1
|
Gupta SK, Mandal A, Ghosh A, Kundu A, Saha S, Singh A, Dutta A. Evaluating the insecticidal potential of alkaloids for the management of Thrips palmi: in vivo and in silico perspectives. Sci Rep 2024; 14:28045. [PMID: 39543116 PMCID: PMC11564808 DOI: 10.1038/s41598-024-77236-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
Insecticidal potential of seven commonly available alkaloids against melon thrips (Thrips palmi Karny) was investigated through in vivo experiments and the bioactivity was explained via in silico approaches. In vivo screening showed highest mortality of T. plami larvae for reserpine (43%), closely followed by tropinone (41%) after 24 h of incubation. After 48 h, tropinone surpassed reserpine with 83% mortality, indicating its prolonged insecticidal activity. A detailed bioassay of tropinone revealed its LC50 values as 1187.9 and 686.9 µg mL-1 after 24 and 48 h, respectively. While studying the molecular interactions between the alkaloids and four physiologically important target proteins of T. palmi, tropinone demonstrated the highest ligand efficiency and lowest predicted inhibitory constant, particularly when forming complexes with CathB protein. However, binding energy calculations of the docked complexes showed most favorable binding of reserpine with CathB. To clear the ambiguity, considering both binding energy and ligand efficiency as the evaluation parameters, a molecular dynamics study was carried out, which predicted higher stability of CathB-tropinone complex than CathB-reserpine complex in terms of the total energy of the system. These in silico findings aligned well with the in vivo results, confirming tropinone as a promising candidate for effective thrips management programs.
Collapse
Affiliation(s)
- Shyam Kumar Gupta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Abhishek Mandal
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Division of Basic Sciences, ICAR-Indian Institute of Horticultural Research, Bengaluru, 560089, Karnataka, India.
| | - Amalendu Ghosh
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Aditi Kundu
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Supradip Saha
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anupama Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anirban Dutta
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
- Downstream Agro-Processing Division, ICAR-National Institute of Secondary Agriculture, Namkum, Ranchi, 834010, Jharkhand, India.
| |
Collapse
|
2
|
Cheng S, Sun W, Zhao X, Wang P, Zhang W, Zhang S, Chang X, Ye Z. Simultaneous Determination of 32 Pyrrolizidine Alkaloids in Two Traditional Chinese Medicine Preparations by UPLC-MS/MS. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:7611501. [PMID: 36161105 PMCID: PMC9492412 DOI: 10.1155/2022/7611501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
Pyrrolizidine alkaloids (PAs) constitute a class of phytotoxin which demonstrates strong hepatotoxicity. In China, many plants containing PAs are used as traditional medicines or medicinal preparations, which could harm human health and safety. Xiaoyao Tablet (XYT) is an antidepressant drug registered in the European Union (EU), Compound Danshen Dropping Pills (CDDP) is a commonly used drug for coronary heart disease, and phase III clinical study is ongoing in the United States. The purpose of this study is to provide data to support the use of Chinese medicine preparations internationally and to establish analytical methods for 32 PAs in XYT and CDDP. The extraction parameters that were optimized include solid-phase extraction (SPE) cartridge, extraction method, and extraction solvent. Then ultra-performance liquid chromatography coupled with triple-quadrupole linear ion-traptandem mass spectrometry (UPLC-MS/MS) was developed to effectively and efficiently quantify the 32 PAs of the XYT and CDDP. The analytical methods for XYT and CDDP were verified respectively. For XYT, the analytical method for 32 PAs was linear, and the correlation coefficient r was greater than 0.994; the recovery (REC%) at 10-2000 μg/kg was 73.3%-118.5%, and the relative standard deviation (RSD%) was 2.1%-15.4%. The CDDP REC% was 71.8%-112.0%, and the RSD% was 2.0%-17.1%. This study provides technical and data support for the registration of Chinese patented medicines in the EU, controls quality and ensures safety, and is committed to the internationalization and standardization of Chinese patented medicines.
Collapse
Affiliation(s)
- Shi Cheng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wei Sun
- International Industry Center, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, China
| | - Xiaoning Zhao
- International Industry Center, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, China
| | - Ping Wang
- International Industry Center, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, China
| | - Wensheng Zhang
- International Industry Center, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, China
| | - Shunnan Zhang
- International Industry Center, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, China
| | - Xiangwei Chang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
- Anhui Province Key Laboratory of Pharmaceutical Preparation Technology and Application, Hefei 230012, China
- Engineering Technology Research Center of Modernized Pharmaceutics, Anhui Education Department (AUCM), Hefei 230012, China
| | - Zhengliang Ye
- International Industry Center, Tasly Pharmaceutical Group Co. Ltd., Tianjin 300410, China
| |
Collapse
|
3
|
Wei X, Klinkhamer PGL, Mulder PPJ, van der Veen-van Wijk K, Vrieling K. Seasonal variation in defence compounds: A case study on pyrrolizidine alkaloids of clones of Jacobaea vulgaris, Jacobaea aquatica and their hybrids. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111067. [PMID: 34763859 DOI: 10.1016/j.plantsci.2021.111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/29/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Concentration of plant secondary metabolites (SMs) show seasonal variations. However, it is still not well understood how these abiotic and biotic factors influence the seasonal variations of SMs. In addition, it is of interest to know if and how SMs are reallocated to the different plant organs, in particular whether SMs are reallocated to the remaining tissues when biomass is lost, e.g., during winter. Here we used Jacobaea vulgaris, Jacobaea aquatica, two F1 and four F2 hybrids that differed in their pyrrolizidine alkaloids (PAs) bouquet as a study system. A series of clones of these genotypes were investigated during their vegetative stage spanning 14 months in a semi-natural environment. We found that the total PA concentration in roots and shoots showed a gradual increase until the spring of the second year, whereafter it dropped substantially in shoots. The variation in PA composition due to seasonal changes was significant but relatively small. Senecionine-like PAs were the dominant PAs in roots, while jacobine-/erucifoline-like PAs were dominant in shoots. The variation of PA concentration was significantly correlated with temperature, day length, and plant age. A correlation analysis showed that PAs were not reallocated when biomass was lost in winter. Overall, our study showed that PA composition of each genotype changed over seasons in a different manner but seasonal variation did not overrule the differences in PA composition among genotypes.
Collapse
Affiliation(s)
- Xianqin Wei
- College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin, 300071, China; Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands.
| | - Peter G L Klinkhamer
- Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Patrick P J Mulder
- Wageningen Food Safety Research-Wageningen University & Research, Akkermaalsbos 2, P.O. Box 230, 6700 AE, Wageningen, the Netherlands
| | - Karin van der Veen-van Wijk
- Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| | - Klaas Vrieling
- Plant Cluster, Institute of Biology, Leiden University, Sylviusweg 72, P. O. Box 9505, 2300 RA, Leiden, the Netherlands
| |
Collapse
|
4
|
Metabolic Toxification of 1,2-Unsaturated Pyrrolizidine Alkaloids Causes Human Hepatic Sinusoidal Obstruction Syndrome: The Update. Int J Mol Sci 2021; 22:ijms221910419. [PMID: 34638760 PMCID: PMC8508847 DOI: 10.3390/ijms221910419] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/09/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022] Open
Abstract
Saturated and unsaturated pyrrolizidine alkaloids (PAs) are present in more than 6000 plant species growing in countries all over the world. They have a typical heterocyclic structure in common, but differ in their potential toxicity, depending on the presence or absence of a double bond between C1 and C2. Fortunately, most plants contain saturated PAs without this double bond and are therefore not toxic for consumption by humans or animals. In a minority of plants, however, PAs with this double bond between C1 and C2 exhibit strong hepatotoxic, genotoxic, cytotoxic, neurotoxic, and tumorigenic potentials. If consumed in error and in large emouns, plants with 1,2-unsaturated PAs induce metabolic breaking-off of the double bonds of the unsaturated PAs, generating PA radicals that may trigger severe liver injury through a process involving microsomal P450 (CYP), with preference of its isoforms CYP 2A6, CYP 3A4, and CYP 3A5. This toxifying CYP-dependent conversion occurs primarily in the endoplasmic reticulum of the hepatocytes equivalent to the microsomal fraction. Toxified PAs injure the protein membranes of hepatocytes, and after passing their plasma membranes, more so the liver sinusoidal endothelial cells (LSECs), leading to life-threatening hepatic sinusoidal obstruction syndrome (HSOS). This injury is easily diagnosed by blood pyrrolizidine protein adducts, which are perfect diagnostic biomarkers, supporting causality evaluation using the updated RUCAM (Roussel Uclaf Causality Assessment Method). HSOS is clinically characterized by weight gain due to fluid accumulation (ascites, pleural effusion, and edema), and may lead to acute liver failure, liver transplantation, or death. In conclusion, plant-derived PAs with a double bond between C1 and C2 are potentially hepatotoxic after metabolic removal of the double bond, and may cause PA-HSOS with a potential lethal outcome, even if PA consumption is stopped.
Collapse
|
5
|
Macel M, Visschers IGS, Peters JL, van Dam NM, de Graaf RM. High Concentrations of Very Long Chain Leaf Wax Alkanes of Thrips Susceptible Pepper Accessions (Capsicum spp). J Chem Ecol 2020; 46:1082-1089. [PMID: 33089351 PMCID: PMC7677282 DOI: 10.1007/s10886-020-01226-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 02/03/2023]
Abstract
The cuticular wax layer can be important for plant resistance to insects. Thrips (Frankliniella occidentalis) damage was assessed on 11 pepper accessions of Capsicum annuum and C. chinense in leaf disc and whole plant assays. Thrips damage differed among the accessions. We analyzed the composition of leaf cuticular waxes of these accessions by GC-MS. The leaf wax composition was different between the two Capsicum species. In C. annuum, 1-octacosanol (C28 alcohol) was the most abundant component, whereas in C. chinense 1-triacotanol (C30 alcohol) was the prominent. Thrips susceptible accessions had significantly higher concentrations of C25-C29 n-alkanes and iso-alkanes compared to relatively resistant pepper accessions. The triterpenoids α- and ß-amyrin tended to be more abundant in resistant accessions. Our study suggests a role for very long chain wax alkanes in thrips susceptibility of pepper.
Collapse
Affiliation(s)
- Mirka Macel
- Molecular Interaction Ecology, Institute of Water and Wetland Research (IWWR), Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
- Institute of Biology, Plant Ecology and Phytochemistry, Leiden University, P.O. Box 9505, 2300 RA, Leiden, The Netherlands
| | - Isabella G S Visschers
- Molecular Interaction Ecology, Institute of Water and Wetland Research (IWWR), Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Janny L Peters
- Plant Systems Physiology, Institute of Water and Wetland Research (IWWR), Radboud University, P. O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Nicole M van Dam
- Molecular Interaction Ecology, Institute of Water and Wetland Research (IWWR), Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, Germany
| | - Rob M de Graaf
- Microbiology, Institute of Water and Wetland Research (IWWR), Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
| |
Collapse
|
6
|
Development of a new LC-MS method for accurate and sensitive determination of 33 pyrrolizidine and 21 tropane alkaloids in plant-based food matrices. Anal Bioanal Chem 2020; 412:7155-7167. [PMID: 32803302 DOI: 10.1007/s00216-020-02848-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/26/2022]
Abstract
Setting of maximum limits for a number of plant alkaloids is under discussion in the EU. The novel method developed and optimized in this study enables simultaneous determination of 21 tropane alkaloids (TAs) and 33 pyrrolizidine (PAs) together with their N-oxides (PANOs). For analysis of aqueous-methanolic extract, reversed phase ultra-high-performance liquid chromatography and tandem mass spectrometry (RP-U-HPLC-MS/MS) was employed. The method was validated for frequently contaminated matrices (i) sorghum, (ii) oregano, and (iii) mixed herbal tea. The recoveries at two spiking levels were in the range of 82-115%, 80-106%, and 78-117%, respectively, and repeatabilities were less than 19% for all analyte/matrix combinations. As regards the achieved limits of quantification (LOQ), their values were in the range of 0.5-10 μg kg-1. The crucial problem encountered during method development, co-elution of multiple groups of isomeric alkaloids, was overcome by subsequent sample separation in the second chromatographic system, hydrophilic interaction liquid chromatography (HILIC), providing different separation selectivity. Lycopsamine, echinatine, and indicine (co-elution group 1) and N-oxides of indicine and intermedine (co-elution group 2), which could not be resolved on the commonly used RP column, were possible to separate fully by using the HILIC system.
Collapse
|
7
|
Macel M, Visschers IGS, Peters JL, Kappers IF, de Vos RCH, van Dam NM. Metabolomics of Thrips Resistance in Pepper (Capsicum spp.) Reveals Monomer and Dimer Acyclic Diterpene Glycosides as Potential Chemical Defenses. J Chem Ecol 2019; 45:490-501. [PMID: 31175497 PMCID: PMC6570690 DOI: 10.1007/s10886-019-01074-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/16/2022]
Abstract
The development of pesticide resistance in insects and recent bans on pesticides call for the identification of natural sources of resistance in crops. Here, we used natural variation in pepper (Capsicum spp.) resistance combined with an untargeted metabolomics approach to detect secondary metabolites related to thrips (Frankliniella occidentalis) resistance. Using leaf disc choice assays, we tested 11 Capsicum accessions of C. annuum and C. chinense in both vegetative and flowering stages for thrips resistance. Metabolites in the leaves of these 11 accessions were analyzed using LC-MS based untargeted metabolomics. The choice assays showed significant differences among the accessions in thrips feeding damage. The level of resistance depended on plant developmental stage. Metabolomics analyses showed differences in metabolomes among the Capsicum species and plant developmental stages. Moreover, metabolomic profiles of resistant and susceptible accessions differed. Monomer and dimer acyclic diterpene glycosides (capsianosides) were pinpointed as metabolites that were related to thrips resistance. Sucrose and malonylated flavone glycosides were related to susceptibility. To our knowledge, this is the first time that dimer capsianosides of pepper have been linked to insect resistance. Our results show the potential of untargeted metabolomics as a tool for discovering metabolites that are important in plant - insect interactions.
Collapse
Affiliation(s)
- Mirka Macel
- Molecular Interaction Ecology, Institute of Water and Wetland Research (IWWR), Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands.
| | - Isabella G S Visschers
- Molecular Interaction Ecology, Institute of Water and Wetland Research (IWWR), Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Janny L Peters
- Molecular Plant Physiology, Institute of Water and Wetland Research (IWWR), Radboud University, P. O. Box 9010, 6500 GL, Nijmegen, The Netherlands
| | - Iris F Kappers
- Laboratory of Plant Physiology, Wageningen University and Research, P.O. Box 658, 6700 AR, Wageningen, The Netherlands
| | - Ric C H de Vos
- Wageningen Plant Research, Bioscience, Wageningen University and Research, P.O. Box 16, 6700 AA, Wageningen, The Netherlands
| | - Nicole M van Dam
- Molecular Interaction Ecology, Institute of Water and Wetland Research (IWWR), Radboud University, P.O. Box 9010, 6500 GL, Nijmegen, The Netherlands
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103, Leipzig, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743, Jena, Germany
| |
Collapse
|
8
|
Schramm S, Köhler N, Rozhon W. Pyrrolizidine Alkaloids: Biosynthesis, Biological Activities and Occurrence in Crop Plants. Molecules 2019; 24:E498. [PMID: 30704105 PMCID: PMC6385001 DOI: 10.3390/molecules24030498] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 12/13/2022] Open
Abstract
Pyrrolizidine alkaloids (PAs) are heterocyclic secondary metabolites with a typical pyrrolizidine motif predominantly produced by plants as defense chemicals against herbivores. They display a wide structural diversity and occur in a vast number of species with novel structures and occurrences continuously being discovered. These alkaloids exhibit strong hepatotoxic, genotoxic, cytotoxic, tumorigenic, and neurotoxic activities, and thereby pose a serious threat to the health of humans since they are known contaminants of foods including grain, milk, honey, and eggs, as well as plant derived pharmaceuticals and food supplements. Livestock and fodder can be affected due to PA-containing plants on pastures and fields. Despite their importance as toxic contaminants of agricultural products, there is limited knowledge about their biosynthesis. While the intermediates were well defined by feeding experiments, only one enzyme involved in PA biosynthesis has been characterized so far, the homospermidine synthase catalyzing the first committed step in PA biosynthesis. This review gives an overview about structural diversity of PAs, biosynthetic pathways of necine base, and necic acid formation and how PA accumulation is regulated. Furthermore, we discuss their role in plant ecology and their modes of toxicity towards humans and animals. Finally, several examples of PA-producing crop plants are discussed.
Collapse
Affiliation(s)
- Sebastian Schramm
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| | - Nikolai Köhler
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| | - Wilfried Rozhon
- Biotechnology of Horticultural Crops, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Liesel-Beckmann-Straße 1, 85354 Freising, Germany.
| |
Collapse
|