1
|
Kavya P, Gayathri M. Phytochemical Composition and Inhibitory Effects of Curcuma angustifolia Leaves Extracts Against α-Amylase and α-Glucosidase Enzymes Associated With Hyperglycaemia: In Vitro and In Silico Analysis. Chem Biodivers 2025:e00173. [PMID: 40424639 DOI: 10.1002/cbdv.202500173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 05/02/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025]
Abstract
Curcuma angustifolia Roxb. is a plant known for its therapeutic properties and has been employed conventionally to treat various ailments. The current research aimed to determine the phytochemical compounds and to explore the antihyperglycemic effects of C. angustifolia leaves through in vitro and in silico methods. The phytochemicals in the methanolic extract of leaves of C. angustifolia were detected using Fourier-transform infrared, gas chromatography-mass spectrometry and liquid chromatography-mass spectrometry techniques. The antihyperglycemic potential of the different solvent extracts was evaluated using in vitro assays. The methanolic extract demonstrated comparatively higher inhibitory effects on both α-amylase and α-glucosidase enzymes, with the effects varying according to the concentration, and the half maximal inhibitory concentration values were 592.57 ± 0.64 and 267.11 ± 0.82 µg/ml, respectively. 2-p-Nitrophenyl-oxadiazol-1,3,4-one-5 was identified as a potential compound that could exhibit antihyperglycemic effects via molecular docking. 2-p-Nitrophenyl-oxadiazol-1,3,4-one-5 was found to have optimal physicochemical characteristics needed for drug-likeness based on in silico absorption, distribution, metabolism, excretion, and toxicity assessment. The prediction of activity spectra for substances prediction findings suggested that 2-p-nitrophenyl-oxadiazol-1,3,4-one-5 displays potent anti-diabetic activity, which aligns with the docking results. The findings suggested that the methanol extract of the leaves of C. angustifolia exhibits notable antihyperglycemic properties. Therefore, it could also be investigated to purify the active compound with antihyperglycemic effects.
Collapse
Affiliation(s)
- P Kavya
- Department of Bio Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - M Gayathri
- Department of Bio Medical Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
2
|
Akhtar MT, Qadir R, Altaf U, Almas T, Batool S, Ikram MS, Meor Hussin AS, Perveen K, Alshaikh NA, Saadia M. Phytochemical Profiling and Biological Activities of Nigella sativa Vinegar Extract: An Insight Into Hypoglycemic Potential Using In Vivo and In Silico Studies. Chem Biodivers 2025; 22:e202402512. [PMID: 39804576 DOI: 10.1002/cbdv.202402512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/16/2024] [Accepted: 12/27/2024] [Indexed: 05/17/2025]
Abstract
The current study was conducted to characterize the vinegar extract of Nigella sativa and evaluate its biological activities using in vitro and in vivo studies. The N. sativa extract (NSE) was prepared by macerating seeds in a mixture of water and synthetic vinegar (1:10). The antioxidant potential of NSE was assessed, revealing high total phenolic contents (431.66 mg/100 g), total flavonoid contents (73.45 mg/100 g), total antioxidant capacity (118.55 mg/100 g), and strong radical scavenging potential (89.67%). The anticancer activity of NSE showed insignificant cytotoxic effects on HepG2 liver cell lines (96.61 ± 3.00). An in vivo animal trial was performed, and NSE significantly (p < 0.05) lowered the blood glucose (-47.71%), total cholesterol (-37.86%), total glycerides (39.42%), low-density lipoproteins (-29.36%), and very low-density lipoproteins (-30.60%), while increasing the high-density lipoproteins (26.92%) in alloxan-induced diabetic rats. GC-MS analysis of NSE revealed a diverse range of bioactive compounds, including alkaloids, phenolics, and flavonoids. In silico studies using molecular docking simulations showed that pyrrolo[1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) demonstrated a strong inhibitory action (6.6 kcal/mol) against alpha-amylase enzyme. These findings suggest that NSE is a promising natural remedy for managing diabetes and related metabolic disorders, and its potential as a nutraceutical ingredient in functional food applications is significant.
Collapse
Affiliation(s)
| | - Rahman Qadir
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Uzma Altaf
- Department of Chemistry, Govt. Queen Mary Graduate College, Lahore, Punjab, Pakistan
| | - Tahira Almas
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Sajida Batool
- Department of Zoology, University of Sargodha, Sargodha, Punjab, Pakistan
| | - Muhammad Salman Ikram
- Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, China
| | - Anis Shobirin Meor Hussin
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Kahkashan Perveen
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Najla A Alshaikh
- Department of Botany & Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mubshara Saadia
- Department of Biochemistry, Government College Women University, Faisalabad, Pakistan
| |
Collapse
|
3
|
Kurra H, Velidandi A, Sarvepalli M, Pabbathi NPP, Godishala V. Aqueous Cymbopogon citratus Extract Mediated Silver Nanoparticles: Part I. Influence of Synthesis Parameters, Characterization, and Biomedical Studies. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:328. [PMID: 40072131 PMCID: PMC11901631 DOI: 10.3390/nano15050328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/14/2025]
Abstract
This study explores the green synthesis of silver nanoparticles (AgNPs) using Cymbopogon citratus (lemongrass) extract as a reducing agent. Synthesis was confirmed by a color change (light yellow to dark brown) under optimal conditions: 1.50 mM silver nitrate, 3.5% v/v extract, at 100 °C, with a pH of 9, and for 60 min. The AgNPs exhibited spherical morphology, a hydrodynamic diameter of 135.41 ± 49.30 nm, a zeta potential of -29.9 ± 1.4 mV, crystalline structure, and minimal aggregation. AgNPs showed significant antibacterial activity, particularly at >20 µg/well, with the zones of inhibition varying by bacterial strain. In vitro studies demonstrated anti-inflammatory, antidiabetic (α-glucosidase and α-amylase inhibition), and antioxidant activities, with AgNPs outperforming plant extract and nearing standard efficacy at higher concentrations. Cyto-toxicity studies indicated that AgNPs and plant extract were less toxic than doxorubicin but exhibited concentration-dependent effects on cancerous and non-cancerous cells. Eco-toxicity assays revealed that AgNPs were less acutely toxic than controls but posed risks with prolonged exposure. This work highlights the eco-friendly synthesis of AgNPs and their potential in biomedical applications, demonstrating efficacy in antibacterial and antioxidant activities.
Collapse
Affiliation(s)
- Himabindu Kurra
- Department of Biotechnology, Vaagdevi Degree and P.G. College, Warangal 506001, India;
- Department of Biotechnology, Bharatiya Engineering Science and Technology Innovation University, Gorantla 515231, India
| | - Aditya Velidandi
- Department of Biotechnology, National Institute of Technology, Warangal 506004, India; (A.V.); (M.S.); (N.P.P.P.)
| | - Mounika Sarvepalli
- Department of Biotechnology, National Institute of Technology, Warangal 506004, India; (A.V.); (M.S.); (N.P.P.P.)
| | | | - Vikram Godishala
- Department of Biotechnology, Vaagdevi Degree and P.G. College, Warangal 506001, India;
- Department of Biotechnology, Bharatiya Engineering Science and Technology Innovation University, Gorantla 515231, India
| |
Collapse
|
4
|
Huo LC, Liu NY, Wang CJ, Luo Y, Liu JX. Lonicera japonica protects Pelodiscus sinensis by inhibiting the biofilm formation of Aeromonas hydrophila. Appl Microbiol Biotechnol 2024; 108:67. [PMID: 38183487 DOI: 10.1007/s00253-023-12910-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/29/2023] [Accepted: 11/13/2023] [Indexed: 01/08/2024]
Abstract
Aquaculture has suffered significant financial losses as a result of the infection of zoonotic Aeromonas hydrophila, which has a high level of resistance to classic antibiotics. In this study, we isolated an A. hydrophila strain B3 from diseased soft-shelled turtle (Pelodiscus sinensis), which is one of the most commercially significant freshwater farmed reptiles in East Asia, and found that A. hydrophila was its dominant pathogen. To better understand the inhibition effect and action mechanism of Chinese herbs on A. hydrophila, we conducted Chinese herbs screening and found that Lonicera japonica had a significant antibacterial effect on A. hydrophila B3. Experimental therapeutics of L. japonica on soft-shelled turtle showed that the supplement of 1% L. japonica to diet could significantly upregulate the immunity-related gene expression of soft-shelled turtle and protect soft-shelled turtle against A. hydrophila infection. Histopathological section results validated the protective effect of L. japonica. As the major effective component of L. japonica, chlorogenic acid demonstrated significant inhibitory effect on the growth of A. hydrophila with MIC at 6.4 mg/mL. The in vitro assay suggested that chlorogenic acid could inhibit the hemolysin/protease production and biofilm formation of A. hydrophila and significantly decrease the expression of quorum sensing, biofilm formation, and hemolysin-related genes in A. hydrophila. Our results showed that the Chinese herb L. japonica would be a promising candidate for the treatment of A. hydrophila infections in aquaculture, and it not only improves the immune response of aquatic animals but also inhibits the virulence factor (such as biofilm formation) expression of A. hydrophila. KEY POINTS: • A. hydrophila was the dominant pathogen of the diseased soft-shelled turtle. • L. japonica can protect soft-shelled turtle against A. hydrophila infection. • Chlorogenic acid inhibits the growth and biofilm formation of A. hydrophila.
Collapse
Affiliation(s)
- Li-Chao Huo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Nai-Yu Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Chao-Jie Wang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yi Luo
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
5
|
El-Seedi HR, Omara MS, Omar AH, Elakshar MM, Shoukhba YM, Duman H, Karav S, Rashwan AK, El-Seedi AH, Altaleb HA, Gao H, Saeed A, Jefri OA, Guo Z, Khalifa SAM. Updated Review of Metal Nanoparticles Fabricated by Green Chemistry Using Natural Extracts: Biosynthesis, Mechanisms, and Applications. Bioengineering (Basel) 2024; 11:1095. [PMID: 39593755 PMCID: PMC11591867 DOI: 10.3390/bioengineering11111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Metallic nanoparticles have found wide applications due to their unique physical and chemical properties. Green biosynthesis using plants, microbes, and plant/microbial extracts provides an environmentally friendly approach for nanoparticle synthesis. This review discusses the mechanisms and factors governing the biosynthesis of metallic nanoparticles such as silver, gold, and zinc using various plant extracts and microorganisms, including bacteria, fungi, and algae. The phytochemicals and biomolecules responsible for reducing metal ions and stabilizing nanoparticles are discussed. Key process parameters like pH, temperature, and precursor concentration affecting particle size are highlighted. Characterization techniques for confirming the formation and properties of nanoparticles are also mentioned. Applications of biosynthesized nanoparticles in areas such as antibacterial delivery, cancer therapy, biosensors, and environmental remediation are reviewed. Challenges in scaling up production and regulating nanoparticle properties are addressed. Power Point 365 was used for creating graphics. Overall, green biosynthesis is an emerging field with opportunities for developing eco-friendly nanomanufacturing platforms using abundant natural resources. Further work on optimizing conditions, standardizing protocols, and exploring new biosources is needed to realize the full potential of this approach.
Collapse
Affiliation(s)
- Hesham R. El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 32111, Egypt
| | - Mohamed S. Omara
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Abdulrahman H. Omar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Mahmoud M. Elakshar
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Yousef M. Shoukhba
- Botany and Microbiology Department, Faculty of Science, Menoufia University, Menoufia 32111, Egypt; (M.S.O.); (A.H.O.); (M.M.E.); (Y.M.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey; (H.D.); (S.K.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Turkey; (H.D.); (S.K.)
| | - Ahmed K. Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China;
| | - Awg H. El-Seedi
- International IT College of Sweden, Stockholm, Hälsobrunnsgatan 6, Arena Academy, 11361 Stockholm, Sweden;
| | - Hamud A. Altaleb
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Haiyan Gao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Ohoud A. Jefri
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Department of Biology, College of Science, Taibah University, Al-Madinah Al Munawarah 42353, Saudi Arabia
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Shaden A. M. Khalifa
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Neurology and Psychiatry Department, Capio Saint Göran’s Hospital, Sankt Göransplan 1, 11219 Stockholm, Sweden
| |
Collapse
|
6
|
Ozden E, Kaya B, Guler R. Investigation of the Effects of Thymoquinone and Dental Pulp-Derived Mesenchymal Stem Cells on Tibial Bone Defect Models. J Craniofac Surg 2024; 35:1958-1963. [PMID: 38758543 DOI: 10.1097/scs.0000000000010323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/19/2024] [Indexed: 05/18/2024] Open
Abstract
The thymoquinone obtained from Nigella sativa increases osteoblastic activity and significantly reduces the number of osteoclasts, thereby accelerating bone healing. In addition, mesenchymal stem cells isolated from various tissues are considered a potential cell source for bone regenerative therapies. The aim of this study is to investigate the effectiveness of thymoquinone, a current and novel agent, in combination with mesenchymal stem cells derived from the dental pulp in promoting bone healing. In the study, 28 male Sprague Dawley rats were used. The rats were divided into 4 groups, each consisting of 7 rats: the control group (group 1) (n=7), thymoquinone group (group 2) (n=7), stem cell group (group 3) (n=7), stem cell+thymoquinone group (group 4) (n=7). A bone defect of 4 mm in diameter and 5 mm in length was created in the left tibial bones of all rats with a trephine bur. In group 1, no procedure was applied to the defect area. Group 2 was applied thymoquinone (10 mg/kg) with oral gavage. In group 3, stem cells were used locally to the defect area. In group 4, stem cells and thymoquinone (10 mg/kg) was applied to the defect area. All rats were killed on the 28th day of the experiment. Tibia tissues extracted during sacrifice were histomorphologically examined in a fixative solution. Significant differences were found in terms of new bone formation and osteoblastic activity values in the "thymoquinone" ( P <0.05), "stem cell" ( P <0.05), and "stem cell+thymoquinone" ( P <0.05) groups compared to the "control" group. In addition, while there was no significant difference in the "thymoquinone" group compared to these stem cell+thymoquinone group in terms of osteoblastic activity ( P >0.05), the difference in terms of new bone formation was found to be significantly lower. No significant differences among the other groups were observed in new bone formation and osteoblastic activity ( P >0.05). According to the results of our study, stem cell+thymoquinone treatment for bone defects is not only more effective than thymoquinone or stem cell treatment alone but also induces greater development of bone trabeculae, contributes to the matrix and connective tissue formation, and increases the number of osteoblasts and osteocytes involved in bone formation.
Collapse
Affiliation(s)
- Ersin Ozden
- Department of Oral and Maxillofacial Surgery, Ministry of Health, Oral and Dental Health Hospital, Samsun
| | - Beyza Kaya
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Dicle University, Diyarbakir, Turkiye
| | - Ridvan Guler
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Dicle University, Diyarbakir, Turkiye
| |
Collapse
|
7
|
Okumus E. Effect of ultrasonic and conventional extraction on bioactive components, glucosinolate content and antidiabetic activity of Crambe tataria. Fitoterapia 2024; 178:106177. [PMID: 39122120 DOI: 10.1016/j.fitote.2024.106177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
This study was conducted to determine and compare the phenolic compounds, glucosinolate contents and antidiabetic effects of the extracts obtained by ultrasonic and conventional extraction method of the leaves and flowers of the Crambe tataria. The highest antioxidant activity (12.95 mg/mL IC50 value) and total phenolic content (1313.57 mg GAE/100 g fw) were detected in the ultrasonic flower extract. In total flavonoid results, extracts obtained from the flower part of C. tataria had higher values than that of extracts obtained from the leaf part. The most abundant phenolic component in the flower extract was catechin. The highest catechin content in all samples was detected in the ultrasonic flower extract with a value of 374.37 mg/kg. Rutin was the dominant phenolic component in the leaf extract. Rutin values were 654.38 mg/kg and 757.30 mg/kg for conventional and ultrasonic extraction, respectively. In glucosinolate analysis, the highest glucoraphanin content was obtained in flower samples and by conventional extraction method (3466.84 mg/kg). The highest contents of sinigrin (689.97 mg/kg), glucotropaeolin (420.89 mg/kg), glucoerucin (357.27 mg/kg), glucoraphasatin (181.11 mg/kg) and gluconasturtin (66.07 mg/kg) were detected in ultrasonic flower extracts. The highest α-amylase and α-glucosidase enzyme inhibition effects belonged to the ultrasonic flower extract with values of 3.70 mg/mL and 4.89 mg/mL, respectively. As a result, this study determined for the first time that ultrasonic extraction of C. tataria flowers has much higher bioactive components and antidiabetic effects, revealing the potential use of this plant in the fields of medicine, pharmacology and chemistry.
Collapse
Affiliation(s)
- Emine Okumus
- Van Yüzüncü Yıl University, Faculty of Engineering, Department of Food Engineering, Van, Turkey.
| |
Collapse
|
8
|
Fazil MM, Gul A, Jawed H. Optimization of silver nanoparticles synthesis via Plackett-Burman experimental design: in vitro assessment of their efficacy against oxidative stress-induced disorders. RSC Adv 2024; 14:20809-20823. [PMID: 38952932 PMCID: PMC11216038 DOI: 10.1039/d4ra02774d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Nanoparticles possess remarkable biological activities owing to their small size and large surface-to-volume ratio. Given the increasing adoption of environmentally sustainable practices in silver nanoparticle (AgNP) fabrication, this study presents a simple lab-scale green synthesis of AgNPs using banana peels. Large amounts of banana peels are disposed off in Pakistan every day. As the fruit is available throughout the year and contains many active components with potent biological activities, we aimed to synthesize silver nanoparticles using its peel, through an energy-efficient and inexpensive route. The synthesis was optimized according to the Plackett-Burman design (PDB) of experiments, which helped identify significant factors and saved time and resources. For characterization, UV-Vis spectroscopy and SEM-EDX analysis were performed, revealing spherical particles in the 45-65 nm size range. To investigate functional groups, FT-IR analysis was performed, revealing the presence of N-C[double bond, length as m-dash]O amide I bonds of proteins, C-H bonds of tannins and C-O bonds involved in the capping and stabilization of nanoparticles. The free radical scavenging property of banana peel-mediated silver nanoparticles (BP-AgNPs) was studied against 2,2-diphenyl-1-picrylhydrazyl (DPPH), and the antioxidant potential was found to be 79% at 500 μg mL-1 concentration. The efficacy of BP-AgNPs with respect to certain biological activities were studied through anti-inflammatory assays, which demonstrated better results compared to a standard drug, and an anti-glycation assay, wherein only 4% of AGEs were formed, demonstrating 96% of AGE inhibition in vitro. The findings not only demonstrated the effectiveness of the PBD approach but also highlighted the potent property of BP-AgNPs against disorders associated with oxidative stress.
Collapse
Affiliation(s)
| | - Anum Gul
- Dow College of Biotechnology, Dow University of Health Sciences Karachi Pakistan
| | - Huma Jawed
- Department of Biosciences, Mohammad Ali Jinnah University Karachi Pakistan
| |
Collapse
|
9
|
Saddik MS, Al-Hakkani MF, Abu-Dief AM, Mohamed MS, Al-Fattah IA, Makki M, El-Mokhtar MA, Sabet MA, Amin M, Ahmed HA, Al-Ghamdi K, Mohammad MK, Hassan MH. Formulation and evaluation of azithromycin-loaded silver nanoparticles for the treatment of infected wounds. Int J Pharm X 2024; 7:100245. [PMID: 38633410 PMCID: PMC11021372 DOI: 10.1016/j.ijpx.2024.100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 04/19/2024] Open
Abstract
Infected wounds pose a significant challenge in healthcare, requiring innovative therapeutic strategies. Therefore, there is a critical need for innovative pharmaceutical materials to improve wound healing and combat bacterial growth. This study examined the efficacy of azithromycin-loaded silver nanoparticles (AZM-AgNPs) in treating infected wounds. AgNPs synthesized using a green method with Quinoa seed extract were loaded with AZM. Characterization techniques, including X-ray Powder Diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), and Uv-Vis analysis were utilized. The agar diffusion assay and determination of the MIC were used to assess the initial antibacterial impact of the formulations on both MRSA and E. coli. In addition, the antimicrobial, wound-healing effects and histological changes following treatment with the AZM-AgNPs were assessed using an infected rat model. The nanoparticles had size of 24.9 ± 15.2 nm for AgNPs and 34.7 ± 9.7 nm for AZM-AgNPs. The Langmuir model accurately characterized the adsorption of AZM onto the AgNP surface, indicating a maximum loading capacity of 162.73 mg/g. AZM-AgNPs exhibited superior antibacterial properties in vivo and in vitro compared to controls. Using the agar diffusion technique, AZM-AgNPs showed enhanced zones of inhibition against E. coli and MRSA, which was coupled with decreased MIC levels. In addition, in vivo studies showed that AZM-AgNP treated rats had the best outcome characterized by improved healing process, lower bacterial counts and superior epithelialization, compared to the control group. In conclusion, AZM-AgNPs can be synthesized using a green method with Quinoa seed with successful loading of azithromycin onto silver nanoparticles. In vitro and in vivo studies suggest the promising use of AZM-AgNPs as an effective therapeutic agent for infected wounds.
Collapse
Affiliation(s)
- Mohammed S. Saddik
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Sohag University, P.O. Box 82524, Sohag 82524, Egypt
| | - Mostafa F. Al-Hakkani
- Department of Research, Development, and Stability, UP Pharma, Industrial Zone, Arab El Awamer, Abnoub, 76, Assiut, Egypt
| | - Ahmed M. Abu-Dief
- Chemistry Department, College of Science, Taibah University, P.O. Box 344, Al-Madinah Al-Munawwarah, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82524, Egypt
| | - Mohamed S. Mohamed
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Islam A. Al-Fattah
- Department of Research, Development, and Stability, UP Pharma, Industrial Zone, Arab El Awamer, Abnoub, 76, Assiut, Egypt
| | - Mahmoud Makki
- Department of Dermatology and Andrology, Faculty of Medicine [Assiut], Al-Azhar University, Assiut 71524, Egypt
| | - Mohamed A. El-Mokhtar
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Marwa A. Sabet
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sphinx University, New-Assiut 71684, Egypt
| | - M.S. Amin
- Chemistry Department, College of Science, Taibah University, P.O. Box 344, Al-Madinah Al-Munawwarah, Saudi Arabia
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Hoda A. Ahmed
- Chemistry Department, Faculty of Science at Yanbu, Taibah University, Yanbu 46423, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Cairo 12613, Egypt
| | - Khalaf Al-Ghamdi
- Chemistry Department, College of Science, Taibah University, P.O. Box 344, Al-Madinah Al-Munawwarah, Saudi Arabia
| | - Mostafa K. Mohammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Assiut, New Nasser City, West of Assiut, Egypt
| | - Mohammad H.A. Hassan
- Department of Medical Laboratory Technology, Higher Technological Institute for Applied Health Sciences in Minya, Minya, Egypt
| |
Collapse
|
10
|
Patel J, Kumar GS, Roy H, Maddiboyina B, Leporatti S, Bohara RA. From nature to nanomedicine: bioengineered metallic nanoparticles bridge the gap for medical applications. DISCOVER NANO 2024; 19:85. [PMID: 38724833 PMCID: PMC11082127 DOI: 10.1186/s11671-024-04021-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
The escalating global challenge of antimicrobial resistance demands innovative approaches. This review delves into the current status and future prospects of bioengineered metallic nanoparticles derived from natural sources as potent antimicrobial agents. The unique attributes of metallic nanoparticles and the abundance of natural resources have sparked a burgeoning field of research in combating microbial infections. A systematic review of the literature was conducted, encompassing a wide range of studies investigating the synthesis, characterization, and antimicrobial mechanisms of bioengineered metallic nanoparticles. Databases such as PubMed, Scopus, Web of Science, ScienceDirect, Springer, Taylor & Francis online and OpenAthen were extensively searched to compile a comprehensive overview of the topic. The synthesis methods, including green and sustainable approaches, were examined, as were the diverse biological sources used in nanoparticle fabrication. The amalgamation of metallic nanoparticles and natural products has yielded promising antimicrobial agents. Their multifaceted mechanisms, including membrane disruption, oxidative stress induction, and enzyme inhibition, render them effective against various pathogens, including drug-resistant strains. Moreover, the potential for targeted drug delivery systems using these nanoparticles has opened new avenues for personalized medicine. Bioengineered metallic nanoparticles derived from natural sources represent a dynamic frontier in the battle against microbial infections. The current status of research underscores their remarkable antimicrobial efficacy and multifaceted mechanisms of action. Future prospects are bright, with opportunities for scalability and cost-effectiveness through sustainable synthesis methods. However, addressing toxicity, regulatory hurdles, and environmental considerations remains crucial. In conclusion, this review highlights the evolving landscape of bioengineered metallic nanoparticles, offering valuable insights into their current status and their potential to revolutionize antimicrobial therapy in the future.
Collapse
Affiliation(s)
- Jitendra Patel
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - G Shiva Kumar
- Gitam School of Pharmacy, GITAM (Deemed to be University), Hyderabad Campus, Rudraram, Sangareddy, Hyderabad, TS, 502329, India
| | - Harekrishna Roy
- Department of Pharmaceutics, Nirmala College of Pharmacy, Mangalagiri, Guntur, Andhra Pradesh, 522503, India.
| | - Balaji Maddiboyina
- Department of Medical and Scientific Communications, Scientific Writing Services, Freyr Global Regulatory Solutions & Services, Phoenix SEZ, Hitech City, Gachibowli, Hyderabad, 500081, India.
| | - Stefano Leporatti
- CNR Nanotec-Istituto Di Nanotecnologia, C\O Campus EcotekneVia Monteroni, 3100, Lecce, Italy
| | - Raghvendra A Bohara
- D.Y. Patil Education Society (Deemed to be University), Kolhapur, MS, India.
- University of Galway, Galway, Ireland.
| |
Collapse
|
11
|
Vijayakumar S, Chen J, González-Sánchez ZI, Tungare K, Bhori M, Shakila H, Sruthi KS, Divya M, Durán-Lara EF, Thandapani G, Anbu P. Biomedical and ecosafety assessment of marine fish collagen capped silver nanoparticles. Int J Biol Macromol 2024; 260:129324. [PMID: 38228210 DOI: 10.1016/j.ijbiomac.2024.129324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/18/2024]
Abstract
In the rapidly evolving landscape of silver nanoparticles (Ag NPs) synthesis, the focus has predominantly been on plant-derived sources, leaving the realm of biological or animal origins relatively uncharted. Breaking new ground, our study introduces a pioneering approach: the creation of Ag NPs using marine fish collagen, termed ClAg NPs, and offers a comprehensive exploration of their diverse attributes. To begin, we meticulously characterized ClAg NPs, revealing their spherical morphology, strong crystalline structure, and average diameter of 5 to 100 nm. These NPs showed potent antibacterial activity, notably against S. aureus (gram-positive), surpassing their efficacy against S. typhi (gram-negative). Additionally, ClAg NPs effectively hindered the growth of MRSA biofilms at 500 μg/mL. Impressively, they demonstrated substantial antioxidant capabilities, out performing standard gallic acid. Although higher concentrations of ClAg NPs induced hemolysis (41.804 %), lower concentrations remained non hemolytic. Further evaluations delved into the safety and potential applications of ClAg NPs. In vitro cytotoxicity studies on HEK 293 and HeLa cells revealed dose-dependent toxicity, with IC50 of 75.28 μg/mL and 79.13 μg/mL, respectively. Furthermore, ClAg NPs affected seed germination, root, and shoot lengths in Mung plants, underscoring their relevance in agriculture. Lastly, zebrafish embryo toxicity assays revealed notable effects, particularly at 500 μg/mL, on embryo morphology and survival rates at 96 hpf. In conclusion, our study pioneers the synthesis and multifaceted evaluation of ClAg NPs, offering promise for their use as versatile nano therapeutics in the medical field and as high-value collagen-based nanobiomaterial with minimal environmental impact.
Collapse
Affiliation(s)
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, PR China.
| | - Zaira I González-Sánchez
- Nanobiology Laboratory, Department of Natural and Exact Sciences, Pontificia Universidad Católica Madre y Maestra, PUCMM, Autopista Duarte Km 1 ½, Santiago de los Caballeros, Dominican Republic; Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, CBD Belapur, Plot No-50, Sector-15, Navi Mumbai 400614, India; Anatek Services PVT Ltd, 10, Sai Chamber, Near Santacruz Railway Bridge, Sen Nagar, Santacruz East, Mumbai, Maharashtra 400055, India.
| | - Mustansir Bhori
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to be University, CBD Belapur, Plot No-50, Sector-15, Navi Mumbai 400614, India; Invenio life Technology PVT Ltd, Office No.118, Grow More Tower, Plot No.5, Sector 2, Kharghar, Navi Mumbai, Maharashtra 410210, India
| | - Harshavardhan Shakila
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - K S Sruthi
- Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Mani Divya
- BioMe-Live Analytical Centre, Karaikudi, Tamil Nadu, India
| | - Esteban F Durán-Lara
- Bio&NanoMaterialsLab, Drug Delivery and Controlled Release, Universidad de Talca, Talca 3460000, Maule, Chile; Departamento de Microbiología, Facultad de Ciencias de la Salud, Universidad de Talca, Talca 3460000, Maule, Chile
| | - Gomathi Thandapani
- PG and Research Department of Chemistry, D.K.M. College for Women (Autonomous), Affiliated to Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - Periasamy Anbu
- Department of Biological Engineering, Inha University, Incheon 402-751, Republic of Korea.
| |
Collapse
|
12
|
Mohan ME, Mohan MC, Prabhakaran P, Syam Das S, Krishnakumar IM, Baby Chakrapani PS. Exploring the short-term influence of a proprietary oil extract of black cumin ( Nigella sativa) on non-restorative sleep: a randomized, double-blinded, placebo-controlled actigraphy study. Front Nutr 2024; 10:1200118. [PMID: 38288065 PMCID: PMC10822901 DOI: 10.3389/fnut.2023.1200118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/27/2023] [Indexed: 01/31/2024] Open
Abstract
Background Nigella sativa (black cumin, or black seed) is popularly known as the seed of blessings in the Arab system of medicine. Though not widely recommended for sleep, a unique proprietary black cumin extract (BlaQmax®/ThymoDream™; BCO-5) has been shown to be helpful in the management of stress and sleep issues. Methods This randomized, double-blind, placebo-controlled trial aimed to investigate the efficacy of BCO-5 on the sleep quality of volunteers characterized with a self-reported non-restorative sleep disorder. Healthy male and female participants (n = 70), aged 18-65 years (BMI 22-28 Kg/m2) were randomized to either placebo or BCO-5 (n = 35/group). Both interventions were supplemented at 200 mg/day for seven days. Actigraphy and a validated restorative sleep questionnaire (RSQ-W) were used to monitor the influence of BCO-5 on sleep. Results Compared to placebo, BCO-5 significantly improved sleep quality, as evidenced by both intra-group and inter-group analyses of the actigraphy data. The relative improvements observed were sleep efficiency (7.8%, p < 0.001), total sleep time (19.1%, p < 0.001), sleep onset latency (35.4%; p < 0.001), and wake-after-sleep-onset (22.5%; p < 0.001) compared with placebo. BCO-5 also improved sleep by 75.3% compared to baseline (p < 0.001) and by 68.9% compared to placebo (p < 0.001), when monitored by RSQ-W. BCO-5 was well-tolerated with no reports of side effects or toxicity. Conclusion BCO-5 significantly improved non-restorative sleep in seven days, indicating its potential role as a natural sleep aid.
Collapse
Affiliation(s)
- M. E. Mohan
- Department of General Medicine, BGS Global Institute of Medical Sciences, Kengeri, India
| | - Mohind C. Mohan
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
| | | | - S. Syam Das
- R&D Centre, Akay Natural Ingredients, Cochin, Kerala, India
| | | | - P. S. Baby Chakrapani
- Centre for Neuroscience, Cochin University of Science and Technology, Cochin, Kerala, India
- Department of Biotechnology, Cochin University of Science and Technology, Cochin, Kerala, India
- Centre of Excellence in Neurodegeneration and Brain Health, Cochin, Kerala, India
| |
Collapse
|
13
|
Singh S, Semwal BC, Sharma H, Sharma D. Impact of Phytomolecules with Nanotechnology on the Treatment of
Inflammation. CURRENT BIOACTIVE COMPOUNDS 2023; 19. [DOI: 10.2174/1573407219666230807150030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 01/06/2025]
Abstract
Abstract:
Inflammation is a part of the biological response of body tissues against harmful stimuli,
such as damaged cells, pathogens, irradiations, and toxic compounds. Numerous treatments, including
anti-inflammatory drugs that treat the condition of inflammation, are available for its management.
Because of the severe adverse effects associated with synthetic medications, phytotherapy
may be a promising and effective approach to treating inflammation. The therapeutic potential of
herbs is due to their capacity to target a variety of inflammatory mediators, including chemokines,
cytokines, nitric oxide, lipoxygenase, nuclear factor kappa-B, and arachidonic acid. Furthermore,
nanomedicine may be a valuable and effective formulation approach for overcoming the drawbacks
of phytoconstituents, such as their low bioavailability, high first-pass metabolism, and poor stability.
The current manuscript provides a thorough description of many phytoconstituents and herbal
plants that have great potential for treating inflammation-related diseases, as well as information on
their limitations, drug formulations, and regulatory issues.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Bhupesh C Semwal
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University Mathura, U.P, 281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University Mathura, U.P, 281406, India
| | - Divya Sharma
- Parexel International,
DLF Building Tower F, 3rd Floor, Chandigarh Technology Park, Chandigarh-160101, India
| |
Collapse
|
14
|
Lin Q, Qiu C, Li X, Sang S, McClements DJ, Chen L, Long J, Jiao A, Tian Y, Jin Z. The inhibitory mechanism of amylase inhibitors and research progress in nanoparticle-based inhibitors. Crit Rev Food Sci Nutr 2023; 63:12126-12135. [PMID: 35822304 DOI: 10.1080/10408398.2022.2098687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 2 diabetes is caused by persistently high blood sugar levels, which leads to metabolic dysregulation and an increase in the risk of chronic diseases such as diabetes and obesity. High levels of rapidly digestible starches within foods may contribute to high blood sugar levels. Amylase inhibitors can reduce amylase activity, thereby inhibiting starch hydrolysis, and reducing blood sugar levels. Currently, amylase inhibitors are usually chemically synthesized substances, which can have undesirable side effects on the human body. The development of amylase inhibitors from food-grade ingredients that can be incorporated into the human diet is therefore of great interest. Several classes of phytochemicals, including polyphenols and flavonoids, have been shown to inhibit amylase, including certain types of food-grade nanoparticles. In this review, we summarize the main functions and characteristics of amylases within the human body, as well as their interactions with amylase inhibitors. A strong focus is given to the utilization of nanoparticles as amylase inhibitors. The information covered in this article may be useful for the design of functional foods that can better control blood glucose levels, which may help reduce the risk of diabetes and other diet-related diseases.
Collapse
Affiliation(s)
- Qianzhu Lin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Chao Qiu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiaojing Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Shangyuan Sang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | | | - Long Chen
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jie Long
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Aiquan Jiao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yaoqi Tian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
15
|
Khan ZUR, Assad N, Naeem-Ul-Hassan M, Sher M, Alatawi FS, Alatawi MS, Omran AME, Jame RMA, Adnan M, Khan MN, Ali B, Wahab S, Razak SA, Javed MA, Kaplan A, Rahimi M. Aconitum lycoctonum L. (Ranunculaceae) mediated biogenic synthesis of silver nanoparticles as potential antioxidant, anti-inflammatory, antimicrobial and antidiabetic agents. BMC Chem 2023; 17:128. [PMID: 37770921 PMCID: PMC10540474 DOI: 10.1186/s13065-023-01047-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 09/22/2023] [Indexed: 09/30/2023] Open
Abstract
In this study, a polar extract of Aconitum lycoctonum L. was used for the synthesis of silver nanoparticles (AgNPs), followed by their characterization using different techniques and evaluation of their potential as antioxidants, amylase inhibitors, anti-inflammatory and antibacterial agents. The formation of AgNPs was detected by a color change, from transparent to dark brown, within 15 min and a surface resonance peak at 460 nm in the UV-visible spectrum. The FTIR spectra confirmed the involvement of various biomolecules in the synthesis of AgNPs. The average diameter of these spherical AgNPs was 67 nm, as shown by the scanning electron micrograph. The inhibition zones showed that the synthesized nanoparticles inhibited the growth of Gram-positive and negative bacteria. FRAP and DPPH assays were used to demonstrate the antioxidant potential of AgNPs. The highest value of FRAP (50.47% AAE/mL) was detected at a concentration of 90 ppm and a DPPH scavenging activity of 69.63% GAE was detected at a concentration of 20 µg/mL of the synthesized AgNPs. 500 µg/mL of the synthesized AgNPs were quite efficient in causing 91.78% denaturation of ovalbumin. The AgNPs mediated by A. lycoctonum also showed an inhibitory effect on α-amylase. Therefore, AgNPs synthesized from A. lycoctonum may serve as potential candidates for antibacterial, antioxidant, anti-inflammatory, and antidiabetic agents.
Collapse
Affiliation(s)
- Zia Ur Rehman Khan
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Nasir Assad
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Muhammad Sher
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Fatema Suliman Alatawi
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohsen Suliman Alatawi
- Department of Pediatrics, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Awatif M E Omran
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
| | - Rasha M A Jame
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia
- Department of Chemistry, Faculty of Education, University of Dalanj, Dalanj, Sudan
| | - Muhammad Adnan
- Department of Chemistry, Islamia College Peshawar, Peshawar, 25120, Pakistan
| | | | - Baber Ali
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sana Wahab
- Department of Plant Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Sarah Abdul Razak
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Muhammad Ammar Javed
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Alevcan Kaplan
- Department of Crop and Animal Production, Sason Vocational School, Batman University, 72060, Batman, Turkey
| | - Mehdi Rahimi
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| |
Collapse
|
16
|
Pekkoh J, Ruangrit K, Kaewkod T, Tragoolpua Y, Hoijang S, Srisombat L, Wichapein A, Pathom-Aree W, Kato Y, Wang G, Srinuanpan S. Innovative Eco-Friendly Microwave-Assisted Rapid Biosynthesis of Ag/AgCl-NPs Coated with Algae Bloom Extract as Multi-Functional Biomaterials with Non-Toxic Effects on Normal Human Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2141. [PMID: 37513152 PMCID: PMC10383740 DOI: 10.3390/nano13142141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Harmful algal blooms impact human welfare and are a global concern. Sargassum spp., a type of algae or seaweed that can potentially bloom in certain regions of the sea around Thailand, exhibits a noteworthy electron capacity as the sole reducing and stabilizing agent, which suggests its potential for mediating nanoparticle composites. This study proposes an eco-friendly microwave-assisted biosynthesis (MAS) method to fabricate silver nanoparticles coated with Sargassum aqueous extract (Ag/AgCl-NPs-ME). Ag/AgCl-NPs-ME were successfully synthesized in 1 min using a 20 mM AgNO3 solution without additional hazardous chemicals. UV-visible spectroscopy confirmed their formation through a surface plasmon resonance band at 400-500 nm. XRD and FTIR analyses verified their crystalline nature and involvement of organic molecules. TEM and SEM characterization showed well-dispersed Ag/AgCl-NPs-ME with an average size of 36.43 nm. The EDS results confirmed the presence of metallic Ag+ and Cl- ions. Ag/AgCl-NPs-ME exhibited significant antioxidant activity against free radicals (DPPH, ABTS, and FRAP), suggesting their effectiveness. They also inhibited enzymes (tyrosinase and ACE) linked to diseases, indicating therapeutic potential. Importantly, the Ag/AgCl-NPs-ME displayed remarkable cytotoxicity against cancer cells (A375, A549, and Caco-2) while remaining non-toxic to normal cells. DNA ladder and TUNEL assays confirmed the activation of apoptosis mechanisms in cancer cells after a 48 h treatment. These findings highlight the versatile applications of Ag/AgCl-NPs-ME in food, cosmetics, pharmaceuticals, and nutraceuticals.
Collapse
Affiliation(s)
- Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
- Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Khomsan Ruangrit
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Supawitch Hoijang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Laongnuan Srisombat
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Antira Wichapein
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Wasu Pathom-Aree
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Yasuo Kato
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Toyama 939-0398, Japan
| | - Guangce Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellent in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
17
|
Nagesh MR, Vijayakumar N, Anandan R, Renuka M, Amalan V, Kavitha R, Arulmani SRB, Ahmed MZ, Alqahtani AS, Nasr FA, Alqahtani AM, Noman OM, Al-Mishari AA. Cytotoxic and genotoxic properties of silver nanoparticles synthesized by ethanolic extract of Salacia chinensis. Int J Biol Macromol 2023; 233:123506. [PMID: 36739054 DOI: 10.1016/j.ijbiomac.2023.123506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
In this study, in vitro and in vivo methods were used to evaluate the cytotoxicity and genotoxicity properties of silver nanoparticles (Ag-NPs) made from a crude ethanolic extract of Salacia chinensis. The test Ag-NPs had no cytotoxicity on the fibroblast cell line at a concentration of 100 μg/mL, according to the MTT assay results. The Chinese hamster ovary (CHO) cell line treated with varied concentrations of test Ag-NPs, with a maximum concentration of 200 μg/mL, did not exhibit any appreciable genotoxic activity, either by comparing the results with positive controls of genotoxicity caused by Methyl methane sulfonate and Benzo (a) pyrene at the concentration of 20 μg/mL, the lack of genotoxicity was established. An in vivo study in Swiss albino mice using various concentrations (250, 500, and 1000 mg/kg) of test Ag-NPs, which were compared with positive controls, further confirmed this in vitro result pattern. Contrary to the genotoxicity caused by the positive control, mouse bone marrow micronucleus testing findings revealed the absence of genotoxicity. These findings imply that at the measured doses, the Ag-NPs produced from the crude ethanolic extract of Salacia chinensis do not exhibit any cytotoxicity or genotoxicity.
Collapse
Affiliation(s)
- Madhuranthakam Reddi Nagesh
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - Natesan Vijayakumar
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India.
| | - Ramaswamy Anandan
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - Mani Renuka
- Department of Biotechnology, School of Bioscience, Periyar University, Salem 636011, Tamil Nadu, India
| | - Venkatesan Amalan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - R Kavitha
- Department of Biotechnology, School of Bioscience, Periyar University, Salem 636011, Tamil Nadu, India
| | - Samuel Raj Babu Arulmani
- University of Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes)\, Campus deBeaulieu, 35000 Rennes, France
| | - Mohammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Fahd A Nasr
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdulaziz M Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Omar M Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah A Al-Mishari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
18
|
Nauroze T, Ali S, Kanwal L, Ara C, Akbar Mughal T, Andleeb S. Ameliorative effect of Nigella sativa conjugated silver nanoparticles against chromium-induced hepatotoxicity and renal toxicity in mice. Saudi J Biol Sci 2023; 30:103571. [PMID: 36844642 PMCID: PMC9944502 DOI: 10.1016/j.sjbs.2023.103571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/24/2022] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Hexavalent chromium induces oxidative stress in the liver and kidney. Therefore an in vivo study was designed to investigate the modulatory effect of biosynthesized AgNP against Cr (VI) induced hepatotoxicity and nephrotoxicity. The organs index, serum level of ALT, AST, ALP, MDA, total protein and creatinine were measured. The histopathology and micrometry of the liver and kidney were examined. The liver index was significantly increased (0.098 ± 0.13 g) with slight increase in kidney index in Cr exposed group. The serum level of ALT (163.0 ± 5.5 U/L), AST (484.0 ± 10.7 U/L), ALP (337.6 ± 9.6 U/L), MDA (641.2 ± 29.2 U/L), and creatinine (2.9 ± 0.2 mg/dL) were significantly increased (P ≤ 0.05) with significant decrease in total protein level (2.9 ± 0.2 g/dL) (P ≤ 0.05) in chromium treated group. In histopathology, distorted hepatic cords, necrosis, damaged glomerulus and Bowman's capsule were observed. Micrometric studies of the liver and kidney showed significant increase in size of hepatocytes (1188.2 ± 467.7 µ2) and their nuclei (456.4 ± 206.7 µ2), ACSA of Bowman's capsule (11835.5 ± 336.7 µ2) and glomerulus (9051.8 ± 249.8 µ2) in Cr (VI) treated group. The size of brush border (10.1 ± 3.0 µ) was significantly reduced in Cr (VI) treated group however the ACSA of lumen was not significantly changed. With the administration of NSSE and Nigella sativa AgNPs, decreased the oxidative damage caused by Cr (V).
Collapse
Affiliation(s)
- Tooba Nauroze
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan,Department of Zoology, University of Education, Lahore, Pakistan
| | - Shaukat Ali
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan,Corresponding author.
| | - Lubna Kanwal
- Applied Entomology and Medical Toxicology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan,Department of Zoology, University of the Okara, Okara, Pakistan
| | - Chaman Ara
- Institute of Zoology, University of the Punjab, Lahore, Pakistan
| | - Tufail Akbar Mughal
- Department of Zoology, Women University of Azad Jammu and Kashmir, Bagh, Pakistan
| | - Shagufta Andleeb
- Department of Zoology, University of Education, Lahore, Pakistan
| |
Collapse
|
19
|
Sabapathi N, Ramalingam S, Aruljothi KN, Lee J, Barathi S. Characterization and Therapeutic Applications of Biosynthesized Silver Nanoparticles Using Cassia auriculate Flower Extract. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040707. [PMID: 36840055 PMCID: PMC9961718 DOI: 10.3390/plants12040707] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
The current study analyzes the biosynthesis of silver nanoparticles using the Cassia auriculate flower extract as the reducing and stabilizing agent. The Cassia auriculate- silver nanoparticles (Ca-AgNPs) obtained are characterized by UV-Vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) analysis. The results of the spectral characterization have revealed that the surface Plasmon resonance band observed at 448 nm confirms the formation of AgNPs. TEM analysis of the Ca-AgNPs was a predominately spherical shape with a size assortment of 30 to 80 nm and an angular size of 50 nm. The well-analyzed Ca-AgNPs were used in various biological assays, including healthcare analysis of antimicrobial, antioxidant (DPPH), and cytotoxic investigations. Ca-AgNPs showed efficient free radical scavenging activity and showed excellent antimicrobial activity against to pathogenic strains. The occurrence of Ca-AgNPs lead to reduced Live/Dead ratio of bacteria (from 36.97 ± 1.35 to 9.43 ± 0.27) but improved the accumulation of bacterial clusters. The cytotoxicity of Ca-AgNPs was carried out by MTT assay against MCF-7 breast cancer cells and a moderate cytotoxic. The approach of flower extract-mediated synthesis is a cost-efficient, eco-friendly, and easy alternative to conventional methods of silver nanoparticle synthesis.
Collapse
Affiliation(s)
- Nadana Sabapathi
- Guangdong Key Laboratory for Genome Stability and Disease Prevention, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Srinivasan Ramalingam
- Department of Horticulture & Life Science, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| | - Selvaraj Barathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan-si 38541, Republic of Korea
| |
Collapse
|
20
|
Chirumamilla P, Dharavath SB, Taduri S. Eco-friendly Green Synthesis of Silver Nanoparticles from Leaf Extract of Solanum khasianum: Optical Properties and Biological Applications. Appl Biochem Biotechnol 2023; 195:353-368. [PMID: 36083433 DOI: 10.1007/s12010-022-04156-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2022] [Indexed: 01/13/2023]
Abstract
The green synthesis of silver nanoparticles (AgNPs) was considered to be efficacious over other approaches due to their eco-friendliness, cost-effectiveness, and high stability. The biosynthesis of AgNPs was achieved by the reduction of silver nitrate using the aqueous leaf extract of Solanum khasianum. The biosynthesized AgNPs were examined by a color change and UV-Vis spectroscopy with an absorption spectrum at 440 nm. The biomolecules existing in S. khasianum leaf extract accountable for bioreduction and capping of AgNPs were analyzed by FTIR analysis and confirmed the presence of alcohols, phenols, alkanes, carboxylic acid, nitro compounds, and amines. The crystalline nature of Sk-AgNPs with face-centered cubic lattice was confirmed by X-ray diffraction (XRD) spectrum. The average crystallite size of Sk-AgNPs was computed as 15.96 nm. The lattice constant, unit cell volume, and spacing values of Sk-AgNPs were parallel to the values indexed in the Joint Committee on Powder Diffraction Standard of silver (JCPDS-04-0783). Scanning electron microscope (SEM) imaging witnessed the spherical structure of synthesized AgNPs. Energy dispersive X-ray (EDX) spectrum acknowledged the AgNPs fabrication with strong signals of silver atoms at 3 keV energy. The biofabricated Sk-AgNPs showed a photoluminescence (PL) emission spectrum of 445 nm with an excitation at 330 nm. Sk-AgNPs showed considerable DPPH radical scavenging activity (87.98%) than BHT (86.14%) and also exhibited significant antidiabetic activity compared to acarbose. Sk-AgNPs revealed antibacterial potentiality against B. sphaericus, E. coli, S. aureus, and P. fluorescens. Moreover, Sk-AgNPs showed dose-dependent cytotoxicity against MCF-7 cell line. This method of green synthesis would support the eco-friendly fabrication of AgNPs from S. khasianum leaf extract with considerable therapeutic activities.
Collapse
Affiliation(s)
- Pavani Chirumamilla
- Department of Biotechnology, Kakatiya University, Warangal, 506009, TS, India
- Department of Biotechnology, Singareni Collieries Women's College, Khammam, Telangana State, India
| | | | - Shasthree Taduri
- Department of Biotechnology, Kakatiya University, Warangal, 506009, TS, India.
| |
Collapse
|
21
|
Bhatti SA, Hussain MH, Mohsin MZ, Mohsin A, Zaman WQ, Guo M, Iqbal MW, Siddiqui SA, Ibrahim SA, Ur-Rehman S, Korma SA. Evaluation of the antimicrobial effects of Capsicum, Nigella sativa, Musa paradisiaca L., and Citrus limetta: A review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1043823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The extensive use of antibiotics and vaccines against microbial infections can result in long-term negative effects on humans and the environment. However, there are a number of plants that have antimicrobial effects against various disease-causing microbes such as bacteria, viruses, and fungi without negative side effects or harm to the environment. In this regard, four particular plants- Capsicum, Nigella sativa, Musa paradisiaca L., and Citrus limetta have been widely considered due to their excellent antimicrobial effect and ample availability. In this review, we discuss their antimicrobial effects due to the presence of thymoquinone, p-cymene, pinene, alkaloids, limonene, camphene, and melanin. These antimicrobial compounds disrupt the cell membrane of microbes, inhibit cellular division, and form biofilm in bacterial species, eventually reducing the number of microbes. Extraction of these compounds from the respective plants is carried out by different methods such as soxhlet, hydro-distillation, liquid-liquid extraction (LLE), pressurized liquid extraction (PLE), solid-phase extraction (SPE), supercritical fluid extraction (SFE), pulsed electric field (PEF), microwave-assisted extraction (MAE), enzyme-assisted extraction (EAE), ultrasound-assisted extraction (UAE), and high-voltage electrical discharge. Suitable selection of the extraction technique highly depends upon the associated advantages and disadvantages. In order to aid future study in this field, this review paper summarizes the advantages and disadvantages of each of these approaches. Additionally, the discussion covers how antimicrobial agents destroy harmful bacteria. Thus, this review offers in-depth knowledge to researchers on the antibacterial properties of Capsicum, Nigella sativa, Musa paradisiaca L. peels, and Citrus limetta.
Collapse
|
22
|
Adinew GM, Messeha SS, Taka E, Badisa RB, Soliman KFA. Anticancer Effects of Thymoquinone through the Antioxidant Activity, Upregulation of Nrf2, and Downregulation of PD-L1 in Triple-Negative Breast Cancer Cells. Nutrients 2022; 14:nu14224787. [PMID: 36432484 PMCID: PMC9695946 DOI: 10.3390/nu14224787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The variety of therapies available for treating and preventing triple-negative breast cancer (TNBC) is constrained by the absence of progesterone receptors, estrogen receptors, and human epidermal growth factor receptor 2. Nrf2 (nuclear factor-erythroid 2-related factor), and PD-L1 (program cell death ligand 1), a downstream signaling target, have a strong correlation to oxidative stress and inflammation, major factors in the development and progression of TNBC. In this study, the genetically distinct MDA-MB-231 and MDA-MB-468 TNBC cells were treated with the natural component thymoquinone (TQ). The results show that TQ exhibits considerable antioxidant activity and decreases the generation of H2O2, at the same time increasing catalase (CAT) activity, superoxide dismutase (SOD) enzyme, and glutathione (GSH). Additionally, the results show that TQ treatment increased the levels of the different genes involved in the oxidative stress-antioxidant defense system PRNP, NQO1, and GCLM in both cell lines with significant large-fold change in MDA-MB-468 cells (+157.65 vs. +1.7, +48.87 vs. +2.63 and +4.78 vs. +2.17), respectively. Nrf2 mRNA and protein expression were also significantly increased in TQ-treated TNBC cells despite being higher in MDA-MB-468 cells (6.67 vs. 4.06). Meanwhile, TQ administration increased mRNA levels while decreasing PD-L1 protein expression in both cell lines. In conclusion, TQ modifies the expression of multiple oxidative-stress-antioxidant system genes, ROS, antioxidant enzymes, Nrf2, and PD-L1 protein, pointing to the therapeutic potential and chemopreventive utilization of TQ in TNBC.
Collapse
|
23
|
Adam SH, Mohd Nasri N, Kashim MIAM, Abd Latib EH, Ahmad Juhari MAA, Mokhtar MH. Potential health benefits of Nigella sativa on diabetes mellitus and its complications: A review from laboratory studies to clinical trials. Front Nutr 2022; 9:1057825. [PMID: 36438767 PMCID: PMC9686346 DOI: 10.3389/fnut.2022.1057825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/25/2022] [Indexed: 12/02/2022] Open
Abstract
This review aims to gather and summarize up-to-date information on the potential health benefits of Nigella sativa (NS) on diabetes mellitus (DM) and its complications from different animal models, clinical trials and in vitro studies. DM is one of the most prevalent metabolic disorders resulting from chronic hyperglycaemia due to problems in insulin secretion, insulin action or both. It affects people regardless of age, gender and race. The main consequence of DM development is the metabolic dysregulation of glucose homeostasis. Current treatments for DM include pharmacological therapy, insulin and diabetic therapy targeting β cells. Some of these therapeutic approaches are promising; however, their safety and effectiveness remain elusive. Since ancient times, medicinal plants have been used and proven effective against diseases. These plants are believed to be effective and benefit physiological and pathological processes, as they can be used to prevent, reduce or treat multiple diseases. Nigella sativa Linn. is an annual indigenous herbaceous plant belonging to Ranunculaceae, the buttercup family. NS exhibits multifactorial activities; it could ameliorate oxidative, inflammatory, apoptotic and insulinotropic effects and inhibit carbohydrate digestive enzymes. Thus, this review demonstrates the therapeutic potential of NS that could be used as a complement or adjuvant for the management of DM and its complications. However, future research should be able to replicate and fill in the gaps of the study conducted to introduce NS safely to patients with DM.
Collapse
Affiliation(s)
- Siti Hajar Adam
- Preclinical Department, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia, Kuala Lumpur, Malaysia
| | - Noor Mohd Nasri
- Department of Nursing, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Mohd Izhar Ariff Mohd Kashim
- Centre of Shariah, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, Bangi,Selangor, Malaysia
- Insitute of Islam Hadhari, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| | | | | | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Naik J, David M. Phytofabrication of silver and zinc oxide nanoparticles using the fruit extract of Phyllanthus emblica and its potential anti-diabetic and anti-cancer activity. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2141668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jarnain Naik
- Enivronmental Biology and Molecular Toxicology Laboratory, Department of Zoology, Karnatak University, Dharwad, India
| | - M. David
- Enivronmental Biology and Molecular Toxicology Laboratory, Department of Zoology, Karnatak University, Dharwad, India
| |
Collapse
|
25
|
Ahmad J, Albarqi HA, Ahmad MZ, Orabi MAA, Md S, Bandopadhyay R, Ahmed F, Khan MA, Ahamad J, Mishra A. Utilization of Nanotechnology to Improve Bone Health in Osteoporosis Exploiting Nigella sativa and Its Active Constituent Thymoquinone. Bioengineering (Basel) 2022; 9:631. [PMID: 36354542 PMCID: PMC9687452 DOI: 10.3390/bioengineering9110631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 10/22/2022] [Indexed: 09/08/2024] Open
Abstract
Osteoporosis, a chronic bone disorder, is one of the leading causes of fracture and morbidity risk. Numerous medicinally important herbs have been evaluated for their efficacy in improving bone mass density in exhaustive preclinical and limited clinical studies. Nigella sativa L. has been used as local folk medicine, and traditional healers have used it to manage various ailments. Its reported beneficial effects include controlling bone and joint diseases. The present manuscript aimed to provide a sound discussion on the pharmacological evidence of N. sativa and its active constituent, thymoquinone, for its utility in the effective management of osteoporosis. N. sativa is reported to possess anti-IL-1 and anti-TNF-α-mediated anti-inflammatory effects, leading to positive effects on bone turnover markers, such as alkaline phosphatase and tartrate-resistant acid phosphatase. It is reported to stimulate bone regeneration by prompting osteoblast proliferation, ossification, and decreasing osteoclast cells. Thymoquinone from N. sativa has exhibited an antioxidant effect on bone tissue by reducing the FeNTA-induced oxidative stress. The present manuscript highlights phytochemistry, pharmacological effect, and the important mechanistic perspective of N. sativa and its active constituents for the management of osteoporosis. Further, it also provides sound discussion on the utilization of a nanotechnology-mediated drug delivery approach as a promising strategy to improve the therapeutic performance of N. sativa and its active constituent, thymoquinone, in the effective management of osteoporosis.
Collapse
Affiliation(s)
- Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Hassan A. Albarqi
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohamed A. A. Orabi
- Department of Pharmacognosy, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut-Branch, Assiut 71524, Egypt
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ritam Bandopadhyay
- Department of Pharmacology, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Faraha Ahmed
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar 110062, New Delhi, India
| | - Mohammad Ahmed Khan
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, Hamdard Nagar 110062, New Delhi, India
| | - Javed Ahamad
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil 44001, Iraq
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)–Guwahati, Changsari, Kamrup 781101, Assam, India
| |
Collapse
|
26
|
Wan H, Huang Q, Mia R, Tao X, Mahmud S, Liu H. Bioreduction and Stabilization of Nanosilver using
Chrysanthemum
Phytochemicals for Antibacterial and Wastewater Treatment. ChemistrySelect 2022. [DOI: 10.1002/slct.202200649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hong Wan
- School of Life Science Wuchang University of Technology Wuhan 430223 People's Republic of China
| | - Qinglin Huang
- School of Life Science Wuchang University of Technology Wuhan 430223 People's Republic of China
| | - Rony Mia
- School of Chemistry and Chemical Engineering Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing Wuhan Textile University No. 1 Sunshine Avenue Wuhan 430200 People's Republic of China
| | - Xing Tao
- School of Life Science Wuchang University of Technology Wuhan 430223 People's Republic of China
| | - Sakil Mahmud
- School of Chemistry and Chemical Engineering Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing Wuhan Textile University No. 1 Sunshine Avenue Wuhan 430200 People's Republic of China
| | - Huihong Liu
- School of Chemistry and Chemical Engineering Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing Wuhan Textile University No. 1 Sunshine Avenue Wuhan 430200 People's Republic of China
| |
Collapse
|
27
|
Hasan K, Islam R, Hasan M, Sarker SH, Biswas MH. Effect of Alginate Edible Coatings Enriched with Black Cumin Extract for Improving Postharvest Quality Characteristics of Guava (Psidium guajava L.) Fruit. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Negi A, Rana P, Kumar vishwakarma R, Singh Negi D. Multi dye degradation, antibacterial, antidiabetic and antioxidant assessment of silver nanoparticles (Ag-NPs) derived via leaves of Smilax aspera. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
29
|
Ali T, Hussain F, Naeem M, Khan A, Al-Harrasi A. Nanotechnology Approach for Exploring the Enhanced Bioactivities and Biochemical Characterization of Freshly Prepared Nigella sativa L. Nanosuspensions and Their Phytochemical Profile. Front Bioeng Biotechnol 2022; 10:888177. [PMID: 35656198 PMCID: PMC9152536 DOI: 10.3389/fbioe.2022.888177] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Nigella sativa is one of the most commonly used medicinal plants as it exhibits several pharmacological activities such as antioxidant, antibacterial, anticancer, antidiabetic, and hemolytic. The purpose of this study was to apply the nanotechnology approach for exploring the enhanced bioactivities of freshly prepared Nigella sativa L. nanosuspensions and the phytochemical profile of N. sativa seed ethanolic extract. In this study, we performed the biochemical characterization of Nigella sativa L. ethanolic extract through High-performance liquid chromatography (HPLC), Fourier-transform infrared spectroscopy (FT-IR), and Gas chromatography (GC), and bioactivities in terms of antioxidant, antidiabetic, antibacterial, and hemolytic activities of nanosuspension and extract were competitively studied. The results revealed that the nanosuspension of N. sativa seeds showed higher total phenolic (478.63 ± 5.00 mg GAE/100 g) and total flavonoid contents (192.23 ± 1.390 mg CE/100 g) than the ethanolic seed extract. The antioxidant activity was performed using the DPPH scavenging assay, and nanosuspension showed higher potential (16.74 ± 1.88%) than the extract. The antidiabetic activity was performed using antiglycation and α-amylase inhibition assays, nanosuspension showed higher antidiabetic potential [antiglycation (58 ± 0.912%)] and [bacterial α-amylase inhibition (18.0 ± 1.3675%)], respectively. Nanosuspension showed higher biofilm inhibition activity against Escherichia coli (66.44 ± 3.529%) than the extract (44.96 ± 2.238%) and ciprofloxacin (59.39 ± 3.013%). Hemolytic activity was performed and nanosuspension showed higher hemolytic activity than the extract as 7.8 ± 0.1% and 6.5 ± 0.3%, respectively. The study showed that nanosuspension had enhanced the bioavailability of bioactive plant compounds as compared to the ethanolic extract. Therefore, nanosuspension of N. sativa seed extract showed higher biochemical activities as compared to the ethanolic extract. This nanotechnology approach can be used as a platform for the development of combination protocols for the characterization of liquid state nanosuspensions in an adequate manner and also for therapeutic applications.
Collapse
Affiliation(s)
- Tayyab Ali
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Fatma Hussain
- Clinico-Molecular Biochemistry Laboratory, Department of Biochemistry, Faculty of Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang, China
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
30
|
Dalli M, Bekkouch O, Azizi SE, Azghar A, Gseyra N, Kim B. Nigella sativa L. Phytochemistry and Pharmacological Activities: A Review (2019-2021). Biomolecules 2021; 12:20. [PMID: 35053168 PMCID: PMC8773974 DOI: 10.3390/biom12010020] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/23/2022] Open
Abstract
Medicinal and aromatic plants are mainly characterized by the presence of different bioactive compounds which exhibit various therapeutic activities. In order to investigate the different pharmacological properties of different Nigella sativa extracts, a multitude of research articles published in the period between 2019 and 2021 were obtained from different databases (Scopus, Science Direct, PubMed, and Web of Science), and then explored and analyzed. The analysis of the collected articles allows us to classify the phytochemicals and the pharmacological activities through their underlying molecular mechanisms, as well as to explore the pharmacological activities exhibited by several identified compounds in Nigella sativa which allow a better understanding, and better elucidation, of the bioactive compounds responsible for the pharmacological effects. Also shown are the existence of other bioactive compounds that are still unexplored and could be of great interest. This review could be taken as a guide for future studies in the field.
Collapse
Affiliation(s)
- Mohammed Dalli
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Oussama Bekkouch
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Salah-eddine Azizi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Ali Azghar
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Nadia Gseyra
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, University Mohammed the First, P.O. Box 524, 60000 Oujda, Morocco; (O.B.); (S.-e.A.); (A.A.); (N.G.)
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Korea
| |
Collapse
|
31
|
Maurya A, Singh VK, Das S, Prasad J, Kedia A, Upadhyay N, Dubey NK, Dwivedy AK. Essential Oil Nanoemulsion as Eco-Friendly and Safe Preservative: Bioefficacy Against Microbial Food Deterioration and Toxin Secretion, Mode of Action, and Future Opportunities. Front Microbiol 2021; 12:751062. [PMID: 34912311 PMCID: PMC8667777 DOI: 10.3389/fmicb.2021.751062] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/11/2021] [Indexed: 11/25/2022] Open
Abstract
Microbes are the biggest shareholder for the quantitative and qualitative deterioration of food commodities at different stages of production, transportation, and storage, along with the secretion of toxic secondary metabolites. Indiscriminate application of synthetic preservatives may develop resistance in microbial strains and associated complications in human health with broad-spectrum environmental non-sustainability. The application of essential oils (EOs) as a natural antimicrobial and their efficacy for the preservation of foods has been of present interest and growing consumer demand in the current generation. However, the loss in bioactivity of EOs from fluctuating environmental conditions is a major limitation during their practical application, which could be overcome by encapsulating them in a suitable biodegradable and biocompatible polymer matrix with enhancement to their efficacy and stability. Among different nanoencapsulated systems, nanoemulsions effectively contribute to the practical applications of EOs by expanding their dispersibility and foster their controlled delivery in food systems. In line with the above background, this review aims to present the practical application of nanoemulsions (a) by addressing their direct and indirect (EO nanoemulsion coating leading to active packaging) consistent support in a real food system, (b) biochemical actions related to antimicrobial mechanisms, (c) effectiveness of nanoemulsion as bio-nanosensor with large scale practical applicability, (d) critical evaluation of toxicity, safety, and regulatory issues, and (e) market demand of nanoemulsion in pharmaceuticals and nutraceuticals along with the current challenges and future opportunities.
Collapse
Affiliation(s)
- Akash Maurya
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Vipin Kumar Singh
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Somenath Das
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Jitendra Prasad
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Akash Kedia
- Government General Degree College, Mangalkote, Burdwan, India
| | - Neha Upadhyay
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Nawal Kishore Dubey
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Abhishek Kumar Dwivedy
- Laboratory of Herbal Pesticides, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
32
|
Subramanyam GK, Gaddam SA, Kotakadi VS, Palithya S, Penchalaneni J, Challagundla VN. Argyreia nervosa (Samudra pala) leaf extract mediated silver nanoparticles and evaluation of their antioxidant, antibacterial activity, in vitro anticancer and apoptotic studies in KB oral cancer cell lines. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 49:635-650. [PMID: 34738487 DOI: 10.1080/21691401.2021.1996384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In the present investigation, green synthesis of silver nanoparticles (AgNPs) was carried out using aqueous leaf extract of Argyreia nervosa. The results of the spectral characterisation have revealed that the surface Plasmon resonance band was observed at 421 nm confirms the formation of AgNPs. The Fourier Transform Infra-red Spectroscopy result shows the reduction of silver nitrate into AgNPs by the reduction of different functional groups. Transmission Electron Microscope analysis revealed that the particles are roughly spherical and poly-disperse in shape and size, the particles are within the size range of 10-55 nm. Dynamic Light Scattering revealed that the nanoparticles were also within the range of 10-50 nm, An-AgNPs have a high negative zeta potential value of -38.9 mV. An-AgNPs showed efficient free radical scavenging activity and showed excellent antimicrobial activity. Anti-proliferative and cytotoxic effect of An-AgNPs was carried out by MTT assay against KB oral cancer cells, the IC50 value of An-AgNPs is 58.64 µg/ml. The cell's growth is arrested at the G2/M phase, so the An-AgNPs activated the Caspase 3 pathway which leads to the Apoptosis of KB oral cancer cells. So it is concluded that the green synthesised An-AgNPs have manifold functions.
Collapse
Affiliation(s)
| | | | | | | | - Josthna Penchalaneni
- Department of Biotechnology, Sri Padmavathi Mahila Visvavidyalayam (Women's University), Tirupati, India
| | | |
Collapse
|
33
|
Vijayakumar S, Chen J, Amarnath M, Tungare K, Bhori M, Divya M, González-Sánchez ZI, Durán-Lara EF, Vaseeharan B. Cytotoxicity, phytotoxicity, and photocatalytic assessment of biopolymer cellulose-mediated silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, Sehrawat AR. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. NANOMATERIALS 2021; 11:nano11082086. [PMID: 34443916 PMCID: PMC8402060 DOI: 10.3390/nano11082086] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/06/2023]
Abstract
Rapid advances in nanotechnology have led to its emergence as a tool for the development of green synthesized noble metal nanoparticles, especially silver nanoparticles (AgNPs), for applications in diverse fields such as human health, the environment and industry. The importance of AgNPs is because of their unique physicochemical and antimicrobial properties, with a myriad of activities that are applicable in various fields, including the pharmaceutical industry. Countries with high biodiversity require the collection and transformation of information about biological assets into processes, associations, methods and tools that must be combined with the sustainable utilization of biological diversity. Therefore, this review paper discusses the applicable studies of the biosynthesis of AgNPs and their antimicrobial activities towards microorganisms in different areas viz. medicine and agriculture. The confirmed antiviral properties of AgNPs promote their applicability for SARS-CoV-2 treatment, based on assimilating the virus’ activities with those of similar viruses via in vivo studies. In this review, an insight into the cytotoxicity and safety issues of AgNPs, along with their future prospects, is also provided.
Collapse
Affiliation(s)
- Deepak Bamal
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Anoop Singh
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Gaurav Chaudhary
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Monu Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Manjeet Singh
- Department of Genetics and Plant Breeding, Oilseeds Section, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Neelam Rani
- Department of Botany and Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Poonam Mundlia
- Department of Biochemistry, Punjab University, Chandigarh 160014, India;
| | - Anita R. Sehrawat
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
- Correspondence:
| |
Collapse
|
35
|
Paul RK, Kesharwani P, Raza K. Recent update on nano-phytopharmaceuticals in the management of diabetes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2046-2068. [PMID: 34228585 DOI: 10.1080/09205063.2021.1952381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Due to changed lifestyle and other reasons, diabetes has become one of the common metabolic disorder of the globe. Numerous therapeutic options are available, which controls the plasma glucose levels. However, most of the drugs are associated with some undesired side effects. Owing to the side effects and enhanced understanding of the phytochemicals, an inclination toward herbal medicine is seen in the population. These herbal products are also associated with concerns like poor aqueous solubility, compromised permeation, and a low degree of bioavailability. So, the emergence of nanotechnology in the herbal medicine is required to nullify the associated concerns of conventional antidiabetic drugs. The present review aims to compile the literature available for the nano-interventions pertinent to herbal products for diabetes management.
Collapse
Affiliation(s)
- Rakesh Kumar Paul
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Kaisar Raza
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
36
|
Muthulakshmi L, Vijayakumar T, Selvam P, Annaraj J, Ranjan S, Dasgupta N. Strong and nonspecific synergistic antibacterial/antibiofilm impact of nano-silver biosynthesized and decorated with active ingredients of Oscimum basilicum L. 3 Biotech 2021; 11:153. [PMID: 33747703 PMCID: PMC7930159 DOI: 10.1007/s13205-021-02687-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/12/2021] [Indexed: 12/14/2022] Open
Abstract
In this study, Ocimum basilicum (a proven broad spectrum medicinal plant for broad-spectrum pharmacological activities) leaf extract was used as conjugates for the fabrication of silver nanoparticles (AgNP). Color change of the reaction mixture and UV-Visible spectrophotometry indicated the fabrication of silver nanoparticles, further X-ray diffraction (XRD) crystallography, scanning electron microscopy (SEM), transmission electron microscopic images (TEM), and Selected area electron diffraction (SAED) confirms the purity, monodispersity, and morphology including size (22.4 nm) and conjugated functional group of Ocimum basilicum. The conjugation of functional OH, N-O, and C=O groups was confirmed by Fourier-transform infrared spectroscopy (FT-IR). The engineered AgNP have shown significantly efficient antibacterial and antibiofilm activities (92.7% biofilm inhibition) on diverse clinical strains and thus showed its potential for use in clinical applications.
Collapse
Affiliation(s)
- Lakshmanan Muthulakshmi
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626 126 India
- Department of Materials Science, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu 625 021 India
| | - T. Vijayakumar
- Department of Materials Science, Madurai Kamaraj University, Palkalai Nagar, Madurai, Tamil Nadu 625 021 India
| | - P. Selvam
- International Research Center, Kalasalingam Academy of Research and Education, Krishnankoil, 626 126 India
| | - J. Annaraj
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626 126 India
| | - Shivendu Ranjan
- Institute for Intelligent Systems, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park, P. O. Box 524, Johannesburg, 2006 South Africa
| | - Nandita Dasgupta
- Institute for Intelligent Systems, Faculty of Engineering and the Built Environment, University of Johannesburg, Auckland Park, P. O. Box 524, Johannesburg, 2006 South Africa
| |
Collapse
|
37
|
Anwar S, A. Almatroodi S, Almatroudi A, Allemailem KS, Joseph RJ, Khan AA, Alrumaihi F, Alsahli MA, Husain Rahmani A. Biosynthesis of silver nanoparticles using Tamarix articulata leaf extract: an effective approach for attenuation of oxidative stress mediated diseases. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2021; 24:677-701. [DOI: 10.1080/10942912.2021.1914083] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Shehwaz Anwar
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Saleh A. Almatroodi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Rejo Jacob Joseph
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A. Alsahli
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Science, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|