africa; (G.K.); (H.A.)
| | | |
Collapse
|
7
|
Shaheen S, Saeed Z, Ahmad A, Pervaiz M, Younas U, Mahmood Khan RR, Luque R, Rajendran S. Green synthesis of graphene-based metal nanocomposite for electro and photocatalytic activity; recent advancement and future prospective. CHEMOSPHERE 2023; 311:136982. [PMID: 36309056 DOI: 10.1016/j.chemosphere.2022.136982] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/10/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The presence of pollutants in waste water is a demanding problem for human health. Investigations have been allocated to study the adsorptive behavior of graphene-based materials to remove pollutants from wastewater. Graphene (GO) due to its hydrophilicity, high surface area, and oxygenated functional groups, is an effective adsorbent for the removal of dyes and heavy metals from water. The disclosure of green synthesis opened the gateway for the economic productive methods. This article reveals the fabrication of graphene-based composite from aloe vera extract using a green method. The proposed mechanism of GO reduction via plant extract has also been mentioned in this work. The mechanism associated with the removal of dyes and heavy metals by graphene-based adsorbents and absorptive capacities of heavy metals has been discussed in detail. The toxicity of heavy metals has also been mentioned here. The Polyaromatic resonating system of GO develops significant π-π interactions with dyes whose base form comprises principally oxygenated functional groups. This review article illustrates a literature survey by classifying graphene-based composite with a global market value from 2010 to 2025 and also depicts a comparative study between green and chemical reduction methods. It presents state of art for the fabrication of GO with novel adsorbents such as metal, polymer, metal oxide and elastomers-based nanocomposites for the removal of pollutants. The current progress in the applications of graphene-based composites in antimicrobial, anticancer, drug delivery, and removal of dyes with photocatalytic efficacy of 73% is explored in this work. It gives a coherent overview of the green synthesis of graphene-based composite, various prospective for the fabrication of graphene, and their biotoxicity.
Collapse
Affiliation(s)
- Shumila Shaheen
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Zohaib Saeed
- Department of Chemistry, Government College University, Lahore, Pakistan
| | - Awais Ahmad
- Departmento de Quimica Organicia, Universitidad de Cordoba, Edificio Marie Curie (C-3) Ctra Nnal IV-A ,km 396, E14104, Cordoba, Spain
| | - Muhammad Pervaiz
- Department of Chemistry, Government College University, Lahore, Pakistan.
| | - Umer Younas
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | | | - Rafael Luque
- Departmento de Quimica Organicia, Universitidad de Cordoba, Edificio Marie Curie (C-3) Ctra Nnal IV-A ,km 396, E14104, Cordoba, Spain; Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 117198, Moscow, Russian Federation.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| |
Collapse
|
8
|
Sampath G, Chen YY, Rameshkumar N, Krishnan M, Nagarajan K, Shyu DJH. Biologically Synthesized Silver Nanoparticles and Their Diverse Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3126. [PMID: 36144915 PMCID: PMC9500900 DOI: 10.3390/nano12183126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 05/14/2023]
Abstract
Nanotechnology has become the most effective and rapidly developing field in the area of material science, and silver nanoparticles (AgNPs) are of leading interest because of their smaller size, larger surface area, and multiple applications. The use of plant sources as reducing agents in the fabrication of silver nanoparticles is most attractive due to the cheaper and less time-consuming process for synthesis. Furthermore, the tremendous attention of AgNPs in scientific fields is due to their multiple biomedical applications such as antibacterial, anticancer, and anti-inflammatory activities, and they could be used for clean environment applications. In this review, we briefly describe the types of nanoparticle syntheses and various applications of AgNPs, including antibacterial, anticancer, and larvicidal applications and photocatalytic dye degradation. It will be helpful to the extent of a better understanding of the studies of biological synthesis of AgNPs and their multiple uses.
Collapse
Affiliation(s)
- Gattu Sampath
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, New Delhi 110016, India
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi City 600355, Taiwan
| | | | | | - Kayalvizhi Nagarajan
- Department of Zoology, School of Life Sciences, Periyar University, Salem 636011, India
| | - Douglas J. H. Shyu
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912301, Taiwan
| |
Collapse
|
9
|
Pereira D, Carreira TS, Alves N, Sousa Â, Valente JFA. Metallic Structures: Effective Agents to Fight Pathogenic Microorganisms. Int J Mol Sci 2022; 23:1165. [PMID: 35163090 PMCID: PMC8835760 DOI: 10.3390/ijms23031165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/15/2022] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
The current worldwide pandemic caused by coronavirus disease 2019 (COVID-19) had alerted the population to the risk that small microorganisms can create for humankind's wellbeing and survival. All of us have been affected, directly or indirectly, by this situation, and scientists all over the world have been trying to find solutions to fight this virus by killing it or by stop/decrease its spread rate. Numerous kinds of microorganisms have been occasionally created panic in world history, and several solutions have been proposed to stop their spread. Among the most studied antimicrobial solutions, are metals (of different kinds and applied in different formats). In this regard, this review aims to present a recent and comprehensive demonstration of the state-of-the-art in the use of metals, as well as their mechanisms, to fight different pathogens, such as viruses, bacteria, and fungi.
Collapse
Affiliation(s)
- Diana Pereira
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (Â.S.)
| | - Tiago Soares Carreira
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| | - Nuno Alves
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| | - Ângela Sousa
- CICS-UBI-Health Sciences Research Centre, Universidade da Beira Interior, Avenida Infante D. Henrique, 6200-506 Covilhã, Portugal; (D.P.); (Â.S.)
| | - Joana F. A. Valente
- CDRsp-IPL-Centre for Rapid and Sustainable Product Development, Polytechnic of Leiria, Marinha Grande, 2430-028 Leiria, Portugal;
| |
Collapse
|
10
|
Giridasappa A, Ismail SM, Rangappa D, Shanubhoganahalli Maheshwarappa G, Marilingaiah NR, Gollapalli SSR, Daddakunche Shivaramu P. Antioxidant, antiproliferative and antihemolytic properties of phytofabricated silver nanoparticles using Simarouba glauca and Celastrus paniculatus extracts. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02084-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
11
|
Wani IA, Ahmad T, Khosla A. Recent advances in anticancer and antimicrobial activity of silver nanoparticles synthesized using phytochemicals and organic polymers. NANOTECHNOLOGY 2021; 32:462001. [PMID: 34340224 DOI: 10.1088/1361-6528/ac19d5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Development of eco-friendly synthetic methods has resulted in the production of biocompatible Ag NPs for applications in medical sector. To overcome the prevailing antibiotic resistance in bacteria, Ag NPs are being extensively researched over the past few years due to their broad spectrum and robust antimicrobial properties. Silver nanoparticles are also being studied widely in advanced anticancer therapy as an alternative anticancer agent to combat cancer in an effective manner. Keeping this backdrop in consideration, this review aims to provide an extensive coverage of the recent progresses in the green synthesis of Ag NPs specifically using plant derived reducing agents such phytochemicals and numerous other biopolymers. Current development in antimicrobial activity of Ag NPs against various pathogens has been deliberated at length. Recent advances in potent anticancer activity of the biogenic Ag NPs against various cancerous cell lines has also been discussed in detail. Mechanistic details of the synthesis of Ag NPs, their anticancer and antimicrobial action has also been highlighted.
Collapse
Affiliation(s)
- Irshad A Wani
- Postgraduate Department of Chemistry, Govt. Degree College Bhadarwah, University of Jammu, Jammu & Kashmir-182222, India
| | - Tokeer Ahmad
- Nanochemistry Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi-110025, India
| | - Ajit Khosla
- Department of Mechanical Systems Engineering, Faculty of Engineering, Yamagata University, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
12
|
Thakur PK, Verma V. A Review on Green Synthesis, Characterization and Anticancer Application of Metallic Nanoparticles. Appl Biochem Biotechnol 2021; 193:2357-2378. [PMID: 34114200 DOI: 10.1007/s12010-021-03598-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Cancer is one of the leading causes of death worldwide and also the main obstacle of accelerating anticipation. It is globally recognized as overwhelmingly challenging in terms of clinical management. Cancer is taken into account because a prime lethal disease affects different organs of the body. Even with the rapid improvements in the medical sciences, there are no proper medicines to treat specific kinds of cancer. One of the fundamental issues within the malignant growth treatment is the side effect because of conventional treatment systems. Nanotechnology might be an extremely encouraging field for the therapeutic and drug areas; thus, it assumes a crucial part in improving humankind's satisfaction. In the infield of nanotechnology, a plant-mediated fusion of metal nanoparticles has been developed as a substitute to defeat the limitations of traditional synthesis approaches similar to physical and synthetic strategies. These tunable properties of nanomaterials make them progressed apparatuses in the biomedical platform particularly for the improvement of new diagnostics and focused on therapeutics for malignancy.This review incorporates the characterization of nanoparticles with size and shape and features critical uses of biosynthesized green nanomaterials in cancer theranostics.
Collapse
Affiliation(s)
- Piyush Kumar Thakur
- Faculty of Science and Technology, ICFAI University, Raipur, Chhattisgarh, 492001, India.
| | - Varsha Verma
- School of Sciences, MATS University, Raipur, Chhattisgarh, 492001, India
| |
Collapse
|
13
|
Jeevanandam J, Kulabhusan PK, Sabbih G, Akram M, Danquah MK. Phytosynthesized nanoparticles as a potential cancer therapeutic agent. 3 Biotech 2020; 10:535. [PMID: 33224704 PMCID: PMC7669941 DOI: 10.1007/s13205-020-02516-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/27/2020] [Indexed: 12/30/2022] Open
Abstract
Plants are the well-known sources for the hyper-accumulation and reduction of metallic ions. Analysis of various plant extracts has justified the presence of different types of phytochemicals that possess the stabilization and reduction functionalities of precursors to form nanoparticles. Such characteristics make plants as an attractive source for synthesizing eco-friendly nanoparticles (NPs) with potentially less toxicity to the body. Recently, phytosynthesized nanoparticles have been explored for targeted inhibition and diagnosis of cancer cells without affecting non-cancerous healthy cells. The aim of this review is to discuss the characteristic performance of NPs synthesized from various plant sources for the diagnosis and inhibition of cancer. The mode of action of phytosynthesized nanoparticles for anti-cancer applications are also discussed.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Prabir Kumar Kulabhusan
- Department of Chemistry and Biomolecular Science, University of Ottawa, Ottawa, ON K1N6N5 Canada
| | - Godfred Sabbih
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, 38000 Pakistan
| | - Michael K. Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
14
|
Tian S, Saravanan K, Mothana RA, Ramachandran G, Rajivgandhi G, Manoharan N. Anti-cancer activity of biosynthesized silver nanoparticles using Avicennia marina against A549 lung cancer cells through ROS/mitochondrial damages. Saudi J Biol Sci 2020; 27:3018-3024. [PMID: 33100861 PMCID: PMC7569133 DOI: 10.1016/j.sjbs.2020.08.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 11/25/2022] Open
Abstract
The biosynthesized Ag NPs was synthesized by using marine mangrove plant extract Avicennia marina. The synthesized Ag NPs was confirmed by various physiochemical characterization including UV-spectrometer and XRD analysis. In addition, the shape and of the synthesized Ag NPs was morphologically identified by SEM initially and TEM finally. After confirmation, the anti-cancer property of synthesized Ag NPs was confirmed at 50 µg/mL concentration against A549 lung cancer cells by MTT assay. Further, the ability to stimulate the ROS generation and mitochondrial membrane at the IC50 concentration of Ag NPs was confirmed by fluorescence microscopy using DCFH-DA and rhodamine 123 dyes respectively. Finally, the result was concluded that the synthesized Ag NPs has improved anti-cancer activity against A549 cells at lowest concentration.
Collapse
Affiliation(s)
- Shan Tian
- Department of Medical Oncology, 3201 Hospital, No. 783 Tianhan Avenue, Hantai District, Hanzhong, Shaanxi 723000, China
| | - Kandasamy Saravanan
- Molecular, Cell & Cancer Biology Laboratory, Department of Biochemistry, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. BOX 2457, Riyadh 11451, Saudi Arabia
| | - Govindan Ramachandran
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Govindan Rajivgandhi
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| | - Natesan Manoharan
- Department of Marine Science, Bharathidasan University, Tiruchirappalli 620 024, Tamil Nadu, India
| |
Collapse
|
15
|
Youssif KA, Elshamy AM, Rabeh MA, Gabr N, Afifi WM, Salem MA, Albohy A, Abdelmohsen UR, Haggag EG. Cytotoxic Potential of Green Synthesized Silver Nanoparticles of
Lampranthus coccineus
Extracts, Metabolic Profiling and Molecular Docking Study. ChemistrySelect 2020. [DOI: 10.1002/slct.202002947] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Khayrya A. Youssif
- Department of Pharmacognosy Faculty of Pharmacy Modern University for Technology and Information Cairo Egypt
| | - Ali M. Elshamy
- Department of Pharmacognosy Faculty of Pharmacy Cairo University Cairo 11562 Egypt
| | - Mohamed A. Rabeh
- Department of Pharmacognosy Faculty of Pharmacy Modern University for Technology and Information Cairo Egypt
- Department of Pharmacognosy Faculty of Pharmacy Cairo University Cairo 11562 Egypt
| | - Nagwan Gabr
- Department of Pharmacognosy Faculty of Pharmacy Helwan University Cairo 11795 Egypt
| | - Wael M. Afifi
- Department of Pharmacognosy Faculty of Pharmacy Al-Azhar University Cairo 11884 Egypt
- Department of Pharmacognosy Faculty of Pharmacy Sinai University Ismailia Egypt
| | - Mohamed A. Salem
- Department of Pharmaceutical Chemistry October University for Modern Sciences and Arts (MSA) Cairo Egypt
| | - Amgad Albohy
- Department of Pharmaceutical Chemistry Faculty of Pharmacy The British University in Egypt (BUE) El-Sherouk City Cairo 11837 Egypt
- Department of Pharmaceutical Chemistry Faculty of Pharmacy Ain-Shams University Abbasia Cairo 11566 Egypt
| | - Usama Ramadan Abdelmohsen
- Department of Pharmacognosy Faculty of Pharmacy Minia University Minia 61519 Egypt
- Department of Pharmacognosy Faculty of Pharmacy Deraya University 7 Universities Zone 61111 New Minia City Egypt
| | - Eman G. Haggag
- Department of Pharmacognosy Faculty of Pharmacy Helwan University Cairo 11795 Egypt
| |
Collapse
|
16
|
Vinay SP. Synthesis of Fullerene (C60)-Silver Nanoparticles Using Neem Gum Extract Under Microwave Irradiation. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00799-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
17
|
Dinparvar S, Bagirova M, Allahverdiyev AM, Abamor ES, Safarov T, Aydogdu M, Aktas D. A nanotechnology-based new approach in the treatment of breast cancer: Biosynthesized silver nanoparticles using Cuminum cyminum L. seed extract. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2020; 208:111902. [DOI: 10.1016/j.jphotobiol.2020.111902] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 04/24/2020] [Accepted: 05/18/2020] [Indexed: 12/19/2022]
|
18
|
Sharma M, Sharma A, Majumder S. Synthesis, microbial susceptibility and anti-cancerous properties of copper oxide nanoparticles- review. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab9241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Use of Nanoparticles in the diagnosis of cancer and treatment of Cancer is being rapidly studied and developed. The present cancer chemotherapy agents are not much selective in differentiating between cancer cells and normal cells and often lead to development of drug resistance and severe side effects. This has prompted the need to study other potential anticancer agents like metallic oxide nanoparticles, with emphasis on their synthesis and application s in the treatment of cancer by designing targeted delivery system to tumour and cancer cells [Vinardell and Mitjans 2015. Nanomaterials, 5, 1004–1021, Valodkar et al 2011. Mater Chem Phys, 128, 83–89]. In this review paper an attempt has been made to study various methods of preparation of Copper Oxide Nanoparticles, their characteristics and the detailed microbial activities and anti-cancerous properties of these differently synthesized Copper Oxide Nanoparticles.
Collapse
|
19
|
Sattari R, Khayati GR, Hoshyar R. Biosynthesis of Silver–Silver Chloride Nanoparticles Using Fruit Extract of Levisticum Officinale: Characterization and Anticancer Activity Against MDA-MB-468 Cell Lines. J CLUST SCI 2020. [DOI: 10.1007/s10876-020-01818-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
20
|
Hashemi SF, Tasharrofi N, Saber MM. Green synthesis of silver nanoparticles using Teucrium polium leaf extract and assessment of their antitumor effects against MNK45 human gastric cancer cell line. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.127889] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Anticancerous Activity of Transition Metal Oxide Nanoparticles. Nanobiomedicine (Rij) 2020. [DOI: 10.1007/978-981-32-9898-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
22
|
Antineoplastic Biogenic Silver Nanomaterials to Combat Cervical Cancer: A Novel Approach in Cancer Therapeutics. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01697-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Saini H, Yadav R, Kumar D, Kumar G, Agrawal V. Cullen corylifolium (L.) Medik. Seed Extract, an Excellent System For Fabrication of Silver Nanoparticles and Their Multipotency Validation Against Different Mosquito Vectors and Human Cervical Cancer Cell Line. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01630-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Saber MM, Mirtajani SB, Karimzadeh K. Green synthesis of silver nanoparticles using Trapa natans extract and their anticancer activity against A431 human skin cancer cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
25
|
Annu, Ahmed S, Kaur G, Sharma P, Singh S, Ikram S. Evaluation of the antioxidant, antibacterial and anticancer (lung cancer cell line A549) activity of Punica granatum mediated silver nanoparticles. Toxicol Res (Camb) 2018; 7:923-930. [PMID: 30310669 PMCID: PMC6116802 DOI: 10.1039/c8tx00103k] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 05/16/2018] [Indexed: 11/21/2022] Open
Abstract
This work aimed to synthesize silver nanoparticles via an environmentally benign route, using the aqueous extract of Punica granatum as a precursor as well as a stabilizing and reducing agent. The as-synthesized silver nanoparticles were confirmed using UV-visible spectroscopy with an absorbance peak at 450 nm and were thereafter further confirmed using dynamic light scattering (DLS), High Resolution Transmission Electron Microscopy (HR-TEM) and X-Ray Diffraction (XRD). TEM analysis revealed 6-45 nm and spherically dispersed nanoparticles and XRD showed the crystalline nature of the nanoparticles. The free radical scavenging activity of the nanoparticles for DPPH and intracellular reactive oxidative species (ROS) production were observed using dihydroethidium (DHE) non-fluorescent stain and a CellROX® Deep Red fluorescent probe. Antibacterial assays against the most common Gram negative (Escherichia coli) and Gram positive (Staphylococcus aureus) bacteria showed a higher zone of inhibition against S. aureus. Furthermore, the anti-cancerous activity of the biologically synthesized silver nanoparticles was revealed by the inhibited cell growth of lung cancer A549 cells and no cytotoxicity was observed. This may be due to their ability to arrest the cell cycle at G1 phase. Thus, this work provides a gateway to explore more about the anticancer properties of biogenically synthesized silver nanoparticles and these biologically prepared silver nanoparticles have the potential to be utilized in biomedical science.
Collapse
Affiliation(s)
- Annu
- Bio/Polymers Research Laboratory , Department of Chemistry , Jamia Millia Islamia , New Delhi-110025 , India . ; Tel: +91-11-26981717(extn-3252)
| | - Shakeel Ahmed
- Bio/Polymers Research Laboratory , Department of Chemistry , Jamia Millia Islamia , New Delhi-110025 , India . ; Tel: +91-11-26981717(extn-3252)
- Department of Chemistry , Government Degree College Mendhar , Jammu and Kashmir-185111 , India
| | - Gurpreet Kaur
- Centre for Environmental Science and Technology , Central University of Punjab , Bathinda-151001 , India
- Laboratory of Molecular Medicine , Centre for Human Genetics and Molecular Medicine , Central University of Punjab , Bathinda-151001 , India
| | - Praveen Sharma
- Centre for Environmental Science and Technology , Central University of Punjab , Bathinda-151001 , India
| | - Sandeep Singh
- Centre for Environmental Science and Technology , Central University of Punjab , Bathinda-151001 , India
| | - Saiqa Ikram
- Bio/Polymers Research Laboratory , Department of Chemistry , Jamia Millia Islamia , New Delhi-110025 , India . ; Tel: +91-11-26981717(extn-3252)
| |
Collapse
|
26
|
Synthesis and bio-physical characterization of Silver nanoparticle and Ag-mesoporous MnO2 nanocomposite for anti-microbial and anti-cancer activity. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.08.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Kasyanenko N, Qiushi Z, Bakulev V, Osolodkov M, Sokolov P, Demidov V. DNA Binding with Acetate Bis(1,10-phenanthroline)silver(I) Monohydrate in a Solution and Metallization of Formed Structures. Polymers (Basel) 2017; 9:E211. [PMID: 30970890 PMCID: PMC6432125 DOI: 10.3390/polym9060211] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/15/2017] [Accepted: 05/17/2017] [Indexed: 02/07/2023] Open
Abstract
The study of DNA interaction with the acetate bis(1,10-phenanthroline)silver(I) monohydrate in a solution is of interest both for understanding the mechanism of biological activity of silver compound and for forming ordered structures (DNA fibrils) that can be used to solve various problems in the field of nanotechnology. The analysis of changing the DNA conformation (secondary structure, persistent length and volume effects) during the interaction by the methods of UV spectroscopy with the analysis of DNA melting, circular dichroism, viscosity, flow birefringence, AFM (atomic force microscopy) and SEM (scanning electron microscopy) was performed. The formation of two types of complexes was observed. At lower concentration of compound in DNA solution, silver atoms form the coordination bonds with a macromolecule, while the released phenanthroline ligands intercalate between DNA bases. When the concentration of the compound increases, the phenanthroline ligands form an ordered "layer" around the helix. The excess of silver compounds in the DNA solution (with more than five silver atoms per base pair), DNA precipitation is observed with the formation of long fibrils. It was shown that the binding of silver to DNA during the formation of complexes provides further metallization of the resulting structures with the aid of reducing agents; phenanthroline ligands influence the result of such metallization.
Collapse
Affiliation(s)
- Nina Kasyanenko
- Department of Physics, St. Petersburg State University, Universitetskaya Naberezhnaya 3/7, 199037 St. Petersburg, Russia.
| | - Zhang Qiushi
- Department of Physics, St. Petersburg State University, Universitetskaya Naberezhnaya 3/7, 199037 St. Petersburg, Russia.
| | - Vladimir Bakulev
- Department of Physics, St. Petersburg State University, Universitetskaya Naberezhnaya 3/7, 199037 St. Petersburg, Russia.
| | - Mikhail Osolodkov
- Department of Physics, St. Petersburg State University, Universitetskaya Naberezhnaya 3/7, 199037 St. Petersburg, Russia.
| | - Petr Sokolov
- Department of Physics, St. Petersburg State University, Universitetskaya Naberezhnaya 3/7, 199037 St. Petersburg, Russia.
| | - Viktor Demidov
- Pro-Brite Company, Sofiyskaya ul., 93, 192289 St. Petersburg, Russia.
| |
Collapse
|
28
|
Lam PL, Wong WY, Bian Z, Chui CH, Gambari R. Recent advances in green nanoparticulate systems for drug delivery: efficient delivery and safety concern. Nanomedicine (Lond) 2017; 12:357-385. [DOI: 10.2217/nnm-2016-0305] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nanotechnology manipulates therapeutic agents at the nanoscale for the development of nanomedicines. However, there are current concerns over nanomedicines, mainly related to the possible toxicity of nanomaterials used for health medications. Due to their small size, they can enter the human body more readily than larger sized particles. Green chemistry encompasses the green synthesis of drug-loaded nanoparticles by reducing the use of hazardous materials in the synthesis process, thus reducing the adverse health impacts of pharmaceutics. This would greatly expand their potential in biomedical treatments. This review highlights the potential risks of nanomedicine formulations to health, delivery routes of green nanomedicines, recent advances in the development of green nanoscale systems for biomedical applications and future perspectives for the green development of nanomedicines.
Collapse
Affiliation(s)
- Pik-Ling Lam
- State Key Laboratory of Chirosciences, Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Wai-Yeung Wong
- State Key Laboratory of Chirosciences, Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Zhaoxiang Bian
- Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, PR China
| | - Chung-Hin Chui
- State Key Laboratory of Chirosciences, Department of Applied Biology & Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, PR China
- Clinical Division, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, PR China
| | - Roberto Gambari
- Centre of Biotechnology, Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
29
|
Ovais M, Khalil AT, Raza A, Khan MA, Ahmad I, Islam NU, Saravanan M, Ubaid MF, Ali M, Shinwari ZK. Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine (Lond) 2016; 11:3157-3177. [DOI: 10.2217/nnm-2016-0279] [Citation(s) in RCA: 190] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
With the development of the latest technologies, scientists are looking to design novel strategies for the treatment and diagnosis of cancer. Advances in medicinal plant research and nanotechnology have attracted many researchers to the green synthesis of metallic nanoparticles due to its several advantages over conventional synthesis (simple, fast, energy efficient, one pot processes, safer, economical and biocompatibility). Medicinally active plants have proven to be the best reservoirs of diverse phytochemicals for the synthesis of biogenic silver nanoparticles (AgNPs). In this review, we discuss mechanistic advances in the synthesis and optimization of AgNPs from plant extracts. Moreover, we have thoroughly discussed the recent developments and milestones achieved in the use of biogenic AgNPs as cancer theranostic agents and their proposed mechanism of action. Anticipating all of the challenges, we hope that biogenic AgNPs may become a potential cancer theranostic agent in the near future.
Collapse
Affiliation(s)
- Muhammad Ovais
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Talha Khalil
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abida Raza
- National Institute for Lasers & Optronics, Pakistan Atomic Energy Commission, Islamabad, Pakistan
| | - Muhammad Adeeb Khan
- Department of Zoology, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
| | - Irshad Ahmad
- Department of Life sciences, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
| | - Nazar Ul Islam
- Department of Pharmacy, Sarhad University of Science & Information Technology, Peshawar, Pakistan
| | - Muthupandian Saravanan
- Department of Medical Microbiology & Immunology, Institute of Biomedical Sciences, College of Health Sciences, Mekelle University, Mekelle, Ethiopia
| | | | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
30
|
Pandurangan M, Nagajyothi PC, Kim DH, Jung MJ, Shim J, Eom IY. Green Synthesis and Characterization of Biologically Active Silver Nanoparticles Using Perilla frutescens Leaf Extract. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1046-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|