1
|
Russell BL, Ntwasa M. Expression, purification, and characterisation of the p53 binding domain of Retinoblastoma binding protein 6 (RBBP6). PLoS One 2023; 18:e0277478. [PMID: 36763571 PMCID: PMC9916574 DOI: 10.1371/journal.pone.0277478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 10/28/2022] [Indexed: 02/11/2023] Open
Abstract
RBBP6 is a 250 kDa eukaryotic protein known to be a negative regulator of p53 and essential for embryonic development. Furthermore, RBBP6 is a critical element in carcinogenesis and has been identified as a potential biomarker for certain cancers. RBBP6's ability to interact with p53 and cause its degradation makes it a potential drug target in cancer therapy. Therefore, a better understating of the p53 binding domain of RBBP6 is needed. This study presents a three-part purification protocol for the polyhistidine-tagged p53 binding domain of RBBP6, expressed in Escherichia coli bacterial cells. The purified recombinant domain was shown to have structure and is functional as it could bind endogenous p53. We characterized it using clear native PAGE and far-UV CD and found that it exists in a single form, most likely monomer. We predict that its secondary structure is predominantly random coil with 19% alpha-helices, 9% beta-strand and 14% turns. When we exposed the recombinant domain to increasing temperature or known denaturants, our investigation suggested that the domain undergoes relatively small structural changes, especially with increased temperature. Moreover, we notice a high percentage recovery after returning the domain close to starting conditions. The outcome of this study is a pure, stable, and functional recombinant RBBP6-p53BD that is primarily intrinsically disordered.
Collapse
Affiliation(s)
- Bonnie L. Russell
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, Roodepoort, South Africa
- Innovation Hub, Buboo (Pty) Ltd, Pretoria, South Africa
| | - Monde Ntwasa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Florida, Roodepoort, South Africa
- * E-mail:
| |
Collapse
|
2
|
A scalable screening of E. coli strains for recombinant protein expression. PLoS One 2022; 17:e0271403. [PMID: 35877655 PMCID: PMC9312941 DOI: 10.1371/journal.pone.0271403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 06/29/2022] [Indexed: 11/23/2022] Open
Abstract
Structural biology projects are highly dependent on the large-scale expression of soluble protein and, for this purpose, heterologous expression using bacteria or yeast as host systems is usually employed. In this scenario, some of the parameters to be optimized include (i) those related to the protein construct, such as the use of a fusion protein, the choice of an N-terminus fusion/tag or a C-terminus fusion/tag; (ii) those related to the expression stage, such as the concentration and selection of inducer agent and temperature expression and (iii) the choice of the host system, which includes the selection of a prokaryotic or eukaryotic cell and the adoption of a strain. The optimization of some of the parameters related to protein expression, stage (ii), is straightforward. On the other hand, the determination of the most suitable parameters related to protein construction requires a new cycle of gene cloning, while the optimization of the host cell is less straightforward. Here, we evaluated a scalable approach for the screening of host cells for protein expression in a structural biology pipeline. We evaluated four Escherichia coli strains looking for the best yield of soluble heterologous protein expression using the same strategy for protein construction and gene cloning and comparing it to our standard strain, Rosetta 2 (DE3). Using a liquid handling device (robot), E. coli pT-GroE, Lemo21(DE3), Arctic Express (DE3), and Rosetta Gami 2 (DE3) strains were screened for the maximal yield of soluble heterologous protein recovery. For the genes used in this experiment, the Arctic Express (DE3) strain resulted in better yields of soluble heterologous proteins. We propose that screening of host cell/strain is feasible, even for smaller laboratories and the experiment as proposed can easily be scalable to a high-throughput approach.
Collapse
|
3
|
The use of high-affinity polyhistidine binders as masking probes for the selection of an NDM-1 specific aptamer. Sci Rep 2022; 12:7936. [PMID: 35562409 PMCID: PMC9106695 DOI: 10.1038/s41598-022-12062-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/04/2022] [Indexed: 12/02/2022] Open
Abstract
The emergence of carbapenemase-producing multi-drug resistant Enterobacteriaceae poses a dramatic, world-wide health risk. Limited treatment options and a lack of easy-to-use methods for the detection of infections with multi-drug resistant bacteria leave the health-care system with a fast-growing challenge. Aptamers are single stranded DNA or RNA molecules that bind to their targets with high affinity and specificity and can therefore serve as outstanding detection probes. However, an effective aptamer selection process is often hampered by non-specific binding. When selections are carried out against recombinant proteins, purification tags (e.g. polyhistidine) serve as attractive side targets, which may impede protein target binding. In this study, aptamer selection was carried out against N-terminally hexa-histidine tagged New Delhi metallo-ß-lactamase 1. After 14 selection rounds binding to polyhistidine was detected rather than to New Delhi metallo-ß-lactamase 1. Hence, the selection strategy was changed. As one aptamer candidate showed remarkable binding affinity to polyhistidine, it was used as a masking probe and selection was restarted from selection round 10. Finally, after three consecutive selection rounds, an aptamer with specific binding properties to New Delhi metallo-ß-lactamase 1 was identified. This aptamer may serve as a much-needed detection probe for New Delhi metallo-ß-lactamase 1 expressing Enterobacteriaceae.
Collapse
|
4
|
de Rozières CM, Pequeno A, Shahabi S, Lucas TM, Godula K, Ghosh G, Joseph S. PABP1 Drives the Selective Translation of Influenza A Virus mRNA. J Mol Biol 2022; 434:167460. [PMID: 35074482 PMCID: PMC8897273 DOI: 10.1016/j.jmb.2022.167460] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 11/26/2022]
Abstract
Influenza A virus (IAV) is a human-infecting pathogen with a history of causing seasonal epidemics and on several occasions worldwide pandemics. Infection by IAV causes a dramatic decrease in host mRNA translation, whereas viral mRNAs are efficiently translated. The IAV mRNAs have a highly conserved 5'-untranslated region (5'UTR) that is rich in adenosine residues. We show that the human polyadenylate binding protein 1 (PABP1) binds to the 5'UTR of the viral mRNAs. The interaction of PABP1 with the viral 5'UTR makes the translation of viral mRNAs more resistant to canonical cap-dependent translation inhibition than model mRNAs. Additionally, PABP1 bound to the viral 5'UTR can recruit eIF4G in an eIF4E-independent manner. These results indicate that PABP1 bound to the viral 5'UTR may promote eIF4E-independent translation initiation.
Collapse
Affiliation(s)
- Cyrus M de Rozières
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | - Alberto Pequeno
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | - Shandy Shahabi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | - Taryn M Lucas
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0314, USA.
| |
Collapse
|
5
|
Falak S, Sajed M, Rashid N. Strategies to enhance soluble production of heterologous proteins in Escherichia coli. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00994-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
6
|
Beard DK, Subramanian S, Abendroth J, Dranow DM, Edwards TE, Myler PJ, Asojo OA. Crystal structure of betaine aldehyde dehydrogenase from Burkholderia pseudomallei. Acta Crystallogr F Struct Biol Commun 2022; 78:45-51. [PMID: 35102892 PMCID: PMC8805214 DOI: 10.1107/s2053230x21013455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/19/2021] [Indexed: 11/10/2022] Open
Abstract
Burkholderia pseudomallei infection causes melioidosis, which is often fatal if untreated. There is a need to develop new and more effective treatments for melioidosis. This study reports apo and cofactor-bound crystal structures of the potential drug target betaine aldehyde dehydrogenase (BADH) from B. pseudomallei. A structural comparison identified similarities to BADH from Pseudomonas aeruginosa which is inhibited by the drug disulfiram. This preliminary analysis could facilitate drug-repurposing studies for B. pseudomallei.
Collapse
Affiliation(s)
- Dylan K Beard
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| | - Sandhya Subramanian
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Jan Abendroth
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | | | - Thomas E Edwards
- Seattle Structural Genomics Center for Infectious Disease (SSGCID), Seattle, Washington, USA
| | - Peter J Myler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, 307 Westlake Avenue North Suite 500, Seattle, WA 98109, USA
| | - Oluwatoyin A Asojo
- Department of Chemistry and Biochemistry, Hampton University, 100 William R. Harvey Way, Hampton, VA 23668, USA
| |
Collapse
|
7
|
de Rozières CM, Joseph S. Influenza A Virus NS1 Protein Binds as a Dimer to RNA-Free PABP1 but Not to the PABP1·Poly(A) RNA Complex. Biochemistry 2020; 59:4439-4448. [PMID: 33172261 DOI: 10.1021/acs.biochem.0c00666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Influenza A virus (IAV) is a highly contagious human pathogen that is responsible for tens of thousands of deaths each year. Non-structural protein 1 (NS1) is a crucial protein expressed by IAV to evade the host immune system. Additionally, NS1 has been proposed to stimulate translation because of its ability to bind poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G. We analyzed the interaction of NS1 with PABP1 using quantitative techniques. Our studies show that NS1 binds as a homodimer to PABP1, and this interaction is conserved across different IAV strains. Unexpectedly, NS1 does not bind to PABP1 that is bound to poly(A) RNA. Instead, NS1 binds only to PABP1 free of RNA, suggesting that stimulation of translation does not occur by NS1 interacting with the PABP1 molecule attached to the mRNA 3'-poly(A) tail. These results suggest that the function of the NS1·PABP1 complex appears to be distinct from the classical role of PABP1 in translation initiation, when it is bound to the 3'-poly(A) tail of mRNA.
Collapse
Affiliation(s)
- Cyrus M de Rozières
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, United States
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0314, United States
| |
Collapse
|
8
|
Mahmoudi Gomari M, Saraygord-Afshari N, Farsimadan M, Rostami N, Aghamiri S, Farajollahi MM. Opportunities and challenges of the tag-assisted protein purification techniques: Applications in the pharmaceutical industry. Biotechnol Adv 2020; 45:107653. [PMID: 33157154 DOI: 10.1016/j.biotechadv.2020.107653] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 10/22/2020] [Accepted: 10/29/2020] [Indexed: 01/16/2023]
Abstract
Tag-assisted protein purification is a method of choice for both academic researches and large-scale industrial demands. Application of the purification tags in the protein production process can help to save time and cost, but the design and application of tagged fusion proteins are challenging. An appropriate tagging strategy must provide sufficient expression yield and high purity for the final protein products while preserving their native structure and function. Thanks to the recent advances in the bioinformatics and emergence of high-throughput techniques (e.g. SEREX), many new tags are introduced to the market. A variety of interfering and non-interfering tags have currently broadened their application scope beyond the traditional use as a simple purification tool. They can take part in many biochemical and analytical features and act as solubility and protein expression enhancers, probe tracker for online visualization, detectors of post-translational modifications, and carrier-driven tags. Given the variability and growing number of the purification tags, here we reviewed the protein- and peptide-structured purification tags used in the affinity, ion-exchange, reverse phase, and immobilized metal ion affinity chromatographies. We highlighted the demand for purification tags in the pharmaceutical industry and discussed the impact of self-cleavable tags, aggregating tags, and nanotechnology on both the column-based and column-free purification techniques.
Collapse
Affiliation(s)
- Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| | - Marziye Farsimadan
- Department of Biology, Faculty of Sciences, University of Guilan, Rasht, Iran
| | - Neda Rostami
- Department of Chemical Engineering, Faculty of Engineering, Arak University, Iran
| | - Shahin Aghamiri
- Student research committee, Department of medical biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad M Farajollahi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Tan K, Zhou M, Jedrzejczak RP, Wu R, Higuera RA, Borek D, Babnigg G, Joachimiak A. Structures of teixobactin-producing nonribosomal peptide synthetase condensation and adenylation domains. Curr Res Struct Biol 2020; 2:14-24. [PMID: 34235466 PMCID: PMC8244413 DOI: 10.1016/j.crstbi.2020.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 11/28/2022] Open
Abstract
The recently discovered antibiotic teixobactin is produced by uncultured soil bacteria. The antibiotic inhibits cell wall synthesis of Gram-positive bacteria by binding to precursors of cell wall building blocks, and therefore it is thought to be less vulnerable to development of resistance. Teixobactin is synthesized by two nonribosomal peptide synthetases (NRPSs), encoded by txo1 and txo2 genes. Like other NRPSs, the Txo1 and Txo2 synthetases are large, multifunctional, and comprised of several modules. Each module is responsible for catalysis of a distinct step of teixobactin synthesis and contains specific functional units, commonly including a condensation (C) domain, an adenylation (A) domain, and a peptidyl carrier protein (PCP) domain. Here we report the structures of the C-A bidomains of the two L-Ser condensing modules, from Txo1 and Txo2, respectively. In the structure of the C domain of the L-Ser subunit of Txo1, a large conformational change is observed, featuring an outward swing of its N-terminal α-helix. This repositioning, if functionally validated, provides the necessary conformational change for the condensation reaction in C domain, and likely represents a regulatory mechanism. In an Acore subdomain, a well-coordinated Mg2+ cation is observed, which is required in the adenylation reaction. The Mg2+-binding site is defined by a largely conserved amino acid sequence motif and is coordinated by the α-phosphate group of AMP (or ATP) when present, providing some structural evidence for the role of the metal cation in the catalysis of A domain.
Collapse
Key Words
- A domain, Adenylation domain
- Acore subdomain, Large N-terminal subdomain of A domain
- Adenylation domain
- Asub subdomain, Small C-terminal subdomain of A domain
- C domain, Condensation domain
- CCterm subdomain, C-terminal subdomain of C domain
- CNterm subdomain, N-terminal subdomain of C domain
- COMA domain, Acceptor communication-mediating domain
- COMD domain, Donor communication-mediating domain
- Condensation domain
- Conformational change
- MES, 2- morpholinoethane sulfonic acid
- Mg2+-binding
- NRPS, Nonribosomal peptide synthetase
- Nonribosomal peptide synthetase
- PCP domain, Peptidyl carrier domain
- RMSD, Root-mean-square deviation
- SAD, Single wavelength diffraction
- SSM, Secondary-structure matching
- Teixobactin
- Txo1
- Txo2
- α-helix regulation
Collapse
Affiliation(s)
- Kemin Tan
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
| | - Min Zhou
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Robert P. Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
| | - Ruiying Wu
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
| | - Raul A. Higuera
- BUILDing SCHOLARS, The University of Texas at El Paso, 500 W. University Ave, El Paso, TX 79968, USA
| | - Dominika Borek
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gyorgy Babnigg
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Ave. Lemont, IL 60439, USA
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
10
|
Michalska K, Kowiel M, Bigelow L, Endres M, Gilski M, Jaskolski M, Joachimiak A. 3D domain swapping in the TIM barrel of the α subunit of Streptococcus pneumoniae tryptophan synthase. Acta Crystallogr D Struct Biol 2020; 76:166-175. [PMID: 32038047 PMCID: PMC7008512 DOI: 10.1107/s2059798320000212] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 01/08/2020] [Indexed: 02/10/2023] Open
Abstract
Tryptophan synthase catalyzes the last two steps of tryptophan biosynthesis in plants, fungi and bacteria. It consists of two protein chains, designated α and β, encoded by trpA and trpB genes, that function as an αββα complex. Structural and functional features of tryptophan synthase have been extensively studied, explaining the roles of individual residues in the two active sites in catalysis and allosteric regulation. TrpA serves as a model for protein-folding studies. In 1969, Jackson and Yanofsky observed that the typically monomeric TrpA forms a small population of dimers. Dimerization was postulated to take place through an exchange of structural elements of the monomeric chains, a phenomenon later termed 3D domain swapping. The structural details of the TrpA dimer have remained unknown. Here, the crystal structure of the Streptococcus pneumoniae TrpA homodimer is reported, demonstrating 3D domain swapping in a TIM-barrel fold for the first time. The N-terminal domain comprising the H0-S1-H1-S2 elements is exchanged, while the hinge region corresponds to loop L2 linking strand S2 to helix H2'. The structural elements S2 and L2 carry the catalytic residues Glu52 and Asp63. As the S2 element is part of the swapped domain, the architecture of the catalytic apparatus in the dimer is recreated from two protein chains. The homodimer interface overlaps with the α-β interface of the tryptophan synthase αββα heterotetramer, suggesting that the 3D domain-swapped dimer cannot form a complex with the β subunit. In the crystal, the dimers assemble into a decamer comprising two pentameric rings.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Marcin Kowiel
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Lance Bigelow
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Michael Endres
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Miroslaw Gilski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Center for Structural Genomics of Infectious Diseases, Consortium for Advanced Science and Engineering, University of Chicago, Chicago, IL 60637, USA
- Structural Biology Center, X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
11
|
Michalska K, Gale J, Joachimiak G, Chang C, Hatzos-Skintges C, Nocek B, Johnston SE, Bigelow L, Bajrami B, Jedrzejczak RP, Wellington S, Hung DT, Nag PP, Fisher SL, Endres M, Joachimiak A. Conservation of the structure and function of bacterial tryptophan synthases. IUCRJ 2019; 6:649-664. [PMID: 31316809 PMCID: PMC6608616 DOI: 10.1107/s2052252519005955] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/29/2019] [Indexed: 06/10/2023]
Abstract
Tryptophan biosynthesis is one of the most characterized processes in bacteria, in which the enzymes from Salmonella typhimurium and Escherichia coli serve as model systems. Tryptophan synthase (TrpAB) catalyzes the final two steps of tryptophan biosynthesis in plants, fungi and bacteria. This pyridoxal 5'-phosphate (PLP)-dependent enzyme consists of two protein chains, α (TrpA) and β (TrpB), functioning as a linear αββα heterotetrameric complex containing two TrpAB units. The reaction has a complicated, multistep mechanism resulting in the β-replacement of the hydroxyl group of l-serine with an indole moiety. Recent studies have shown that functional TrpAB is required for the survival of pathogenic bacteria in macrophages and for evading host defense. Therefore, TrpAB is a promising target for drug discovery, as its orthologs include enzymes from the important human pathogens Streptococcus pneumoniae, Legionella pneumophila and Francisella tularensis, the causative agents of pneumonia, legionnaires' disease and tularemia, respectively. However, specific biochemical and structural properties of the TrpABs from these organisms have not been investigated. To fill the important phylogenetic gaps in the understanding of TrpABs and to uncover unique features of TrpAB orthologs to spearhead future drug-discovery efforts, the TrpABs from L. pneumophila, F. tularensis and S. pneumoniae have been characterized. In addition to kinetic properties and inhibitor-sensitivity data, structural information gathered using X-ray crystallo-graphy is presented. The enzymes show remarkable structural conservation, but at the same time display local differences in both their catalytic and allosteric sites that may be responsible for the observed differences in catalysis and inhibitor binding. This functional dissimilarity may be exploited in the design of species-specific enzyme inhibitors.
Collapse
Affiliation(s)
- Karolina Michalska
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Jennifer Gale
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Grazyna Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Changsoo Chang
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Catherine Hatzos-Skintges
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
| | - Boguslaw Nocek
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | - Lance Bigelow
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Besnik Bajrami
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Robert P. Jedrzejczak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | - Deborah T. Hung
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | - Partha P. Nag
- Broad Institute of MIT and Harvard, Cambridge, MA 02141, USA
| | | | - Michael Endres
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, University of Chicago, Chicago, IL 60367, USA
- Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60367, USA
| |
Collapse
|
12
|
Miller BK, Hughes R, Ligon LS, Rigel NW, Malik S, Anjuwon-Foster BR, Sacchettini JC, Braunstein M. Mycobacterium tuberculosis SatS is a chaperone for the SecA2 protein export pathway. eLife 2019; 8:e40063. [PMID: 30604681 PMCID: PMC6333443 DOI: 10.7554/elife.40063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/31/2018] [Indexed: 11/13/2022] Open
Abstract
The SecA2 protein export system is critical for the virulence of Mycobacterium tuberculosis. However, the mechanism of this export pathway remains unclear. Through a screen for suppressors of a secA2 mutant, we identified a new player in the mycobacterial SecA2 pathway that we named SatS for SecA2 (two) Suppressor. In M. tuberculosis, SatS is required for the export of a subset of SecA2 substrates and for growth in macrophages. We further identify a role for SatS as a protein export chaperone. SatS exhibits multiple properties of a chaperone, including the ability to bind to and protect substrates from aggregation. Our structural studies of SatS reveal a distinct combination of a new fold and hydrophobic grooves resembling preprotein-binding sites of the SecB chaperone. These results are significant in better defining a molecular pathway for M. tuberculosis pathogenesis and in expanding our appreciation of the diversity among chaperones and protein export systems.
Collapse
Affiliation(s)
- Brittany K Miller
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillNorth CarolinaUnited States
| | - Ryan Hughes
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationUnited States
| | - Lauren S Ligon
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillNorth CarolinaUnited States
| | - Nathan W Rigel
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillNorth CarolinaUnited States
| | - Seidu Malik
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillNorth CarolinaUnited States
| | - Brandon R Anjuwon-Foster
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillNorth CarolinaUnited States
| | - James C Sacchettini
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationUnited States
| | - Miriam Braunstein
- Department of Microbiology and ImmunologyUniversity of North Carolina at Chapel HillNorth CarolinaUnited States
| |
Collapse
|
13
|
Xi H, Yu J, Sun Q, Lu J, Gu T, Guo X, Li B, Chen X, Zhang K, Kong W, Wu Y. Expression and purification of pneumococcal surface protein a of clade 4 in Escherichia coli using hydroxylapatite and ion-exchange column chromatography. Protein Expr Purif 2018; 151:56-61. [DOI: 10.1016/j.pep.2018.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 10/14/2022]
|
14
|
Michalska K, Quan Nhan D, Willett JLE, Stols LM, Eschenfeldt WH, Jones AM, Nguyen JY, Koskiniemi S, Low DA, Goulding CW, Joachimiak A, Hayes CS. Functional plasticity of antibacterial EndoU toxins. Mol Microbiol 2018; 109:509-527. [PMID: 29923643 PMCID: PMC6173971 DOI: 10.1111/mmi.14007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2018] [Indexed: 01/05/2023]
Abstract
Bacteria use several different secretion systems to deliver toxic EndoU ribonucleases into neighboring cells. Here, we present the first structure of a prokaryotic EndoU toxin in complex with its cognate immunity protein. The contact-dependent growth inhibition toxin CdiA-CTSTECO31 from Escherichia coli STEC_O31 adopts the eukaryotic EndoU fold and shares greatest structural homology with the nuclease domain of coronavirus Nsp15. The toxin contains a canonical His-His-Lys catalytic triad in the same arrangement as eukaryotic EndoU domains, but lacks the uridylate-specific ribonuclease activity that characterizes the superfamily. Comparative sequence analysis indicates that bacterial EndoU domains segregate into at least three major clades based on structural variations in the N-terminal subdomain. Representative EndoU nucleases from clades I and II degrade tRNA molecules with little specificity. In contrast, CdiA-CTSTECO31 and other clade III toxins are specific anticodon nucleases that cleave tRNAGlu between nucleotides C37 and m2 A38. These findings suggest that the EndoU fold is a versatile scaffold for the evolution of novel substrate specificities. Such functional plasticity may account for the widespread use of EndoU effectors by diverse inter-bacterial toxin delivery systems.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, USA.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, USA
| | - Dinh Quan Nhan
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Julia L E Willett
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Lucy M Stols
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, USA
| | - William H Eschenfeldt
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, USA
| | - Allison M Jones
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Josephine Y Nguyen
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - David A Low
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| | - Celia W Goulding
- Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA.,Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL, USA.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Christopher S Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA.,Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA, USA
| |
Collapse
|
15
|
Arias-Mireles BH, de Rozieres CM, Ly K, Joseph S. RNA Modulates the Interaction between Influenza A Virus NS1 and Human PABP1. Biochemistry 2018; 57:3590-3598. [PMID: 29782795 DOI: 10.1021/acs.biochem.8b00218] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nonstructural protein 1 (NS1) is a multifunctional protein involved in preventing host-interferon response in influenza A virus (IAV). Previous studies have indicated that NS1 also stimulates the translation of viral mRNA by binding to conserved sequences in the viral 5'-UTR. Additionally, NS1 binds to poly(A) binding protein 1 (PABP1) and eukaryotic initiation factor 4G (eIF4G). The interaction of NS1 with the viral 5'-UTR, PABP1, and eIF4G has been suggested to specifically enhance the translation of viral mRNAs. In contrast, we report that NS1 does not directly bind to sequences in the viral 5'-UTR, indicating that NS1 is not responsible for providing the specificity to stimulate viral mRNA translation. We also monitored the interaction of NS1 with PABP1 using a new, quantitative FRET assay. Our data show that NS1 binds to PABP1 with high affinity; however, the binding of double-stranded RNA (dsRNA) to NS1 weakens the binding of NS1 to PABP1. Correspondingly, the binding of PABP1 to NS1 weakens the binding of NS1 to double-stranded RNA (dsRNA). In contrast, the affinity of PABP1 for binding to poly(A) RNA is not significantly changed by NS1. We propose that the modulation of NS1·PABP1 interaction by dsRNA may be important for the viral cycle.
Collapse
Affiliation(s)
- Bryan H Arias-Mireles
- Department of Biological Sciences , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Cyrus M de Rozieres
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Kevin Ly
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| | - Simpson Joseph
- Department of Chemistry and Biochemistry , University of California, San Diego , 9500 Gilman Drive , La Jolla , California 92093 , United States
| |
Collapse
|
16
|
Skiba MA, Maloney FP, Dan Q, Fraley AE, Aldrich CC, Smith JL, Brown WC. PKS-NRPS Enzymology and Structural Biology: Considerations in Protein Production. Methods Enzymol 2018; 604:45-88. [PMID: 29779664 PMCID: PMC5992914 DOI: 10.1016/bs.mie.2018.01.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The structural diversity and complexity of marine natural products have made them a rich and productive source of new bioactive molecules for drug development. The identification of these new compounds has led to extensive study of the protein constituents of the biosynthetic pathways from the producing microbes. Essential processes in the dissection of biosynthesis have been the elucidation of catalytic functions and the determination of 3D structures for enzymes of the polyketide synthases and nonribosomal peptide synthetases that carry out individual reactions. The size and complexity of these proteins present numerous difficulties in the process of going from gene to structure. Here, we review the problems that may be encountered at the various steps of this process and discuss some of the solutions devised in our and other labs for the cloning, production, purification, and structure solution of complex proteins using Escherichia coli as a heterologous host.
Collapse
Affiliation(s)
| | | | - Qingyun Dan
- University of Michigan, Ann Arbor, MI, United States
| | - Amy E Fraley
- University of Michigan, Ann Arbor, MI, United States
| | | | - Janet L Smith
- University of Michigan, Ann Arbor, MI, United States.
| | - W Clay Brown
- University of Michigan, Ann Arbor, MI, United States.
| |
Collapse
|
17
|
Guyer L, Salinger K, Krügel U, Hörtensteiner S. Catalytic and structural properties of pheophytinase, the phytol esterase involved in chlorophyll breakdown. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:879-889. [PMID: 29036670 PMCID: PMC5853334 DOI: 10.1093/jxb/erx326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/21/2017] [Indexed: 05/22/2023]
Abstract
During leaf senescence and fruit ripening, chlorophyll is degraded in a multistep pathway into linear tetrapyrroles called phyllobilins. A key feature of chlorophyll breakdown is the removal of the hydrophobic phytol chain that renders phyllobilins water soluble, an important prerequisite for their ultimate storage in the vacuole of senescent cells. Chlorophyllases had been considered for more than a century to catalyze dephytylation in vivo; however, this was recently refuted. Instead, pheophytinase was discovered as a genuine in vivo phytol hydrolase. While chlorophyllase acts rather unspecifically towards different porphyrin substrates, pheophytinase was shown to specifically dephytylate pheophytin, namely Mg-free chlorophyll. The aim of this work was to elucidate in detail the biochemical and structural properties of pheophytinase. By testing different porphyrin substrates with recombinant pheophytinase from Arabidopsis thaliana we show that pheophytinase has high specificity for the acid moiety of the ester bond, namely the porphyrin ring, while the nature of the alcohol, namely the phytol chain in pheophytin, is irrelevant. In silico modelling of the 3-dimensional structure of pheophytinase and subsequent analysis of site-directed pheophytinase mutant forms allowed the identification of the serine, histidine, and aspartic acid residues that compose the catalytic triad, a classical feature of serine-type hydrolases to which both pheophytinase and chlorophyllase belong. Based on substantial structural differences in the models of Arabidopsis pheophytinase and chlorophyllase 1, we discuss potential differences in the catalytic properties of these two phytol hydrolases.
Collapse
Affiliation(s)
- Luzia Guyer
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse, Zurich, Switzerland
| | - Kathrin Salinger
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse, Zurich, Switzerland
| | - Undine Krügel
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse, Zurich, Switzerland
| | - Stefan Hörtensteiner
- Institute of Plant and Microbial Biology, University of Zurich, Zollikerstrasse, Zurich, Switzerland
| |
Collapse
|
18
|
Michalska K, Gucinski GC, Garza-Sánchez F, Johnson PM, Stols LM, Eschenfeldt WH, Babnigg G, Low DA, Goulding CW, Joachimiak A, Hayes CS. Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer RNAs. Nucleic Acids Res 2017; 45:10306-10320. [PMID: 28973472 PMCID: PMC5737660 DOI: 10.1093/nar/gkx700] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 07/29/2017] [Indexed: 12/23/2022] Open
Abstract
Contact-dependent growth inhibition (CDI) is a mechanism of inter-cellular competition in which Gram-negative bacteria exchange polymorphic toxins using type V secretion systems. Here, we present structures of the CDI toxin from Escherichia coli NC101 in ternary complex with its cognate immunity protein and elongation factor Tu (EF-Tu). The toxin binds exclusively to domain 2 of EF-Tu, partially overlapping the site that interacts with the 3'-end of aminoacyl-tRNA (aa-tRNA). The toxin exerts a unique ribonuclease activity that cleaves the single-stranded 3'-end from tRNAs that contain guanine discriminator nucleotides. EF-Tu is required to support this tRNase activity in vitro, suggesting the toxin specifically cleaves substrate in the context of GTP·EF-Tu·aa-tRNA complexes. However, superimposition of the toxin domain onto previously solved GTP·EF-Tu·aa-tRNA structures reveals potential steric clashes with both aa-tRNA and the switch I region of EF-Tu. Further, the toxin induces conformational changes in EF-Tu, displacing a β-hairpin loop that forms a critical salt-bridge contact with the 3'-terminal adenylate of aa-tRNA. Together, these observations suggest that the toxin remodels GTP·EF-Tu·aa-tRNA complexes to free the 3'-end of aa-tRNA for entry into the nuclease active site.
Collapse
Affiliation(s)
- Karolina Michalska
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Grant C Gucinski
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9625, USA
| | - Fernando Garza-Sánchez
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| | - Parker M Johnson
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Lucy M Stols
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - William H Eschenfeldt
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | - David A Low
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9625, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| | - Celia W Goulding
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.,Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.,Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Christopher S Hayes
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106-9625, USA.,Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9625, USA
| |
Collapse
|
19
|
Stressler T, Tanzer C, Ewert J, Claaßen W, Fischer L. Simple purification method for a recombinantly expressed native His-tag-free aminopeptidase A from Lactobacillus delbrueckii. Protein Expr Purif 2017; 131:7-15. [DOI: 10.1016/j.pep.2016.10.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/12/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
|
20
|
Biancucci M, Dolores JS, Wong J, Grimshaw S, Anderson WF, Satchell KJF, Kwon K. New ligation independent cloning vectors for expression of recombinant proteins with a self-cleaving CPD/6xHis-tag. BMC Biotechnol 2017; 17:1. [PMID: 28056928 PMCID: PMC5216533 DOI: 10.1186/s12896-016-0323-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 12/09/2016] [Indexed: 12/30/2022] Open
Abstract
Background Recombinant protein purification is a crucial step for biochemistry and structural biology fields. Rapid robust purification methods utilize various peptide or protein tags fused to the target protein for affinity purification using corresponding matrices and to enhance solubility. However, affinity/solubility-tags often need to be removed in order to conduct functional and structural studies, adding complexities to purification protocols. Results In this work, the Vibrio cholerae MARTX toxin Cysteine Protease Domain (CPD) was inserted in a ligation-independent cloning (LIC) vector to create a C-terminal 6xHis-tagged inducible autoprocessing enzyme tag, called “the CPD-tag”. The pCPD and alternative pCPD/ccdB cloning vectors allow for easy insertion of DNA and expression of the target protein fused to the CPD-tag, which is removed at the end of the purification step by addition of the inexpensive small molecule inositol hexakisphosphate to induce CPD autoprocessing. This process is demonstrated using a small bacterial membrane localization domain and for high yield purification of the eukaryotic small GTPase KRas. Subsequently, pCPD was tested with 40 proteins or sub-domains selected from a high throughput crystallization pipeline. Conclusion pCPD vectors are easily used LIC compatible vectors for expression of recombinant proteins with a C-terminal CPD/6xHis-tag. Although intended only as a strategy for rapid tag removal, this pilot study revealed the CPD-tag may also increase expression and solubility of some recombinant proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12896-016-0323-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Biancucci
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 6-205, Chicago, IL, 60611, USA
| | - Jazel S Dolores
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 6-205, Chicago, IL, 60611, USA.,Present address: Northwestern Memorial Hospital, Chicago, IL, USA
| | - Jennifer Wong
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 6-205, Chicago, IL, 60611, USA.,Present address: Indiana University, Bloomington, IN, USA
| | - Sarah Grimshaw
- Infectious Diseases Group, J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA.,Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Wayne F Anderson
- Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.,Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karla J F Satchell
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Ward 6-205, Chicago, IL, 60611, USA. .,Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| | - Keehwan Kwon
- Infectious Diseases Group, J. Craig Venter Institute, 9714 Medical Center Drive, Rockville, MD, 20850, USA. .,Center for Structural Genomics of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
21
|
Coolbaugh M, Shakalli Tang M, Wood D. High-throughput purification of recombinant proteins using self-cleaving intein tags. Anal Biochem 2017; 516:65-74. [DOI: 10.1016/j.ab.2016.10.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 10/16/2016] [Accepted: 10/18/2016] [Indexed: 12/13/2022]
|
22
|
Exell JC, Thompson MJ, Finger LD, Shaw SJ, Debreczeni J, Ward TA, McWhirter C, Siöberg CLB, Martinez Molina D, Abbott WM, Jones CD, Nissink JWM, Durant ST, Grasby JA. Cellularly active N-hydroxyurea FEN1 inhibitors block substrate entry to the active site. Nat Chem Biol 2016; 12:815-21. [PMID: 27526030 PMCID: PMC5348030 DOI: 10.1038/nchembio.2148] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 05/19/2016] [Indexed: 02/07/2023]
Abstract
The structure-specific nuclease human flap endonuclease-1 (hFEN1) plays a key role in DNA replication and repair and may be of interest as an oncology target. We present the crystal structure of inhibitor-bound hFEN1, which shows a cyclic N-hydroxyurea bound in the active site coordinated to two magnesium ions. Three such compounds had similar IC50 values but differed subtly in mode of action. One had comparable affinity for protein and protein-substrate complex and prevented reaction by binding to active site catalytic metal ions, blocking the necessary unpairing of substrate DNA. Other compounds were more competitive with substrate. Cellular thermal shift data showed that both inhibitor types engaged with hFEN1 in cells, and activation of the DNA damage response was evident upon treatment with inhibitors. However, cellular EC50 values were significantly higher than in vitro inhibition constants, and the implications of this for exploitation of hFEN1 as a drug target are discussed.
Collapse
Affiliation(s)
- Jack C Exell
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, UK
| | - Mark J Thompson
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, UK
| | - L David Finger
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, UK
| | - Steven J Shaw
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, UK
| | - Judit Debreczeni
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Thomas A Ward
- Bioscience, Oncology Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, Cheshire, UK
| | - Claire McWhirter
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | | | | | - W Mark Abbott
- Discovery Sciences, Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Clifford D Jones
- Chemistry, Oncology Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Alderley Park, UK
| | - J Willem M Nissink
- Chemistry, Oncology Innovative Medicines and Early Development Biotech Unit, AstraZeneca, Cambridge, UK
| | - Stephen T Durant
- Bioscience, Oncology Innovative Medicines and Early Development Biotech Unit, Cambridge, UK
| | - Jane A Grasby
- Centre for Chemical Biology, Department of Chemistry, Krebs Institute, University of Sheffield, Sheffield, UK.,Bioscience, Oncology Innovative Medicines and Early Development Biotech Unit, Cambridge, UK
| |
Collapse
|
23
|
Celie PHN, Parret AHA, Perrakis A. Recombinant cloning strategies for protein expression. Curr Opin Struct Biol 2016; 38:145-54. [DOI: 10.1016/j.sbi.2016.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 06/10/2016] [Indexed: 11/30/2022]
|
24
|
Luo D, Wen C, Zhao R, Liu X, Liu X, Cui J, Liang JG, Liang P. High Level Expression and Purification of Recombinant Proteins from Escherichia coli with AK-TAG. PLoS One 2016; 11:e0156106. [PMID: 27214237 PMCID: PMC4877045 DOI: 10.1371/journal.pone.0156106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/08/2016] [Indexed: 01/01/2023] Open
Abstract
Adenylate kinase (AK) from Escherichia coli was used as both solubility and affinity tag for recombinant protein production. When fused to the N-terminus of a target protein, an AK fusion protein could be expressed in soluble form and purified to near homogeneity in a single step from Blue-Sepherose via affinity elution with micromolar concentration of P1, P5- di (adenosine—5’) pentaphosphate (Ap5A), a transition-state substrate analog of AK. Unlike any other affinity tags, the level of a recombinant protein expression in soluble form and its yield of recovery during each purification step could be readily assessed by AK enzyme activity in near real time. Coupled to a His-Tag installed at the N-terminus and a thrombin cleavage site at the C terminus of AK, the streamlined method, here we dubbed AK-TAG, could also allow convenient expression and retrieval of a cleaved recombinant protein in high yield and purity via dual affinity purification steps. Thus AK-TAG is a new addition to the arsenal of existing affinity tags for recombinant protein expression and purification, and is particularly useful where soluble expression and high degree of purification are at stake.
Collapse
Affiliation(s)
- Dan Luo
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Sichuan University, Chengdu, China
| | - Caixia Wen
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Sichuan University, Chengdu, China
| | - Rongchuan Zhao
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Sichuan University, Chengdu, China
| | - Xinyu Liu
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Sichuan University, Chengdu, China
| | - Xinxin Liu
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Sichuan University, Chengdu, China
| | - Jingjing Cui
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Sichuan University, Chengdu, China
| | | | - Peng Liang
- Department of Biochemistry & Molecular Biology, School of Life Sciences, Sichuan University, Chengdu, China
- Clover Biopharmaceuticals, Chengdu, China
- GenHunter Corporation, Grassmere Park, Nashville, United States of America
- * E-mail: ;
| |
Collapse
|
25
|
Sainsbury F, Jutras PV, Vorster J, Goulet MC, Michaud D. A Chimeric Affinity Tag for Efficient Expression and Chromatographic Purification of Heterologous Proteins from Plants. FRONTIERS IN PLANT SCIENCE 2016; 7:141. [PMID: 26913045 PMCID: PMC4753422 DOI: 10.3389/fpls.2016.00141] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/27/2016] [Indexed: 05/23/2023]
Abstract
The use of plants as expression hosts for recombinant proteins is an increasingly attractive option for the production of complex and challenging biopharmaceuticals. Tools are needed at present to marry recent developments in high-yielding gene vectors for heterologous expression with routine protein purification techniques. In this study, we designed the Cysta-tag, a new purification tag for immobilized metal affinity chromatography (IMAC) of plant-made proteins based on the protein-stabilizing fusion partner SlCYS8. We show that the Cysta-tag may be used to readily purify proteins under native conditions, and then be removed enzymatically to isolate the protein of interest. We also show that commonly used protease recognition sites for linking purification tags are differentially stable in leaves of the commonly used expression host Nicotiana benthamiana, with those linkers susceptible to cysteine proteases being less stable then serine protease-cleavable linkers. As an example, we describe a Cysta-tag experimental scheme for the one-step purification of a clinically useful protein, human α1-antitrypsin, transiently expressed in N. benthamiana. With potential applicability to the variety of chromatography formats commercially available for IMAC-based protein purification, the Cysta-tag provides a convenient means for the efficient and cost-effective purification of recombinant proteins from plant tissues.
Collapse
Affiliation(s)
- Frank Sainsbury
- Département de Phytologie–Centre de Recherche et d’Innovation sur les Végétaux, Université Laval, QuébecQC, Canada
- Centre for Biomolecular Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, BrisbaneQLD, Australia
| | - Philippe V. Jutras
- Département de Phytologie–Centre de Recherche et d’Innovation sur les Végétaux, Université Laval, QuébecQC, Canada
- Centre for Biomolecular Engineering, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, BrisbaneQLD, Australia
| | - Juan Vorster
- Department of Plant Production and Soil Science, Forestry and Agricultural Biotechnology Institute, University of PretoriaPretoria, South Africa
| | - Marie-Claire Goulet
- Département de Phytologie–Centre de Recherche et d’Innovation sur les Végétaux, Université Laval, QuébecQC, Canada
| | - Dominique Michaud
- Département de Phytologie–Centre de Recherche et d’Innovation sur les Végétaux, Université Laval, QuébecQC, Canada
| |
Collapse
|
26
|
Tan K, Johnson PM, Stols L, Boubion B, Eschenfeldt W, Babnigg G, Hayes CS, Joachimiak A, Goulding CW. The structure of a contact-dependent growth-inhibition (CDI) immunity protein from Neisseria meningitidis MC58. Acta Crystallogr F Struct Biol Commun 2015; 71:702-9. [PMID: 26057799 PMCID: PMC4461334 DOI: 10.1107/s2053230x15006585] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 03/31/2015] [Indexed: 01/01/2023] Open
Abstract
Contact-dependent growth inhibition (CDI) is an important mechanism of intercellular competition between neighboring Gram-negative bacteria. CDI systems encode large surface-exposed CdiA effector proteins that carry a variety of C-terminal toxin domains (CdiA-CTs). All CDI(+) bacteria also produce CdiI immunity proteins that specifically bind to the cognate CdiA-CT and neutralize its toxin activity to prevent auto-inhibition. Here, the X-ray crystal structure of a CdiI immunity protein from Neisseria meningitidis MC58 is presented at 1.45 Å resolution. The CdiI protein has structural homology to the Whirly family of RNA-binding proteins, but appears to lack the characteristic nucleic acid-binding motif of this family. Sequence homology suggests that the cognate CdiA-CT is related to the eukaryotic EndoU family of RNA-processing enzymes. A homology model is presented of the CdiA-CT based on the structure of the XendoU nuclease from Xenopus laevis. Molecular-docking simulations predict that the CdiA-CT toxin active site is occluded upon binding to the CdiI immunity protein. Together, these observations suggest that the immunity protein neutralizes toxin activity by preventing access to RNA substrates.
Collapse
Affiliation(s)
- Kemin Tan
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Parker M. Johnson
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Lucy Stols
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Bryan Boubion
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
| | - William Eschenfeldt
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Christopher S. Hayes
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Biomolecular Science and Engineering Program, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Andrezj Joachimiak
- Midwest Center for Structural Genomics, Argonne National Laboratory, Argonne, IL 60439, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, Argonne, IL 60439, USA
| | - Celia W. Goulding
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
27
|
Kim Y, Makowska-Grzyska M, Gorla SK, Gollapalli DR, Cuny GD, Joachimiak A, Hedstrom L. Structure of Cryptosporidium IMP dehydrogenase bound to an inhibitor with in vivo antiparasitic activity. Acta Crystallogr F Struct Biol Commun 2015; 71:531-8. [PMID: 25945705 PMCID: PMC4427161 DOI: 10.1107/s2053230x15000187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/06/2015] [Indexed: 11/10/2022] Open
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising target for the treatment of Cryptosporidium infections. Here, the structure of C. parvum IMPDH (CpIMPDH) in complex with inosine 5'-monophosphate (IMP) and P131, an inhibitor with in vivo anticryptosporidial activity, is reported. P131 contains two aromatic groups, one of which interacts with the hypoxanthine ring of IMP, while the second interacts with the aromatic ring of a tyrosine in the adjacent subunit. In addition, the amine and NO2 moieties bind in hydrated cavities, forming water-mediated hydrogen bonds to the protein. The design of compounds to replace these water molecules is a new strategy for the further optimization of C. parvum inhibitors for both antiparasitic and antibacterial applications.
Collapse
Affiliation(s)
- Youngchang Kim
- Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Magdalena Makowska-Grzyska
- Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA
| | - Suresh Kumar Gorla
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | - Gregory D. Cuny
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Science and Research Building 2, Houston, TX 77204, USA
| | - Andrzej Joachimiak
- Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, 5735 S. Ellis Avenue, Chicago, IL 60637, USA
- Structural Biology Center, Biosciences, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL 60439, USA
| | - Lizbeth Hedstrom
- Department of Biology, Brandeis University, 415 South Street, Waltham, MA 02454, USA
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| |
Collapse
|
28
|
Nuclease activity of Legionella pneumophila Cas2 promotes intracellular infection of amoebal host cells. Infect Immun 2014; 83:1008-18. [PMID: 25547789 DOI: 10.1128/iai.03102-14] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Legionella pneumophila, the primary agent of Legionnaires' disease, flourishes in both natural and man-made environments by growing in a wide variety of aquatic amoebae. Recently, we determined that the Cas2 protein of L. pneumophila promotes intracellular infection of Acanthamoeba castellanii and Hartmannella vermiformis, the two amoebae most commonly linked to cases of disease. The Cas2 family of proteins is best known for its role in the bacterial and archeal clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) system that constitutes a form of adaptive immunity against phage and plasmid. However, the infection event mediated by L. pneumophila Cas2 appeared to be distinct from this function, because cas2 mutants exhibited infectivity defects in the absence of added phage or plasmid and since mutants lacking the CRISPR array or any one of the other cas genes were not impaired in infection ability. We now report that the Cas2 protein of L. pneumophila has both RNase and DNase activities, with the RNase activity being more pronounced. By characterizing a catalytically deficient version of Cas2, we determined that nuclease activity is critical for promoting infection of amoebae. Also, introduction of Cas2, but not its catalytic mutant form, into a strain of L. pneumophila that naturally lacks a CRISPR-Cas locus caused that strain to be 40- to 80-fold more infective for amoebae, unequivocally demonstrating that Cas2 facilitates the infection process independently of any other component encoded within the CRISPR-Cas locus. Finally, a cas2 mutant was impaired for infection of Willaertia magna but not Naegleria lovaniensis, suggesting that Cas2 promotes infection of most but not all amoebal hosts.
Collapse
|
29
|
Makowska-Grzyska M, Kim Y, Maltseva N, Li H, Zhou M, Joachimiak G, Babnigg G, Joachimiak A. Protein production for structural genomics using E. coli expression. Methods Mol Biol 2014; 1140:89-105. [PMID: 24590711 PMCID: PMC4108990 DOI: 10.1007/978-1-4939-0354-2_7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The goal of structural biology is to reveal details of the molecular structure of proteins in order to understand their function and mechanism. X-ray crystallography and NMR are the two best methods for atomic level structure determination. However, these methods require milligram quantities of proteins. In this chapter a reproducible methodology for large-scale protein production applicable to a diverse set of proteins is described. The approach is based on protein expression in E. coli as a fusion with a cleavable affinity tag that was tested on over 20,000 proteins. Specifically, a protocol for fermentation of large quantities of native proteins in disposable culture vessels is presented. A modified protocol that allows for the production of selenium-labeled proteins in defined media is also offered. Finally, a method for the purification of His6-tagged proteins on immobilized metal affinity chromatography columns that generates high-purity material is described in detail.
Collapse
Affiliation(s)
- Magdalena Makowska-Grzyska
- Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, IL, 60557, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Eschenfeldt WH, Makowska-Grzyska M, Stols L, Donnelly M, Jedrzejczak R, Joachimiak A. New LIC vectors for production of proteins from genes containing rare codons. JOURNAL OF STRUCTURAL AND FUNCTIONAL GENOMICS 2013; 14:135-44. [PMID: 24057978 PMCID: PMC3933008 DOI: 10.1007/s10969-013-9163-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/03/2013] [Indexed: 11/28/2022]
Abstract
In the effort to produce proteins coded by diverse genomes, structural genomics projects often must express genes containing codons that are rare in the production strain. To address this problem, genes expressing tRNAs corresponding to those codons are typically coexpressed from a second plasmid in the host strain, or from genes incorporated into production plasmids. Here we describe the modification of a series of LIC pMCSG vectors currently used in the high-throughput (HTP) production of proteins to include crucial tRNA genes covering rare codons for Arg (AGG/AGA) and Ile (AUA). We also present variants of these new vectors that allow analysis of ligand binding or co-expression of multiple proteins introduced through two independent LIC steps. Additionally, to accommodate the cloning of multiple large proteins, the size of the plasmids was reduced by approximately one kilobase through the removal of non-essential DNA from the base vector. Production of proteins from core vectors of this series validated the desired enhanced capabilities: higher yields of proteins expressed from genes with rare codons occurred in most cases, biotinylated derivatives enabled detailed automated ligand binding analysis, and multiple proteins introduced by dual LIC cloning were expressed successfully and in near balanced stoichiometry, allowing tandem purification of interacting proteins.
Collapse
Affiliation(s)
- William H. Eschenfeldt
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Magdalena Makowska-Grzyska
- Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, Illinois 60667
| | - Lucy Stols
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Mark Donnelly
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Robert Jedrzejczak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
- Center for Structural Genomics of Infectious Diseases, Computational Institute, University of Chicago, Chicago, Illinois 60667
| |
Collapse
|
31
|
Makowska-Grzyska M, Kim Y, Wu R, Wilton R, Gollapalli DR, Wang XK, Zhang R, Jedrzejczak R, Mack JC, Maltseva N, Mulligan R, Binkowski TA, Gornicki P, Kuhn ML, Anderson WF, Hedstrom L, Joachimiak A. Bacillus anthracis inosine 5'-monophosphate dehydrogenase in action: the first bacterial series of structures of phosphate ion-, substrate-, and product-bound complexes. Biochemistry 2012; 51:6148-63. [PMID: 22788966 DOI: 10.1021/bi300511w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Inosine 5'-monophosphate dehydrogenase (IMPDH) catalyzes the first unique step of the GMP branch of the purine nucleotide biosynthetic pathway. This enzyme is found in organisms of all three kingdoms. IMPDH inhibitors have broad clinical applications in cancer treatment, as antiviral drugs and as immunosuppressants, and have also displayed antibiotic activity. We have determined three crystal structures of Bacillus anthracis IMPDH, in a phosphate ion-bound (termed "apo") form and in complex with its substrate, inosine 5'-monophosphate (IMP), and product, xanthosine 5'-monophosphate (XMP). This is the first example of a bacterial IMPDH in more than one state from the same organism. Furthermore, for the first time for a prokaryotic enzyme, the entire active site flap, containing the conserved Arg-Tyr dyad, is clearly visible in the structure of the apoenzyme. Kinetic parameters for the enzymatic reaction were also determined, and the inhibitory effect of XMP and mycophenolic acid (MPA) has been studied. In addition, the inhibitory potential of two known Cryptosporidium parvum IMPDH inhibitors was examined for the B. anthracis enzyme and compared with those of three bacterial IMPDHs from Campylobacter jejuni, Clostridium perfringens, and Vibrio cholerae. The structures contribute to the characterization of the active site and design of inhibitors that specifically target B. anthracis and other microbial IMPDH enzymes.
Collapse
Affiliation(s)
- Magdalena Makowska-Grzyska
- Center for Structural Genomics of Infectious Diseases, University of Chicago, 5735 South Ellis Avenue, Chicago, IL 60637, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Nusca TD, Kim Y, Maltseva N, Lee JY, Eschenfeldt W, Stols L, Schofield MM, Scaglione JB, Dixon SD, Oves-Costales D, Challis GL, Hanna PC, Pfleger BF, Joachimiak A, Sherman DH. Functional and structural analysis of the siderophore synthetase AsbB through reconstitution of the petrobactin biosynthetic pathway from Bacillus anthracis. J Biol Chem 2012; 287:16058-72. [PMID: 22408253 PMCID: PMC3346087 DOI: 10.1074/jbc.m112.359349] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Indexed: 01/03/2023] Open
Abstract
Petrobactin, a mixed catechol-carboxylate siderophore, is required for full virulence of Bacillus anthracis, the causative agent of anthrax. The asbABCDEF operon encodes the biosynthetic machinery for this secondary metabolite. Here, we show that the function of five gene products encoded by the asb operon is necessary and sufficient for conversion of endogenous precursors to petrobactin using an in vitro system. In this pathway, the siderophore synthetase AsbB catalyzes formation of amide bonds crucial for petrobactin assembly through use of biosynthetic intermediates, as opposed to primary metabolites, as carboxylate donors. In solving the crystal structure of the B. anthracis siderophore biosynthesis protein B (AsbB), we disclose a three-dimensional model of a nonribosomal peptide synthetase-independent siderophore (NIS) synthetase. Structural characteristics provide new insight into how this bifunctional condensing enzyme can bind and adenylate multiple citrate-containing substrates followed by incorporation of both natural and unnatural polyamine nucleophiles. This activity enables formation of multiple end-stage products leading to final assembly of petrobactin. Subsequent enzymatic assays with the nonribosomal peptide synthetase-like AsbC, AsbD, and AsbE polypeptides show that the alternative products of AsbB are further converted to petrobactin, verifying previously proposed convergent routes to formation of this siderophore. These studies identify potential therapeutic targets to halt deadly infections caused by B. anthracis and other pathogenic bacteria and suggest new avenues for the chemoenzymatic synthesis of novel compounds.
Collapse
Affiliation(s)
- Tyler D. Nusca
- From the Life Sciences Institute and
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Youngchang Kim
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Natalia Maltseva
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | | | - William Eschenfeldt
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Lucy Stols
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
| | | | | | - Shandee D. Dixon
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Daniel Oves-Costales
- the Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Gregory L. Challis
- the Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Philip C. Hanna
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Brian F. Pfleger
- From the Life Sciences Institute and
- the Department of Chemical and Biological Engineering, University of Wisconsin, Madison, Wisconsin 53706-1691
| | - Andrzej Joachimiak
- the Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory, Argonne, Illinois 60439
- the Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois 60637, and
| | - David H. Sherman
- From the Life Sciences Institute and
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- the Departments of Medicinal Chemistry and Chemistry, University of Michigan, Arbor, Michigan 48109
| |
Collapse
|
33
|
Kim Y, Babnigg G, Jedrzejczak R, Eschenfeldt WH, Li H, Maltseva N, Hatzos-Skintges C, Gu M, Makowska-Grzyska M, Wu R, An H, Chhor G, Joachimiak A. High-throughput protein purification and quality assessment for crystallization. Methods 2011; 55:12-28. [PMID: 21907284 DOI: 10.1016/j.ymeth.2011.07.010] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 07/14/2011] [Accepted: 07/14/2011] [Indexed: 12/31/2022] Open
Abstract
The ultimate goal of structural biology is to understand the structural basis of proteins in cellular processes. In structural biology, the most critical issue is the availability of high-quality samples. "Structural biology-grade" proteins must be generated in the quantity and quality suitable for structure determination using X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The purification procedures must reproducibly yield homogeneous proteins or their derivatives containing marker atom(s) in milligram quantities. The choice of protein purification and handling procedures plays a critical role in obtaining high-quality protein samples. With structural genomics emphasizing a genome-based approach in understanding protein structure and function, a number of unique structures covering most of the protein folding space have been determined and new technologies with high efficiency have been developed. At the Midwest Center for Structural Genomics (MCSG), we have developed semi-automated protocols for high-throughput parallel protein expression and purification. A protein, expressed as a fusion with a cleavable affinity tag, is purified in two consecutive immobilized metal affinity chromatography (IMAC) steps: (i) the first step is an IMAC coupled with buffer-exchange, or size exclusion chromatography (IMAC-I), followed by the cleavage of the affinity tag using the highly specific Tobacco Etch Virus (TEV) protease; the second step is IMAC and buffer exchange (IMAC-II) to remove the cleaved tag and tagged TEV protease. These protocols have been implemented on multidimensional chromatography workstations and, as we have shown, many proteins can be successfully produced in large-scale. All methods and protocols used for purification, some developed by MCSG, others adopted and integrated into the MCSG purification pipeline and more recently the Center for Structural Genomics of Infectious Diseases (CSGID) purification pipeline, are discussed in this chapter.
Collapse
Affiliation(s)
- Youngchang Kim
- Midwest Center for Structural Genomics, Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Expression of protein complexes using multiple Escherichia coli protein co-expression systems: A benchmarking study. J Struct Biol 2011; 175:159-70. [DOI: 10.1016/j.jsb.2011.03.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 03/01/2011] [Indexed: 11/30/2022]
|
35
|
Sun P, Austin BP, Tözsér J, Waugh DS. Structural determinants of tobacco vein mottling virus protease substrate specificity. Protein Sci 2011; 19:2240-51. [PMID: 20862670 DOI: 10.1002/pro.506] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tobacco vein mottling virus (TVMV) is a member of the Potyviridae, one of the largest families of plant viruses. The TVMV genome is translated into a single large polyprotein that is subsequently processed by three virally encoded proteases. Seven of the nine cleavage events are carried out by the NIa protease. Its homolog from the tobacco etch virus (TEV) is a widely used reagent for the removal of affinity tags from recombinant proteins. Although TVMV protease is a close relative of TEV protease, they exhibit distinct sequence specificities. We report here the crystal structure of a catalytically inactive mutant TVMV protease (K65A/K67A/C151A) in complex with a canonical peptide substrate (Ac-RETVRFQSD) at 1.7-Å resolution. As observed in several crystal structures of TEV protease, the C-terminus (∼20 residues) of TVMV protease is disordered. Unexpectedly, although deleting the disordered residues from TEV protease reduces its catalytic activity by ∼10-fold, an analogous truncation mutant of TVMV protease is significantly more active. Comparison of the structures of TEV and TVMV protease in complex with their respective canonical substrate peptides reveals that the S3 and S4 pockets are mainly responsible for the differing substrate specificities. The structure of TVMV protease suggests that it is less tolerant of variation at the P1' position than TEV protease. This conjecture was confirmed experimentally by determining kinetic parameters k(cat) and K(m) for a series of oligopeptide substrates. Also, as predicted by the cocrystal structure, we confirm that substitutions in the P6 position are more readily tolerated by TVMV than TEV protease.
Collapse
Affiliation(s)
- Ping Sun
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute at Frederick, Frederick, Maryland, USA
| | | | | | | |
Collapse
|