1
|
Thu Bui HT, Thanh Dang LT, Nguyen HT, Le LT, Tran HQ, Thu Nguyen TT. Synergic effect and biosafety of chitosan/zinc complex nanoparticle-based carboxymethyl cellulose coatings for postharvest strawberry preservation. RSC Adv 2025; 15:15539-15549. [PMID: 40365200 PMCID: PMC12067194 DOI: 10.1039/d5ra00140d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 05/05/2025] [Indexed: 05/15/2025] Open
Abstract
Nanotechnology represents a burgeoning field that revolutionizes various industries and sectors, including food applications. In this study, chitosan nanoparticles (CS NPs), zinc oxide nanoparticles (ZnO NPs), and chitosan-zinc complex nanoparticles (CS/Zn NPs) were prepared and incorporated into carboxymethyl cellulose (CMC) coatings to examine their strawberry preservation efficiency. CS NPs, synthesized via ionic gelation, appeared with a spherical shape and a relatively uniform size below 50 nm. ZnO NPs, produced through a green electrochemical method, formed larger aggregates. CS/Zn NPs were formed due to the chelation of CS NPs with Zn2+ present in the fresh zinc electrochemical solution. In antibacterial tests against Escherichia coli and Staphylococcus aureus, CS/Zn NPs exhibited significantly lower MIC and MBC values compared to CS NPs and ZnO NPs individually, indicating a synergistic antibacterial effect between the components. CMC coatings containing these nanoparticles were applied to strawberry surfaces and the fruits were stored at room temperature (25 °C) and in a refrigerator (5 °C). The CS/Zn-CMC coating demonstrated the most pronounced effect in preventing weight loss and decrease of titratable acidity (TA) and ascorbic acid (AA) content over storage. It effectively preserved the original appearance of strawberries, delaying browning until day 15, while the control and other coated samples were completely spoiled within this period. The cytotoxicity assessment indicated the safety of CS/ZnO-CMC coating, suggesting its potential application in fruit preservation.
Collapse
Affiliation(s)
- Ha Thi Thu Bui
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Le Thi Thanh Dang
- Faculty of Chemistry and Environment, Thuyloi University Hanoi 11500 Vietnam
| | - Hue Thi Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Biomedical Sciences, Phenikaa University Hanoi 12116 Vietnam
| | - Le Thi Le
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| | - Huy Quang Tran
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
- Faculty of Biomedical Sciences, Phenikaa University Hanoi 12116 Vietnam
| | - Thuy Thi Thu Nguyen
- Phenikaa University Nano Institute (PHENA), Phenikaa University Hanoi 12116 Vietnam
| |
Collapse
|
2
|
Suhag S, Hooda V. Epoxy-Affixed ZIF-8/CS/Cellulase: a Sustainable Approach for Hydrolysis of Agricultural Waste to Reducing Sugars. Appl Biochem Biotechnol 2025; 197:2681-2712. [PMID: 39792338 DOI: 10.1007/s12010-024-05144-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2024] [Indexed: 01/12/2025]
Abstract
Cellulase was effectively immobilized onto an epoxy-bound chitosan-modified zinc metal-organic framework (epoxy/ZIF-8/CS/cellulase) support, yielding a conjugation rate of 0.64 ± 0.02 mg/cm2 and retaining 80.01 ± 0.01% of its specific activity. The bare and cellulase-bound supports was characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, atomic force microscopy and energy-dispersive X-ray spectroscopy. The immobilized enzyme exhibited optimal activity at pH 5.5 and a temperature of 70 ℃. The efficiency, stability and reactivity of the enzyme improved after immobilization, as evidenced by a decrease in activation energy, enthalpy and Gibbs free energy along with an increase in entropy change. The epoxy-affixed ZIF-8/CS/cellulase strip was successfully employed for rice husk hydrolysis achieving an impressive conversion efficiency of 95%. The method demonstrated a linear range from 0.1 to 0.9% (0.1 × 10-2 to 0.9 × 10-2 mg/ml) and exhibited a strong correlation (R2 = 0.998) with the widely adopted 3, 5-dinitrosalicylic acid method. The epoxy/ZIF-8/CS bound cellulase exhibited remarkable thermal stability, retaining 100% of its activity at 70 °C, in contrast to just 53% for the free enzyme and displayed a half-life of 21 days after storage at 4 °C compared to 9 days for the free enzyme. Furthermore, it retained over 95% activity after 12 h at pH levels of 4.5 and 5.5 and showcased excellent reusability, maintaining activity over 25 cycles. Overall, this method offers high conversion efficiency and selectivity under benign conditions, with no undesirable by-products, making it a cost-effective solution for the routine hydrolysis of lignocellulosic biomass feedstock.
Collapse
Affiliation(s)
- Shashi Suhag
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India
| | - Vinita Hooda
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, India.
| |
Collapse
|
3
|
Suhag S, Jain U, Chauhan N, Hooda V. Cellulase immobilization on nano-chitosan/chromium metal-organic framework hybrid matrix for efficient conversion of lignocellulosic biomass to glucose. Prep Biochem Biotechnol 2025; 55:470-490. [PMID: 39540323 DOI: 10.1080/10826068.2024.2425970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In the current work, cellulase from Aspergillus niger was successfully immobilized on a novel epoxy-affixed chromium metal-organic framework/chitosan (Cr@-MIL-101/CS) support via covalent method using glutaraldehyde as a crosslinker. The bare and cellulase-bound support was characterized by using various microscopic and spectroscopic techniques. Immobilized cellulase exhibited a high immobilization yield of 0.7 ± 0.01 mg/cm2, retaining 87.5 ± 0.04% of its specific activity and displaying enhanced catalytic performance. The immobilized enzyme was maximally active at pH 5.0, temperature 65 °C and 0.9 × 10-2 mg/ml saturating substrate concentration and the half-lives of free and immobilized cellulases were approximately 9 and 19 days, respectively. The decrease in activation energy, enthalpy change, and Gibbs free energy change, coupled with an increase in entropy change upon immobilization, indicated that the enzyme's efficiency, stability, and spontaneity in catalyzing the reaction were enhanced by immobilization. Additionally, the immobilized cellulase efficiently converted rice husk cellulose to glucose, with a quantification limit of 0.05%, linear measurement ranging from 0.1 to 0.9%, and 8.5% conversion efficiency. The present method exhibited a strong correlation (R2 = 0.998) with the DNS method, validating its reliability. Notably, the epoxy/Cr@-MIL-101/CS-bound cellulase demonstrated impressive thermal and pH stabilities, retaining 50% of its activity at 75 °C and over 96% at pH levels of 4.5 and 5.0 after 12 h. Furthermore, it showed excellent reusability, preserving 80% of its activity after 15 cycles and maintaining 50% of its activity even after 20 days of storage. These results suggest that epoxy/Cr@-MIL-101/CS/cellulase composites could be very effective for large-scale cellulose hydrolysis applications.
Collapse
Affiliation(s)
- Shashi Suhag
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Utkarsh Jain
- School of Health Sciences & Technology (SoHST), UPES, Dehradun, India
| | - Nidhi Chauhan
- School of Health Sciences & Technology (SoHST), UPES, Dehradun, India
| | - Vinita Hooda
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
4
|
Martínez-Cisterna D, Rubilar O, Chen L, Lizama M, Chacón-Fuentes M, Quiroz A, Parra P, Rebolledo R, Bardehle L. Biosynthesized Chitosan-Coated Silver Nanoparticles: Insecticide Activity and Sublethal Effects Against Drosophila suzukii (Diptera: Drosophilidae). Biomolecules 2025; 15:490. [PMID: 40305207 PMCID: PMC12024537 DOI: 10.3390/biom15040490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/19/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
The overuse of synthetic pesticides has triggered resistance in insect pests and caused severe environmental impacts, emphasizing the urgent need for sustainable alternatives in Integrated Pest Management (IPM). This study aimed to biosynthesize and characterize chitosan-coated silver nanoparticles (AgChNPs) using Galega officinalis leaf extract and evaluate their insecticidal effects against Drosophila suzukii (Diptera: Drosophilidae), a key pest of fruit crops worldwide. The biosynthesized AgChNPs (257.2 nm) were polydisperse, crystalline, and stable, as confirmed by UV-vis spectroscopy, dynamic light scattering (DLS), X-ray diffraction (XRD), and transmission electron microscopy (TEM). AgChNPs exhibited strong toxicity across multiple developmental stages. Combined larvicidal and pupicidal activity reached 48.3% and 73.3% at 500 and 1000 ppm, respectively, significantly affecting immature stages. As a consequence, adult emergence declined to 46.7%, 51.7%, and 26.7% at 250, 500, and 1000 ppm. Among emerged adults, 71.7% displayed sublethal effects, with 62.8% showing morphological malformations (deformed wings, dehydration) and 37.2% presenting cuticle demelanization. Adulticidal bioassays revealed progressive mortality over 48 h, with 96% mortality at 1000 ppm. Overall, AgChNPs caused acute and chronic toxicity, reduced adult emergence, and induced severe morphological alterations, demonstrating their potential as a sustainable nanotechnological tool for effective pest control within IPM programs.
Collapse
Affiliation(s)
- Daniel Martínez-Cisterna
- Programa de Doctorado en Ciencias de Recursos Naturales, Facultad de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile;
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile;
- Laboratorio de Entomología Aplicada, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile; (M.L.); (P.P.); (R.R.)
| | - Olga Rubilar
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Department of Chemical Engineering, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Lingyun Chen
- Department of Agriculture, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2P5, Canada;
| | - Marcelo Lizama
- Laboratorio de Entomología Aplicada, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile; (M.L.); (P.P.); (R.R.)
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | | | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile;
| | - Pablo Parra
- Laboratorio de Entomología Aplicada, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile; (M.L.); (P.P.); (R.R.)
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Ramón Rebolledo
- Laboratorio de Entomología Aplicada, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile; (M.L.); (P.P.); (R.R.)
| | - Leonardo Bardehle
- Laboratorio de Entomología Aplicada, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile; (M.L.); (P.P.); (R.R.)
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| |
Collapse
|
5
|
Camparotto NG, Fulaneti GHS, Fokoue HH, Mastelaro VR, Vieira MGA, Prediger P. Comparison on the performance of green and conventional magnetic chitosan-based composites in the removal of complex dyes: Synergetic effect, experimental and theoretical studies. Int J Biol Macromol 2025; 289:138657. [PMID: 39672418 DOI: 10.1016/j.ijbiomac.2024.138657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
The presence of complex dyes, which possess four or more aromatic rings, is pervasive in environmental matrices. Nanomaterials offer a promising avenue for their removal. In this study, we synthesized novel magnetic nanocomposites comprising nanochitosan (nCS) and iron nanoparticles through the application of green and conventional protocols. In the preparation of the green composite, designated as G-nCS@FeNPs, eucalyptus leaves extract and proanthocyanidins were employed as reducing and crosslinking agents, respectively. In contrast, the conventional composite, designated as C-nCS@FeNPs, utilized ammonia and glutaraldehyde as the reducing and crosslinking agents, respectively. The G-nCS@FeNPs exhibited a more electropositive surface, and prominent magnetic properties. The zeta potential measurements of the G-nCS@FeNPs (ranging from +36 to +30 mV) were more positive than those of the C-nCS@FeNPs (+35 to -2.79 mV). Additionally, the C content in C-nCS@FeNPs was less (36.4 %) than in G-nCS@FeNPs (57.2 %), which is likely due to the higher nanochitosan content and the presence of proanthocyanidins in the green nanocomposite. The G-nCS@FeNPs exhibited a tridimensional porous structure, whereas the conventional composite appeared to form a CS film with an uneven surface and embedded FeNPs. G-nCS@FeNPs demonstrated remarkable potential as an adsorbent material for the removal of anionic reactive dyes, namely orange 122 (RO122) and red 250 (RR250). It exhibited an exceptional adsorption capacity of 3005 mg.g-1 for RO122. A DFT study revealed that the RO122 molecule displays enhanced reactivity towards the adsorbent surface. Moreover, experiments conducted in saline media and XPS and FTIR analyses post-adsorption indicated that 78.8 % of the interactions between RO122 and the adsorbent are based on electrostatic and ion exchange, while the remaining 22.2 % are attributed to π-π and hydrogen bonds. Also, G-nCS@FeNPs demonstrated a synergistic effect on the removal of the cationic dye safranin in multicomponent systems, exhibiting an increase in removal capacity from 0 to 169 mg.g-1.
Collapse
Affiliation(s)
| | | | - Harold Hilarion Fokoue
- School of Technology, University of Campinas - UNICAMP, 13484-332 Limeira, São Paulo, Brazil
| | - Valmor Roberto Mastelaro
- São Carlos Institute of Physics, University of São Paulo - USP, 13566-590 São Carlos, São Paulo, Brazil
| | | | - Patrícia Prediger
- School of Technology, University of Campinas - UNICAMP, 13484-332 Limeira, São Paulo, Brazil.
| |
Collapse
|
6
|
Khandelwal M, Soni K, Misra KP, Bagaria A, Rathore DS, Pemawat G, Singh R, Khangarot RK. Facile fabrication of a novel chitosan/carboxymethyl cellulose/bentonite/CuO nanocomposite for enhanced photocatalytic and antibacterial applications. RSC Adv 2025; 15:3365-3377. [PMID: 39902111 PMCID: PMC11788891 DOI: 10.1039/d4ra08437c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 01/27/2025] [Indexed: 02/05/2025] Open
Abstract
In this study, an eco-friendly chitosan/carboxymethyl cellulose/bentonite/CuO nanocomposite (CS/CMC/BN/CuO NC) was synthesized utilizing algal-mediated copper oxide nanoparticles (CuO NPs). The resulting hybrid nanocomposite was thoroughly characterized using advanced techniques, including XRD, FTIR, UV-vis, FE-SEM, HR-TEM, and BET analysis. The photocatalytic activity of the hybrid nanocomposite was assessed by the degradation of brilliant cresyl blue (BCB) dye under visible light irradiation, while the antibacterial activity of the hybrid nanocomposite was evaluated against both Gram-positive and Gram-negative bacterial strains. XRD analysis confirmed the successful synthesis of the hybrid nanocomposite (CS/CMC/BN/CuO NC) with a crystallite size of 9.66 nm. The UV-vis analysis and Tauc plot revealed that the hybrid nanocomposite exhibited an absorbance peak at 249 nm and a band gap of 2.81 eV, respectively. FE-SEM and HR-TEM analysis highlighted its unique broken-tile structure. Furthermore, the hybrid nanocomposite exhibited outstanding photocatalytic performance, achieving 98.38% degradation of BCB dye within 60 min under optimal conditions. The scavenging experiments showed that electrons (e-) and superoxide anion radicals (O2˙-) are the major reactive species involved in the degradation of BCB dye. Additionally, it demonstrated remarkable antibacterial efficacy, showing a 40 mm zone of inhibition (ZOI) against the Gram-negative Pseudomonas aeruginosa strain. The findings indicate that the synthesized CS/CMC/BN/CuO NC holds significant promise for the photodegradation of organic dyes. Furthermore, it exhibits strong antibacterial properties, making it a potential disinfectant for treating wastewater contaminated with pathogenic bacteria.
Collapse
Affiliation(s)
- Manisha Khandelwal
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University Udaipur 313001 Rajasthan India
| | - Kanchan Soni
- Department of Physics, School of Basic Sciences, Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Kamakhya Prakash Misra
- Department of Physics, School of Basic Sciences, Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Ashima Bagaria
- Department of Physics, School of Basic Sciences, Manipal University Jaipur Jaipur 303007 Rajasthan India
| | - Devendra Singh Rathore
- Department of Environmental Sciences, Mohanlal Sukhadia University Udaipur 313001 Rajasthan India
| | - Gangotri Pemawat
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University Udaipur 313001 Rajasthan India
| | - Ravindra Singh
- Department of Chemistry, Maharani Shri Jaya Government Post-graduate College Bharatpur 321001 Rajasthan India
| | - Rama Kanwar Khangarot
- Department of Chemistry, University College of Science, Mohanlal Sukhadia University Udaipur 313001 Rajasthan India
| |
Collapse
|
7
|
Desouky MM, Abou-Saleh RH, Moussa TAA, Fahmy HM. Nano-chitosan-coated, green-synthesized selenium nanoparticles as a novel antifungal agent against Sclerotinia sclerotiorum: in vitro study. Sci Rep 2025; 15:1004. [PMID: 39762311 PMCID: PMC11704303 DOI: 10.1038/s41598-024-79574-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 11/11/2024] [Indexed: 01/11/2025] Open
Abstract
Chemical fungicides have been used to control fungal diseases like Sclerotinia sclerotiorum. These fungicides must be restricted because of their toxicity and the development of resistance strains. Therefore, utilizing natural nanoscale materials in agricultural production is a potential alternative. This work aimed to investigate the antifungal properties of a nanocomposite (nano-chitosan-coated, green-synthesized selenium nanoparticles) against the plant pathogenic fungus S. sclerotiorum. Chemical reduction was used to produce selenium nanoparticles from citrus peel extracts, and ionotropic gelation was used to produce chitosan nanoparticles. The nanocomposite has been produced using selenium nanoparticles stabilized by chitosan and cross-linked with sodium tripolyphosphate. Transmission electron microscopy, dynamic light scattering, X-ray diffraction, UV-VIS spectroscopy, and Fourier transform infrared spectroscopy were used to characterize all produced nanostructures. The in vitro antifungal activity and minimum inhibitory concentration of all bulk and nanostructures are investigated at (0.5, 1, 5, 10, 50, 100) ppm concentrations. Scanning electron microscopy was used to detect structural deformations in the fungal mycelium. The findings support the successful synthesis and characterization of all nanoparticles. Lemon peel extract produced smaller, more stable, and distributed selenium nanoparticles (42.28 ± 18.5 nm) than orange peel extract (85.7 ± 140.22 nm). Nanostructures, particularly nanocomposite, have shown a considerable increase in antifungal efficacy compared to bulk structures. At a minimum inhibitory concentration of 0.5 ppm, the nanocomposite exhibited 100% inhibitory activity. The nanocomposite with a concentration of 0.5 ppm exhibited the lowest average fungal biomass (0.32 ± 0.05 g) among all tested nanostructures. Fungal hyphae treated with 0.5 ppm of nanocomposite within 18 h of treatment revealed substantial damage and deformation. These results provide new insights into the nanocomposite as an eco-friendly and promising antifungal agent against other plant pathogenic fungi.
Collapse
Affiliation(s)
- Mohamed M Desouky
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
- Nanoscience and Technology Program, Faculty of Science, Galala University, Galala City, New Galala City, 43511, Suez, Egypt
| | - Radwa H Abou-Saleh
- Nanoscience and Technology Program, Faculty of Science, Galala University, Galala City, New Galala City, 43511, Suez, Egypt.
- Biophysics Group, Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Tarek A A Moussa
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza, Egypt.
| | - Heba M Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
8
|
Ben Sedrine I, Werghi S, Hachef A, Maalaoui A, Zarkouna R, Akriche S, Hannachi H, Zehdi S, Fakhfakh H, Gorsane F. Alleviation of drought stress in tomato by foliar application of seafood waste extract. Sci Rep 2024; 14:30572. [PMID: 39706919 DOI: 10.1038/s41598-024-80798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/21/2024] [Indexed: 12/23/2024] Open
Abstract
To manage the adverse effects of garbage pollution and avoid using chemicals, a natural extract of seafood shells was obtained and explored for its beneficial role. Physical characterization highlighted that its active compounds correspond to chitin and its derivative, chitosan. The ability of the extracted biostimulant to foster tomato tolerance was tested on drought-stressed plants. Along with changes in morphological parameters, the accumulation of chlorophyll and carotenoids was improved. The biostimulant also mediates the accumulation of osmoprotectants and an increased leaf water content. Furthermore, the biostimulant effectively promotes tolerance by increasing drought-stress SIERF84 Transcription factor and decreasing both SIARF4 and SlWRKY81 transcript levels, which in turn, mediates stomatal closure. In addition, the up-regulation of key genes related to NO3- uptake (NTR1.1/2) and assimilation (NR) coupled with the downregulation of ammonium transporters' genes (AMT1.1/2), allowed the uptake of NO3- over NH4+ in the tolerant genotype which is likely to be associated with drought tolerance. Overall, the biostimulant was effective in alleviating water stress and showed similar effects to commercial chitosan. Besides the benefits of a circular economy framework, this biostimulant-based approach is innovative to promote a sustainable eco-agriculture, in the face of persistent water scarcity.
Collapse
Grants
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
- LR99ES12 Ministry of Higher Education and Scientific Reserach, TUNISIA
Collapse
Affiliation(s)
- Imen Ben Sedrine
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Sirine Werghi
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Afifa Hachef
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Ahlem Maalaoui
- Laboratory of Materials Chemistry, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| | - Rahma Zarkouna
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Samah Akriche
- Laboratory of Materials Chemistry, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| | - Hedia Hannachi
- Laboratory of Vegetable Productivity and Environmental Constraint (LR18ES04), University of Tunis El Manar, Tunis, Tunisia
| | - Salwa Zehdi
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
| | - Hatem Fakhfakh
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia
- Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte, 7021, Tunisia
| | - Faten Gorsane
- Laboratory of Molecular Genetics, Immunology and Biotechnology (LR99ES12), Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, 2092, Tunisia.
- Faculty of Sciences of Bizerte, University of Carthage, Zarzouna, Bizerte, 7021, Tunisia.
| |
Collapse
|
9
|
Jiang Z, Xu Y, Yang L, Huang X, Bao J. Bile acid conjugated chitosan nanoparticles promote the proliferation and epithelial-mesenchymal transition of hepatocellular carcinoma by regulating the PI3K/Akt/mTOR pathway. Carbohydr Res 2024; 545:109296. [PMID: 39471534 DOI: 10.1016/j.carres.2024.109296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
Bile acids have been known to play significant roles at certain physiological levels in gastrointestinal metabolism. Yet, they are known to be carcinogenic and aid in tumor progression in most cases, although the roles remain uncertain. Hence, we tested the cytotoxic potential of cholic acid (CA) loaded chitosan nanoparticles (CNPs) on Hep3B cells. The physicochemical properties of the CNPs synthesized with CA load (CA-CNPs) were determined using standard techniques such as ultraviolet-visible spectrophotometry (UV-Vis), fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS) and transmission electron microscopy (TEM). The characteristic peak for chitosan nanoparticles were observed for plain CNPs (pCNPs) and CA-CNPs at around 300 nm as per UV-Vis analysis. FTIR analysis indicated the possible trapping of CA onto CNPs as certain peaks were retained and some peaks were shifted. XRD analysis determined that the peaks representing CA and pCNPs were collectively obtained in CA-CNPs. As per DLS analysis, the particle size, PDI and ζ-potential of the CA-CNPs were 259 nm, 0.284 and 30.4 mV. Further, the CA-CNPs were non-cytotoxic on Hep3B cells at the maximum tested concentration of 500 μg/mL. The viability at 500 μg/mL of CA-CNPs was two-fold higher than 500 μg/mL of pCNPs. Also, the pCNPs were not hemolytic and therefore could not have played a role in the increase of viability after treatment with CA-CNPs, which indicates that CA posed a major role in increased viability of Hep3B cells. As per quantitative PCR (qPCR), the upregulated gene expressions of PI3K, Akt, mTORC2, cMyc, Fibronectin, hVPS34, Slug and ZEB1 and the downregulated expression of the tumor suppressor PTEN indicates that PI3K/Akt/mTOR pathway mediated the induction of epithelial-to-mesenchymal transition (EMT) in response to CA-CNPs treatment on Hep3B cells.
Collapse
Affiliation(s)
- Ziyu Jiang
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China; Department of Oncology, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, 222002, China
| | - Yi Xu
- Phase I Clinical Trial Center, Lianyungang Hospital Affiliated to Xuzhou Medical University, Lianyungang, 222002, China
| | - Liu Yang
- Department of Colorectal Center, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Xing Huang
- Department of Pathology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affifiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Jun Bao
- Department of Chemotherapy, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| |
Collapse
|
10
|
Mohan K, Kandasamy S, Rajarajeswaran J, Sundaram T, Bjeljac M, Surendran RP, Ganesan AR. Chitosan-based insecticide formulations for insect pest control management: A review of current trends and challenges. Int J Biol Macromol 2024; 280:135937. [PMID: 39313045 DOI: 10.1016/j.ijbiomac.2024.135937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/20/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Future agricultural practices necessitate green alternatives to replace hazardous insecticides while distinguishing between pests and beneficial insects. Chitosan, as a biological macromolecule derived from chitin, is biodegradable and exhibits low toxicity to non-target organisms, making it a sustainable alternative to synthetic pesticides. This review identifies chitosan-derivatives for insecticidal activity and highlights its efficacy including genotoxicity, defense mechanism, and disruption of insect's exoskeleton at different concentrations against several insect pests. Similarly, synergistic effects of chitosan in combination with natural extracts, essential oils, and plant-derived compounds, enhances insecticidal action against various pests was evaluated. The chitosan-based insecticide formulations (CHIF) in the form of emulsions, microcapsules, and nanoparticles showed efficient insecticide action on the targeted pests with less environmental impact. The current challenges associated with the field-trial application were also recognized, by optimizing potent CHIF-formulation parameters, scaling-up process, and regulatory hurdles addressed alongside potential solutions. These findings will provide insight into achieving the EU mission of reducing chemical pesticides by 50 %.
Collapse
Affiliation(s)
- Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India.
| | - Sabariswaran Kandasamy
- Department of Biotechnology, PSGR Krishnammal College for Women, Peelamedu, Coimbatore 641 004, India
| | - Jayakumar Rajarajeswaran
- Department of Nanobiomaterials, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 602105, Tamil Nadu, India
| | - Thanigaivel Sundaram
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu 603203, India
| | - Marko Bjeljac
- Institute for Plant Health, Laimburg Research Centre, 39040 Auer (Ora), Italy; Faculty of Agricultural, Environmental and Food Sciences, Free University of Bozen-Bolzano, Piazza Università 1, 39100, Bolzano, Italy
| | | | - Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Kudalsveien 6, NO-8027 Bodø, Norway.
| |
Collapse
|
11
|
Dalei G, Jena D, Das S. 5-Fluorouracil-loaded green chitosan nanoparticles/ guar gum nanocomposite hydrogel in controlled drug delivery. Carbohydr Res 2024; 545:109257. [PMID: 39236345 DOI: 10.1016/j.carres.2024.109257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/07/2024]
Abstract
In recent years nanotechnologies have been applied to human health with promising results, especially in the field of drug delivery. Polymeric nanoparticles (NPs) have garnered much importance in controlled drug delivery owing to their size. Chitosan (Cs) is a well-recognized biopolymer and Cs NPs have been widely explored in drug delivery. Nonetheless, reports pertaining to green synthesis of Cs NPs are scarce. Thus, in this study, green synthesis of Cs NPs was accomplished from raw mango peel extract. Spherical Cs NPs with positively charged surface of 33.4 mV was accomplished by this process. Cs NPs, in varied content, were integrated in a guar gum network matrix resulting in a nanocomposite hydrogel. The mechanical and thermal stability of the hydrogel improved upon addition of Cs NPs. The hydrogel exhibited smart swelling, good antioxidant and anti-inflammatory propensities. Cs NPs encapsulating 5-Fluorouracil demonstrated a controlled release drug profile in the colorectum and the kinetics implied the anomalous nature of drug release mechanism. The exposure of the drug-loaded nanocomposite hydrogel displayed improved anticancer effects in HT-29 colon cancer cells. Taken altogether, this study puts forth the greater efficacy of Cs NPs in controlled drug delivery for anticancer therapy.
Collapse
Affiliation(s)
- Ganeswar Dalei
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, 751029, Odisha, India
| | - Debasis Jena
- Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha, India
| | - Subhraseema Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar, 751029, Odisha, India; Department of Chemistry, Ravenshaw University, Cuttack, 753003, Odisha, India.
| |
Collapse
|
12
|
El-Naggar NEA, El-Shall H, Elyamny S, Hamouda RA, Eltarahony M. Novel algae-mediated biosynthesis approach of chitosan nanoparticles using Ulva fasciata extract, process optimization, characterization and their flocculation performance. Int J Biol Macromol 2024; 282:136925. [PMID: 39490479 DOI: 10.1016/j.ijbiomac.2024.136925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 10/06/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Chitosan nanoparticles (CNPs) are promising biopolymeric nanoparticles with excellent physicochemical, antimicrobial, and biological properties. In this investigation, CNPs were produced using Ulva fasciata biomass extract as a reducing agent. The SEM micrograph revealed that the biosynthesized CNPs appeared to be spheres with a mean size of 32.49 nm. The ζ-potential pattern of CNPs has a single peak at +33.1 mV, indicating a positively charged surface. The X-ray diffraction pattern of the biosynthesized CNPs exhibited three different peaks at 2θ = 25.24, 52.96, and 72.28°. The FTIR analysis identifies various functional groups. The thermogravimetric analyses demonstrate that CNPs have high thermal stability. Additionally, the highest biosynthesis of CNPs (8.96 mg CNPs/mL) was obtained via FCCD when the initial pH level was 4, Ulva fasciata extract concentration was 45 %, v/v, and chitosan concentration was 0.9 %. Algae-mediated synthesized CNPs were used as coagulating/flocculating agents. By using the jar test, CNPs exhibited superior flocculation performance compared to commercial coagulants like alum, FeCl3, and chitosan in bulk form. Further, different parameters were screened, and the maximum flocculating activity (FA) recorded was 83.58 ± 0.47 % at 500 mg/L of CNPs, 1-5 % clay suspension at pH and temperature ranges of 6-8 and 10-80 °C, respectively. CNPs displayed eminent performance in water clarification.
Collapse
Affiliation(s)
- Noura El-Ahmady El-Naggar
- Department of Bioprocess Development, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt.
| | - Hadeel El-Shall
- Environmental biotechnology department, Genetic engineering and biotechnology research institute (GEBRI), City of scientific research and technological applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| | - Shaimaa Elyamny
- Electronic Materials Research Department, Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications (SRTA-City), P.O. Box 21934, New Borg El-Arab City, Alexandria, Egypt
| | - Ragaa A Hamouda
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Egypt
| | - Marwa Eltarahony
- Environmental biotechnology department, Genetic engineering and biotechnology research institute (GEBRI), City of scientific research and technological applications (SRTA-City), New Borg El-Arab City 21934, Alexandria, Egypt
| |
Collapse
|
13
|
Mohamad EA, Yousuf AA, Mohamed RH, Mohammed HS. Preparation and characterization of chitosan-coated noisomal doxorubicin for enhanced its medical application. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2204-2219. [PMID: 38923918 DOI: 10.1080/09205063.2024.2370591] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024]
Abstract
This study aimed to synthesize and characterize chitosan-coated noisomal doxorubicin for the purpose of enhancing its medical application, particularly in the field of cancer treatment. Doxorubicin, a potent chemotherapeutic agent, was encapsulated within noisomes, which are lipid-based nanocarriers known for their ability to efficiently deliver drugs to target sites. Chitosan, a biocompatible and biodegradable polysaccharide, was used to coat the surface of the noisomes to improve their stability and enhance drug release properties. The synthesized chitosan-coated noisomal doxorubicin was subjected to various characterization techniques to evaluate its physicochemical properties. Transmission electron microscopy (TEM) revealed a spherical structure with a diameter of 500-550 ± 5.45 nm and zeta potential of +11 ± 0.13 mV with no aggregation or agglomeration. Chitosan-coated noisomes can loaded doxorubicin with entrapping efficacy 75.19 ± 1.45%. While scanning electron microscopy (SEM) revealed well-defined pores within a fibrous surface. It is observed that chitosan-coated niosomes loading doxorubicin have optimum roughness (22.88 ± 0.71 nm). UV spectroscopy was employed to assess the drug encapsulation efficiency and release profile. Differential scanning calorimetry (DSC) helped determine the thermal behavior, which indicated a broad endotherm peak at 52.4 °C, while X-ray diffraction (XRD) analysis provided information about the crystallinity of the formulation with an intense peak at 23.79°. Fourier-transform infrared spectroscopy (FTIR) indicated the formation of new bonds between the drug and the polymer. The findings from this study will contribute to the knowledge of the physical and chemical properties of the synthesized formulation, which is crucial for ensuring its stability, drug release kinetics, and biological activity. The enhanced chitosan-coated noisomal doxorubicin has the potential to improve the effectiveness and safety of doxorubicin in cancer treatment, offering a promising strategy for enhanced medical applications.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Radiology and Medical Imaging Department, College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj, Saudi Arabia
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Alzahraa Alsayed Yousuf
- Physics Department, Center of Basics Science, Misr University for Science and Technology, 6th of October City, Egypt
| | - Rasha H Mohamed
- Physics Department, Center of Basics Science, Misr University for Science and Technology, 6th of October City, Egypt
| | - Haitham S Mohammed
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
14
|
Chaschin IS, Perepelkin EI, Sinolits MA, Badun GA, Chernysheva MG, Ivanova NM, Vasil Ev VG, Kizas OA, Anuchina NM, Khugaev GA, Britikov DV, Bakuleva NP. Coating based on chitosan/vancomycin nanoparticles: Patterns of formation in a water-carbon dioxide biphase system and in vivo stability. Int J Biol Macromol 2024; 278:134940. [PMID: 39173806 DOI: 10.1016/j.ijbiomac.2024.134940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/09/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
The patterns of formation of chitosan nanoparticles doped with vancomycin and coatings based on them in carbonate solutions have been investigated for the first time in this study. Using a technique of radioactive indicators, it was found that at a CO2 pressure of 30 MPa, the yield of the nanoparticles was ∼85 %, and a maximum antibiotic encapsulation efficiency of ∼30 % was achieved. By spectrophotometric and high-resolution microscopy, it was found that the coating of stabilized xenopericardial tissue of bioprosthetic heart valve, based on chitosan nanoparticles doped with vancomycin with a zeta potential |ζ| ∼20 mV completely covers collagen fibers by depositing about 60 nm nanoparticles onto them under direct deposition from carbonic acid at a pressure of 30 MPa CO2. The coating preserves the mechanical strength characteristics of collagen tissue and completely suppresses the growth of S. aureus pathogenic biofilm. This is consistent with the observed increase in antibiotic release of 15 % when the medium was acidified. Histological study demonstrated that the structure of pericardial tissues was not significantly altered by the deposition nanoparticles from carbonic acid. It was found that the rate of biodegradation of polymers and vancomycin in the coating differs by half (16 weeks for the rat model). A significantly lower degradation rate of antibiotics (∼50 % of vancomycin total remaining mass and ∼25 % of chitosan) was associated with its reliable encapsulation into nanoparticles.
Collapse
Affiliation(s)
- Ivan S Chaschin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation; Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation.
| | - Evgenii I Perepelkin
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation
| | - Maria A Sinolits
- Lomonosov Moscow State University, Chemistry Department, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - Gennadii A Badun
- Lomonosov Moscow State University, Chemistry Department, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation
| | - Maria G Chernysheva
- Lomonosov Moscow State University, Chemistry Department, GSP-1, Leninskie Gory, Moscow 119991, Russian Federation.
| | - Nina M Ivanova
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation.
| | - Victor G Vasil Ev
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation.
| | - Olga A Kizas
- Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova, Moscow 119991, Russian Federation.
| | - Nelya M Anuchina
- Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation
| | - Georgiy A Khugaev
- Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation
| | - Dmitrii V Britikov
- Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation.
| | - Natalia P Bakuleva
- Bakulev Scientific Center for Cardiovascular Surgery, 135 Rublevskoe Sh., Moscow 121552, Russian Federation
| |
Collapse
|
15
|
Bhandari S, Sen B, Khatua S, Singh LR, Parihar VS, Mahato M. Ruthenium complex based nanocomposite film with enhanced and selective electrochemical sensing of bifenthrin pesticide. RSC Adv 2024; 14:29542-29558. [PMID: 39297048 PMCID: PMC11409230 DOI: 10.1039/d4ra04188g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024] Open
Abstract
Bifenthrin (BF), a widely used pyrethroid pesticide in farming, lacks highly sensitive and selective sensors despite its extensive application. Ruthenium complexes are very effective for selective sensing applications but suffer from structural instability at elevated conditions, electrochemical activity, and the use of costly electrolytes. This work improves their electrochemical activity and mechanical strength by incorporating silver nanowires and replacing the costly electrolyte with abundant KCl + PBS, resulting in enhanced signal performance. Herein, a ruthenium complex containing composite film was immobilized on a platinum (Pt) electrode using Langmuir Blodgett technique. The fabricated sensor has been characterized by differential pulse voltammetry (DPV) based electrochemical technique. The BF pesticide sensing parameters, including the limit of detection (LOD), linear range (LR), and sensitivity, were evaluated using SWV, DPV, and CV techniques. Among these, the DPV technique demonstrated the best performance, achieving a sensitivity of 0.648 μA cm-2 μM-1, a LR of 1-10 μM, and a LOD of 1 μM. The relative standard deviation (RSD) values using DPV are found to be 6.3% (repeatability study), 3% (reproducibility study), 8% (metal ion interference), 5% (organic species interference), and 2% (real sample study), which are much lesser than the World Health Organization (WHO) recommendation of RSD value on the pesticide (i.e. 20%). The BF sensor demonstrated a selectivity of 2× difference of peak height response compared to similar pesticides. The reported pesticide sensor will open new options for sensor research using metal complex-based LB film nanocomposite.
Collapse
Affiliation(s)
- Sanjeev Bhandari
- Physics Division, Department of Basic Sciences and Social Sciences, School of Technology, North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Bhaskar Sen
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Snehadrinarayan Khatua
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University Shillong Meghalaya 793022 India
| | - L Robindro Singh
- Department of Nanotechnology, School of Technology, North-Eastern Hill University Shillong Meghalaya 793022 India
| | - Vijay Singh Parihar
- Biomaterials and Tissue Engineering Group, Faculty of Medicine and Health Technology, Tampere University 33720 Tampere Finland
| | - Mrityunjoy Mahato
- Physics Division, Department of Basic Sciences and Social Sciences, School of Technology, North-Eastern Hill University Shillong Meghalaya 793022 India
| |
Collapse
|
16
|
Nasser R, Ibrahim E, Fouad H, Ahmad F, Li W, Zhou Q, Yu T, Chidwala N, Mo J. Termiticidal Effects and Morpho-Histological Alterations in the Subterranean Termite ( Odontotermes formosanus) Induced by Biosynthesized Zinc Oxide, Titanium Dioxide, and Chitosan Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:927. [PMID: 38869552 PMCID: PMC11173738 DOI: 10.3390/nano14110927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
Recently, nanoparticles have been widely used in agricultural pest control as a secure substitute for pesticides. However, the effect of nanoparticles on controlling the subterranean termite Odontotermes formosanus (O. formosanus) has not been studied yet. Consequently, this study aimed to evaluate the effectiveness of some nanomaterials in controlling O. formosanus. The results showed that zinc oxide nanoparticles (ZnONPs), titanium dioxide nanoparticles (TiO2NPs), and chitosan nanoparticles (CsNPs) biosynthesized using the culture filtrate of Scedosporium apiospermum (S. apiospermum) had an effective role in controlling O. formosanus. Moreover, the mortality rate of O. formosanus after 48 h of treatment with ZnONPs, TiO2NPs, and CsNPs at a 1000 µg/mL concentration was 100%, 100%, and 97.67%, respectively. Furthermore, using ZnONPs, TiO2NPs, and CsNPs on O. formosanus resulted in morpho-histological variations in the normal structure, leading to its death. X-ray diffraction, UV-vis spectroscopy, Fourier transform infrared spectroscopy, scanning electron microscopy, dynamic light scattering, energy dispersive spectroscopy, and the Zeta potential were used to characterize the biosynthesis of ZnONPs, TiO2NPs, and CsNPs with strong activity against O. formosanus termites. Overall, the results of this investigation suggest that biosynthesized ZnONPs, TiO2NPs, and CsNPs have enormous potential for use as innovative, ecologically safe pesticides for O. formosanus control.
Collapse
Affiliation(s)
- Raghda Nasser
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
- Zoology and Entomology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt
| | - Ezzeldin Ibrahim
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China;
- Department of Vegetable Diseases Research, Plant Pathology Research Institute, Agriculture Research Centre, Giza 12916, Egypt
| | - Hatem Fouad
- Department of Field Crop Pests, Plant Protection Research Institute, Agricultural Research Centre, Cairo 12622, Egypt;
| | - Farhan Ahmad
- Entomology Section, Central Cotton Research Institute, Multan P.O. Box 66000, Pakistan;
| | - Wuhan Li
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Qihuan Zhou
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Ting Yu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Nooney Chidwala
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| | - Jianchu Mo
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Insect Sciences, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China; (R.N.); (W.L.); (Q.Z.); (T.Y.); (N.C.)
| |
Collapse
|
17
|
Shaheen F, Imran M, Haider A, Shahzadi A, Moeen S, Ul-Hamid A, Ullah H, Khan S, Alshomrany AS, Jeridi M, Al-Anazy MM, Ikram M. Size-controlled synthesis of La and chitosan doped cobalt selenide nanostructures for catalytic and antibacterial activity with molecular docking analysis. Int J Biol Macromol 2024; 263:130096. [PMID: 38354925 DOI: 10.1016/j.ijbiomac.2024.130096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/28/2024] [Accepted: 02/08/2024] [Indexed: 02/16/2024]
Abstract
Co-precipitation method was adopted to synthesize ternary heterostructure catalysts La/CS-CoSe NSs (lanthanum/chitosan‑cobalt selenide nanostructures) without the use of a surfactant. During synthesis, a fixed amount (3 wt%) of CS was doped with 2 and 4 wt% La to control the growth, recombination rate and stability of CoSe NSs. The doped samples served to enhance the surface area, porosity and active sites for catalytic degradation of rhodamine B dye and antibacterial potential against Staphylococcus aureus (S. aureus). Additionally, the synthesized catalysts were examined for morphological, structural and optical characteristics to assess the influence of dopants to CoSe. XRD spectra verified the hexagonal and cubic structure of CoSe, whereas the porosity of the undoped sample (CoSe) increased from 45 to 60 % upon incorporation of dopants (La and Cs). Among the samples analyzed during this study, 4 % La/CS-CoSe exhibited significant bactericidal behavior as well as the highest catalytic reduction of rhodamine B dye in a neutral environment. Molecular docking analysis was employed to elucidate the underlying mechanism behind the bactericidal activity exhibited by CS-CoSe and La/CS-CoSe NSs against DHFRS. aureus and DNA gyraseS. aureus.
Collapse
Affiliation(s)
- Fatima Shaheen
- Department of Chemistry, Government College University, Faisalabad, Pakpattan Road, Sahiwal, Punjab, 57000, Pakistan
| | - Muhammad Imran
- Department of Chemistry, Government College University, Faisalabad, Pakpattan Road, Sahiwal, Punjab, 57000, Pakistan.
| | - Ali Haider
- Department of Clinical Sciences, Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef, University of Agriculture, Multan 66000, Punjab, Pakistan.
| | - Anum Shahzadi
- Department of Pharmacy, COMSATS Islamabad, Lahore campus, 54000, Pakistan
| | - Sawaira Moeen
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Hameed Ullah
- Laboratory of Nanomaterials for Renewable Energy and Artificial Photosynthesis (NanoREAP), Institute of Physics, U.F.R.G.S., 91509-900 Porto Alegre, Rio Grande do Sul, Brazil
| | - Sherdil Khan
- Laboratory of Nanomaterials for Renewable Energy and Artificial Photosynthesis (NanoREAP), Institute of Physics, U.F.R.G.S., 91509-900 Porto Alegre, Rio Grande do Sul, Brazil
| | - Ali S Alshomrany
- Department of Physics, College of Sciences, Umm Al-Qura University, Al Taif HWY, Mecca 24381, Saudi Arabia
| | - Mouna Jeridi
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Murefah Mana Al-Anazy
- Department of Chemistry, College of Sciences, Princess Nourah bint Abdulrahman University (PNU), P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore 54000, Punjab, Pakistan.
| |
Collapse
|
18
|
Sharaf M, Zahra AA, Alharbi M, Mekky AE, Shehata AM, Alkhudhayri A, Ali AM, Al Suhaimi EA, Zakai SA, Al Harthi N, Liu CG. Bee chitosan nanoparticles loaded with apitoxin as a novel approach to eradication of common human bacterial, fungal pathogens and treating cancer. Front Microbiol 2024; 15:1345478. [PMID: 38559346 PMCID: PMC10978808 DOI: 10.3389/fmicb.2024.1345478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024] Open
Abstract
Antimicrobial resistance is one of the largest medical challenges because of the rising frequency of opportunistic human microbial infections across the globe. This study aimed to extract chitosan from the exoskeletons of dead bees and load it with bee venom (commercially available as Apitoxin [Api]). Then, the ionotropic gelation method would be used to form nanoparticles that could be a novel drug-delivery system that might eradicate eight common human pathogens (i.e., two fungal and six bacteria strains). It might also be used to treat the human colon cancer cell line (Caco2 ATCC ATP-37) and human liver cancer cell line (HepG2ATCC HB-8065) cancer cell lines. The x-ray diffraction (XRD), Fourier transform infrared (FTIR), and dynamic light scattering (DLS) properties, ζ-potentials, and surface appearances of the nanoparticles were evaluated by transmission electron microscopy (TEM). FTIR and XRD validated that the Api was successfully encapsulated in the chitosan nanoparticles (ChB NPs). According to the TEM, the ChB NPs and the ChB NPs loaded with Apitoxin (Api@ChB NPs) had a spherical shape and uniform size distribution, with non-aggregation, for an average size of approximately 182 and 274 ± 3.8 nm, respectively, and their Zeta potential values were 37.8 ± 1.2 mV and - 10.9 mV, respectively. The Api@ChB NPs had the greatest inhibitory effect against all tested strains compared with the ChB NPs and Api alone. The minimum inhibitory concentrations (MICs) of the Api, ChB NPs, and Api@ChB NPs were evaluated against the offer mentioned colony forming units (CFU/mL), and their lowest MIC values were 30, 25, and 12.5 μg mL-1, respectively, against Enterococcus faecalis. Identifiable morphological features of apoptosis were observed by 3 T3 Phototox software after Api@ChB NPs had been used to treat the normal Vero ATCC CCL-81, Caco2 ATCC ATP-37, and HepG2 ATCC HB-8065 cancer cell lines for 24 h. The morphological changes were clear in a concentration-dependent manner, and the ability of the cells was 250 to 500 μg mL-1. These results revealed that Api@ChB NPs may be a promising natural nanotreatment for common human pathogens.
Collapse
Affiliation(s)
- Mohamed Sharaf
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Department of Biochemistry, Faculty of Agriculture, AL-Azhar University, Cairo, Egypt
| | - Abdullah A. Zahra
- Department of Plant Protection, Faculty of Agriculture, AL-Azhar University, Cairo, Egypt
| | - Maha Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Alsayed E. Mekky
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Abdulsalam Alkhudhayri
- Department of Biology, College of Sciences, University of Hafr Al Batin, Hafar Al Batin, Saudi Arabia
| | - Ahmed M. Ali
- Department of Biology, Shaqra University, Shaqra, Saudi Arabia
| | - Ebtesam A. Al Suhaimi
- Vice Presidency for Scientific Research and Innovation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- King Abdulaziz and his Companions Foundation for Giftedness and Creativity “Mawhiba”, Riyadh, Saudi Arabia
| | - Shadi A. Zakai
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Norah Al Harthi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Chen-Guang Liu
- Department of Biochemistry and Molecular Biology, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| |
Collapse
|
19
|
Sanmugam A, Shanthi D, Sairam AB, Kumar RS, Almansour AI, Arumugam N, Kavitha A, Kim HS, Vikraman D. Fabrication of chitosan/fibrin-armored multifunctional silver nanocomposites to improve antibacterial and wound healing activities. Int J Biol Macromol 2024; 257:128598. [PMID: 38056742 DOI: 10.1016/j.ijbiomac.2023.128598] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
A wound healing substitute promotes rapid tissue regeneration and protects wound sites from microbial contamination. The silver-based antiseptic frequently moist skin stains, burns and irritation, penetrates deep wounds and protects against pathogenic infections. Thus, we formulated a novel fibrin/chitosan encapsulated silver nanoparticle (CH:F:SPG-CH:SNP) composites bandage accelerating the polymicrobial wound healing. Electrospinning method was employed to form the nano-porous, inexpensive, and biocompatible smart bandages. The structural, functional, and mechanical properties were analyzed for the prepared composites. The biological capacity of prepared CH:F:SPG-CH:SNP bandage was assessed against NIH-3 T3 fibroblast and HaCaT cell lines. In vitro hemolytic assays using red blood cells were extensively studied and explored the low hemolytic effect (4.5 %). In addition, the improved drug delivery nature captured for the CH:F:SPG-CH:SNP composite bandage. Antibacterial experiments were achieved against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Lactobacillus bulgaricus using zone inhibition method. Moreover, in-vivo wound healing efficacy of fabricated smart bandage was evaluated on the albino Wistar rats which revealed the significant improvement on the postoperative abdomen wounds.
Collapse
Affiliation(s)
- Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Sriperumbudur 602117, India
| | - D Shanthi
- Department of Chemistry, Vel Tech Multi Tech Dr.Rangarajan Dr.Sakunthala Engineering College, Avadi, Chennai 600062, TamilNadu, India
| | - Ananda Babu Sairam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Sriperumbudur 602117, India
| | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh 1451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh 1451, Saudi Arabia
| | - Natrajan Arumugam
- Department of Chemistry, College of Science, King Saud University, Riyadh 1451, Saudi Arabia
| | - A Kavitha
- Department of Chemistry, Chennai Institute of Technology, Sarathy Nagar, Kundrathur, Chennai 600069, TamilNadu, India
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea.
| |
Collapse
|
20
|
Sundararajan N, Habeebsheriff HS, Dhanabalan K, Cong VH, Wong LS, Rajamani R, Dhar BK. Mitigating Global Challenges: Harnessing Green Synthesized Nanomaterials for Sustainable Crop Production Systems. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300187. [PMID: 38223890 PMCID: PMC10784203 DOI: 10.1002/gch2.202300187] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 12/07/2023] [Indexed: 01/16/2024]
Abstract
Green nanotechnology, an emerging field, offers economic and social benefits while minimizing environmental impact. Nanoparticles, pivotal in medicine, pharmaceuticals, and agriculture, are now sourced from green plants and microorganisms, overcoming limitations of chemically synthesized ones. In agriculture, these green-made nanoparticles find use in fertilizers, insecticides, pesticides, and fungicides. Nanofertilizers curtail mineral losses, bolster yields, and foster agricultural progress. Their biological production, preferred for environmental friendliness and high purity, is cost-effective and efficient. Biosensors aid early disease detection, ensuring food security and sustainable farming by reducing excessive pesticide use. This eco-friendly approach harnesses natural phytochemicals to boost crop productivity. This review highlights recent strides in green nanotechnology, showcasing how green-synthesized nanomaterials elevate crop quality, combat plant pathogens, and manage diseases and stress. These advancements pave the way for sustainable crop production systems in the future.
Collapse
Affiliation(s)
| | | | | | - Vo Huu Cong
- Faculty of Natural Resources and EnvironmentVietnam National University of AgricultureTrau QuyGia LamHanoi10766Vietnam
| | - Ling Shing Wong
- Faculty of Health and Life SciencesINTI International UniversityPersiaran Perdana BBNPutra NilaiNilaiNegeri Sembilan71800Malaysia
| | | | - Bablu Kumar Dhar
- Business Administration DivisionMahidol University International CollegeMohidol UniversitySalaaya73170Thailand
- Faculty of Business AdministrationDaffodil International UniversityDhaka1216Bangladesh
| |
Collapse
|
21
|
Abou Hammad AB, Al-Esnawy AA, Mansour AM, El Nahrawy AM. Synthesis and characterization of chitosan-corn starch-SiO 2/silver eco-nanocomposites: Exploring optoelectronic and antibacterial potential. Int J Biol Macromol 2023; 249:126077. [PMID: 37532191 DOI: 10.1016/j.ijbiomac.2023.126077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/04/2023]
Abstract
This work discusses the physicochemical and antimicrobial characteristics of chitosan-corn starch eco-nanocomposites integrated with silica@Ag nano-spheres. These composites were synthesized through sol-gel polymerization and subsequently exposed to simulated body fluid (SBF). The incorporation of Ag into the eco-nanocomposites led to a decrease in diffuse reflectance across the entire wavelength range. The dielectric permittivity exhibited an increase up to 52.1 at a frequency of 100 kHz, while the ac conductivity reached a value of 5.2 ∗ 10-6 (S cm-1) at the same frequency for the sample with the highest Ag content. The study utilized XRD and FTIR techniques to examine the materials before and after in vitro testing and evaluated the antibacterial properties of the eco-nanocomposites against several pathogenic microorganisms, including Staphylococcus haemolyticus, Staphylococcus aureus, Klebsiella pneumoniae, and Escherichia coli, using the agar diffusion method. The eco-nanocomposites demonstrated bioactivity by forming a hydroxy appetite layer on their surfaces and were capable of releasing silver (Ag) at concentrations of 1.3, 1.9, and 2.5 mol%. This study suggests that chitosan-corn starch-SiO2-based doped with Ag eco-nanocomposite has the potential for various applications, including biomedical and environmental fields, where their antibacterial properties can be utilized to combat harmful microorganisms.
Collapse
Affiliation(s)
- Ali B Abou Hammad
- Solid State Physics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo 12622, Egypt
| | - A A Al-Esnawy
- Physics Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt.
| | - A M Mansour
- Solid State Physics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo 12622, Egypt
| | - Amany M El Nahrawy
- Solid State Physics Department, Physics Research Institute, National Research Centre (NRC), 33 El-Bohouth St., Dokki, Cairo 12622, Egypt.
| |
Collapse
|
22
|
Sanmugam A, Abbishek S, Kumar SL, Sairam AB, Palem VV, Kumar RS, Almansour AI, Arumugam N, Vikraman D. Synthesis of chitosan based reduced graphene oxide-CeO 2 nanocomposites for drug delivery and antibacterial applications. J Mech Behav Biomed Mater 2023; 145:106033. [PMID: 37478544 DOI: 10.1016/j.jmbbm.2023.106033] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/23/2023]
Abstract
In this study, the unique characteristics of chitosan, reduced graphene oxide (rGO) and cerium oxide (CeO2) based hybrid bionano-composites make a carrier for various drug delivery and antimicrobial applications. The recent literatures shown that addition of biopolymers to rGO and CeO2 based nanocomposites exhibit excellent performance in design and development of biosensors, wound dressings, electrodes, microfluidic chips, drug delivery systems and energy storage applications. Chitosan (CS), reduced graphene oxide (rGO) mixed with cerium oxide (CeO2) to form CS-rGO and CS-rGO-CeO2 hybrid bionano-composites using precipitation method. The physiochemical characterization of casted nanocomposite sheet was done using FTIR, XRD, UV-Vis spectrum, SEM and TGA. The XRD results of CS-rGO-CeO2 revealed that the nanoparticle was found to be crystalline structure. FTIR revealed that nitrogen functionalities of CS interacted with rGO-CeO2 to form hybrid nanocomposites. The thermal gravimetric analysis (TGA) showed that the CS-rGO-CeO2 has better thermal stability up to 550 °C. The SEM confirms the surface morphology of CS-rGO-CeO2 has large surface area with smooth surface. Moreover, the antibacterial properties of nanocomposites exhibit excellent zone of inhibition against Staphylococcus aureus and Escherichia coli. The NIH3T3 cell line evaluations showed superior cell adhesion on hybrid nanocomposites. Hence bionano-composite based on CS, rGO and CeO2 are potential biomaterials for drug delivery and antibacterial applications.
Collapse
Affiliation(s)
- Anandhavelu Sanmugam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumpudur, 602117, Tamilnadu, India.
| | - S Abbishek
- Department of Chemical Engineering, Sri Venkateswara College of Engineering, Pennalur, Sriperumpudur, 602117, Tamilnadu, India
| | - S Logesh Kumar
- Department of Biomedical Engineering, KPR Institute of Engineering and Technology, Coimbatore, India
| | - Ananda Babu Sairam
- Department of Applied Chemistry, Sri Venkateswara College of Engineering, Pennalur, Sriperumpudur, 602117, Tamilnadu, India
| | | | - Raju Suresh Kumar
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdulrahman I Almansour
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Natarajan Arumugam
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, 04620, South Korea
| |
Collapse
|
23
|
Kodasi B, Kamble RR, Shettar AK, Hoskeri JH, Keri RS, Metre TV, Bheemayya L, Nadoni VB, Nayak MR. Novel jointured green synthesis of chitosan‑silver nanocomposite: An approach towards reduction of nitroarenes, anti-proliferative, wound healing and antioxidant applications. Int J Biol Macromol 2023; 246:125578. [PMID: 37379943 DOI: 10.1016/j.ijbiomac.2023.125578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Here we present the simple green synthesis of chitosan‑silver nanocomposite (CS-Ag NC) by employing kiwi fruit juice as reducing agent. The structure, morphology, and composition of CS-Ag NC were determined using characterization techniques such as XRD, SEM-EDX, UV-visible, FT-IR, particle size, and zeta potential. The prepared CS-Ag nanocomposite was effectively used as catalyst in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 as reductant, in aqueous medium at room temperature. The toxicity of CS-Ag NC was assessed on Normal (L929) cell line, Lung cancer (A549) cell line and Oral cancer (KB-3-1) cell line and their respective IC50values observed were 83.52 μg/mL, 66.74 μg/mL and 75.11 μg/mL. The CS-Ag NC displayed significant cytotoxic activity and the cell viability percentage for normal, lung and oral cancer cell lines were found to be 42.87 ± 0.0060, 31.28 ± 0.0045 and 35.90 ± 0.0065 respectively. Stronger cell migration was exemplified by CS-Ag NC and the percentage of wound closure (97.92%) was substantially identical to that of the standard drug ascorbic acid (99.27%). Further CS-Ag nanocomposite was subjected for in vitro antioxidant activity.
Collapse
Affiliation(s)
- Barnabas Kodasi
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| | - Ravindra R Kamble
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India.
| | - Arun K Shettar
- Division of Preclinical Research and Drug Development, Cytxon Biosolutions Pvt Ltd., Hubli 580031, Karnataka, India
| | - Joy H Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women's University, Vijayapura 586108, Karnataka, India
| | - Rangappa S Keri
- Centre for Nano and Material Science, Jain University, Bengaluru 562112, India
| | - Tukaram V Metre
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| | - Lokesh Bheemayya
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| | - Vishwa B Nadoni
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| | - Manojna R Nayak
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| |
Collapse
|
24
|
Navarro-López DE, Bautista-Ayala AR, Rosales-De la Cruz MF, Martínez-Beltrán S, Rojas-Torres DE, Sanchez-Martinez A, Ceballos-Sanchez O, Jáuregui-Jáuregui J, Lozano LM, Sepúlveda-Villegas M, Tiwari N, López-Mena ER. Nanocatalytic performance of pectinase immobilized over in situ prepared magnetic nanoparticles. Heliyon 2023; 9:e19021. [PMID: 37600413 PMCID: PMC10432700 DOI: 10.1016/j.heliyon.2023.e19021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
Immobilization of enzymes is one of the protein engineering methods used to improve their thermal and long-term stabilities. Immobilized pectinase has become an essential biocatalyst for optimization in the food processing industry. Herein, nanostructured magnetic nanoparticles were prepared in situ for use as supports to immobilize pectinase. The structural, morphological, optical and magnetic features and the chemical compositions of the nanoparticles were characterized. Nanoparticle agglomeration and low porosity were observed due to the synthetic conditions. These nanoparticles exhibited superparamagnetic behavior, which is desirable for biotechnological applications. The maximum retention rate for the enzyme was observed at pH 4.5 with a value of 1179.3 U/mgNP (units per milligram of nanoparticle), which was equivalent to a 65.6% efficiency. The free and immobilized pectinase were affected by the pH and temperature. The long-term instability caused 40% and 32% decreases in the specific activities of the free and immobilized pectinase, respectively. The effects of immobilization were analyzed with kinetic and thermodynamic studies. These results indicated a significant affinity for the substrate, a decreased reaction rate, and improved thermal stability of the immobilized pectinase. The reusability of the immobilized pectinase was preserved effectively during cycling, with only a 21.2% decrease in activity observed from the first to the last use. Therefore, alternative magnetic nanoparticles are presented for immobilizing and maintaining the thermostability of pectinase.
Collapse
Affiliation(s)
- Diego E. Navarro-López
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| | - Alvaro R. Bautista-Ayala
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| | - Maria Fernanda Rosales-De la Cruz
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| | - Selina Martínez-Beltrán
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| | - Diego E. Rojas-Torres
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| | - A. Sanchez-Martinez
- CONACyT-Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Campus Siglo XXI, Carretera Zacatecas - Guadalajara Km 6, Ejido La Escondida, Zacatecas, 98160, Mexico
| | - O. Ceballos-Sanchez
- Universidad de Guadalajara, Centro Universitario de Ciencias Exactas e Ingenierias (CUCEI), Departamento de Ingenieria de Proyectos, Av. Jose Guadalupe Zuno #48, Industrial Los Belenes, Zapopan, Jalisco, 45157, Mexico
| | - J.A. Jáuregui-Jáuregui
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| | - Luis Marcelo Lozano
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| | - M. Sepúlveda-Villegas
- Departamento de Biología Molecular y Genómica, Hospital Civil de Guadalajara, “Fray Antonio Alcalde”, Guadalajara, 44280, Jalisco, Mexico
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, 44100, Jalisco, Mexico
| | - Naveen Tiwari
- Center for Research in Biological Chemistry and Molecular Materials (CiQUS), University of Santiago de Compostela, Rúa Jenaro de La Fuente S/N, 15782, Santiago de Compostela, A Coruna, Spain
| | - Edgar R. López-Mena
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Gral Ramón Corona No. 2514, Colonia Nuevo México, 45201, Zapopan, Jalisco, Mexico
| |
Collapse
|
25
|
Nehra P, Chauhan RP. Antimicrobial activity of nanocellulose composite hydrogel isolated from an agricultural waste. Arch Microbiol 2023; 205:133. [PMID: 36959521 DOI: 10.1007/s00203-023-03454-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 02/25/2023] [Indexed: 03/25/2023]
Abstract
Infectious diseases and antimicrobial resistance have become one of the extreme health threats of this century. Overuse of antibiotics leads to pollution. To overcome this threat, the current strategy is to develop a substitute for these antibiotics that are extracted from natural sources. In this study, nanocellulose (NC) was isolated from an agricultural waste (wheat straw) and then oxidized with the help of sodium periodate to obtain dialdehyde nanocellulose (DA-NC). Then, chitosan (Ch) and DA-NC are both crosslinked with each other in different weight ratios, to obtain NC/Ch composite hydrogels. The resulted hydrogel is also characterized to confirm its structure, morphology and composition. The hydrogel was also tested for antimicrobial activities against bacteria, algae as well as fungal species to check its applicability for biomedical applications. The six microbes used for the ananlysis are Pseudomonas aeruginosa, Escherichia coli, Bacillus subtilis, Candida albicans, Aspergillus niger and Fusarium solani. The antimicrobial assessment of the hydrogel is evaluated via inhibition zone and optical density analysis. The resulted nanocellulose/chitosan (NC/Ch) hydrogel shows the uniform distribution of nanocellulose in the composite and the synergistic effect of their properties. Hydrogel serves excellent antimicrobial results which makes it a promising candidate for various biomedical applications.
Collapse
Affiliation(s)
- Poonam Nehra
- School of Biomedical Engineering, National Institute of Technology, Kurukshetra, 136119, India.
| | - Rishi Pal Chauhan
- Department of Physics, National Institute of Technology, Kurukshetra, 136119, India
| |
Collapse
|
26
|
Hassani FS, Hadizadeh M, Zare D, Mazinani S. Comparison of different methods for preparation of nanochitosan as anticancer agent. Polym Bull (Berl) 2023. [DOI: 10.1007/s00289-023-04739-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
27
|
Boamah PO, Onumah J, Aduguba WO, Santo KG. Application of depolymerized chitosan in crop production: A review. Int J Biol Macromol 2023; 235:123858. [PMID: 36871686 DOI: 10.1016/j.ijbiomac.2023.123858] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/04/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
Currently, chitosan (CHT) is well known for its uses, particularly in veterinary and agricultural fields. However, chitosan's uses suffer greatly due to its extremely solid crystalline structure, it is insoluble at pH levels above or equal to 7. This has sped up the process of derivatizing and depolymerizing it into low molecular weight chitosan (LMWCHT). As a result of its diverse physicochemical as well as biological features which include antibacterial activity, non-toxicity, and biodegradability, LMWCHT has evolved into new biomaterials with extremely complex functions. The most important physicochemical and biological property is antibacterial, which has some degree of industrialization today. CHT and LMWCHT have potential due to the antibacterial and plant resistance-inducing properties when applied in crop production. This study has highlighted the many advantages of chitosan derivatives as well as the most recent studies on low molecular weight chitosan applications in crop development.
Collapse
Affiliation(s)
- Peter Osei Boamah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana.
| | - Jacqueline Onumah
- Department of Ecological Agriculture, Bolgatanga Technical University, Bolgatanga, Ghana
| | | | - Kwadwo Gyasi Santo
- Department of Horticulture and Crop Production, University of Energy and Natural Resources, Ghana
| |
Collapse
|
28
|
S Karthick Raja Namasivayam, U Karthika Pandian, Vani Chava, R S Arvind Bharani, M Kavisri, Meivelu Moovendhan. Chitosan nanocomposite as an effective carrier of potential herbicidal metabolites for noteworthy phytotoxic effect against major aquatic invasive weed water hyacinth (Eichhornia crassipes). Int J Biol Macromol 2023; 226:1597-1610. [PMID: 36455822 DOI: 10.1016/j.ijbiomac.2022.11.272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/25/2022] [Accepted: 11/26/2022] [Indexed: 11/29/2022]
Abstract
In this current work, the herbicidal activity of fungal metabolites stacked chitosan nanocomposite against significant aquatic invasive weed Eichhornia crassipes (water hyacinth) was examined. Herbicidal metabolites from the fungal strain Allophoma oligotrophica were extracted and purified under standard condition. Altered ionic gelation technique was received for the amalgamation of chitosan nanocomposite fabricated with herbicidal metabolites. Synthesized nanocomposite incited checked herbicidal impact on the leaflets of water hyacinth. Synthesized nanocomposite induced marked herbicidal effect on the tested leaflets of water hyacinth. Necrotic development on the tested leaflets at earlier incubation period followed by progressive enhancement of necrotic lesion reveals the noteworthy herbicidal activity of the synthesized nanocomposite. Parenchymal, mesenchymal tissue disintegration, reduction of total chlorophyll content, elevated anti oxidative enzymes and changes in qualitative protein profiling of tested leaflets reveals the nanocomposite induced noteworthy morphometric and functional effects. Effect of solvents on the release profile demonstrates that ethyl acetate treatment brought about controlled or sustained release of metabolites. No sign of toxic effect on the zebra fish embryonic developmental stages revealed biocompatibility of the nanocomposite.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS deemed University, Chennai 602195, Tamil Nadu, India
| | - U Karthika Pandian
- Centre for Bioresource Research and Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Vani Chava
- Centre for Bioresource Research and Development (C-BIRD), Department of Biotechnology, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - R S Arvind Bharani
- Department of Research & Innovation, Saveetha School of Engineering, SIMATS deemed University, Chennai 602195, Tamil Nadu, India
| | - M Kavisri
- Department of Civil Engineering, School of building and Environment, Sathyabama Institute of Science &Technology, Chennai 600119, Tamil Nadu, India
| | - Meivelu Moovendhan
- Centre for Ocean Research, Col.Dr. Jeppiaar Research Park, Sathyabama Institute of Science & Technology, Chennai 600119, Tamil Nadu, India.
| |
Collapse
|
29
|
Molecular Docking and Efficacy of Aloe vera Gel Based on Chitosan Nanoparticles against Helicobacter pylori and Its Antioxidant and Anti-Inflammatory Activities. Polymers (Basel) 2022; 14:polym14152994. [PMID: 35893958 PMCID: PMC9330094 DOI: 10.3390/polym14152994] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
The medicinal administration of Aloe vera gel has become promising in pharmaceutical and cosmetic applications particularly with the development of the nanotechnology concept. Nowadays, effective H. pylori treatment is a global problem; therefore, the development of natural products with nanopolymers such as chitosan nanoparticles (CSNPs) could represent a novel strategy for the treatment of gastric infection of H. pylori. HPLC analysis of A. vera gel indicated the presence of chlorogenic acid as the main constituent (1637.09 µg/mL) with other compounds pyrocatechol (1637.09 µg/mL), catechin (1552.92 µg/mL), naringenin (528.78 µg/mL), rutin (194.39 µg/mL), quercetin (295.25 µg/mL), and cinnamic acid (37.50 µg/mL). CSNPs and A. vera gel incorporated with CSNPs were examined via TEM, indicating mean sizes of 83.46 nm and 36.54 nm, respectively. FTIR spectra showed various and different functional groups in CSNPs, A. vera gel, and A. vera gel incorporated with CSNPs. Two strains of H. pylori were inhibited using A. vera gel with inhibition zones of 16 and 16.5 mm, while A. vera gel incorporated with CSNPs exhibited the highest inhibition zones of 28 and 30 nm with resistant and sensitive strains, respectively. The minimal inhibitory concentration (MIC) was 15.62 and 3.9 µg/mL, while the minimal bactericidal concentration (MBC) was 15.60 and 7.8 µg/mL with MBC/MIC 1 and 2 indexes using A. vera gel and A. vera gel incorporated with CSNPs, respectively, against the resistance strain. DPPH Scavenging (%) of the antioxidant activity exhibited an IC50 of 138.82 μg/mL using A.vera gel extract, and 81.7 μg/mL when A.vera gel was incorporated with CSNPs. A.vera gel incorporated with CSNPs enhanced the hemolysis inhibition (%) compared to using A.vera gel alone. Molecular docking studies through the interaction of chlorogenic acid and pyrocatechol as the main components of A. vera gel and CSNPs with the crystal structure of the H. pylori (4HI0) protein supported the results of anti-H. pylori activity.
Collapse
|
30
|
Cocean G, Cocean A, Postolachi C, Garofalide S, Bulai G, Munteanu BS, Cimpoesu N, Cocean I, Gurlui S. High-Power Laser Deposition of Chitosan Polymers: Medical and Environmental Applications. Polymers (Basel) 2022; 14:polym14081537. [PMID: 35458286 PMCID: PMC9026774 DOI: 10.3390/polym14081537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/04/2023] Open
Abstract
High-power laser irradiation interaction with natural polymers in biocomposites and Laser-Induced Chitin Deacetylation (LICD) was studied in this work, in order to produce thin films consisting of chitosan composite. The new method can lead to a cutting-edge technology, as a response to the concern regarding the accumulation of “natural biological waste” and its use. The process consists of high-power laser irradiation applied on oyster shells as the target and deposition of the ablated material on different substrates. The obtained thin films we analyzed by FTIR, UV-VIS and LIF spectroscopy, as well as SEM-EDS and AFM. All the results indicated that chitin was extracted from the shell composite material and converted to chitosan by deacetylation. It was, thus, evidenced that chemical transformation in the chitin polymer side-chain occurs during laser irradiation of the oyster shell and in the resulted plasma plume of ablation. The numerical simulation in COMSOL performed for this study anticipates and confirms the experimental results of chitin deacetylation, also providing information about the conditions required for the physico-chemical processes involved. The high sorption properties of the thin films obtained by a LICD procedure is evidenced in the study. This quality suggests that they should be used in transdermal patch construction due to the known hemostatic and antibacterial effects of chitosan. The resulting composite materials, consisting of the chitosan thin films deposited on hemp fabric, are also suitable for micro-filters in water decontamination or in other filtering processes.
Collapse
Affiliation(s)
- Georgiana Cocean
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (A.C.); (C.P.); (S.G.); (B.S.M.); (N.C.)
- Rehabilitation Hospital Borsa, 1 Floare de Colt Street, 435200 Borsa, Romania
| | - Alexandru Cocean
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (A.C.); (C.P.); (S.G.); (B.S.M.); (N.C.)
| | - Cristina Postolachi
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (A.C.); (C.P.); (S.G.); (B.S.M.); (N.C.)
| | - Silvia Garofalide
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (A.C.); (C.P.); (S.G.); (B.S.M.); (N.C.)
| | - Georgiana Bulai
- Integrated Center of Environmental Science Studies in the North-Eastern Development Region (CERNESIM), Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, 700506 Iasi, Romania;
| | - Bogdanel Silvestru Munteanu
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (A.C.); (C.P.); (S.G.); (B.S.M.); (N.C.)
| | - Nicanor Cimpoesu
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (A.C.); (C.P.); (S.G.); (B.S.M.); (N.C.)
- Faculty of Material Science and Engineering, Gheorghe Asachi Technical University of Iasi, 59A Mangeron Bld., 700050 Iasi, Romania
| | - Iuliana Cocean
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (A.C.); (C.P.); (S.G.); (B.S.M.); (N.C.)
- Correspondence: (I.C.); (S.G.)
| | - Silviu Gurlui
- Faculty of Physics, Alexandru Ioan Cuza University of Iasi, 11 Carol I Bld., 700506 Iasi, Romania; (G.C.); (A.C.); (C.P.); (S.G.); (B.S.M.); (N.C.)
- Correspondence: (I.C.); (S.G.)
| |
Collapse
|
31
|
Chanaj-Kaczmarek J, Rosiak N, Szymanowska D, Rajewski M, Wender-Ozegowska E, Cielecka-Piontek J. The Chitosan-Based System with Scutellariae baicalensis radix Extract for the Local Treatment of Vaginal Infections. Pharmaceutics 2022; 14:740. [PMID: 35456574 PMCID: PMC9028937 DOI: 10.3390/pharmaceutics14040740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/01/2023] Open
Abstract
Scutellarie baicalensis radix, as a flavone-rich source, exhibits antibacterial, antifungal, antioxidant, and anti-inflammatory activity. It may be used as a therapeutic agent to treat various diseases, including vaginal infections. In this study, six binary mixtures of chitosan with stable S. baicalensis radix lyophilized extract were obtained and identified by spectral (ATR-FTIR, XRPD) and thermal (TG and DSC) methods. The changes in dissolution rates of active compounds and the significant increase in the biological properties towards metal chelating activity were observed, as well as the inhibition of hyaluronic acid degradation after mixing plant extract with chitosan. Moreover, the combination of S. baicalensis radix lyophilized extract with a carrier allowed us to obtain the binary systems with a higher antifungal activity than the pure extract, which may be effective in developing new strategies in the vaginal infections treatment, particularly vulvovaginal candidiasis.
Collapse
Affiliation(s)
- Justyna Chanaj-Kaczmarek
- Department of Pharmacognosy, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (J.C.-K.); (N.R.)
| | - Natalia Rosiak
- Department of Pharmacognosy, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (J.C.-K.); (N.R.)
| | - Daria Szymanowska
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, 48 Wojska Polskiego Street, 60-627 Poznan, Poland;
| | - Marcin Rajewski
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (M.R.); (E.W.-O.)
| | - Ewa Wender-Ozegowska
- Department of Reproduction, Poznan University of Medical Sciences, 33 Polna Street, 60-535 Poznan, Poland; (M.R.); (E.W.-O.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Poznan University of Medical Sciences, 3 Rokietnicka Street, 60-806 Poznan, Poland; (J.C.-K.); (N.R.)
| |
Collapse
|
32
|
Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: A review. Carbohydr Polym 2021; 261:117904. [PMID: 33766382 DOI: 10.1016/j.carbpol.2021.117904] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 01/01/2021] [Accepted: 03/03/2021] [Indexed: 01/09/2023]
Abstract
Chitosan, a low-cost and multipurpose polymer with numerous desired physicochemical and biological properties has been tested for various applications in agriculture, pharmacy, and biomedicine industries. The availability of functional groups along the backbone makes chitosan readily available for other polymers and metal ions to form bio-nanocomposites. Different types of chitosan-based nanocomposites have been designed and tested for the enhancement of chitosan efficiency and ultimately widening the application areas of chitosan in plants. These nanocomposites serve different purposes such as eliciting plant's defence systems against different threats (pathogen attack), antimicrobial agent against bacteria, fungi and viruses, enhancement of nutrient uptake by plants, control release of micro/macronutrients, fungicides and herbicides. In this review, an extensive outlook has been provided (mainly in the last five years) to recent trends and advances in the fabrication and application of chitosan-based composites. Finally, current challenges and future development opportunities of chitosan-based nanocomposites for plants are discussed.
Collapse
|
33
|
de França Bettencourt GM, Degenhardt J, Zevallos Torres LA, de Andrade Tanobe VO, Soccol CR. Green biosynthesis of single and bimetallic nanoparticles of iron and manganese using bacterial auxin complex to act as plant bio-fertilizer. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101822] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Santos VP, Marques NSS, Maia PCSV, de Lima MAB, Franco LDO, de Campos-Takaki GM. Seafood Waste as Attractive Source of Chitin and Chitosan Production and Their Applications. Int J Mol Sci 2020; 21:ijms21124290. [PMID: 32560250 PMCID: PMC7349002 DOI: 10.3390/ijms21124290] [Citation(s) in RCA: 162] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/26/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Chitosan is a cationic polymer obtained by deacetylation of chitin, found abundantly in crustacean, insect, arthropod exoskeletons, and molluscs. The process of obtaining chitin by the chemical extraction method comprises the steps of deproteinization, demineralization, and discoloration. To obtain chitosan, the deacetylation of chitin is necessary. These polymers can also be extracted through the biological extraction method involving the use of microorganisms. Chitosan has biodegradable and biocompatible properties, being applied in the pharmaceutical, cosmetic, food, biomedical, chemical, and textile industries. Chitosan and its derivatives may be used in the form of gels, beads, membranes, films, and sponges, depending on their application. Polymer blending can also be performed to improve the mechanical properties of the bioproduct. This review aims to provide the latest information on existing methods for chitin and chitosan recovery from marine waste as well as their applications.
Collapse
Affiliation(s)
- Vanessa P. Santos
- Federal Rural University of Pernambuco, Recife 52171-900, Pernambuco, Brazil; (V.P.S.); (N.S.S.M.); (P.C.S.V.M.)
| | - Nathália S. S. Marques
- Federal Rural University of Pernambuco, Recife 52171-900, Pernambuco, Brazil; (V.P.S.); (N.S.S.M.); (P.C.S.V.M.)
| | - Patrícia C. S. V. Maia
- Federal Rural University of Pernambuco, Recife 52171-900, Pernambuco, Brazil; (V.P.S.); (N.S.S.M.); (P.C.S.V.M.)
| | - Marcos Antonio Barbosa de Lima
- Department of Microbiology, Federal Rural University of Pernambuco, Recife 52171-900, Pernambuco, Brazil; (M.A.B.d.L.); (L.d.O.F.)
| | - Luciana de Oliveira Franco
- Department of Microbiology, Federal Rural University of Pernambuco, Recife 52171-900, Pernambuco, Brazil; (M.A.B.d.L.); (L.d.O.F.)
| | - Galba Maria de Campos-Takaki
- Research Center for Environmental Sciences and Biotechnology, Catholic University Pernambuco, Recife 50050-590, Pernambuco, Brazil
- Correspondence: ; Tel.: +55-081-2119-4017
| |
Collapse
|
35
|
Aloe vera (L.) Burm. F Assisted Green Synthesis and Biological Applications of Y2O3:Mg2+ Nanocomposites. J CLUST SCI 2018. [DOI: 10.1007/s10876-018-1400-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Thirumurugan D, Vijayakumar R, Vadivalagan C, Karthika P, Alam Khan MK. Isolation, structure elucidation and antibacterial activity of methyl-4,8-dimethylundecanate from the marine actinobacterium Streptomyces albogriseolus ECR64. Microb Pathog 2018; 121:166-172. [PMID: 29775727 DOI: 10.1016/j.micpath.2018.05.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/14/2018] [Accepted: 05/14/2018] [Indexed: 12/30/2022]
Abstract
Around 120 actinobacterial colonies were isolated from various regions of marine East coast region of Tamil Nadu, India. Among them, 33 were morphologically distinct and they were preliminarily screened for their antibacterial activity against Pseudomonas fluorescens, Vibrio cholerae, V. parahaemolyticus, V. alginolyticus, and Aeromonas hydrophila by cross-streak plate technique. Among the isolated, the isolate ECR64 exhibited maximum zone of inhibition against fish pathogenic bacteria. The crude bioactive compounds were extracted from the isolate ECR64 using different organic solvents which exhibited maximum antibacterial activity. Separation and purification of the bioactive compounds were made by column chromatography which yielded 27 fractions and were re-chromatographed to obtain the active compound. Ultra violet (UV), Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectral studies were used to predict the structure of the active compound which was identified as methyl-4,8-dimethylundecanate. The potential isolate ECR64 was identified as Streptomyces albogriseolus by phylogenetic, phenotypic and genotypic (16S rRNA gene sequence) analyses. The identified compound methyl-4,8-dimethylundecanate can be used as potential and alternative drug in disease management of aquaculture.
Collapse
Affiliation(s)
- Durairaj Thirumurugan
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Kancheepuram, India.
| | - Ramasamy Vijayakumar
- Department of Microbiology, Bharathidasan University Constituent College, Kurumbalur, Perambalur, India
| | - Chithravel Vadivalagan
- Entomology Laboratory, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Pushparaj Karthika
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Coimbatore, 641 043, Tamil Nadu, India
| | - Md Khurshid Alam Khan
- School of Life Sciences, B. S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, India
| |
Collapse
|