1
|
Hajdu C, Molnár BP, Waterman JM, Machado RAR, Radványi D, Fónagy A, Khan SA, Vassor T, Biet B, Erb M, Kárpáti Z, Robert CAM. Volatile-mediated oviposition preference for healthy over root-infested plants by the European corn borer. PLANT, CELL & ENVIRONMENT 2024; 47:2228-2239. [PMID: 38483021 DOI: 10.1111/pce.14876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 04/30/2024]
Abstract
The selection of oviposition sites by female moths is crucial in shaping their progeny performance and survival, and consequently in determining insect fitness. Selecting suitable plants that promote the performance of the progeny is referred to as the Preference-Performance hypothesis (or 'mother-knows-best'). While root infestation generally reduces the performance of leaf herbivores, little is known about its impact on female oviposition. We investigated whether maize root infestation by the Western corn rootworm (WCR) affects the oviposition preference and larval performance of the European corn borer (ECB). ECB females used leaf volatiles to select healthy plants over WCR-infested plants. Undecane, a compound absent from the volatile bouquet of healthy plants, was the sole compound to be upregulated upon root infestation and acted as a repellent for first oviposition. ECB larvae yet performed better on plants infested below-ground than on healthy plants, suggesting an example of 'bad motherhood'. The increased ECB performance on WCR-infested plants was mirrored by an increased leaf consumption, and no changes in the plant primary or secondary metabolism were detected. Understanding plant-mediated interactions between above- and below-ground herbivores may help to predict oviposition decisions, and ultimately, to manage pest outbreaks in the field.
Collapse
Affiliation(s)
- Csengele Hajdu
- Centre for Agricultural Research, Plant Protection Institute, Budapest, Hungary
| | - Béla Péter Molnár
- Centre for Agricultural Research, Plant Protection Institute, Budapest, Hungary
| | - Jamie M Waterman
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Ricardo Alberto Ruiz Machado
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
- Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Dalma Radványi
- Centre for Agricultural Research, Plant Protection Institute, Budapest, Hungary
- Department of Hospitality, Faculty of Commerce, Hospitality and Tourism, Budapest Business University, Budapest, Hungary
| | - Adrien Fónagy
- Centre for Agricultural Research, Plant Protection Institute, Budapest, Hungary
| | | | - Thibault Vassor
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Baptiste Biet
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Zsolt Kárpáti
- Centre for Agricultural Research, Plant Protection Institute, Budapest, Hungary
- Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
2
|
Jia X, An Q, Zhang N, Ren J, Pan S, Zheng C, Zhou Q, Fan G. Recent advances in the contribution of glucosinolates degradation products to cruciferous foods odor: factors that influence degradation pathways and odor attributes. Crit Rev Food Sci Nutr 2024; 65:2625-2653. [PMID: 38644658 DOI: 10.1080/10408398.2024.2338834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
As one of the most important vegetables and oils consumed globally, cruciferous foods are appreciated for their high nutritional value. However, there is no comprehensive knowledge to sufficiently unravel the "flavor mystery" of cruciferous foods. The present review provides a comprehensive literature on the recent advances regarding the contribution of glucosinolates (GSL) degradation products to cruciferous foods odor, which focuses on key GSL degradation products contributing to distinct odor of cruciferous foods (Brassica oleracea, Brassica rapa, Brassica napus, Brassica juncea, Raphanus sativus), and key factors affecting GSL degradation pathways (i.e., enzyme-induced degradation, thermal-induced degradation, chemical-induced degradation, microwave-induced degradation) during different processing and cooking. A total of 93 volatile GSL degradation products (i.e., 36 nitriles, 33 isothiocyanates, 3 thiocyanates, 5 epithionitriles, and 16 sulfides) and 29 GSL (i.e., 20 aliphatic, 5 aromatic, and 4 indolic) were found in generalized cruciferous foods. Remarkably, cruciferous foods have a distinctive pungent, spicy, pickled, sulfur, and vegetable odor. In general, isothiocyanates are mostly present in enzyme-induced degradation of GSL and are therefore often enriched in fresh-cut or low-temperature, short-time cooked cruciferous foods. In contrast, nitriles are mainly derived from thermal-induced degradation of GSL, and are thus often enriched in high-temperature, long-time cooked cruciferous foods.
Collapse
Affiliation(s)
- Xiao Jia
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qi An
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Nawei Zhang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jingnan Ren
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Siyi Pan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chang Zheng
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Qi Zhou
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Gang Fan
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
3
|
Menacer K, Hervé MR, Marie Cortesero A, Aujames T, Anton S. Sex- and maturity-dependent antennal detection of host plant volatiles in the cabbage root fly, Delia radicum. JOURNAL OF INSECT PHYSIOLOGY 2023; 146:104500. [PMID: 36914091 DOI: 10.1016/j.jinsphys.2023.104500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Adult insect behaviour in response to plant-emitted volatile compounds varies between the sexes and as a function of maturity. These differences in behavioural responses can be due to modulation in the peripheral or central nervous system. In the cabbage root fly, Delia radicum, behavioural effects of certain host plant volatiles on mature female behaviour have been evaluated, and a large number of compounds emitted by brassicaceous host plants have been identified. We recorded here dose-dependent electroantennogram responses to all tested compounds and investigated if the antennal detection of individual volatile compounds emitted by intact and damaged host plants differs between male and female, as well as immature and mature flies. Our results showed dose-dependent responses in mature and immature males and females. Mean response amplitudes varied significantly between sexes for three compounds, and between maturity states for six compounds. For some additional compounds significant differences occurred only for high stimulus doses (interaction between dose and sex and/or dose and maturity status). Multivariate analysis revealed a significant global effect of maturity on electroantennogram response amplitudes and for one experimental session also a significant global effect of the sex. Interestingly, allyl isothiocyanate, a compound stimulating oviposition behaviour, elicited stronger responses in mature than in immature flies, whereas ethylacetophenone, an attractive flower volatile, elicited stronger responses in immature than in mature flies, which correlates with the behavioural role of these compounds. Several host-derived compounds elicited stronger responses in females than in males and, at least at high doses, stronger responses in mature than in immature flies, indicating differential antennal sensitivity to behaviourally active compounds. Six compounds did not cause any significant differences in responses between the different groups of flies. Our results thus confirm peripheral plasticity in plant volatile detection in the cabbage root fly and provide a basis for future behavioural investigations on the function of individual plant compounds.
Collapse
Affiliation(s)
- Kathleen Menacer
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France.
| | - Maxime R Hervé
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 35000 Rennes, France
| | | | - Tom Aujames
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 49045 Angers, France
| | - Sylvia Anton
- IGEPP-UMR 1349, INRAE, Institut Agro, Univ Rennes, 49045 Angers, France
| |
Collapse
|
4
|
Ali MY, Naseem T, Holopainen JK, Liu T, Zhang J, Zhang F. Tritrophic Interactions among Arthropod Natural Enemies, Herbivores and Plants Considering Volatile Blends at Different Scale Levels. Cells 2023; 12:251. [PMID: 36672186 PMCID: PMC9856403 DOI: 10.3390/cells12020251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Herbivore-induced plant volatiles (HIPVs) are released by plants upon damaged or disturbance by phytophagous insects. Plants emit HIPV signals not merely in reaction to tissue damage, but also in response to herbivore salivary secretions, oviposition, and excrement. Although certain volatile chemicals are retained in plant tissues and released rapidly upon damaged, others are synthesized de novo in response to herbivore feeding and emitted not only from damaged tissue but also from nearby by undamaged leaves. HIPVs can be used by predators and parasitoids to locate herbivores at different spatial scales. The HIPV-emitting spatial pattern is dynamic and heterogeneous in nature and influenced by the concentration, chemical makeup, breakdown of the emitted mixes and environmental elements (e.g., turbulence, wind and vegetation) which affect the foraging of biocontrol agents. In addition, sensory capability to detect volatiles and the physical ability to move towards the source were also different between natural enemy individuals. The impacts of HIPVs on arthropod natural enemies have been partially studied at spatial scales, that is why the functions of HIPVs is still subject under much debate. In this review, we summarized the current knowledge and loopholes regarding the role of HIPVs in tritrophic interactions at multiple scale levels. Therefore, we contend that closing these loopholes will make it much easier to use HIPVs for sustainable pest management in agriculture.
Collapse
Affiliation(s)
- Muhammad Yasir Ali
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| | - Tayyaba Naseem
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Jarmo K. Holopainen
- Department of Environmental Science, University of Eastern Finland, 77100 Kuopio, Finland
| | - Tongxian Liu
- Key Laboratory of Insect Ecology and Molecular Biology, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Jinping Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| | - Feng Zhang
- MARA-CABI Joint Laboratory for Bio-Safety, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- CABI East & South-East Asia, Beijing 100081, China
| |
Collapse
|
5
|
Liu Y, Zhang S, Liu Y, Wang G. Odorant Receptor PxylOR11 Mediates Repellency of Plutella xylostella to Aromatic Volatiles. Front Physiol 2022; 13:938555. [PMID: 35910574 PMCID: PMC9326099 DOI: 10.3389/fphys.2022.938555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Insects can use plant volatiles to guide certain behaviors, such as courtship, mating, host positioning, and habitat selection. Plutella xylostella is a global agricultural pest and has always been closely studied, but relatively few studies assess the molecular mechanism of P. xylostella exposed to plant volatiles. In this study, we analyzed the role of the odorant receptor PxylOR11 when P. xylostella is exposed to plant volatiles. Our analysis of tissue expression demonstrated that PxylOR11 is expressed in the antennae and that expression levels in female moths were significantly higher than in male moths. Functional analyses using the Xenopus oocyte expression system demonstrated that PxylOR11 was tuned to three aromatic compounds: benzyl alcohol, salicylaldehyde, and phenylacetaldehyde. Electroantennogram analyses revealed that these three aromatic compounds can induce electrophysiological responses in the antennae of P. xylostella, and that the electroantennograms response value of female moths was significantly higher than that of male moths. Dual-choice bioassays demonstrated that the three aromatic compounds have a repellent effect on female P. xylostella. These results suggest that PxylOR11 has a role in mediating the repellent effect of aromatic volatiles on P. xylostella and can be used as a potential target to design novel olfactory regulators controlling P. xylostella.
Collapse
Affiliation(s)
- Yipeng Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sai Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yang Liu, yangliu@ippcaas; Guirong Wang,
| | - Guirong Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Yang Liu, yangliu@ippcaas; Guirong Wang,
| |
Collapse
|
6
|
Alotaibi B, Mokhtar FA, El-Masry TA, Elekhnawy E, Mostafa SA, Abdelkader DH, Elharty ME, Saleh A, Negm WA. Antimicrobial Activity of Brassica rapa L. Flowers Extract on Gastrointestinal Tract Infections and Antiulcer Potential Against Indomethacin-Induced Gastric Ulcer in Rats Supported by Metabolomics Profiling. J Inflamm Res 2021; 14:7411-7430. [PMID: 35002276 PMCID: PMC8721290 DOI: 10.2147/jir.s345780] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The gastrointestinal tract (GIT) is vulnerable to various diseases. In this study, we explored the therapeutic effects of Brassica rapa flower extract (BRFE) on GIT diseases. METHODS Liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) was used for phytochemical identification of the compounds in BRFE. The antibacterial activity of BRFE was investigated, and its impact on the bacterial outer and inner membrane permeability and membrane depolarization (using flow cytometry) was studied. In addition, the immunomodulatory activity of BRFE was investigated in vitro on lipopolysaccharide (LPS)-stimulated peripheral blood mononuclear cells (PBMCs) using quantitative reverse transcription polymerase chain reaction (qRT-PCR). Furthermore, the anti-inflammatory activity of BRFE was investigated by histopathological examination and qRT-PCR on indomethacin-induced gastric ulcers in rats. RESULTS AND DISCUSSION LC-ESI-MS/MS phytochemically identified 57 compounds in BRFE for the first time. BRFE displayed antibacterial activity against bacteria that cause GIT infections, with increasing outer and inner membrane permeability. However, membrane depolarization was unaffected. BRFE also exhibited immunomodulatory activity in LPS-stimulated PBMCs by attenuating the upregulation of cyclooxygenase 2 (COX-2), inducible nitric oxide synthase (iNOS), interleukin (IL)-6, tumor necrosis factor-alpha (TNF-α), and nuclear factor kappa B (NF-κB) gene expression compared with untreated LPS-stimulated PBMCs. In addition, BRFE exhibited anti-inflammatory activity required for maintaining gastric mucosa homeostasis by decreasing neutrophil infiltration with subsequent myeloperoxidase production, in addition to an increase in glutathione peroxidase (GPx) activity. Histopathological findings presented the gastroprotective effects of BRFE, as a relatively normal stomach mucosa was found in treated rats. In addition, BRFE modulated the expression of genes encoding IL-10, NF-κB, GPx, and myeloperoxidase (MPO). CONCLUSION BRFE can be a promising source of therapeutic agents for treatment of GIT diseases.
Collapse
Affiliation(s)
- Badriyah Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, ALsalam University, Al Gharbiyah, Egypt
| | - Thanaa A El-Masry
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Sally A Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, 35511, Egypt
| | - Dalia H Abdelkader
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| | - Mohamed E Elharty
- Study Master in Pharmaceutical Science at the Institute of Research and Environmental Studies, El Sadat City, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, 84428, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | - Walaa A Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt
| |
Collapse
|
7
|
Erazo-Garcia MP, Sotelo-Proaño AR, Ramirez-Villacis DX, Garcés-Carrera S, Leon-Reyes A. Methyl jasmonate-induced resistance to Delia platura (Diptera: Anthomyiidae) in Lupinus mutabilis. PEST MANAGEMENT SCIENCE 2021; 77:5382-5395. [PMID: 34313385 DOI: 10.1002/ps.6578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Andean lupin (Lupinus mutabilis Sweet) is an important leguminous crop from South America with a high protein content. In Ecuador, lupin yields are severely affected by the infestation of Delia platura larvae on germinating seeds. The application of elicitor molecules with activity against herbivorous insects to control D. platura infestation constitutes an unexplored and promising alternative for chemical insecticides. In this study, methyl jasmonate (MeJA), hexanoic acid, menadione sodium bisulfite, and DL-β-aminobutyric acid were evaluated for their ability to induce resistance against D. platura in three commercial lupin cultivars. RESULTS Only seeds pretreated with MeJA significantly impaired insect performance during choice and no-choice assays. Additionally, fitness indicators such as seed germination and growth were not affected by MeJA treatment. To investigate the molecular mechanisms behind the MeJA-mediated resistance, RT-qPCR assays were performed. First, RT-qPCR reference genes were validated, showing that LmUBC was the most stable reference gene. Next, expression analysis over time revealed that MeJA application up-regulated the activity of the jasmonic acid biosynthetic genes LmLOX2 and LmAOS, together with other jasmonate-related defense genes, such as LmTPS1, LmTPS4, LmPI2, LmMBL, LmL/ODC, LmCSD1, and LmPOD. CONCLUSION This study indicates that MeJA can be used as an environmentally friendly elicitor molecule to protect Andean lupin from D. platura attack without fitness cost. MeJA application induces plant defense responses to insects in Andean lupin that may be modulated by the onset of terpenoid biosynthesis, proteinase inhibitors, lectins, polyamines, and antioxidative enzymes. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Maria P Erazo-Garcia
- Laboratorio de Biotecnología Agrícola y de Alimentos, Colegio de Ciencias e Ingenierías-Ing. en Agronomía, Universidad San Francisco de Quito, Quito, Ecuador
| | - Adolfo R Sotelo-Proaño
- Laboratorio de Entomología, Departamento de Protección Vegetal, Estación Experimental Santa Catalina, Instituto Nacional de Investigaciones Agropecuarias, Quito, Ecuador
| | - Dario X Ramirez-Villacis
- Laboratorio de Biotecnología Agrícola y de Alimentos, Colegio de Ciencias e Ingenierías-Ing. en Agronomía, Universidad San Francisco de Quito, Quito, Ecuador
| | - Sandra Garcés-Carrera
- Laboratorio de Entomología, Departamento de Protección Vegetal, Estación Experimental Santa Catalina, Instituto Nacional de Investigaciones Agropecuarias, Quito, Ecuador
| | - Antonio Leon-Reyes
- Laboratorio de Biotecnología Agrícola y de Alimentos, Colegio de Ciencias e Ingenierías-Ing. en Agronomía, Universidad San Francisco de Quito, Quito, Ecuador
| |
Collapse
|
8
|
Marcinkowska M, Frank S, Steinhaus M, Jeleń HH. Key Odorants of Raw and Cooked Green Kohlrabi ( Brassica oleracea var. gongylodes L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12270-12277. [PMID: 34609877 DOI: 10.1021/acs.jafc.1c04339] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Volatile compounds of raw and cooked green kohlrabi were investigated using a sensomics approach. A total of 55 odor-active compounds were detected and identified in raw and cooked green kohlrabi using GC-O. Twenty-eight odor-active compounds with high flavor dilution (FD) factors ranging from 64 to 1024 were quantitated, and odor activity values (OAVs) were determined. Eight compounds showed high OAVs in raw and cooked kohlrabi: five sulfur compounds (dimethyl trisulfide, methyl 2-methyl-3-furyl disulfide, and three isothiocyanates (1-isothiocyanato-3-(methylsulfanyl)propane, benzyl isothiocyanate, and 1-isothiocyanato-4-(methylsulfanyl)butane)), two lipid oxidation products (1-octen-3-one and trans-4,5-epoxy-(2E)-dec-2-enal), and 2-isopropyl-3-methoxypyrazine. Among these, the sulfur compounds contributed most to the overall smell of the raw and cooked vegetables. The quantitation analysis indicates that the eight odorants are the backbone compounds for raw and cooked kohlrabi. The OAVs for the backbone compounds and also for minor odorants are clearly higher in raw kohlrabi than in the cooked one. Differences can be explained by the influence of the cooking process.
Collapse
Affiliation(s)
- Monika Marcinkowska
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| | - Stephanie Frank
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Martin Steinhaus
- Leibniz Institute for Food Systems Biology at the Technical University of Munich, Lise-Meitner-Straße 34, 85354 Freising, Germany
| | - Henryk H Jeleń
- Faculty of Food Science and Nutrition, Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland
| |
Collapse
|
9
|
Grunseich JM, Thompson MN, Hay AA, Gorman Z, Kolomiets MV, Eubanks MD, Helms AM. Risky roots and careful herbivores: Sustained herbivory by a root‐feeding herbivore attenuates indirect plant defences. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- John M. Grunseich
- Department of Entomology Texas A&M University College Station TX USA
| | | | - Allison A. Hay
- Department of Entomology Texas A&M University College Station TX USA
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology Texas A&M University College Station TX USA
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology Texas A&M University College Station TX USA
| | - Micky D. Eubanks
- Department of Entomology Texas A&M University College Station TX USA
| | - Anjel M. Helms
- Department of Entomology Texas A&M University College Station TX USA
| |
Collapse
|
10
|
Rusman Q, Lucas‐Barbosa D, Hassan K, Poelman EH. Plant ontogeny determines strength and associated plant fitness consequences of plant-mediated interactions between herbivores and flower visitors. THE JOURNAL OF ECOLOGY 2020; 108:1046-1060. [PMID: 32421019 PMCID: PMC7217261 DOI: 10.1111/1365-2745.13370] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 01/22/2020] [Indexed: 05/30/2023]
Abstract
Plants show ontogenetic variation in growth-defence strategies to maximize reproductive output within a community context. Most work on plant ontogenetic variation in growth-defence trade-offs has focussed on interactions with antagonistic insect herbivores. Plants respond to herbivore attack with phenotypic changes. Despite the knowledge that plant responses to herbivory affect plant mutualistic interactions with pollinators required for reproduction, indirect interactions between herbivores and pollinators have not been included in the evaluation of how ontogenetic growth-defence trajectories affect plant fitness.In a common garden experiment with the annual Brassica nigra, we investigated whether exposure to various herbivore species on different plant ontogenetic stages (vegetative, bud or flowering stage) affects plant flowering traits, interactions with flower visitors and results in fitness consequences for the plant.Effects of herbivory on flowering plant traits and interactions with flower visitors depended on plant ontogeny. Plant exposure in the vegetative stage to the caterpillar Pieris brassicae and aphid Brevicoryne brassicae led to reduced flowering time and flower production, and resulted in reduced pollinator attraction, pollen beetle colonization, total seed production and seed weight. When plants had buds, infestation by most herbivore species tested reduced flower production and pollen beetle colonization. Pollinator attraction was either increased or reduced. Plants infested in the flowering stage with P. brassicae or Lipaphis erysimi flowered longer, while infestation by any of the herbivore species tested increased the number of flower visits by pollinators.Our results show that the outcome of herbivore-flower visitor interactions in B. nigra is specific for the combination of herbivore species and plant ontogenetic stage. Consequences of herbivory for flowering traits and reproductive output were strongest when plants were attacked early in life. Such differences in selection pressures imposed by herbivores to specific plant ontogenetic stages may drive the evolution of distinct ontogenetic trajectories in growth-defence-reproduction strategies and include indirect interactions between herbivores and flower visitors. Synthesis. Plant ontogeny can define the direct and indirect consequences of herbivory. Our study shows that the ontogenetic stage of plant individuals determined the effects of herbivory on plant flowering traits, interactions with flower visitors and plant fitness.
Collapse
Affiliation(s)
- Quint Rusman
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| | - Dani Lucas‐Barbosa
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
- Present address:
Bio‐communication & EcologyETH ZürichSchmelzbergstrasse 98092ZürichSwitzerland
| | - Kamrul Hassan
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
- Present address:
Hawkesbury Institute for the EnvironmentWestern Sydney UniversityLocked Bag 1797PenrithNSW2751Australia
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen UniversityWageningenThe Netherlands
| |
Collapse
|
11
|
Natural Variation in Volatile Emissions of the Invasive Weed Calluna vulgaris in New Zealand. PLANTS 2020; 9:plants9020283. [PMID: 32098163 PMCID: PMC7076469 DOI: 10.3390/plants9020283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/23/2022]
Abstract
Invasive plants pose a threat to natural ecosystems, changing the community composition and ecological dynamics. One aspect that has received little attention is the production and emission of volatile organic compounds (VOCs) by invasive plants. Investigating VOCs is important because they are involved in vital ecological interactions such as pollination, herbivory and plant competition. Heather, Calluna vulgaris, is a major invasive weed in New Zealand, especially on the Central Plateau, where it has spread rapidly since its introduction in 1912, outcompeting native species. However, the chemical behaviour of heather in its invaded ranges is poorly understood. We aimed to explore the natural variation in volatile emissions of heather and the biotic and abiotic factors influencing them on the Central Plateau of New Zealand. To this end, foliar volatiles produced by heather at four different sites were collected and analysed using gas chromatography coupled to mass spectrometry. Soil properties, herbivory and other environmental data were also collected at each site to investigate their effects on VOC emissions using generalised linear models (GLMs). Our results reveal significant differences in VOC emissions between sites and suggest that soil nutrients are the main factor accounting for these differences. Herbivory and temperature had only a minor effect, while soil water content had no impact. Further studies are needed to investigate how these variations in the invasive plant’s foliar volatiles influence native species.
Collapse
|
12
|
Dumas E, Feurtey A, Rodríguez de la Vega RC, Le Prieur S, Snirc A, Coton M, Thierry A, Coton E, Le Piver M, Roueyre D, Ropars J, Branca A, Giraud T. Independent domestication events in the blue-cheese fungus Penicillium roqueforti. Mol Ecol 2020; 29:2639-2660. [PMID: 31960565 PMCID: PMC7497015 DOI: 10.1111/mec.15359] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 01/02/2020] [Accepted: 01/04/2020] [Indexed: 12/13/2022]
Abstract
Domestication provides an excellent framework for studying adaptive divergence. Using population genomics and phenotypic assays, we reconstructed the domestication history of the blue cheese mould Penicillium roqueforti. We showed that this fungus was domesticated twice independently. The population used in Roquefort originated from an old domestication event associated with weak bottlenecks and exhibited traits beneficial for pre‐industrial cheese production (slower growth in cheese and greater spore production on bread, the traditional multiplication medium). The other cheese population originated more recently from the selection of a single clonal lineage, was associated with all types of blue cheese worldwide except Roquefort, and displayed phenotypes more suited for industrial cheese production (high lipolytic activity, efficient cheese cavity colonization ability and salt tolerance). We detected genomic regions affected by recent positive selection and putative horizontal gene transfers. This study sheds light on the processes of rapid adaptation and raises questions about genetic resource conservation. see also the Perspective by Brigida Gallone, Jan Steensels and Kevin J. Verstrepen.
Collapse
Affiliation(s)
- Emilie Dumas
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France.,Laboratory for Molecular Immunology and Inflammation, Department of Rheumatology, University Hospital Ghent, The Vlaams Instituut voor Biotechnologie (VIB) Center for Inflammation Research (IRC), Ghent, Belgium
| | - Alice Feurtey
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France.,Environmental Genomics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Ricardo C Rodríguez de la Vega
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Stéphanie Le Prieur
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Alodie Snirc
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Monika Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Anne Thierry
- Science et Technologie du Lait et de l'Œuf (STLO), UMR1253, Agrocampus Ouest, INRAE, Rennes, France
| | - Emmanuel Coton
- Univ Brest, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, Plouzané, France
| | - Mélanie Le Piver
- Laboratoire Interprofessionnel de Production - SAS L.I.P, Aurillac, France
| | - Daniel Roueyre
- Laboratoire Interprofessionnel de Production - SAS L.I.P, Aurillac, France
| | - Jeanne Ropars
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Antoine Branca
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| | - Tatiana Giraud
- Ecologie Systématique et Evolution, CNRS, AgroParisTech, Ecologie Systématique Evolution, Université Paris-Saclay, Orsay, France
| |
Collapse
|
13
|
Sontowski R, Gorringe NJ, Pencs S, Schedl A, Touw AJ, van Dam NM. Same Difference? Low and High Glucosinolate Brassica rapa Varieties Show Similar Responses Upon Feeding by Two Specialist Root Herbivores. FRONTIERS IN PLANT SCIENCE 2019; 10:1451. [PMID: 31798608 PMCID: PMC6865846 DOI: 10.3389/fpls.2019.01451] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Glucosinolates (GSLs) evolved in Brassicaceae as chemical defenses against herbivores. The GSL content in plants is affected by both abiotic and biotic factors, but also depends on the genetic background of the plant. Since the bitter taste of GSLs can be unfavorable for both livestock and human consumption, several plant varieties with low GSL seed or leaf content have been bred. Due to their lower GSL levels, such varieties can be more susceptible to herbivore pests. However, low GSL varieties may quickly increase GSL levels upon herbivore feeding by activating GSL biosynthesis, hydrolysis, or transporter genes. To analyze differences in herbivore-induced GSL responses in relation to constitutive GSL levels, we selected four Brassica rapa varieties, containing either low or high root GSL levels. Plants were infested either with Delia radicum or Delia floralis larvae. The larvae of both root flies are specialists on Brassica plants. Root samples were collected after 3, 5, and 7 days. We compared the effect of root herbivore damage on the expression of GSL biosynthesis (CYP79A1, CYP83B2), transporter (GTR1A2, GTR2A2), and GSL hydrolysis genes (PEN2, TGG2) in roots of low and high GSL varieties in conjugation with their GSL levels. We found that roots of high GSL varieties contained higher levels of aliphatic, indole, and benzyl GSLs than low GSL varieties. Infestation with D. radicum larvae led to upregulation of indole GSL synthesis genes in low and high GSL varieties. High GSL varieties showed no or later responses than low varieties to D. floralis herbivory. Low GSL varieties additionally upregulated the GSL transporter gene expression. Low GSL varieties did not show a stronger herbivore-induced response than high GSL varieties, which indicates that there is no trade-off between constitutive and induced GSLs.
Collapse
Affiliation(s)
- Rebekka Sontowski
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Nicola J. Gorringe
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
- School of Biosciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Stefanie Pencs
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Andreas Schedl
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Axel J. Touw
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biodiversity, Friedrich Schiller University, Jena, Germany
| | - Nicole M. van Dam
- Molecular Interaction Ecology, German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Leipzig, Germany
- Institute for Biodiversity, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
14
|
Paul S, Geng CA, Yang TH, Yang YP, Chen JJ. Phytochemical and Health-Beneficial Progress of Turnip (Brassica rapa). J Food Sci 2018; 84:19-30. [PMID: 30561035 DOI: 10.1111/1750-3841.14417] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/08/2018] [Accepted: 11/14/2018] [Indexed: 12/21/2022]
Abstract
Despite the advancement of medical science, diseases are part-and-parcel of human life. Plants have provided humans with medicines since time immemorial, and are still one of the primary sources for drug discovery. Brassica rapa L., commonly known as turnip, is one of the world's oldest cultivated vegetables. Besides being an important vegetable and source of oil, turnip is also used as a traditional medicine for the treatment of headaches, chest complaints, rheumatisms, oedemas, gonorrhoea, syphilis, and rabies. Glucosinolates and isothiocyanates (mainly 2-phenylethyl, 4-pentenyl, and 3-butenyl derivatives) are the main constituents of turnip with diverse bioactivities, especially for the protective effect against cancers. Besides, flavonoids, phenolics, indoles and volatiles are also concomitant in this plant. Pharmacological investigation on turnip revealed the antitumor, antihypertensive, antidiabetic, antioxidant, antiinflammatory, hepatoprotective, and nephroprotective effects. The anticancer property was found to be the most promising biological activity of turnip with 2-phenylethyl isothiocyanate, phenylpropionitrile, brassicaphenanthrene A, 6-paradol, and trans-6-shogaol as the major active constituents. Flavonoids and phenolics with high free radical scavenging activity should be corresponding to the antioxidant effects. Arvelexin, an indole derivative in turnip, was reported with various effects involving antiinflamatory, antihypertensive and hypolipidemic potency. In spite of many studies concerning either the chemical constituents or the biological activities of turnip, only a few cases disclosed the active ingredients responsible for diverse bioactivities. This review summarizes the research progress on the chemistry and health-benefits of turnip over the past 20 years to provide a reference for the further investigation.
Collapse
Affiliation(s)
- Swastika Paul
- State Key Lab. of Phytochemistry and Plant Resources in West China, Yunnan Key Lab. of Natural Medicinal Chemistry, Kunming Inst. of Botany, Chinese Acad. of Sciences, Kunming, 650201, P.R. China.,Univ. Chinese Acad. of Sciences, Beijing, 100049, P.R. China
| | - Chang-An Geng
- State Key Lab. of Phytochemistry and Plant Resources in West China, Yunnan Key Lab. of Natural Medicinal Chemistry, Kunming Inst. of Botany, Chinese Acad. of Sciences, Kunming, 650201, P.R. China
| | - Tong-Hua Yang
- State Key Lab. of Phytochemistry and Plant Resources in West China, Yunnan Key Lab. of Natural Medicinal Chemistry, Kunming Inst. of Botany, Chinese Acad. of Sciences, Kunming, 650201, P.R. China
| | - Yong-Ping Yang
- Key Lab. for Plant Diversity and Biogeography of East Asia, Inst. of Tibetan Plateau Research at Kunming, Kunming Inst. of Botany, Chinese Acad. of Sciences, Kunming, 650204, P.R. China
| | - Ji-Jun Chen
- State Key Lab. of Phytochemistry and Plant Resources in West China, Yunnan Key Lab. of Natural Medicinal Chemistry, Kunming Inst. of Botany, Chinese Acad. of Sciences, Kunming, 650201, P.R. China.,Key Lab. for Plant Diversity and Biogeography of East Asia, Inst. of Tibetan Plateau Research at Kunming, Kunming Inst. of Botany, Chinese Acad. of Sciences, Kunming, 650204, P.R. China
| |
Collapse
|
15
|
Weiß BM, Marcillo A, Manser M, Holland R, Birkemeyer C, Widdig A. A non‐invasive method for sampling the body odour of mammals. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12888] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Brigitte M. Weiß
- Behavioural Ecology Research GroupInstitute of BiologyUniversity of Leipzig Leipzig Germany
- Junior Research Group of Primate Kin SelectionDepartment of PrimatologyMax‐Planck‐Institute for Evolutionary Anthropology Leipzig Germany
| | - Andrea Marcillo
- Research Group of Mass SpectrometryInstitute of Analytical ChemistryUniversity of Leipzig Leipzig Germany
| | - Marta Manser
- Department of Evolutionary Biology and Environmental StudiesUniversity of Zurich Zurich Switzerland
| | | | - Claudia Birkemeyer
- Research Group of Mass SpectrometryInstitute of Analytical ChemistryUniversity of Leipzig Leipzig Germany
| | - Anja Widdig
- Behavioural Ecology Research GroupInstitute of BiologyUniversity of Leipzig Leipzig Germany
- Junior Research Group of Primate Kin SelectionDepartment of PrimatologyMax‐Planck‐Institute for Evolutionary Anthropology Leipzig Germany
- German Center for Integrative Biodiversity Research (iDiv) Leipzig Germany
| |
Collapse
|
16
|
Vivaldo G, Masi E, Taiti C, Caldarelli G, Mancuso S. The network of plants volatile organic compounds. Sci Rep 2017; 7:11050. [PMID: 28887468 PMCID: PMC5591229 DOI: 10.1038/s41598-017-10975-x] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/11/2017] [Indexed: 12/22/2022] Open
Abstract
Plants emission of Volatile Organic Compounds (VOCs) is involved in a wide class of ecological functions, as VOCs play a crucial role in plants interactions with biotic and abiotic factors. Accordingly, they vary widely across species and underpin differences in ecological strategy. In this paper, VOCs spontaneously emitted by 109 plant species (belonging to 56 different families) have been qualitatively and quantitatively analysed in order to provide an alternative classification of plants species. In particular, by using bipartite networks methodology from Complex Network Theory, and through the application of community detection algorithms, we show that is possible to classify species according to chemical classes such as terpenes and sulfur compounds. Such complex network analysis allows to uncover hidden plants relationships related to their evolutionary and adaptation to the environment story.
Collapse
Affiliation(s)
- Gianna Vivaldo
- National Research Council, Geosciences and Earth Resources (IGG), Pisa, Italy
| | - Elisa Masi
- Università di Firenze, Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente (DISPAA), Viale delle Idee, 30, 50019, Sesto Fiorentino (Firenze), Italy.
| | - Cosimo Taiti
- Università di Firenze, Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente (DISPAA), Viale delle Idee, 30, 50019, Sesto Fiorentino (Firenze), Italy
| | - Guido Caldarelli
- IMT School for Advanced Studies, Piazza San Francesco 19, 55100, Lucca, Italy.,Istituto dei Sistemi Complessi (ISC), Roma, Italy.,London Institute for Mathematical Sciences, 35a South St. Mayfair, W1K 2XF, London, UK
| | - Stefano Mancuso
- Università di Firenze, Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente (DISPAA), Viale delle Idee, 30, 50019, Sesto Fiorentino (Firenze), Italy
| |
Collapse
|
17
|
Loxdale HD, Balog A. Aphid specialism as an example of ecological-evolutionary divergence. Biol Rev Camb Philos Soc 2017; 93:642-657. [PMID: 28836372 DOI: 10.1111/brv.12361] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/10/2017] [Accepted: 07/12/2017] [Indexed: 11/30/2022]
Abstract
Debate still continues around the definition of generalism and specialism in nature. To some, generalism is equated solely with polyphagy, but this cannot be readily divorced from other essential biological factors, such as morphology, behaviour, genetics, biochemistry, chemistry and ecology, including chemical ecology. Viewed in this light, and accepting that when living organisms evolve to fill new ecological-evolutionary niches, this is the primal act of specialisation, then perhaps all living organisms are specialist in the broadest sense. To illustrate the levels of specialisation that may be found in a group of animals, we here provide an overview of those displayed by a subfamily of hemipteran insects, the Aphididae, which comprises some 1600 species/subspecies in Europe alone and whose members are specialised in a variety of lifestyle traits. These include life cycle, host adaptation, dispersal and migration, associations with bacterial symbionts (in turn related to host adaptation and resistance to hymenopterous wasp parasitoids), mutualisms with ants, and resistance to insecticides. As with polyphagy, these traits cannot easily be separated from one another, but rather, are interconnected, often highly so, which makes the Aphididae a fascinating animal group to study, providing an informative, perhaps unique, model to illustrate the complexities of defining generalism versus specialism.
Collapse
Affiliation(s)
- Hugh D Loxdale
- School of Biosciences, Cardiff University, Cardiff, CF10 3AX, U.K
| | - Adalbert Balog
- Faculty of Technical and Human Science, Department of Horticulture, Sapientia Hungarian University of Transylvania, 540485, Tirgu-Mures, Romania
| |
Collapse
|
18
|
Silva R, Walter GH, Wilson LJ, Furlong MJ. Effects of single and dual species herbivory on the behavioral responses of three thrips species to cotton seedlings. INSECT SCIENCE 2017; 24:684-698. [PMID: 27029603 DOI: 10.1111/1744-7917.12340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/06/2016] [Accepted: 03/09/2016] [Indexed: 06/05/2023]
Abstract
This study investigated the olfactory responses of 3 thrips species [Frankliniella schultzei Trybom, F. occidentalis Pergrande and Thrips tabaci Lindeman (Thysanoptera: Thripidae)] to cotton seedlings [Gossypium hirsutum L. (Malvales: Malvaceae)] simultaneously damaged by different combinations of herbivores. Cotton seedlings were damaged by foliar feeding Tetranychus urticae Koch (Trombidiforms: Tetranychidae), Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), Aphis gossypii Glover (Hemiptera: Aphididae) or root feeding Tenebrio molitor L. (Coleoptera: Tenebrionidae). Thrips responses to plants simultaneously damaged by 2 species of herbivore were additive and equivalent to the sum of the responses of thrips to plants damaged by single herbivore species feeding alone. For example, F. occidentalis was attracted to T. urticae damaged plants but more attracted to undamaged plants than to plants damaged by H. armigera. Plants simultaneously damaged by low densities of T. urticae and H. armigera repelled F. occidentalis but as T. urticae density increased relative to H. armigera density, F. occidentalis attraction to coinfested plants increased proportionally. Thrips tabaci did not discriminate between undamaged plants and plants damaged by H. armigera but were attracted to plants damaged by T. urticae alone or simultaneously damaged by T. urticae and H. armigera. Olfactometer assays showed that simultaneous feeding by 2 herbivores on a plant can affect predator-prey interactions. Attraction of F. occidentalis to plants damaged by its T. urticae prey was reduced when the plant was simultaneously damaged by H. armigera, T. molitor, or A. gossypii and F. schultzei was more attracted to plants simultaneously damaged by T. urticae and H. armigera than to plants damaged by T. urticae alone. We conclude that plant responses to feeding by 1 species of herbivore are affected by responses to feeding by other herbivores. These plant-mediated interactions between herbivore complexes affect the behavioral responses of thrips which vary between species and are highly context dependent.
Collapse
Affiliation(s)
- Rehan Silva
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Gimme H Walter
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Lewis J Wilson
- Cotton Research Unit, CSIRO Agriculture Flagship, Locked Bag 59, Narrabri, NSW, 2390, Australia
| | - Michael J Furlong
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| |
Collapse
|
19
|
Benítez E, Paredes D, Rodríguez E, Aldana D, González M, Nogales R, Campos M, Moreno B. Bottom-up effects on herbivore-induced plant defences: a case study based on compositional patterns of rhizosphere microbial communities. Sci Rep 2017; 7:6251. [PMID: 28740172 PMCID: PMC5524984 DOI: 10.1038/s41598-017-06714-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 06/16/2017] [Indexed: 11/21/2022] Open
Abstract
Below-ground soil microorganisms can modulate above-ground plant-insect interactions. It still needs to be determined whether this is a direct effect of single species or an indirect effect of shifts in soil microbial community assemblages. Evaluation of the soil microbiome as a whole is critical for understanding multi-trophic interactions, including those mediated by volatiles involving plants, herbivorous insects, predators/parasitoids and microorganisms. We implemented a regulated system comprising Nerium oleander plants grown in soil initially containing a sterile/non sterile inoculum, herbivore Aphis nerii and predator Chrysoperla carnea. After aphid attack, plants emitted a characteristic blend of volatiles derived from two biosynthetic classes: fatty acid catabolites and aromatic-derived products. Three aliphatic compounds were mainly detected in plants grown in the inoculated microbial soil, a blend which was preferentially chosen by C. carnea adult females. The contrasting effect of the initial inocula was attributed to the different microbial consortia developed in each treatment. We argue that differences in the relative abundance of the active microbial communities in the rhizosphere correlate with those in the emission of selected volatile compounds by attacked plants. The mechanisms involved in how the functional soil microbiome modulates inducible indirect defence of plants are discussed.
Collapse
Affiliation(s)
- Emilio Benítez
- Estación Experimental del Zaidín (EEZ), CSIC, 18008, Granada, Spain.
| | - Daniel Paredes
- Estación Experimental del Zaidín (EEZ), CSIC, 18008, Granada, Spain
| | - Estefanía Rodríguez
- Instituto de Investigación y Formación Agraria y Pesquera, Centro IFAPA La Mojonera, Almería, Spain
| | - Diana Aldana
- Estación Experimental del Zaidín (EEZ), CSIC, 18008, Granada, Spain
| | - Mónica González
- Estación Experimental Las Palmerillas, Cajamar, Almería, Spain
| | - Rogelio Nogales
- Estación Experimental del Zaidín (EEZ), CSIC, 18008, Granada, Spain
| | - Mercedes Campos
- Estación Experimental del Zaidín (EEZ), CSIC, 18008, Granada, Spain
| | - Beatriz Moreno
- Estación Experimental del Zaidín (EEZ), CSIC, 18008, Granada, Spain
| |
Collapse
|
20
|
Nematode Root Herbivory in Tomato Increases Leaf Defenses and Reduces Leaf Miner Oviposition and Performance. J Chem Ecol 2017; 43:120-128. [DOI: 10.1007/s10886-016-0810-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/11/2016] [Accepted: 12/22/2016] [Indexed: 10/20/2022]
|
21
|
Mechanisms and ecological implications of plant-mediated interactions between belowground and aboveground insect herbivores. Ecol Res 2016. [DOI: 10.1007/s11284-016-1410-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
22
|
Deasy W, Shepherd T, Alexander CJ, Birch ANE, Evans KA. Field-based Evaluation of a Novel SPME-GC-MS Method for Investigation of Below-ground Interaction between Brassica Roots and Larvae of Cabbage Root Fly, Delia radicum L. PHYTOCHEMICAL ANALYSIS : PCA 2016; 27:343-353. [PMID: 27689319 DOI: 10.1002/pca.2634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/03/2016] [Accepted: 05/19/2016] [Indexed: 06/06/2023]
Abstract
INTRODUCTION Collection of volatiles from plant roots poses technical challenges due to difficulties accessing the soil environment without damaging the roots. OBJECTIVES To validate a new non-invasive method for passive sampling of root volatiles in situ, from plants grown under field conditions, using solid phase micro-extraction (SPME). METHODS SPME fibres were inserted into perforated polytetrafluoroethene (PTFE) tubes positioned in the soil next to broccoli plants for collection of root volatiles pre- and post-infestation with Delia radicum larvae. After sample analysis by gas chromatography-mass spectrometry (GC-MS), principal component analysis (PCA) was applied to determine differences in the profiles of volatiles between samples. RESULTS GC-MS analysis revealed that this method can detect temporal changes in root volatiles emitted before and after Delia radicum damage. PCA showed that samples collected pre- and post-infestation were compositionally different due to the presence of root volatiles induced by D. radicum feeding. Sulphur containing compounds, in particular, accounted for the differences observed. Root volatiles emission patterns post-infestation are thought to follow the feeding and developmental progress of larvae. CONCLUSION This study shows that volatiles released by broccoli roots can be collected in situ using SPME fibres within perforated PTFE tubes under field conditions. Plants damaged by Delia radicum larvae could be distinguished from plants sampled pre-infestation and soil controls on the basis of larval feeding-induced sulphur-containing volatiles. These results show that this new method is a powerful tool for non-invasive sampling of root volatiles below-ground. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- William Deasy
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Scotland's Rural College, Nicholas Kemmer Road, Edinburgh, EH9 3FH, UK
- School of Biological Sciences, The University of Edinburgh, Darwin Building, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Tom Shepherd
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Colin J Alexander
- Biomathematics and Statistics Scotland, Invergowrie, Dundee, DD2 5DA, UK
| | | | - K Andrew Evans
- Scotland's Rural College, Nicholas Kemmer Road, Edinburgh, EH9 3FH, UK
| |
Collapse
|
23
|
Deasy W, Shepherd T, Alexander CJ, Birch ANE, Evans KA. Development and Validation of a SPME-GC-MS Method for In situ Passive Sampling of Root Volatiles from Glasshouse-Grown Broccoli Plants Undergoing Below-Ground Herbivory by Larvae of Cabbage Root Fly, Delia radicum L. PHYTOCHEMICAL ANALYSIS : PCA 2016; 27:375-393. [PMID: 27687886 DOI: 10.1002/pca.2637] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Research on plant root chemical ecology has benefited greatly from recent developments in analytical chemistry. Numerous reports document techniques for sampling root volatiles, although only a limited number describe in situ collection. OBJECTIVES To demonstrate a new method for non-invasive in situ passive sampling using solid phase micro extraction (SPME), from the immediate vicinity of growing roots. METHODS SPME fibres inserted into polyfluorotetrafluoroethylene (PTFE) sampling tubes located in situ which were either perforated, covered with stainless steel mesh or with microporous PTFE tubing, were used for non-invasive sub-surface sampling of root volatiles from glasshouse-grown broccoli. Sampling methods were compared with above surface headspace collection using Tenax TA. The roots were either mechanically damaged or infested with Delia radicum larvae. Principal component analysis (PCA) was used to investigate the effect of damage on the composition of volatiles released by broccoli roots. RESULTS Analyses by gas chromatography-mass spectrometry (GC-MS) with SPME and automated thermal desorption (ATD) confirmed that sulphur compounds, showing characteristic temporal emission patterns, were the principal volatiles released by roots following insect larval damage. Use of SPME with in situ perforated PTFE sampling tubes was the most robust method for out-of-lab sampling. CONCLUSION This study describes a new method for non-invasive passive sampling of volatiles in situ from intact and insect damaged roots using SPME. The method is highly suitable for remote sampling and has potential for wide application in chemical ecology/root/soil research. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- William Deasy
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- Scotland's Rural College, Nicholas Kemmer Road, Edinburgh, EH9 3FH, UK
- School of Biological Sciences, The University of Edinburgh, Darwin Building, The King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK
| | - Tom Shepherd
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Colin J Alexander
- Biomathematics and Statistics Scotland, Invergowrie, Dundee, DD2 5DA, UK
| | | | - K Andrew Evans
- Scotland's Rural College, Nicholas Kemmer Road, Edinburgh, EH9 3FH, UK
| |
Collapse
|
24
|
Impacts of Induction of Plant Volatiles by Individual and Multiple Stresses Across Trophic Levels. SIGNALING AND COMMUNICATION IN PLANTS 2016. [DOI: 10.1007/978-3-319-33498-1_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
|
25
|
Becker C, Desneux N, Monticelli L, Fernandez X, Michel T, Lavoir AV. Effects of Abiotic Factors on HIPV-Mediated Interactions between Plants and Parasitoids. BIOMED RESEARCH INTERNATIONAL 2015; 2015:342982. [PMID: 26788501 PMCID: PMC4692980 DOI: 10.1155/2015/342982] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/05/2015] [Indexed: 12/30/2022]
Abstract
In contrast to constitutively emitted plant volatiles (PV), herbivore-induced plant volatiles (HIPV) are specifically emitted by plants when afflicted with herbivores. HIPV can be perceived by parasitoids and predators which parasitize or prey on the respective herbivores, including parasitic hymenoptera. HIPV act as signals and facilitate host/prey detection. They comprise a blend of compounds: main constituents are terpenoids and "green leaf volatiles." Constitutive emission of PV is well known to be influenced by abiotic factors like temperature, light intensity, water, and nutrient availability. HIPV share biosynthetic pathways with constitutively emitted PV and might therefore likewise be affected by abiotic conditions. However, the effects of abiotic factors on HIPV-mediated biotic interactions have received only limited attention to date. HIPV being influenced by the plant's growing conditions could have major implications for pest management. Quantitative and qualitative changes in HIPV blends may improve or impair biocontrol. Enhanced emission of HIPV may attract a larger number of natural enemies. Reduced emission rates or altered compositions, however, may render blends imperceptible to parasitoides and predators. Predicting the outcome of these changes is highly important for food production and for ecosystems affected by global climate change.
Collapse
Affiliation(s)
- Christine Becker
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
- Institut de Chimie de Nice, UMR CNRS 7272, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | - Nicolas Desneux
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Lucie Monticelli
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| | - Xavier Fernandez
- Institut de Chimie de Nice, UMR CNRS 7272, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | - Thomas Michel
- Institut de Chimie de Nice, UMR CNRS 7272, University of Nice Sophia Antipolis, Parc Valrose, 06108 Nice Cedex 2, France
| | - Anne-Violette Lavoir
- French National Institute for Agricultural Research (INRA), University of Nice Sophia Antipolis, CNRS, UMR 1355-7254, Institut Sophia Agrobiotech, 06903 Sophia Antipolis, France
| |
Collapse
|
26
|
Intraspecific differences in plant chemotype determine the structure of arthropod food webs. Oecologia 2015; 180:797-807. [DOI: 10.1007/s00442-015-3508-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 11/04/2015] [Indexed: 01/14/2023]
|
27
|
Aboveground and Belowground Herbivores Synergistically Induce Volatile Organic Sulfur Compound Emissions from Shoots but Not from Roots. J Chem Ecol 2015. [PMID: 26195194 PMCID: PMC4525197 DOI: 10.1007/s10886-015-0601-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Studies on aboveground (AG) plant organs have shown that volatile organic compound (VOC) emissions differ between simultaneous attack by herbivores and single herbivore attack. There is growing evidence that interactive effects of simultaneous herbivory also occur across the root-shoot interface. In our study, Brassica rapa roots were infested with root fly larvae (Delia radicum) and the shoots infested with Pieris brassicae, either singly or simultaneously, to study these root-shoot interactions. As an analytical platform, we used Proton Transfer Reaction Mass Spectrometry (PTR-MS) to investigate VOCs over a 3 day time period. Our set-up allowed us to monitor root and shoot emissions concurrently on the same plant. Focus was placed on the sulfur-containing compounds; methanethiol, dimethylsulfide (DMS), and dimethyldisulfide (DMDS), because these compounds previously have been shown to be biologically active in the interactions of Brassica plants, herbivores, parasitoids, and predators, yet have received relatively little attention. The shoots of plants simultaneously infested with AG and belowground (BG) herbivores emitted higher levels of sulfur-containing compounds than plants with a single herbivore species present. In contrast, the emission of sulfur VOCs from the plant roots increased as a consequence of root herbivory, independent of the presence of an AG herbivore. The onset of root emissions was more rapid after damage than the onset of shoot emissions. The shoots of double infested plants also emitted higher levels of methanol. Thus, interactive effects of root and shoot herbivores exhibit more strongly in the VOC emissions from the shoots than from the roots, implying the involvement of specific signaling interactions.
Collapse
|
28
|
Kergunteuil A, Dugravot S, Danner H, van Dam NM, Cortesero AM. Characterizing volatiles and attractiveness of five brassicaceous plants with potential for a 'push-pull' strategy toward the cabbage root fly, Delia radicum. J Chem Ecol 2015; 41:330-9. [PMID: 25893791 DOI: 10.1007/s10886-015-0575-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 12/26/2014] [Accepted: 03/23/2015] [Indexed: 12/17/2022]
Abstract
Volatile Organic Compounds (VOCs) released by plants are involved in various orientation processes of herbivorous insects and consequently play a crucial role in their reproductive success. In the context of developing new strategies for crop protection, several studies have previously demonstrated the possibility to limit insect density on crops using either host or non-host plants that release attractive or repellent VOCs, respectively. The cabbage root fly, Delia radicum, is an important pest of brassicaceous crops for which control methods have to be implemented. Several studies have shown that plant odors influence cabbage root fly behavior, but only few VOCs have been identified so far. The present study aimed at selecting both plants and olfactory stimuli that could be used in the development of a "push-pull" strategy against the cabbage root fly. Olfactometer results revealed that plants belonging to the same family, even to the same species, may exhibit different levels of attractiveness toward D. radicum. Plants that were found attractive in behavioral observations were characterized by high release rates of distinct terpenes, such as linalool, β-caryophyllene, humulene, and α-farnesene. This study represents a first step to identify both attractive plants of agronomic interest, and additional volatiles that could be used in the context of trap crops to protect broccoli fields against the cabbage root fly.
Collapse
|
29
|
Meiners T. Chemical ecology and evolution of plant-insect interactions: a multitrophic perspective. CURRENT OPINION IN INSECT SCIENCE 2015; 8:22-28. [PMID: 32846665 DOI: 10.1016/j.cois.2015.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 06/11/2023]
Abstract
Gaining a better understanding of infochemical-mediated host plant/host location behaviour of herbivores and their natural enemies in complex and heterogeneous chemical environments provides a multitrophic perspective on the chemical ecology and evolution of plant-insect interactions. Here I focus on the sources of chemical complexity formed primarily by both host and non-host plants in their interaction with higher trophic levels and on the effect of this complexity on herbivores and their natural enemies. Future research should define the patterns and processes involved in these interactions, which are often complex, dynamic and intricately unique. Studying multitrophic interactions under more realistic conditions will help to identify mechanisms with evolutionary potential and patterns that can be used in biological control practice.
Collapse
Affiliation(s)
- Torsten Meiners
- Freie Universitaet Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Haderslebener Straße 9, 12163 Berlin, Germany.
| |
Collapse
|
30
|
Huang W, Siemann E, Carrillo J, Ding J. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores. ANNALS OF BOTANY 2015; 115:841-6. [PMID: 25681822 PMCID: PMC4373292 DOI: 10.1093/aob/mcv011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND AND AIMS Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies. METHODS In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored. KEY RESULTS Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent. CONCLUSIONS The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence.
Collapse
Affiliation(s)
- Wei Huang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China, Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA and Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | - Evan Siemann
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China, Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA and Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | - Juli Carrillo
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China, Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA and Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| | - Jianqing Ding
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei 430074, China, Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77005, USA and Department of Entomology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
31
|
Benedek K, Bálint J, Salamon RV, Kovács E, Ábrahám B, Fazakas C, Loxdale HD, Balog A. Chemotype of tansy (Tanacetum vulgareL.) determines aphid genotype and its associated predator system. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12445] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Klára Benedek
- Department of Horticulture; Faculty of Technical Science; Sapientia University; 540485, Sighisoara Str.1C Tirgu-Mures Romania
| | - János Bálint
- Department of Horticulture; Faculty of Technical Science; Sapientia University; 540485, Sighisoara Str.1C Tirgu-Mures Romania
| | - Rozália Veronika Salamon
- Department of Food Science; Sapientia University; 530104, Szabadság Str. 1 Miercurea Ciuc Romania
| | - Erika Kovács
- Department of Bioengineering; Faculty of Science; Sapientia University; 530104, Szabadság Str. 1 Miercurea Ciuc Romania
| | - Beáta Ábrahám
- Department of Bioengineering; Faculty of Science; Sapientia University; 530104, Szabadság Str. 1 Miercurea Ciuc Romania
| | - Csaba Fazakas
- Department of Horticulture; Faculty of Technical Science; Sapientia University; 540485, Sighisoara Str.1C Tirgu-Mures Romania
| | - Hugh D. Loxdale
- Royal Entomological Society; The Mansion House; Chiswell Green Lane; St Albans AL2 3NS UK
| | - Adalbert Balog
- Department of Horticulture; Faculty of Technical Science; Sapientia University; 540485, Sighisoara Str.1C Tirgu-Mures Romania
| |
Collapse
|
32
|
Peñuelas J, Asensio D, Tholl D, Wenke K, Rosenkranz M, Piechulla B, Schnitzler JP. Biogenic volatile emissions from the soil. PLANT, CELL & ENVIRONMENT 2014; 37:1866-91. [PMID: 24689847 DOI: 10.1111/pce.12340] [Citation(s) in RCA: 150] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 03/10/2014] [Accepted: 03/14/2014] [Indexed: 05/18/2023]
Abstract
Volatile compounds are usually associated with an appearance/presence in the atmosphere. Recent advances, however, indicated that the soil is a huge reservoir and source of biogenic volatile organic compounds (bVOCs), which are formed from decomposing litter and dead organic material or are synthesized by underground living organism or organs and tissues of plants. This review summarizes the scarce available data on the exchange of VOCs between soil and atmosphere and the features of the soil and particle structure allowing diffusion of volatiles in the soil, which is the prerequisite for biological VOC-based interactions. In fact, soil may function either as a sink or as a source of bVOCs. Soil VOC emissions to the atmosphere are often 1-2 (0-3) orders of magnitude lower than those from aboveground vegetation. Microorganisms and the plant root system are the major sources for bVOCs. The current methodology to detect belowground volatiles is described as well as the metabolic capabilities resulting in the wealth of microbial and root VOC emissions. Furthermore, VOC profiles are discussed as non-destructive fingerprints for the detection of organisms. In the last chapter, belowground volatile-based bi- and multi-trophic interactions between microorganisms, plants and invertebrates in the soil are discussed.
Collapse
Affiliation(s)
- J Peñuelas
- Global Ecology Unit CREAF-CEAB-CSIC-UAB, CSIC, Catalonia, Spain; CREAF, Catalonia, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Clavijo McCormick A, Gershenzon J, Unsicker SB. Little peaks with big effects: establishing the role of minor plant volatiles in plant-insect interactions. PLANT, CELL & ENVIRONMENT 2014; 37:1836-44. [PMID: 24749758 DOI: 10.1111/pce.12357] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 05/04/2023]
Abstract
Plants emit complex mixtures of volatile organic compounds from floral and vegetative tissue, especially after herbivore damage, so it is difficult to associate individual compounds with activity towards pollinators, herbivores or herbivore enemies. Attention has usually focused upon the biological activity of the most abundant compounds; but here, we detail a number of reports implicating minor volatiles in attractant or deterrent roles. This is not surprising given the exquisite sensitivity of insect olfactory systems for certain substances. In this context, it is worth reconsidering the methods involved in sampling volatile compounds from plants, measuring their abundance and determining their biological activity to ensure that minor compounds are not overlooked. Here, we describe various experimental approaches and chemical and statistical methods that should increase the chance of detecting minor compounds with major biological activities.
Collapse
|
34
|
Tsuji J, Coe L. Effects of foliage color on the landing response of Pieris rapae (Lepidoptera: Pieridae). ENVIRONMENTAL ENTOMOLOGY 2014; 43:989-994. [PMID: 25182617 DOI: 10.1603/en14084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effects of foliage color on the selection of host plants by Pieris rapae (L.) were investigated using choice tests between Brassica rapa (L.) varieties with green, variegated, and yellow-green leaves. Gravid-naive females displayed a first landing preference for the green and variegated Brassica varieties when the plants were freely accessible. Comparable results were observed when the plants were enclosed in glass jars, demonstrating that visual cues were sufficient to induce the landing response. The first landing choice was positively correlated with oviposition preference and larval survival. These results suggest that leaf color is an important visual cue used by P. rapae for intraspecific host selection.
Collapse
Affiliation(s)
- Jun Tsuji
- Biology Department, Siena Heights University, 1247 E. Siena Heights Drive, Adrian, MI 49221, USA
| | | |
Collapse
|
35
|
Desurmont GA, Harvey J, van Dam NM, Cristescu SM, Schiestl FP, Cozzolino S, Anderson P, Larsson MC, Kindlmann P, Danner H, Turlings TCJ. Alien interference: disruption of infochemical networks by invasive insect herbivores. PLANT, CELL & ENVIRONMENT 2014; 37:1854-65. [PMID: 24689553 DOI: 10.1111/pce.12333] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/12/2014] [Accepted: 03/14/2014] [Indexed: 05/09/2023]
Abstract
Insect herbivores trigger various biochemical changes in plants, and as a consequence, affect other organisms that are associated with these plants. Such plant-mediated indirect effects often involve herbivore-induced plant volatiles (HIPVs) that can be used as cues for foraging herbivores and their natural enemies, and are also known to affect pollinator attraction. In tightly co-evolved systems, the different trophic levels are expected to display adaptive response to changes in HIPVs caused by native herbivores. But what if a new herbivore invades such a system? Current literature suggests that exotic herbivores have the potential to affect HIPV production, and that plant responses to novel herbivores are likely to depend on phylogenetic relatedness between the invader and the native species. Here we review the different ways exotic herbivores can disrupt chemically mediated interactions between plants and the key users of HIPVs: herbivores, pollinators, and members of the third (i.e. predators and parasitoids) and fourth (i.e. hyperparasitoids) trophic levels. Current theory on insect invasions needs to consider that disruptive effects of invaders on infochemical networks can have a short-term impact on the population dynamics of native insects and plants, as well as exerting potentially negative consequences for the functioning of native ecosystems.
Collapse
Affiliation(s)
- Gaylord A Desurmont
- Institute of Biology, University of Neuchâtel, CH-2000, Neuchâtel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Miresmailli S, Isman MB. Botanical insecticides inspired by plant-herbivore chemical interactions. TRENDS IN PLANT SCIENCE 2014; 19:29-35. [PMID: 24216132 DOI: 10.1016/j.tplants.2013.10.002] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/01/2013] [Accepted: 10/14/2013] [Indexed: 05/23/2023]
Abstract
Plants have evolved a plethora of secondary chemicals to protect themselves against herbivores and pathogens, some of which have been used historically for pest management. The extraction methods used by industry render many phytochemicals ineffective as insecticides despite their bioactivity in the natural context. In this review, we examine how plants use their secondary chemicals in nature and compare this with how they are used as insecticides to understand why the efficacy of botanical insecticides can be so variable. If the commercial production of botanical insecticides is to become a viable pest management option, factors such as production cost, resource availability, and extraction and formulation techniques need be considered alongside innovative application technologies to ensure consistent efficacy of botanical insecticides.
Collapse
Affiliation(s)
- Saber Miresmailli
- Center for Teaching, Learning and Technology, University of British Columbia, 1961 East Mall, Vancouver, BC, V6T1Z4, Canada
| | - Murray B Isman
- Faculty of Land and Food Systems, University of British Columbia, 2357 Main Mall, Vancouver, BC, V6T1Z4, Canada.
| |
Collapse
|
37
|
Garbeva P, Hordijk C, Gerards S, de Boer W. Volatiles produced by the mycophagous soil bacteriumCollimonas. FEMS Microbiol Ecol 2013; 87:639-49. [DOI: 10.1111/1574-6941.12252] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 11/04/2013] [Accepted: 11/11/2013] [Indexed: 12/29/2022] Open
Affiliation(s)
- Paolina Garbeva
- Department Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
| | - Cornelis Hordijk
- Department Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
| | - Saskia Gerards
- Department Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
| | - Wietse de Boer
- Department Microbial Ecology; Netherlands Institute of Ecology (NIOO-KNAW); Wageningen The Netherlands
- Department of Soil Quality; Wageningen University; Wageningen The Netherlands
| |
Collapse
|
38
|
Mathur V, Tytgat TOG, Hordijk CA, Harhangi HR, Jansen JJ, Reddy AS, Harvey JA, Vet LEM, van Dam NM. An ecogenomic analysis of herbivore-induced plant volatiles in Brassica juncea. Mol Ecol 2013; 22:6179-96. [PMID: 24219759 DOI: 10.1111/mec.12555] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/23/2013] [Accepted: 09/27/2013] [Indexed: 11/27/2022]
Abstract
Upon herbivore feeding, plants emit complex bouquets of induced volatiles that may repel insect herbivores as well as attract parasitoids or predators. Due to differences in the temporal dynamics of individual components, the composition of the herbivore-induced plant volatile (HIPV) blend changes with time. Consequently, the response of insects associated with plants is not constant either. Using Brassica juncea as the model plant and generalist Spodoptera spp. larvae as the inducing herbivore, we investigated herbivore and parasitoid preference as well as the molecular mechanisms behind the temporal dynamics in HIPV emissions at 24, 48 and 72 h after damage. In choice tests, Spodoptera litura moth preferred undamaged plants, whereas its parasitoid Cotesia marginiventris favoured plants induced for 48 h. In contrast, the specialist Plutella xylostella and its parasitoid C. vestalis preferred plants induced for 72 h. These preferences matched the dynamic changes in HIPV blends over time. Gene expression analysis suggested that the induced response after Spodoptera feeding is mainly controlled by the jasmonic acid pathway in both damaged and systemic leaves. Several genes involved in sulphide and green leaf volatile synthesis were clearly up-regulated. This study thus shows that HIPV blends vary considerably over a short period of time, and these changes are actively regulated at the gene expression level. Moreover, temporal changes in HIPVs elicit differential preferences of herbivores and their natural enemies. We argue that the temporal dynamics of HIPVs may play a key role in shaping the response of insects associated with plants.
Collapse
Affiliation(s)
- Vartika Mathur
- Department of Zoology, Sri Venkateswara College, University of Delhi, Benito Juarez Marg, Dhaula kuan, New Delhi, 11002, India
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Pierre SP, Dugravot S, Hervé MR, Hassan HM, van Dam NM, Cortesero AM. Belowground induction by Delia radicum or phytohormones affect aboveground herbivore communities on field-grown broccoli. FRONTIERS IN PLANT SCIENCE 2013; 4:305. [PMID: 23970888 PMCID: PMC3748748 DOI: 10.3389/fpls.2013.00305] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 07/22/2013] [Indexed: 05/29/2023]
Abstract
Induced plant defence in response to phytophagous insects is a well described phenomenon. However, so far little is known about the effect of induced plant responses on subsequently colonizing herbivores in the field. Broccoli plants were induced in the belowground compartment using (i) infestation by the root-herbivore Delia radicum, (ii) root application of jasmonic acid (JA) or (iii) root application of salicylic acid (SA). The abundance of D. radicum and six aboveground herbivores displaying contrasting levels of host specialization were surveyed for 5 weeks. Our study showed that the response of herbivores was found to differ from one another, depending on the herbivore species, its degree of specialization and the root treatment. The abundance of the root herbivore D. radicum and particularly the number of emerging adults was decreased by both phytohormone treatments, while the number of D. radicum eggs was increased on conspecific infested plants. The root infestation exhibited moderate effects on the aboveground community. The abundance of the aphid Brevicoryne brassicae was strongly increased on D. radicum infested plants, but the other species were not impacted. Root hormone applications exhibited a strong effect on the abundance of specialist foliar herbivores. A higher number of B. brassicae and Pieris brassicae and a lower number of Plutella xylostella were found on JA treated plants. On SA treated plants we observed a decrease of the abundance of B. brassicae, Pi. rapae, and P. xylostella. Surprisingly, generalist species, Mamestra brassicae and Myzus persicae were not affected by root induction treatments. Finally, root treatments had no significant effect on either glucosinolate (GLS) profiles of the heads or on plant quality parameters. These results are discussed from the perspective of below- aboveground interactions and adaptations of phytophagous insects to induced plant responses according to their trophic specialization level.
Collapse
Affiliation(s)
- S. P. Pierre
- Institute of Genetic, Environment and Plant Protection (Mixed Research Unit 1349), Rennes 1 UniversityRennes, France
| | - S. Dugravot
- Institute of Genetic, Environment and Plant Protection (Mixed Research Unit 1349), Rennes 1 UniversityRennes, France
- European University of BrittanyBrittany, France
| | - M. R. Hervé
- Institute of Genetic, Environment and Plant Protection (Mixed Research Unit 1349), Rennes 1 UniversityRennes, France
- European University of BrittanyBrittany, France
| | - H. M. Hassan
- Economic Entomology, Kafrelsheikh UniversityKafr El-Sheikh, Egypt
| | - N. M. van Dam
- Department of Ecogenomics, Institute for Water and Wetland Research, Radboud University NijmegenNijmegen, Netherlands
| | - A. M. Cortesero
- Institute of Genetic, Environment and Plant Protection (Mixed Research Unit 1349), Rennes 1 UniversityRennes, France
- European University of BrittanyBrittany, France
| |
Collapse
|
40
|
Tytgat TOG, Verhoeven KJF, Jansen JJ, Raaijmakers CE, Bakx-Schotman T, McIntyre LM, van der Putten WH, Biere A, van Dam NM. Plants know where it hurts: root and shoot jasmonic acid induction elicit differential responses in Brassica oleracea. PLoS One 2013; 8:e65502. [PMID: 23776489 PMCID: PMC3679124 DOI: 10.1371/journal.pone.0065502] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/25/2013] [Indexed: 12/21/2022] Open
Abstract
Plants respond to herbivore attack by rapidly inducing defenses that are mainly regulated by jasmonic acid (JA). Due to the systemic nature of induced defenses, attack by root herbivores can also result in a shoot response and vice versa, causing interactions between above- and belowground herbivores. However, little is known about the molecular mechanisms underlying these interactions. We investigated whether plants respond differently when roots or shoots are induced. We mimicked herbivore attack by applying JA to the roots or shoots of Brassica oleracea and analyzed molecular and chemical responses in both organs. In shoots, an immediate and massive change in primary and secondary metabolism was observed. In roots, the JA-induced response was less extensive and qualitatively different from that in the shoots. Strikingly, in both roots and shoots we also observed differential responses in primary metabolism, development as well as defense specific traits depending on whether the JA induction had been below- or aboveground. We conclude that the JA response is not only tissue-specific but also dependent on the organ that was induced. Already very early in the JA signaling pathway the differential response was observed. This indicates that both organs have a different JA signaling cascade, and that the signal eliciting systemic responses contains information about the site of induction, thus providing plants with a mechanism to tailor their responses specifically to the organ that is damaged.
Collapse
Affiliation(s)
- Tom O G Tytgat
- Department of Ecogenomics, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
A tritrophic approach to the preference–performance hypothesis involving an exotic and a native plant. Biol Invasions 2013. [DOI: 10.1007/s10530-013-0459-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Ponzio C, Gols R, Pieterse CMJ, Dicke M. Ecological and phytohormonal aspects of plant volatile emission in response to single and dual infestations with herbivores and phytopathogens. Funct Ecol 2013. [DOI: 10.1111/1365-2435.12035] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Camille Ponzio
- Laboratory of Entomology Wageningen University P.O. Box 8031 6700 EH Wageningen The Netherlands
| | - Rieta Gols
- Laboratory of Entomology Wageningen University P.O. Box 8031 6700 EH Wageningen The Netherlands
| | - Corné M. J. Pieterse
- Plant‐Microbe Interactions Department of Biology Faculty of Science Utrecht University P.O. Box 800.563508 TB UtrechtThe Netherlands
| | - Marcel Dicke
- Laboratory of Entomology Wageningen University P.O. Box 8031 6700 EH Wageningen The Netherlands
| |
Collapse
|
43
|
Kruidhof HM, de Rijk M, Hoffmann D, Harvey JA, Vet LEM, Soler R. Effect of belowground herbivory on parasitoid associative learning of plant odours. OIKOS 2012. [DOI: 10.1111/j.1600-0706.2012.00142.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Braasch J, Wimp GM, Kaplan I. Testing for phytochemical synergism: arthropod community responses to induced plant volatile blends across crops. J Chem Ecol 2012; 38:1264-75. [PMID: 23090849 DOI: 10.1007/s10886-012-0202-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 09/12/2012] [Accepted: 09/17/2012] [Indexed: 12/26/2022]
Abstract
Using herbivore-induced plant volatiles (HIPVs) to attract specific natural enemies in the field has proven challenging, partly because of a poor understanding of: (i) which compound(s) to manipulate to attract specific taxa, and (ii) the ecological conditions over which HIPVs are effective. To address these issues, we quantified the response of a complex arthropod community to three common HIPVs (methyl salicylate, cis-3-hexen-1-ol, and phenylethyl alcohol) as individual compounds and equal part blends in corn and soybean fields. Of 119 arthropod taxa surveyed, we found significant responses by four species in corn fields (2 parasitoids, 1 herbivore, and 1 detritivore) and 16 in soybean fields (8 parasitoids, 3 predators, 4 herbivores, and 1 detritivore), with both attractive and repellent effects of the HIPVs observed. For example, tachinid flies were highly attracted to cis-3-hexen-1-ol (ca. 3-fold increase), but repelled by methyl salicylate (ca. 60 % decrease). Surprisingly, we found very few cases in which HIPVs acted synergistically; only two arthropod groups (ichneumonid wasps and phorid flies) were more attracted by a blend of the HIPVs than by the individual compounds composing the blend. Crop type, however, had a strong impact on the strength of arthropod responses to HIPVs. A few arthropod species were broadly affected across both crops (i.e., the herbivore Halticus bractatus was repelled by most of our treatments, regardless of crop background), but overall more arthropod groups responded to HIPVs released in soybean fields compared with corn. This was true despite the fact that taxa responding to HIPVs were present and abundant in both systems, suggesting that crop-based outcomes were likely driven by the plant matrix rather than mere differences in taxonomic composition of the arthropod community in corn vs. soybean fields. As a whole, these results suggest that: (i) repellent effects of HIPVs on natural enemies of herbivorous insects can be observed as frequently as attractive effects; (ii) odor blends may be no more effective than single-compound lures for some taxa; and (iii) crop background alters the magnitude of attraction to HIPVs, depending on the species being targeted.
Collapse
Affiliation(s)
- Joseph Braasch
- Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN 47907, USA.
| | | | | |
Collapse
|
45
|
Soler R, Van der Putten WH, Harvey JA, Vet LEM, Dicke M, Bezemer TM. Root herbivore effects on aboveground multitrophic interactions: patterns, processes and mechanisms. J Chem Ecol 2012; 38:755-67. [PMID: 22467133 PMCID: PMC3375011 DOI: 10.1007/s10886-012-0104-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/01/2012] [Accepted: 03/16/2012] [Indexed: 11/15/2022]
Abstract
In terrestrial food webs, the study of multitrophic interactions traditionally has focused on organisms that share a common domain, mainly above ground. In the last two decades, it has become clear that to further understand multitrophic interactions, the barrier between the belowground and aboveground domains has to be crossed. Belowground organisms that are intimately associated with the roots of terrestrial plants can influence the levels of primary and secondary chemistry and biomass of aboveground plant parts. These changes, in turn, influence the growth, development, and survival of aboveground insect herbivores. The discovery that soil organisms, which are usually out of sight and out of mind, can affect plant-herbivore interactions aboveground raised the question if and how higher trophic level organisms, such as carnivores, could be influenced. At present, the study of above-belowground interactions is evolving from interactions between organisms directly associated with the plant roots and shoots (e.g., root feeders - plant - foliar herbivores) to interactions involving members of higher trophic levels (e.g., parasitoids), as well as non-herbivorous organisms (e.g., decomposers, symbiotic plant mutualists, and pollinators). This multitrophic approach linking above- and belowground food webs aims at addressing interactions between plants, herbivores, and carnivores in a more realistic community setting. The ultimate goal is to understand the ecology and evolution of species in communities and, ultimately how community interactions contribute to the functioning of terrestrial ecosystems. Here, we summarize studies on the effects of root feeders on aboveground insect herbivores and parasitoids and discuss if there are common trends. We discuss the mechanisms that have been reported to mediate these effects, from changes in concentrations of plant nutritional quality and secondary chemistry to defense signaling. Finally, we discuss how the traditional framework of fixed paired combinations of root- and shoot-related organisms feeding on a common plant can be transformed into a more dynamic and realistic framework that incorporates community variation in species, densities, space and time, in order to gain further insight in this exciting and rapidly developing field.
Collapse
Affiliation(s)
- Roxina Soler
- Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
46
|
Tracing hidden herbivores: time-resolved non-invasive analysis of belowground volatiles by proton-transfer-reaction mass spectrometry (PTR-MS). J Chem Ecol 2012; 38:785-94. [PMID: 22592334 PMCID: PMC3375075 DOI: 10.1007/s10886-012-0129-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 04/18/2012] [Accepted: 04/24/2012] [Indexed: 11/26/2022]
Abstract
Root herbivores are notoriously difficult to study, as they feed hidden in the soil. However, root herbivores may be traced by analyzing specific volatile organic compounds (VOCs) that are produced by damaged roots. These VOCs not only support parasitoids in the localization of their host, but also may help scientists study belowground plant-herbivore interactions. Herbivore-induced VOCs are usually analyzed by gas-chromatography mass spectrometry (GC-MS), but with this off-line method, the gases of interest need to be preconcentrated, and destructive sampling is required to assess the level of damage to the roots. In contrast to this, proton-transfer-reaction mass spectrometry (PTR-MS) is a very sensitive on-line, non-invasive method. PTR-MS already has been successfully applied to analyze VOCs produced by aboveground (infested) plant parts. In this review, we provide a brief overview of PTR-MS and illustrate how this technology can be applied to detect specific root-herbivore induced VOCs from Brassica plants. We also specify the advantages and disadvantages of PTR-MS analyses and new technological developments to overcome their limitations.
Collapse
|
47
|
Clavijo McCormick A, Unsicker SB, Gershenzon J. The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. TRENDS IN PLANT SCIENCE 2012; 17:303-10. [PMID: 22503606 DOI: 10.1016/j.tplants.2012.03.012] [Citation(s) in RCA: 277] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 05/18/2023]
Abstract
Plants respond to herbivore attack by emitting complex mixtures of volatile compounds that attract herbivore enemies, both predators and parasitoids. Here, we explore whether these mixtures provide significant value as information cues in herbivore enemy attraction. Our survey indicates that blends of volatiles released from damaged plants are frequently specific depending on the type of herbivore and its age, abundance and feeding guild. The sensory perception of plant volatiles by herbivore enemies is also specific, according to the latest evidence from studies of insect olfaction. Thus, enemies do exploit the detailed information provided by plant volatile mixtures in searching for their prey or hosts, but this varies with the diet breadth of the enemy.
Collapse
Affiliation(s)
- Andrea Clavijo McCormick
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Strasse 8, D-07745 Jena, Germany
| | | | | |
Collapse
|
48
|
Ueda H, Kikuta Y, Matsuda K. Plant communication: mediated by individual or blended VOCs? PLANT SIGNALING & BEHAVIOR 2012; 7:222-6. [PMID: 22353877 PMCID: PMC3405699 DOI: 10.4161/psb.18765] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants emit volatile organic compounds (VOCs) as a means to warn other plants of impending danger. Nearby plants exposed to the induced VOCs prepare their own defense weapons in response. Accumulated data supports this assertion, yet much of the evidence has been obtained in laboratories under artificial conditions where, for example, a single VOC might be applied at a concentration that plants do not actually experience in nature. Experiments conducted outdoors suggest that communication occurs only within a limited distance from the damaged plants. Thus, the question remains as to whether VOCs work as a single component or a specific blend, and at which concentrations VOCs elicit insect and pathogen defenses in undamaged plants. We discuss these issues based on available literature and our recent work, and propose future directions in this field.
Collapse
Affiliation(s)
- Hirokazu Ueda
- Department of Applied Biological Chemistry; Faculty of Agriculture; Kinki University; Nara, Japan
| | | | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry; Faculty of Agriculture; Kinki University; Nara, Japan
- Correspondence to: Kazuhiko Matsuda,
| |
Collapse
|
49
|
Ueda H, Kikuta Y, Matsuda K. Plant communication: mediated by individual or blended VOCs? PLANT SIGNALING & BEHAVIOR 2012; 7:222-226. [PMID: 22353877 DOI: 10.4161/psb.7.2.18765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Plants emit volatile organic compounds (VOCs) as a means to warn other plants of impending danger. Nearby plants exposed to the induced VOCs prepare their own defense weapons in response. Accumulated data supports this assertion, yet much of the evidence has been obtained in laboratories under artificial conditions where, for example, a single VOC might be applied at a concentration that plants do not actually experience in nature. Experiments conducted outdoors suggest that communication occurs only within a limited distance from the damaged plants. Thus, the question remains as to whether VOCs work as a single component or a specific blend, and at which concentrations VOCs elicit insect and pathogen defenses in undamaged plants. We discuss these issues based on available literature and our recent work, and propose future directions in this field.
Collapse
Affiliation(s)
- Hirokazu Ueda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kinki University, Nara, Japan
| | | | | |
Collapse
|
50
|
Pierre PS, Dugravot S, Cortesero AM, Poinsot D, Raaijmakers CE, Hassan HM, van Dam NM. Broccoli and turnip plants display contrasting responses to belowground induction by Delia radicum infestation and phytohormone applications. PHYTOCHEMISTRY 2012; 73:42-50. [PMID: 22019318 DOI: 10.1016/j.phytochem.2011.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 08/04/2011] [Accepted: 09/21/2011] [Indexed: 05/13/2023]
Abstract
Induced responses to insect herbivory are a common phenomenon in the plant kingdom. So far, induced responses have mostly investigated in aerial plant parts. Recently it was found that root herbivore may also elicit both local and systemic responses affecting aboveground herbivores and their natural enemies. Using broccoli (Brassica oleracea subsp. italica L.) and turnip (Brassica rapa subsp. rapa L.), two cultivated brassicaceaous plants differing in their chemistry and morphology, we analysed the local and systemic induced responses triggered by Delia radicum L. damage, JA and SA application. We also assessed whether the root induction treatments affected D. radicum larval performance. Both D. radicum damage and JA induced changes in glucosinolate and sugar content as well as affected D. radicum performance, while SA application did not. Despite the uniform chemical responses, the effect on larval performance on broccoli and turnip plants was very different. On broccoli, JA root treatment reduced herbivore performance, whereas in turnips the same treatment enhanced it. JA- and D. radicum-induced responses followed similar patterns, which suggests that the JA signalling pathway is involved in root-induced responses to larval feeding. Glucosinolate induction cannot fully explain the differences found in the performance of D. radicum on the different species. Changes in other resistance factors might significantly contribute to the induced resistance in these brassicaceaeous species as well.
Collapse
Affiliation(s)
- Prisca S Pierre
- UMR 1099 BiO3P, INRA, Agrocampus Ouest, University of Rennes Campus Scientifique de Beaulieu - Bât 25, 4 ème Avenue du Général Leclerc, 35042 Rennes Cedex, France.
| | | | | | | | | | | | | |
Collapse
|