1
|
Bowland AC, Melin AD, Hosken DJ, Hockings KJ, Carrigan MA. The evolutionary ecology of ethanol. Trends Ecol Evol 2025; 40:67-79. [PMID: 39482197 DOI: 10.1016/j.tree.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024]
Abstract
The consumption of ethanol has frequently been seen as largely restricted to humans. Here, we take a broad eco-evolutionary approach to understanding ethanol's potential impact on the natural world. There is growing evidence that ethanol is present in many wild fruits, saps, and nectars and that ethanol ingestion offers benefits that favour adaptations for its use in multiple taxa. Explanations for ethanol consumption span both the nutritional and non-nutritional, with potential medicinal value or cognitive effects (with social-behavioural benefits) explored. We conclude that ethanol is ecologically relevant and that it has shaped the evolution of many species and structured symbiotic relationships among organisms, including plants, yeast, bacteria, insects, and mammals.
Collapse
Affiliation(s)
- Anna C Bowland
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - David J Hosken
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK
| | - Kimberley J Hockings
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Cornwall, UK.
| | | |
Collapse
|
2
|
Lourie E, Shamay T, Toledo S, Nathan R. Spatial memory obviates following behaviour in an information centre of wild fruit bats. Philos Trans R Soc Lond B Biol Sci 2024; 379:20240060. [PMID: 39230458 PMCID: PMC11449202 DOI: 10.1098/rstb.2024.0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/10/2024] [Accepted: 05/20/2024] [Indexed: 09/05/2024] Open
Abstract
According to the information centre hypothesis (ICH), colonial species use social information in roosts to locate ephemeral resources. Validating the ICH necessitates showing that uninformed individuals follow informed ones to the new resource. However, following behaviour may not be essential when individuals have a good memory of the resources' locations. For instance, Egyptian fruit bats forage on spatially predictable trees, but some bear fruit at unpredictable times. These circumstances suggest an alternative ICH pathway in which bats learn when fruits emerge from social cues in the roost but then use spatial memory to locate them without following conspecifics. Here, using an unique field manipulation and high-frequency tracking data, we test for this alternative pathway: we introduced bats smeared with the fruit odour of the unpredictably fruiting Ficus sycomorus trees to the roost, when they bore no fruits, and then tracked the movement of conspecifics exposed to the manipulated social cue. As predicted, bats visited the F. sycomorus trees with significantly higher probabilities than during routine foraging trips (of >200 bats). Our results show how the integration of spatial memory and social cues leads to efficient resource tracking and highlight the value of using large movement datasets and field experiments in behavioural ecology. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Emmanuel Lourie
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Israel , Jerusalem, Israel
| | - Tomer Shamay
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Israel , Jerusalem, Israel
| | - Sivan Toledo
- Blavatnik School of Computer Science, Tel-Aviv University , Tel Aviv, Israel
| | - Ran Nathan
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Israel , Jerusalem, Israel
| |
Collapse
|
3
|
Gómez-Devia L, Nevo O. Effects of temperature gradient on functional fruit traits: an elevation-for-temperature approach. BMC Ecol Evol 2024; 24:94. [PMID: 38982367 PMCID: PMC11232184 DOI: 10.1186/s12862-024-02271-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Fruit traits mediate animal-plant interactions and have to a large degree evolved to match the sensory capacities and morphology of their respective dispersers. At the same time, fruit traits are affected by local environmental factors, which may affect frugivore-plant trait match. Temperature has been identified as a major factor with a strong effect on the development of fruits, which is of serious concern because of the rising threat of global warming. Nonetheless, this primarily originates from studies on domesticated cultivars in often controlled environments. Little is known on the effect of rising temperatures on fruit traits of wild species and the implications this could have to seed dispersal networks, including downstream consequences to biodiversity and ecosystem functioning. In a case study of five plant species from eastern Madagascar, we addressed this using the elevation-for-temperature approach and examined whether a temperature gradient is systematically associated with variation in fruit traits relevant for animal foraging and fruit selection. We sampled across a gradient representing a temperature gradient of 1.5-2.6 °C, corresponding to IPCC projections. The results showed that in most cases there was no significant effect of temperature on the traits evaluated, although some species showed different effects, particularly fruit chemical profiles. This suggests that in these species warming within this range alone is not likely to drive substantial changes in dispersal networks. While no systemic effects were found, the results also indicate that the effect of temperature on fruit traits differs across species and may lead to mismatches in specific animal-plant interactions.
Collapse
Affiliation(s)
- Laura Gómez-Devia
- German Centre for Integrative Biodiversity Research (iDiv) , Halle-Jena-Leipzig, Germany.
- Global Change Research Group, Mediterranean Institute for Advanced Studies (IMEDEA, CSIC-UIB), Esporles, Spain.
- Technische Universität Dresden, Dresden, Germany.
| | - Omer Nevo
- German Centre for Integrative Biodiversity Research (iDiv) , Halle-Jena-Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
4
|
Gordon WE, Baek S, Nguyen HP, Kuo YM, Bradley R, Fong SL, Kim N, Galazyuk A, Lee I, Ingala MR, Simmons NB, Schountz T, Cooper LN, Georgakopoulos-Soares I, Hemberg M, Ahituv N. Integrative single-cell characterization of a frugivorous and an insectivorous bat kidney and pancreas. Nat Commun 2024; 15:12. [PMID: 38195585 PMCID: PMC10776631 DOI: 10.1038/s41467-023-44186-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/03/2023] [Indexed: 01/11/2024] Open
Abstract
Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we use integrative single-cell sequencing (scRNA-seq and scATAC-seq) on insectivorous (Eptesicus fuscus; big brown bat) and frugivorous (Artibeus jamaicensis; Jamaican fruit bat) bat kidneys and pancreases and identify key cell population, gene expression and regulatory differences associated with the Jamaican fruit bat that also relate to human disease, particularly diabetes. We find a decrease in loop of Henle and an increase in collecting duct cells, and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the Jamaican fruit bat kidney. The Jamaican fruit bat pancreas shows an increase in endocrine and a decrease in exocrine cells, and differences in genes and regulatory elements involved in insulin regulation. We also find that these frugivorous bats share several molecular characteristics with human diabetes. Combined, our work provides insights from a frugivorous mammal that could be leveraged for therapeutic purposes.
Collapse
Affiliation(s)
- Wei E Gordon
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
- Department of Biology, Menlo College, 1000 El Camino Real, Atherton, CA, 94027, USA
| | - Seungbyn Baek
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Hai P Nguyen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Yien-Ming Kuo
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Rachael Bradley
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Sarah L Fong
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Nayeon Kim
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Alex Galazyuk
- Hearing Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
- POSTECH Biotech Center, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Melissa R Ingala
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ, 07940, USA
| | - Nancy B Simmons
- Division of Vertebrate Zoology, Department of Mammalogy, American Museum of Natural History, New York, NY, 10024, USA
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Lisa Noelle Cooper
- Musculoskeletal Research Focus Area, Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Martin Hemberg
- Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, 94158, USA.
- Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, 94158, USA.
| |
Collapse
|
5
|
Casorso JG, DePasquale AN, Romero Morales S, Cheves Hernandez S, Lopez Navarro R, Hockings KJ, Carrigan MA, Melin AD. Seed dispersal syndrome predicts ethanol concentration of fruits in a tropical dry forest. Proc Biol Sci 2023; 290:20230804. [PMID: 37464751 DOI: 10.1098/rspb.2023.0804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023] Open
Abstract
Studying fruit traits and their interactions with seed dispersers can improve how we interpret patterns of biodiversity, ecosystem function and evolution. Mounting evidence suggests that fruit ethanol is common and variable, and may exert selective pressures on seed dispersers. To test this, we comprehensively assess fruit ethanol content in a wild ecosystem and explore sources of variation. We hypothesize that both phylogeny and seed dispersal syndrome explain variation in ethanol levels, and we predict that fruits with mammalian dispersal traits will contain higher levels of ethanol than those with bird dispersal traits. We measured ripe fruit ethanol content in species with mammal- (n = 16), bird- (n = 14) or mixed-dispersal (n = 7) syndromes in a Costa Rican tropical dry forest. Seventy-eight per cent of fruit species yielded measurable ethanol concentrations. We detected a phylogenetic signal in maximum ethanol levels (Pagel's λ = 0.82). Controlling for phylogeny, we observed greater ethanol concentrations in mammal-dispersed fruits, indicating that dispersal syndrome helps explain variation in ethanol content, and that mammals may be more exposed to ethanol in their diets than birds. Our findings further our understanding of wild fruit ethanol and its potential role as a selective pressure on frugivore sensory systems and metabolism.
Collapse
Affiliation(s)
- Julia G Casorso
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | - Allegra N DePasquale
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | | | | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Choi J, Lee L, Maro A, Corl A, McGuire JA, Bowie RCK, Dudley R. Hummingbird ingestion of low-concentration ethanol within artificial nectar. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230306. [PMID: 37351493 PMCID: PMC10282586 DOI: 10.1098/rsos.230306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/01/2023] [Indexed: 06/24/2023]
Abstract
Both frugivores and nectarivores are potentially exposed to dietary ethanol produced by fermentative yeasts which metabolize sugars. Some nectarivorous mammals exhibit a preference for low-concentration ethanol solutions compared to controls of comparable caloric content, but behavioural responses to ethanol by nectar-feeding birds are unknown. We investigated dietary preference by Anna's Hummingbirds (Calypte anna) for ethanol-enhanced sucrose solutions. Via repeated binary-choice experiments, three adult male hummingbirds were exposed to sucrose solutions containing 0%, 1% or 2% ethanol; rates of volitional nectar consumption were measured over a 3 h interval. Hummingbirds did not discriminate between 0% and 1% ethanol solutions, but exhibited significantly reduced rates of consumption of a 2% ethanol solution. Opportunistic measurements of ethanol concentrations within hummingbird feeders registered values peaking at about 0.05%. Ethanol at low concentrations (i.e. up to 1%) is not aversive to Anna's Hummingbirds and may be characteristic of both natural and anthropogenic nectars upon which they feed. Given high daily amounts of nectar consumption by hummingbirds, chronic physiological exposure to ethanol can thus be substantial, although naturally occurring concentrations within floral nectar are unknown.
Collapse
Affiliation(s)
- Julia Choi
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Lilianne Lee
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Aleksey Maro
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Ammon Corl
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Jimmy A. McGuire
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Rauri C. K. Bowie
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Robert Dudley
- Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
- Smithsonian Tropical Research Institute, Balboa, Republic of Panama
| |
Collapse
|
7
|
Gordon WE, Baek S, Nguyen HP, Kuo YM, Bradley R, Galazyuk A, Lee I, Ingala MR, Simmons NB, Schountz T, Cooper LN, Georgakopoulos-Soares I, Hemberg M, Ahituv N. Integrative single-cell characterization of frugivory adaptations in the bat kidney and pancreas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.12.528204. [PMID: 36824791 PMCID: PMC9949079 DOI: 10.1101/2023.02.12.528204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Frugivory evolved multiple times in mammals, including bats. However, the cellular and molecular components driving it remain largely unknown. Here, we used integrative single-cell sequencing on insectivorous and frugivorous bat kidneys and pancreases and identified key cell population, gene expression and regulatory element differences associated with frugivorous adaptation that also relate to human disease, particularly diabetes. We found an increase in collecting duct cells and differentially active genes and regulatory elements involved in fluid and electrolyte balance in the frugivore kidney. In the frugivorous pancreas, we observed an increase in endocrine and a decrease in exocrine cells and differences in genes and regulatory elements involved in insulin regulation. Combined, our work provides novel insights into frugivorous adaptation that also could be leveraged for therapeutic purposes.
Collapse
|
8
|
Nevo O, Valenta K, Helman A, Ganzhorn JU, Ayasse M. Fruit scent as an honest signal for fruit quality. BMC Ecol Evol 2022; 22:139. [PMID: 36451093 PMCID: PMC9710009 DOI: 10.1186/s12862-022-02064-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/15/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Fleshy fruits evolved to be attractive to seed dispersers through various signals such as color and scent. Signals can evolve through different trajectories and have various degrees of reliability. The strongest substrate on which reliable signals can evolve is when there is an inherent link between signal and reward, rendering cheating costly or impossible. It was recently proposed that aliphatic esters in fruit scent may be predictive of sugar content due to their synthesis from products of sugar fermentation. We test this hypothesis on a case study of wild fig species (Ficus tiliifolia) from Madagascar, which relies on seed dispersal by lemurs. RESULTS We found a strong positive correlation between signal (esters) and reward (sugar). We also found that non-esters, including direct fermentation products, in fruit scent do not indicate sugar levels, which implies that this relationship is not simply a product of fruit maturation wherein more mature fruits emit more scent and contain more sugar. CONCLUSIONS While based on a single taxon, these results strongly support the hypothesis that a biochemical link between ester synthesis and sugar may render the ester fraction of fruit scent an honest signal for fruit quality, with consequences for animal sensory and feeding ecology, and the evolution of plants in the context of seed dispersal.
Collapse
Affiliation(s)
- Omer Nevo
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany. .,Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany. .,Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany.
| | - Kim Valenta
- grid.15276.370000 0004 1936 8091Department of Anthropology, University of Florida, Gainesville, FL USA
| | - Annabella Helman
- grid.26009.3d0000 0004 1936 7961Department of Evolutionary Anthropology, Duke University, Durham, NC USA
| | - Jörg U. Ganzhorn
- grid.9026.d0000 0001 2287 2617Animal Ecology and Conservation, University of Hamburg, Hamburg, Germany
| | - Manfred Ayasse
- grid.6582.90000 0004 1936 9748Institute of Evolutionary Ecology and Conservation Genomics, Ulm University, Ulm, Germany
| |
Collapse
|
9
|
Mahandran V, Hakkim H, Sinha V, Jain M. Fruit scent as an indicator of ripeness status in ‘bat fruits’ to attract ‘fruit bats’: chemical basis of chiropterochory. Acta Ethol 2022. [DOI: 10.1007/s10211-022-00405-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Brokaw AF, Davis E, Page RA, Smotherman M. Flying bats use serial sampling to locate odour sources. Biol Lett 2021; 17:20210430. [PMID: 34665992 PMCID: PMC8526173 DOI: 10.1098/rsbl.2021.0430] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
Olfactory tracking generally sacrifices speed for sensitivity, but some fast-moving animals appear surprisingly efficient at foraging by smell. Here, we analysed the olfactory tracking strategies of flying bats foraging for fruit. Fruit- and nectar-feeding bats use odour cues to find food despite the sensory challenges derived from fast flight speeds and echolocation. We trained Jamaican fruit-eating bats (Artibeus jamaicensis) to locate an odour reward and reconstructed their flight paths in three-dimensional space. Results confirmed that bats relied upon olfactory cues to locate a reward. Flight paths revealed a combination of odour- and memory-guided search strategies. During 'inspection flights', bats significantly reduced flight speeds and flew within approximately 6 cm of possible targets to evaluate the presence or absence of the odour cue. This behaviour combined with echolocation explains how bats maximize foraging efficiency while compensating for trade-offs associated with olfactory detection and locomotion.
Collapse
Affiliation(s)
- Alyson F. Brokaw
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Evynn Davis
- Kreiger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | | | - Michael Smotherman
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, TX, USA
- Department of Biology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
11
|
Human Evolution and Dietary Ethanol. Nutrients 2021; 13:nu13072419. [PMID: 34371928 PMCID: PMC8308604 DOI: 10.3390/nu13072419] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 11/17/2022] Open
Abstract
The "drunken monkey" hypothesis posits that attraction to ethanol derives from an evolutionary linkage among the sugars of ripe fruit, associated alcoholic fermentation by yeast, and ensuing consumption by human ancestors. First proposed in 2000, this concept has received increasing attention from the fields of animal sensory biology, primate foraging behavior, and molecular evolution. We undertook a review of English language citations subsequent to publication of the original paper and assessed research trends and future directions relative to natural dietary ethanol exposure in primates and other animals. Two major empirical themes emerge: attraction to and consumption of fermenting fruits (and nectar) by numerous vertebrates and invertebrates (e.g., Drosophila flies), and genomic evidence for natural selection consistent with sustained exposure to dietary ethanol in diverse taxa (including hominids and the genus Homo) over tens of millions of years. We also describe our current field studies in Uganda of ethanol content within fruits consumed by free-ranging chimpanzees, which suggest chronic low-level exposure to this psychoactive molecule in our closest living relatives.
Collapse
|
12
|
Mahandran V, Murugan CM, Gang W, Jin C, Nathan PT. Multimodal cues facilitate ripe-fruit localization and extraction in free-ranging pteropodid bats. Behav Processes 2021; 189:104426. [PMID: 34048877 DOI: 10.1016/j.beproc.2021.104426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 10/21/2022]
Abstract
Sensory cues play an important role in any plant-animal interaction. Yet, we know very little about the cues used by wild mammals during fruit selection. Existing evidence mainly comes from captive studies and suggests that the pteropodid bats rely on olfaction to find fruits. In this study, we avoided captivity-generated stressors and provide insights from natural selective forces by performing manipulative experiments on free-ranging fruit bats (Cynopterus sphinx) in a wild setting, in a tree species that exhibits a bat-fruit syndrome (Madhuca longifolia var. latifolia). We find that visual cues are necessary and sufficient to locate ripe fruits. Fruit experiments exhibiting visual cues alone received more bat visits than those exhibiting other combinations of visual and olfactory cues. Ripe fruit extractions were higher by bats that evaluated fruits by perching than hovering, indicating an additional cue, i.e., haptic cue. Visual cues appear to be informative over short distances, whereas olfactory and haptic cues facilitate the fruit evaluation for those bats that used hovering and perching strategies, respectively. This study also shows that adult bats were more skillful in extracting ripe fruits than the young bats, and there was a positive correlation between the weight of selected fruits and bat weight. This study suggests that the integration of multimodal cues (visual, olfactory and haptic) facilitate ripe-fruit localization and extraction in free-ranging pteropodid bats.
Collapse
Affiliation(s)
- Valliyappan Mahandran
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | | | - Wang Gang
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Chen Jin
- CAS-Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | | |
Collapse
|
13
|
Nojiri T, Fukui D, Werneburg I, Saitoh T, Endo H, Koyabu D. Embryonic staging of bats with special reference to Vespertilio sinensis and its cochlear development. Dev Dyn 2021; 250:1140-1159. [PMID: 33683772 DOI: 10.1002/dvdy.325] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/26/2021] [Accepted: 02/27/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND How bats deviate heterochronically from other mammals remains largely unresolved, reflecting the lack of a quantitative staging framework allowing comparison among species. The standard event system (SES) is an embryonic staging system allowing quantitative detection of interspecific developmental variations. Here, the first SES-based staging system for bats, using Asian parti-colored bat (Vespertilio sinensis) is introduced. General aspects of normal embryonic development and the three-dimensional development of the bat cochlea were described for the first time. Recoding the embryonic staging tables of 18 previously reported bat species and Mus musculus into the SES system, quantitative developmental comparisons were performed. RESULTS It was found that limb bud development of V. sinensis is relatively late among 19 bat species and late limb development is a shared trait of vespertilionid bats. The inner ear cochlear canal forms before the semicircular canal in V. sinensis while the cochlear canal forms after the semicircular canal in non-volant mammals. CONCLUSIONS The present approach using the SES system provides a powerful framework to detect the peculiarities of bat development. Incorporating the timing of gene expression patterns into the SES framework will further contribute to the understanding of the evolution of specialized features in bats.
Collapse
Affiliation(s)
- Taro Nojiri
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.,Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
| | - Dai Fukui
- The University of Tokyo Hokkaido Forest, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Furano, Hokkaido, Japan
| | - Ingmar Werneburg
- Senckenberg Center for Human Evolution and Paleoenvironment an der Eberhard Karls Universität, Tübingen, Germany.,Fachbereich Geowissenschaften, Eberhard Karls Universität, Tübingen, Germany
| | - Takashi Saitoh
- Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Japan
| | - Hideki Endo
- The University Museum, The University of Tokyo, Tokyo, Japan
| | - Daisuke Koyabu
- Research and Development Center for Precision Medicine, University of Tsukuba, Ibaraki, Japan.,Department of Molecular Craniofacial Embryology, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
14
|
Nevo O, Schmitt MH, Ayasse M, Valenta K. Sweet tooth: Elephants detect fruit sugar levels based on scent alone. Ecol Evol 2020; 10:11399-11407. [PMID: 33144973 PMCID: PMC7593167 DOI: 10.1002/ece3.6777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/07/2020] [Accepted: 08/18/2020] [Indexed: 11/10/2022] Open
Abstract
The ability to assess food quality is crucial to all organisms. Fleshy fruits are a major source of nutrients to various animals, and unlike most food sources, have evolved to be attractive and to be consumed by animals to promote seed dispersal. It has recently been established that fruit scent-the bouquet of volatile chemicals emitted by ripe fruit-is an evolved communication system between plants and animals. Further, it has been argued that chemicals that are synthesized from sugar and its products may be an honest signal for sugar content and fruit quality. Elephants are important seed dispersers for numerous species and possess an olfactory system that is likely to outperform most other animals. We tested the hypothesis that fruit scent signifies sugar content and that elephants are capable of assessing fruit sugar levels based on scent alone. Using a paired-choice test of marula fruits (Sclerocarya birrea) by semitame African elephants, we show that elephants are capable of identifying more sugar-rich fruits based on scent alone and that this is likely based on two chemical compounds: ethanol and ethyl acetate, both downstream products of sugar fermentation. These results shed light on the mechanisms driving elephant feeding ecology, plant signaling, and the coevolutionary process between angiosperms and animal seed dispersers.
Collapse
Affiliation(s)
- Omer Nevo
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of BiodiversityFriedrich Schiller University JenaJenaGermany
| | - Melissa H. Schmitt
- Department of Ecology, Evolution, and Marine BiologyUniversity of California Santa BarbaraSanta BarbaraCAUSA
- South African Environmental Observation NetworkNdlovu NodePhalaborwaSouth Africa
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Kim Valenta
- Department of AnthropologyUniversity of FloridaGainesvilleFLUSA
| |
Collapse
|
15
|
El-Mansi AA, Al-Kahtani MA, Al-Sayyad KM, Ahmed EA, Gad AR. Visual adaptability and retinal characterization of the Egyptian fruit bat (Rousettus aegyptiacus, Pteropodidae): New insights into photoreceptors spatial distribution and melanosomal activity. Micron 2020; 137:102897. [PMID: 32563026 DOI: 10.1016/j.micron.2020.102897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/14/2022]
Abstract
Our study was conducted to characterize the retinal structure of the Egyptian fruit bat, Rousettus aegyptiacus to determine the distribution of photoreceptors and melanosomal populations in various retinal zones. Also, we paid attention to the specific structural and functional adaptations related to their nocturnal habits. We analyzed the retinae of 12 adult male Egyptian fruit bats using morphometrical, histological, ultrastructural, and immunoblotting standard techniques. Histological findings revealed that the retinal cells have variations in geometrical architecture and different retinal thickness together with their corresponding layers bearing specific choroidal papillae projecting towards the inner retina. Immunoblotting and ultrastructure results showed that the microstructure of the retina conforms to that pattern found in mammalian species. The retinal photoreceptors are rod-dominant; alternatively, possess two spectral types of cones: SWS and LW/MWS cones as evidence for the basis for dichromatic vision. In addition, the outer retina showed densely-distributed melanin granules with a significant increase in the number of pigment epithelium cells in the eccentric retina. Furthermore, the asymmetric distribution among the retinal quadrants for the visual pigments of both rods and cones coinciding with neuronal cells such as bipolar and ganglion cells confers instructive information about their visual perception and orientation. In conclusion, our findings indicate that R. aegyptiacus efficiently discriminates colors with complex visual adaptations to mediate increased visual acuity coopted for the nocturnal niches.
Collapse
Affiliation(s)
- Ahmed A El-Mansi
- Biology Dept., Faculty of Science, King Khalid University, Abha, Saudi Arabia; Zoology Dept., Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - M A Al-Kahtani
- Biology Dept., Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - K M Al-Sayyad
- Biology Dept., Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - E A Ahmed
- Biology Dept., Faculty of Science, King Khalid University, Abha, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
| | - A R Gad
- Biology Dept., Faculty of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Leiser‐Miller LB, Santana SE. Morphological diversity in the sensory system of phyllostomid bats: Implications for acoustic and dietary ecology. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13561] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Leith B. Leiser‐Miller
- Department of Biology and Burke Museum of Natural History and Culture University of Washington Seattle WA USA
| | - Sharlene E. Santana
- Department of Biology and Burke Museum of Natural History and Culture University of Washington Seattle WA USA
| |
Collapse
|
17
|
Leiser-Miller LB, Kaliszewska ZA, Lauterbur ME, Mann B, Riffell JA, Santana SE. A Fruitful Endeavor: Scent Cues and Echolocation Behavior Used by Carollia castanea to Find Fruit. Integr Org Biol 2020; 2:obaa007. [PMID: 33791551 PMCID: PMC7671165 DOI: 10.1093/iob/obaa007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Frugivores have evolved sensory and behavioral adaptations that allow them to find ripe fruit effectively, but the relative importance of different senses in varying foraging scenarios is still poorly understood. Within Neotropical ecosystems, short-tailed fruit bats (Carollia: Phyllostomidae) are abundant nocturnal frugivores that rely primarily on Piper fruits as a food resource. Previous research has demonstrated that Carollia employs olfaction and echolocation to locate Piper fruit, but it is unknown how their sensory use and foraging decisions are influenced by the complex diversity of chemical cues that fruiting plants produce. Using free-ranging C. castanea and their preferred food, Piper sancti-felicis, we conducted behavioral experiments to test two main hypotheses: (1) foraging decisions in C. castanea are primarily driven by ripe fruit scent and secondarily by vegetation scent, and (2) C. castanea re-weights their sensory inputs to account for available environmental cues, with bats relying more heavily on echolocation in the absence of adequate scent cues. Our results suggest that C. castanea requires olfactory information and relies almost exclusively on ripe fruit scent to make foraging attempts. Piper sancti-felicis ripe fruit scent is chemically distinct from vegetation scent; it is dominated by 2-heptanol, which is absent from vegetation scent, and has a greater abundance of β-caryophyllene, β-ocimene, γ-elemene, and α-cubebene. Although variation in echolocation call parameters was independent of scent cue presence, bats emitted longer and more frequent echolocation calls in trials where fruit scent was absent. Altogether, these results highlight the adaptations and plasticity of the sensory system in neotropical fruit bats.
Collapse
Affiliation(s)
- L B Leiser-Miller
- Department of Biology, University of Washington, Seattle, WA 98195, USA.,Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| | - Z A Kaliszewska
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - M E Lauterbur
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA
| | - Brianna Mann
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - J A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - S E Santana
- Department of Biology, University of Washington, Seattle, WA 98195, USA.,Burke Museum of Natural History and Culture, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
18
|
|
19
|
Brokaw AF, Smotherman M. Role of ecology in shaping external nasal morphology in bats and implications for olfactory tracking. PLoS One 2020; 15:e0226689. [PMID: 31914127 PMCID: PMC6948747 DOI: 10.1371/journal.pone.0226689] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/03/2019] [Indexed: 01/05/2023] Open
Abstract
Many animals display morphological adaptations of the nose that improve their ability to detect and track odors. Bilateral odor sampling improves an animals' ability to navigate using olfaction and increased separation of the nostrils facilitates olfactory source localization. Many bats use odors to find food and mates and bats display an elaborate diversity of facial features. Prior studies have quantified how variations in facial features correlate with echolocation and feeding ecology, but surprisingly none have asked whether bat noses might be adapted for olfactory tracking in flight. We predicted that bat species that rely upon odor cues while foraging would have greater nostril separation in support of olfactory tropotaxis. Using museum specimens, we measured the external nose and cranial morphology of 40 New World bat species. Diet had a significant effect on external nose morphology, but contrary to our predictions, insectivorous bats had the largest relative separation of nostrils, while nectar feeding species had the narrowest nostril widths. Furthermore, nasal echolocating bats had significantly narrower nostrils than oral emitting bats, reflecting a potential trade-off between sonar pulse emission and stereo-olfaction in those species. To our knowledge, this is the first study to evaluate the evolutionary interactions between olfaction and echolocation in shaping the external morphology of a facial feature using modern phylogenetic comparative methods. Future work pairing olfactory morphology with tracking behavior will provide more insight into how animals such as bats integrate olfactory information while foraging.
Collapse
Affiliation(s)
- Alyson F. Brokaw
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| | - Michael Smotherman
- Interdisciplinary Program in Ecology and Evolutionary Biology, Texas A&M University, College Station, Texas, United States of America
- Department of Biology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
20
|
Nevo O, Razafimandimby D, Valenta K, Jeffrey JAJ, Reisdorff C, Chapman CA, Ganzhorn JU, Ayasse M. Signal and reward in wild fleshy fruits: Does fruit scent predict nutrient content? Ecol Evol 2019; 9:10534-10543. [PMID: 31624565 PMCID: PMC6787828 DOI: 10.1002/ece3.5573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/15/2019] [Accepted: 07/26/2019] [Indexed: 12/02/2022] Open
Abstract
Plant species with fleshy fruits offer animals rewards such as sugar, protein, and fat, to feed on their fruits and disperse their seeds. They have also evolved visual and olfactory signals indicating their presence and ripeness.In some systems, fruit color serves as a reliable visual signal of nutrient content. Yet even though many volatile chemicals used as olfactory signals derive from nutrients animals seek, it is still unknown whether fruit scent encodes information regarding nutrient content in wild fruits.We examine the relationship between olfactory signals and nutrient rewards in 28 fruiting plant species in Madagascar. We measured the relative amounts of four chemical classes in fruit scent using gas chromatography and mass spectrometry, as well as the relative amounts of sugar and protein in fruit pulp.We found that protein levels are not associated with elevated amounts of chemically related volatile compounds in fruit scent. In contrast, sugar content is strongly associated with the chemical composition of fruit scent.To our knowledge, this is the first research to explore the connection between fruit chemical signals and nutrient rewards. Our results imply that in the case of sugar, fruit scent is predictive of nutrient content and hence an honest signal.
Collapse
Affiliation(s)
- Omer Nevo
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| | - Diary Razafimandimby
- Faculty of Sciences, Zoology and Animal BiodiversityUniversity of AntananarivoAntananarivoMadagascar
| | - Kim Valenta
- Department of AnthropologyUniversity of FloridaGainesvilleFLUSA
| | - Juan Antonio James Jeffrey
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
- Department of Molecular and Cell BiologyUniversity of ConnecticutStorrsCTUSA
| | - Christoph Reisdorff
- Institute of Plant Science and MicrobiologyUniversity of HamburgHamburgGermany
| | - Colin A. Chapman
- Department of AnthropologyMcGill UniversityMontrealQCCanada
- School of Life ScienceUniversity of KwaZulu‐NatalScottsvilleSouth Africa
- Key Laboratory of Resource Biology and Biotechnology in Western China of Ministry of EducationCollege of Life ScienceNorthwest UniversityXianChina
| | - Jörg U. Ganzhorn
- Animal Ecology and ConservationUniversity of HamburgHamburgGermany
| | - Manfred Ayasse
- Institute of Evolutionary Ecology and Conservation GenomicsUlm UniversityUlmGermany
| |
Collapse
|
21
|
Ethanol and a chemical from fox faeces modulate exploratory behaviour in laboratory mice. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
22
|
|
23
|
Mukilan M, Bogdanowicz W, Marimuthu G, Rajan KE. Odour discrimination learning in the Indian greater short-nosed fruit bat ( Cynopterus sphinx): differential expression of Egr-1, C-fos and PP-1 in the olfactory bulb, amygdala and hippocampus. ACTA ACUST UNITED AC 2018; 221:jeb.175364. [PMID: 29674380 DOI: 10.1242/jeb.175364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/16/2018] [Indexed: 01/05/2023]
Abstract
Activity-dependent expression of immediate-early genes (IEGs) is induced by exposure to odour. The present study was designed to investigate whether there is differential expression of IEGs (Egr-1, C-fos) in the brain region mediating olfactory memory in the Indian greater short-nosed fruit bat, Cynopterus sphinx We assumed that differential expression of IEGs in different brain regions may orchestrate a preference odour (PO) and aversive odour (AO) memory in C. sphinx We used preferred (0.8% w/w cinnamon powder) and aversive (0.4% w/v citral) odour substances, with freshly prepared chopped apple, to assess the behavioural response and induction of IEGs in the olfactory bulb, hippocampus and amygdala. After experiencing PO and AO, the bats initially responded to both, later only engaging in feeding bouts in response to the PO food. The expression pattern of EGR-1 and c-Fos in the olfactory bulb, hippocampus and amygdala was similar at different time points (15, 30 and 60 min) following the response to PO, but was different for AO. The response to AO elevated the level of c-Fos expression within 30 min and reduced it at 60 min in both the olfactory bulb and the hippocampus, as opposed to the continuous increase noted in the amygdala. In addition, we tested whether an epigenetic mechanism involving protein phosphatase-1 (PP-1) acts on IEG expression. The observed PP-1 expression and the level of unmethylated/methylated promoter revealed that C-fos expression is possibly controlled by odour-mediated regulation of PP-1. These results in turn imply that the differential expression of C-fos in the hippocampus and amygdala may contribute to olfactory learning and memory in C. sphinx.
Collapse
Affiliation(s)
- Murugan Mukilan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| | - Wieslaw Bogdanowicz
- Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland
| | - Ganapathy Marimuthu
- Department of Animal Behavior and Physiology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, India
| | - Koilmani Emmanuvel Rajan
- Behavioural Neuroscience Laboratory, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli 620024, India
| |
Collapse
|
24
|
|
25
|
Zungu MM, Downs CT. Effects of ethanol on fruit selection by frugivorous birds. AFRICAN ZOOLOGY 2017. [DOI: 10.1080/15627020.2016.1276856] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Manqoba M Zungu
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Colleen T Downs
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
26
|
Ganesh A, Mukilan M, Marimuthu G, Rajan KE. A Novel Food Preference in the Greater Short-Nosed Fruit Bat,Cynopterus sphinx: Mother-Pup Interaction a Strategy for Learning. ACTA CHIROPTEROLOGICA 2016. [DOI: 10.3161/15081109acc2016.18.1.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
27
|
Fruit Ripening Signals and Cues in a Madagascan Dry Forest: Haptic Indicators Reliably Indicate Fruit Ripeness to Dichromatic Lemurs. Evol Biol 2016. [DOI: 10.1007/s11692-016-9374-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Valenta K, Brown KA, Rafaliarison RR, Styler SA, Jackson D, Lehman SM, Chapman CA, Melin AD. Sensory integration during foraging: the importance of fruit hardness, colour, and odour to brown lemurs. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-015-1998-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
29
|
Dorokhov YL, Shindyapina AV, Sheshukova EV, Komarova TV. Metabolic methanol: molecular pathways and physiological roles. Physiol Rev 2015; 95:603-44. [PMID: 25834233 DOI: 10.1152/physrev.00034.2014] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Methanol has been historically considered an exogenous product that leads only to pathological changes in the human body when consumed. However, in normal, healthy individuals, methanol and its short-lived oxidized product, formaldehyde, are naturally occurring compounds whose functions and origins have received limited attention. There are several sources of human physiological methanol. Fruits, vegetables, and alcoholic beverages are likely the main sources of exogenous methanol in the healthy human body. Metabolic methanol may occur as a result of fermentation by gut bacteria and metabolic processes involving S-adenosyl methionine. Regardless of its source, low levels of methanol in the body are maintained by physiological and metabolic clearance mechanisms. Although human blood contains small amounts of methanol and formaldehyde, the content of these molecules increases sharply after receiving even methanol-free ethanol, indicating an endogenous source of the metabolic methanol present at low levels in the blood regulated by a cluster of genes. Recent studies of the pathogenesis of neurological disorders indicate metabolic formaldehyde as a putative causative agent. The detection of increased formaldehyde content in the blood of both neurological patients and the elderly indicates the important role of genetic and biochemical mechanisms of maintaining low levels of methanol and formaldehyde.
Collapse
Affiliation(s)
- Yuri L Dorokhov
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Anastasia V Shindyapina
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Ekaterina V Sheshukova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| | - Tatiana V Komarova
- A. N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia; and N. I. Vavilov Institute of General Genetics, Russian Academy of Science, Moscow, Russia
| |
Collapse
|
30
|
Activity-dependent expression of miR-132 regulates immediate-early gene induction during olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx. Neurobiol Learn Mem 2015; 120:41-51. [DOI: 10.1016/j.nlm.2015.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/24/2015] [Accepted: 02/17/2015] [Indexed: 01/13/2023]
|
31
|
Zhang W, Zhu G, Tan L, Yang J, Chen Y, Liu Q, Shen Q, Chen J, Zhang L. Role of olfaction in the foraging behavior and trial-and-error learning in short-nosed fruit bat, Cynopterus sphinx. Behav Processes 2014; 103:23-7. [DOI: 10.1016/j.beproc.2013.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 07/19/2013] [Accepted: 10/08/2013] [Indexed: 10/26/2022]
|
32
|
Valenta K, Burke RJ, Styler SA, Jackson DA, Melin AD, Lehman SM. Colour and odour drive fruit selection and seed dispersal by mouse lemurs. Sci Rep 2014; 3:2424. [PMID: 23939534 PMCID: PMC3741622 DOI: 10.1038/srep02424] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 07/25/2013] [Indexed: 11/09/2022] Open
Abstract
Animals and fruiting plants are involved in a complex set of interactions, with animals relying on fruiting trees as food resources, and fruiting trees relying on animals for seed dispersal. This interdependence shapes fruit signals such as colour and odour, to increase fruit detectability, and animal sensory systems, such as colour vision and olfaction to facilitate food identification and selection. Despite the ecological and evolutionary importance of plant-animal interactions for shaping animal sensory adaptations and plant characteristics, the details of the relationship are poorly understood. Here we examine the role of fruit chromaticity, luminance and odour on seed dispersal by mouse lemurs. We show that both fruit colour and odour significantly predict fruit consumption and seed dispersal by Microcebus ravelobensis and M. murinus. Our study is the first to quantify and examine the role of bimodal fruit signals on seed dispersal in light of the sensory abilities of the disperser.
Collapse
Affiliation(s)
- Kim Valenta
- Department of Anthropology, University of Toronto, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
Roles of the volatile terpene, 1,8-cineole, in plant–herbivore interactions: a foraging odor cue as well as a toxin? Oecologia 2013; 174:827-37. [DOI: 10.1007/s00442-013-2801-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 10/02/2013] [Indexed: 10/26/2022]
|
34
|
Andrianaivoarivelo RA, Jenkins RKB, Petit EJ, Ramilijaona O, Razafindrakoto N, Racey PA. Rousettus madagascariensis (Chiroptera: Pteropodidae) shows a preference for native and commercially unimportant fruits. ENDANGER SPECIES RES 2012. [DOI: 10.3354/esr00441] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Martinson EO, Herre EA, Machado CA, Arnold AE. Culture-free survey reveals diverse and distinctive fungal communities associated with developing figs (Ficus spp.) in Panama. MICROBIAL ECOLOGY 2012; 64:1073-1084. [PMID: 22729017 DOI: 10.1007/s00248-012-0079-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/30/2012] [Indexed: 06/01/2023]
Abstract
The ancient association of figs (Ficus spp.) and their pollinating wasps (fig wasps; Chalcidoidea, Hymenoptera) is one of the most interdependent plant-insect mutualisms known. In addition to pollinating wasps, a diverse community of organisms develops within the microcosm of the fig inflorescence and fruit. To better understand the multipartite context of the fig-fig wasp association, we used a culture-free approach to examine fungal communities associated with syconia of six species of Ficus and their pollinating wasps in lowland Panama. Diverse fungi were recovered from surface-sterilized flowers of all Ficus species, including gall- and seed flowers at four developmental stages. Fungal communities in syconia and on pollinating wasps were similar, dominated by diverse and previously unknown Saccharomycotina, and distinct from leaf- and stem endophyte communities in the same region. Before pollination, fungal communities were similar between gall- and seed flowers and among Ficus species. However, fungal communities differed significantly in flowers after pollination vs. before pollination, and between anciently diverged lineages of Ficus with active vs. passive pollination syndromes. Within groups of relatively closely related figs, there was little evidence for strict-sense host specificity between figs and particular fungal species. Instead, mixing of fungal communities among related figs, coupled with evidence for possible transfer by pollinating wasps, is consistent with recent suggestions of pollinator mixing within syconia. In turn, changes in fungal communities during fig development and ripening suggest an unexplored role of yeasts in the context of the fig-pollinator wasp mutualism.
Collapse
Affiliation(s)
- Ellen O Martinson
- Department of Ecology and Evolutionary Biology, The University of Arizona, Tucson, AZ 85721, USA
| | | | | | | |
Collapse
|
36
|
Cloning and molecular evolution of the aldehyde dehydrogenase 2 gene (Aldh2) in bats (Chiroptera). Biochem Genet 2012; 51:7-19. [PMID: 23053874 DOI: 10.1007/s10528-012-9540-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 06/25/2012] [Indexed: 10/27/2022]
Abstract
Old World fruit bats (Pteropodidae) and New World fruit bats (Phyllostomidae) ingest significant quantities of ethanol while foraging. Mitochondrial aldehyde dehydrogenase (ALDH2, encoded by the Aldh2 gene) plays an important role in ethanol metabolism. To test whether the Aldh2 gene has undergone adaptive evolution in frugivorous and nectarivorous bats in relation to ethanol elimination, we sequenced part of the coding region of the gene (1,143 bp, ~73 % coverage) in 14 bat species, including three Old World fruit bats and two New World fruit bats. Our results showed that the Aldh2 coding sequences are highly conserved across all bat species we examined, and no evidence of positive selection was detected in the ancestral branches leading to Old World fruit bats and New World fruit bats. Further research is needed to determine whether other genes involved in ethanol metabolism have been the targets of positive selection in frugivorous and nectarivorous bats.
Collapse
|
37
|
Mann O, Lieberman V, Köhler A, Korine C, Hedworth HE, Voigt-Heucke SL. Finding Your Friends at Densely Populated Roosting Places: Male Egyptian Fruit Bats (Rousettus aegyptiacus) Distinguish between Familiar and Unfamiliar Conspecifics. ACTA CHIROPTEROLOGICA 2011. [DOI: 10.3161/150811011x624893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Borges RM, Ranganathan Y, Krishnan A, Ghara M, Pramanik G. When should fig fruit produce volatiles? Pattern in a ripening process. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2011. [DOI: 10.1016/j.actao.2011.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
39
|
Korine C, Sanchez F, Pinshow B. Effects of Ethanol on Food Consumption and Skin Temperature in the Egyptian Fruit Bat (Rousettus aegyptiacus). Integr Comp Biol 2011; 51:432-40. [DOI: 10.1093/icb/icr012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
40
|
Ganesh A, Bogdanowicz W, Haupt M, Marimuthu G, Rajan KE. Role of olfactory bulb serotonin in olfactory learning in the greater short-nosed fruit bat, Cynopterus sphinx (Chiroptera: Pteropodidae). Brain Res 2010; 1352:108-17. [PMID: 20599808 DOI: 10.1016/j.brainres.2010.06.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 06/21/2010] [Accepted: 06/23/2010] [Indexed: 10/19/2022]
Abstract
The role of olfactory bulb (OB) serotonin [5-hydroxytryptamine (5-HT)] in olfactory learning and memory was tested in the greater short-nosed fruit bat, Cynopterus sphinx (family Pteropodidae). Graded concentrations (25, 40, and 60microg) of 5,7-dihydroxytryptamine (5,7-DHT) or saline were injected into the OB of bats one day before training to the novel odor. In a behavioral test, 5,7-DHT (60microg) injected bats made significantly fewer feeding attempts and bouts when compared to saline-injected bats during learning and in the memory test. Subsequent biochemical analysis showed that 5-HT level was effectively depleted in the OB of 5,7-DHT injected bats. To test odor-induced 5-HT mediated changes in 5-HT receptors and second messenger cascade in the OB, we examined the expression of 5-HT receptors and mitogen-activated protein kinase (MAPK)/Erk cascade after training to the novel odor. We found that odor stimulation up-regulated the expression of 5-HT(1A) receptor, Erk1 and Creb1 mRNA, and phosphorylation of ERK1 and CREB1. Odor stimulation failed to induce expression in 5-HT-depleted bats, which is similar to control bats and significantly low compared to saline-treated bats. Together these data revealed that the level of 5-HT in the OB may regulate olfactory learning and memory in C. sphinx through Erk and CREB.
Collapse
Affiliation(s)
- Ambigapathy Ganesh
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | | | | | | | | |
Collapse
|
41
|
Sánchez F, Melcón M, Korine C, Pinshow B. Ethanol ingestion affects flight performance and echolocation in Egyptian fruit bats. Behav Processes 2010; 84:555-8. [PMID: 20153407 DOI: 10.1016/j.beproc.2010.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Revised: 02/02/2010] [Accepted: 02/06/2010] [Indexed: 11/25/2022]
Abstract
Ethanol, a potential toxin for vertebrates, is present in all fleshy fruits and its content increases as the fruit ripens. Previously, we found that the marginal value of food for Egyptian fruit bats, Rousettus aegyptiacus, decreases when its ethanol content exceeds 1%. Therefore, we hypothesized that, if ingested, food containing >1% ethanol is toxic to these bats, probably causing inebriation that will affect flight and echolocation skills. We tested this hypothesis by flying Egyptian fruit bats in an indoor corridor and found that after ingesting ethanol-rich food bats flew significantly slower than when fed ethanol-free food. Also, the ingestion of ethanol significantly affected several variables of the bats' echolocation calls and behavior. We concluded that ethanol can be toxic to fruit bats; not only does it reduce the marginal value of food, but it also has negative physiological effects on their ability to fly competently and on their calling ability.
Collapse
Affiliation(s)
- Francisco Sánchez
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion, Israel.
| | | | | | | |
Collapse
|
42
|
Orbach DN, Veselka N, Dzal Y, Lazure L, Fenton MB. Drinking and flying: does alcohol consumption affect the flight and echolocation performance of phyllostomid bats? PLoS One 2010; 5:e8993. [PMID: 20126552 PMCID: PMC2813879 DOI: 10.1371/journal.pone.0008993] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Accepted: 01/07/2010] [Indexed: 11/18/2022] Open
Abstract
Background In the wild, frugivorous and nectarivorous bats often eat fermenting fruits and nectar, and thus may consume levels of ethanol that could induce inebriation. To understand if consumption of ethanol by bats alters their access to food and general survival requires examination of behavioural responses to its ingestion, as well as assessment of interspecific variation in those responses. We predicted that bats fed ethanol would show impaired flight and echolocation behaviour compared to bats fed control sugar water, and that there would be behavioural differences among species. Methodology/Principal Findings We fed wild caught Artibeus jamaicensis, A. lituratus, A. phaeotis, Carollia sowelli, Glossophaga soricina, and Sturnira lilium (Chiroptera, Phyllostomidae) sugar water (44 g of table sugar in 500 ml of water) or sugar water with ethanol before challenging them to fly through an obstacle course while we simultaneously recorded their echolocation calls. We used bat saliva, a non-invasive proxy, to measure blood ethanol concentrations ranging from 0 to >0.3% immediately before flight trials. Flight performance and echolocation behaviour were not significantly affected by consumption of ethanol, but species differed in their blood alcohol concentrations after consuming it. Conclusions/Significance The bats we studied display a tolerance for ethanol that could have ramifications for the adaptive radiation of frugivorous and nectarivorous bats by allowing them to use ephemeral food resources over a wide span of time. By sampling across phyllostomid genera, we show that patterns of apparent ethanol tolerance in New World bats are broad, and thus may have been an important early step in the evolution of frugivory and nectarivory in these animals.
Collapse
Affiliation(s)
- Dara N. Orbach
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Nina Veselka
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Yvonne Dzal
- Department of Biology, University of Regina, Regina, Saskatchewan, Canada
| | - Louis Lazure
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - M. Brock Fenton
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- * E-mail:
| |
Collapse
|
43
|
Shen YY, Liu J, Irwin DM, Zhang YP. Parallel and convergent evolution of the dim-light vision gene RH1 in bats (Order: Chiroptera). PLoS One 2010; 5:e8838. [PMID: 20098620 PMCID: PMC2809114 DOI: 10.1371/journal.pone.0008838] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 01/04/2010] [Indexed: 11/19/2022] Open
Abstract
Rhodopsin, encoded by the gene Rhodopsin (RH1), is extremely sensitive to light, and is responsible for dim-light vision. Bats are nocturnal mammals that inhabit poor light environments. Megabats (Old-World fruit bats) generally have well-developed eyes, while microbats (insectivorous bats) have developed echolocation and in general their eyes were degraded, however, dramatic differences in the eyes, and their reliance on vision, exist in this group. In this study, we examined the rod opsin gene (RH1), and compared its evolution to that of two cone opsin genes (SWS1 and M/LWS). While phylogenetic reconstruction with the cone opsin genes SWS1 and M/LWS generated a species tree in accord with expectations, the RH1 gene tree united Pteropodidae (Old-World fruit bats) and Yangochiroptera, with very high bootstrap values, suggesting the possibility of convergent evolution. The hypothesis of convergent evolution was further supported when nonsynonymous sites or amino acid sequences were used to construct phylogenies. Reconstructed RH1 sequences at internal nodes of the bat species phylogeny showed that: (1) Old-World fruit bats share an amino acid change (S270G) with the tomb bat; (2) Miniopterus share two amino acid changes (V104I, M183L) with Rhinolophoidea; (3) the amino acid replacement I123V occurred independently on four branches, and the replacements L99M, L266V and I286V occurred each on two branches. The multiple parallel amino acid replacements that occurred in the evolution of bat RH1 suggest the possibility of multiple convergences of their ecological specialization (i.e., various photic environments) during adaptation for the nocturnal lifestyle, and suggest that further attention is needed on the study of the ecology and behavior of bats.
Collapse
Affiliation(s)
- Yong-Yi Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - Jie Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- Graduate School of the Chinese Academy of Sciences, Beijing, China
| | - David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Ontario, Canada
- Banting and Best Diabetes Centre, University of Toronto, Ontario, Canada
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, The Chinese Academy of Sciences, Kunming, China
- Laboratory for Conservation and Utilization of Bio-resources, Yunnan University, Kunming, China
- * E-mail:
| |
Collapse
|
44
|
The role of olfaction and vision in the foraging behaviour of an echolocating megachiropteran fruit bat, Rousettus leschenaulti (Pteropodidae). Mamm Biol 2009. [DOI: 10.1016/j.mambio.2008.02.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Borges RM, Bessière JM, Hossaert-McKey M. The chemical ecology of seed dispersal in monoecious and dioecious figs. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01383.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
46
|
Sánchez F, Kotler BP, Korine C, Pinshow B. Sugars are complementary resources to ethanol in foods consumed by Egyptian fruit bats. J Exp Biol 2008; 211:1475-81. [DOI: 10.1242/jeb.013268] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYFood resources are complementary for a forager if their contribution to fitness is higher when consumed together than when consumed independently,e.g. ingesting one may reduce the toxic effects of another. The concentration of potentially toxic ethanol, [EtOH], in fleshy fruit increases during ripening and affects food choices by Egyptian fruit bats, becoming deterrent at high concentrations (⩾1%). However, ethanol toxicity is apparently reduced when ingested along with some sugars; more with fructose than with sucrose or glucose. We predicted (1) that ingested ethanol is eliminated faster by bats eating fructose than by bats eating sucrose or glucose, (2)that the marginal value of fructose-containing food (food+fructose) increases with increasing [EtOH] more than the marginal value of sucrose- or glucose-containing food (food+sucrose, food+glucose), and (3) that by increasing [EtOH] the marginal value of food+sucose is incremented more than that of food+glucose. Ethanol in bat breath declined faster after they ate fructose than after eating sucrose or glucose. When food [EtOH] increased, the marginal value of food+fructose increased relative to food+glucose. However,the marginal value of food+sucrose increased with increasing [EtOH] more than food+fructose or food+glucose. Although fructose enhanced the rate at which ethanol declined in Egyptian fruit bat breath more than the other sugars, the bats treated both fructose and sucrose as complementary to ethanol. This suggests that in the wild, the amount of ethanol-containing fruit consumed or rejected by Egyptian fruit bats may be related to the fruit's own sugar content and composition, and/or the near-by availability of other sucrose- and fructose-containing fruits.
Collapse
Affiliation(s)
- Francisco Sánchez
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion, Israel
| | - Burt P. Kotler
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion, Israel
| | - Carmi Korine
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion, Israel
| | - Berry Pinshow
- Mitrani Department of Desert Ecology, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, 84990 Midreshet Ben-Gurion, Israel
| |
Collapse
|
47
|
Sánchez F, Korine C, Kotler BP, Pinshow B. Ethanol concentration in food and body condition affect foraging behavior in Egyptian fruit bats (Rousettus aegyptiacus). Naturwissenschaften 2008; 95:561-7. [DOI: 10.1007/s00114-008-0359-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2007] [Revised: 01/29/2008] [Accepted: 02/05/2008] [Indexed: 12/19/2022]
|
48
|
The influence of ethanol on feeding in the frugivorous yellow-vented bulbul (Pycnonotus xanthopygos). Behav Processes 2008; 77:369-75. [DOI: 10.1016/j.beproc.2007.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 09/24/2007] [Accepted: 10/05/2007] [Indexed: 11/24/2022]
|
49
|
Hodgkison R, Ayasse M, Kalko EKV, Häberlein C, Schulz S, Mustapha WAW, Zubaid A, Kunz TH. Chemical Ecology of Fruit Bat Foraging Behavior in Relation to the Fruit Odors of Two Species of Paleotropical Bat-Dispersed Figs (Ficus hispida and Ficus scortechinii). J Chem Ecol 2007; 33:2097-110. [DOI: 10.1007/s10886-007-9367-1] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 08/27/2007] [Accepted: 09/10/2007] [Indexed: 11/28/2022]
|
50
|
Sánchez F. HARVEST RATES AND PATCH-USE STRATEGY OF EGYPTIAN FRUIT BATS IN ARTIFICIAL FOOD PATCHES. J Mammal 2006. [DOI: 10.1644/05-mamm-a-415r2.1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|