1
|
Korb A, Tajbakhsh S, Comai GE. Functional specialisation and coordination of myonuclei. Biol Rev Camb Philos Soc 2024; 99:1164-1195. [PMID: 38477382 DOI: 10.1111/brv.13063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 03/14/2024]
Abstract
Myofibres serve as the functional unit for locomotion, with the sarcomere as fundamental subunit. Running the entire length of this structure are hundreds of myonuclei, located at the periphery of the myofibre, juxtaposed to the plasma membrane. Myonuclear specialisation and clustering at the centre and ends of the fibre are known to be essential for muscle contraction, yet the molecular basis of this regionalisation has remained unclear. While the 'myonuclear domain hypothesis' helped explain how myonuclei can independently govern large cytoplasmic territories, novel technologies have provided granularity on the diverse transcriptional programs running simultaneously within the syncytia and added a new perspective on how myonuclei communicate. Building upon this, we explore the critical cellular and molecular sources of transcriptional and functional heterogeneity within myofibres, discussing the impact of intrinsic and extrinsic factors on myonuclear programs. This knowledge provides new insights for understanding muscle development, repair, and disease, but also opens avenues for the development of novel and precise therapeutic approaches.
Collapse
Affiliation(s)
- Amaury Korb
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Shahragim Tajbakhsh
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| | - Glenda E Comai
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Stem Cells & Development Unit, 25 rue du Dr. Roux, Institut Pasteur, Paris, F-75015, France
| |
Collapse
|
2
|
Kaplan MM, Zeidler M, Knapp A, Hölzl M, Kress M, Fritsch H, Krogsdam A, Flucher BE. Spatial transcriptomics in embryonic mouse diaphragm muscle reveals regional gradients and subdomains of developmental gene expression. iScience 2024; 27:110018. [PMID: 38883818 PMCID: PMC11177202 DOI: 10.1016/j.isci.2024.110018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The murine embryonic diaphragm is a primary model for studying myogenesis and neuro-muscular synaptogenesis, both representing processes regulated by spatially organized genetic programs of myonuclei located in distinct myodomains. However, a spatial gene expression pattern of embryonic mouse diaphragm has not been reported. Here, we provide spatially resolved gene expression data for horizontally sectioned embryonic mouse diaphragms at embryonic days E14.5 and E18.5. These data reveal gene signatures for specific muscle regions with distinct maturity and fiber type composition, as well as for a central neuromuscular junction (NMJ) and a peripheral myotendinous junction (MTJ) compartment. Comparing spatial expression patterns of wild-type mice with those of transgenic mice lacking either the skeletal muscle calcium channel CaV1.1 or β-catenin, reveals curtailed muscle development and dysregulated expression of genes potentially involved in NMJ formation. Altogether, these datasets provide a powerful resource for further studies of muscle development and NMJ formation in the mouse.
Collapse
Affiliation(s)
| | - Maximilian Zeidler
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Annabella Knapp
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Martina Hölzl
- Deep Sequencing Core and Institute for Bioinformatics Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Michaela Kress
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Helga Fritsch
- Institute of Clinical and Functional Anatomy, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Anne Krogsdam
- Deep Sequencing Core and Institute for Bioinformatics Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Bernhard E Flucher
- Institute of Physiology, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
3
|
Chen X, Li Y, Xu J, Cui Y, Wu Q, Yin H, Li Y, Gao C, Jiang L, Wang H, Wen Z, Yao Z, Wu Z. Styxl2 regulates de novo sarcomere assembly by binding to non-muscle myosin IIs and promoting their degradation. eLife 2024; 12:RP87434. [PMID: 38829202 PMCID: PMC11147509 DOI: 10.7554/elife.87434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Styxl2, a poorly characterized pseudophosphatase, was identified as a transcriptional target of the Jak1-Stat1 pathway during myoblast differentiation in culture. Styxl2 is specifically expressed in vertebrate striated muscles. By gene knockdown in zebrafish or genetic knockout in mice, we found that Styxl2 plays an essential role in maintaining sarcomere integrity in developing muscles. To further reveal the functions of Styxl2 in adult muscles, we generated two inducible knockout mouse models: one with Styxl2 being deleted in mature myofibers to assess its role in sarcomere maintenance, and the other in adult muscle satellite cells (MuSCs) to assess its role in de novo sarcomere assembly. We find that Styxl2 is not required for sarcomere maintenance but functions in de novo sarcomere assembly during injury-induced muscle regeneration. Mechanistically, Styxl2 interacts with non-muscle myosin IIs, enhances their ubiquitination, and targets them for autophagy-dependent degradation. Without Styxl2, the degradation of non-muscle myosin IIs is delayed, which leads to defective sarcomere assembly and force generation. Thus, Styxl2 promotes de novo sarcomere assembly by interacting with non-muscle myosin IIs and facilitating their autophagic degradation.
Collapse
Affiliation(s)
- Xianwei Chen
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Yanfeng Li
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Jin Xu
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Yong Cui
- School of Life Sciences, Chinese University of Hong KongHong KongChina
| | - Qian Wu
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Haidi Yin
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Yuying Li
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong KongHong KongChina
| | - Chuan Gao
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Liwen Jiang
- School of Life Sciences, Chinese University of Hong KongHong KongChina
| | - Huating Wang
- Department of Orthopaedics and Traumatology, Li Ka Shing Institute of Health Sciences, Chinese University of Hong KongHong KongChina
| | - Zilong Wen
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| | - Zhongping Yao
- Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic UniversityHong KongChina
| | - Zhenguo Wu
- Division of Life Science, Hong Kong University of Science & TechnologyHong KongChina
| |
Collapse
|
4
|
Horsthemke M, Arnaud CA, Hanley PJ. Are the class 18 myosins Myo18A and Myo18B specialist sarcomeric proteins? Front Physiol 2024; 15:1401717. [PMID: 38784114 PMCID: PMC11112018 DOI: 10.3389/fphys.2024.1401717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
Initially, the two members of class 18 myosins, Myo18A and Myo18B, appeared to exhibit highly divergent functions, complicating the assignment of class-specific functions. However, the identification of a striated muscle-specific isoform of Myo18A, Myo18Aγ, suggests that class 18 myosins may have evolved to complement the functions of conventional class 2 myosins in sarcomeres. Indeed, both genes, Myo18a and Myo18b, are predominantly expressed in the heart and somites, precursors of skeletal muscle, of developing mouse embryos. Genetic deletion of either gene in mice is embryonic lethal and is associated with the disorganization of cardiac sarcomeres. Moreover, Myo18Aγ and Myo18B localize to sarcomeric A-bands, albeit the motor (head) domains of these unconventional myosins have been both deduced and biochemically demonstrated to exhibit negligible ATPase activity, a hallmark of motor proteins. Instead, Myo18Aγ and Myo18B presumably coassemble with thick filaments and provide structural integrity and/or internal resistance through interactions with F-actin and/or other proteins. In addition, Myo18Aγ and Myo18B may play distinct roles in the assembly of myofibrils, which may arise from actin stress fibers containing the α-isoform of Myo18A, Myo18Aα. The β-isoform of Myo18A, Myo18Aβ, is similar to Myo18Aα, except that it lacks the N-terminal extension, and may serve as a negative regulator through heterodimerization with either Myo18Aα or Myo18Aγ. In this review, we contend that Myo18Aγ and Myo18B are essential for myofibril structure and function in striated muscle cells, while α- and β-isoforms of Myo18A play diverse roles in nonmuscle cells.
Collapse
Affiliation(s)
- Markus Horsthemke
- IMM Institute for Molecular Medicine, HMU Health and Medical University Potsdam, Potsdam, Germany
| | - Charles-Adrien Arnaud
- IMM Institute for Molecular Medicine, HMU Health and Medical University Potsdam, Potsdam, Germany
- Department of Medicine, Science Faculty, MSB Medical School Berlin, Berlin, Germany
| | - Peter J. Hanley
- IMM Institute for Molecular Medicine, HMU Health and Medical University Potsdam, Potsdam, Germany
| |
Collapse
|
5
|
Casarella S, Ferla F, Di Francesco D, Canciani E, Rizzi M, Boccafoschi F. Focal Adhesion's Role in Cardiomyocytes Function: From Cardiomyogenesis to Mechanotransduction. Cells 2024; 13:664. [PMID: 38667279 PMCID: PMC11049660 DOI: 10.3390/cells13080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mechanotransduction refers to the ability of cells to sense mechanical stimuli and convert them into biochemical signals. In this context, the key players are focal adhesions (FAs): multiprotein complexes that link intracellular actin bundles and the extracellular matrix (ECM). FAs are involved in cellular adhesion, growth, differentiation, gene expression, migration, communication, force transmission, and contractility. Focal adhesion signaling molecules, including Focal Adhesion Kinase (FAK), integrins, vinculin, and paxillin, also play pivotal roles in cardiomyogenesis, impacting cell proliferation and heart tube looping. In fact, cardiomyocytes sense ECM stiffness through integrins, modulating signaling pathways like PI3K/AKT and Wnt/β-catenin. Moreover, FAK/Src complex activation mediates cardiac hypertrophic growth and survival signaling in response to mechanical loads. This review provides an overview of the molecular and mechanical mechanisms underlying the crosstalk between FAs and cardiac differentiation, as well as the role of FA-mediated mechanotransduction in guiding cardiac muscle responses to mechanical stimuli.
Collapse
Affiliation(s)
- Simona Casarella
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Federica Ferla
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Dalila Di Francesco
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
- Laboratory for Biomaterials and Bioengineering, CRC-I, Department of Min-Met-Materials Engineering, University Hospital Research Center, Regenerative Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Elena Canciani
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Manuela Rizzi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| | - Francesca Boccafoschi
- Department of Health Sciences, University of Piemonte Orientale, 28100 Novara, Italy; (S.C.); (D.D.F.); (E.C.); (M.R.)
| |
Collapse
|
6
|
Welchons M, Wang J, Fan Y, Sanger JM, Sanger JW. A-Band assembly in avian skeletal muscles observed with super-resolution microscopy. Cytoskeleton (Hoboken) 2023; 80:461-471. [PMID: 37767774 PMCID: PMC11619088 DOI: 10.1002/cm.21792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023]
Abstract
Myofibrils in vertebrate skeletal muscle are organized in aligned arrays of filaments formed from multiple protein components. Despite considerable information describing individual proteins, how they assemble de novo into mature myofibrils is still a challenge. Studies in our lab of sarcomeric protein localization during myofibril assembly led us to propose a three-step progression: premyofibrils to nascent myofibrils, culminating in mature myofibrils. Premyofibrils, forming at the spreading edges of muscle cells, are composed of minisarcomeres containing small bands of non-muscle myosin II filaments alternating with muscle-specific α-actinin Z-Bodies attached to barbed ends of actin filaments, establishing bipolar F-actin arrangements in sarcomeres. Assembly of nascent myofibrils occurs with addition of muscle-specific myosin II, F-actin, titin, and the alignment of Z-Bodies in adjacent fibrils to form beaded Z-Bands. Muscle-specific myosin II filaments in nascent myofibrils appear in an overlapping arrangement when viewed with wide-field and confocal microscopes. In mature myofibrils, non-muscle myosin II is absent, and M-Band proteins localize to the muscle myosin II filaments, aiding their alignment by cross-linking them into A-Bands. Super-resolution microscopy (SIM and STED) revealed muscle myosin II in mini-A-Bands in nascent myofibrils. In contrast to previous reports that vertebrate muscle myosin thick filaments form at their final 1.6 μm lengths, mini-A-Bands are first detected at a length of about 0.4 μm, and gradually increase four-fold in length to 1.6 μm in mature myofibrils. These new discoveries in avian skeletal muscle cells share a common characteristic with invertebrate muscles where some A-Bands can grow to lengths reaching 25 μm.
Collapse
Affiliation(s)
- Matthew Welchons
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
7
|
Grande V, Schuld J, van der Ven PFM, Gruss OJ, Fürst DO. Filamin-A-interacting protein 1 (FILIP1) is a dual compartment protein linking myofibrils and microtubules during myogenic differentiation and upon mechanical stress. Cell Tissue Res 2023:10.1007/s00441-023-03776-4. [PMID: 37178194 DOI: 10.1007/s00441-023-03776-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
Variations in the gene encoding filamin-A-interacting protein 1 (FILIP1) were identified to be associated with a combination of neurological and muscular symptoms. While FILIP1 was shown to regulate motility of brain ventricular zone cells, a process important for corticogenesis, the function of the protein in muscle cells has been less well characterized. The expression of FILIP1 in regenerating muscle fibres predicted a role in early muscle differentiation. Here we analysed expression and localization of FILIP1 and its binding partners filamin-C (FLNc) and microtubule plus-end-binding protein EB3 in differentiating cultured myotubes and adult skeletal muscle. Prior to the development of cross-striated myofibrils, FILIP1 is associated with microtubules and colocalizes with EB3. During further myofibril maturation its localization changes, and FILIP1 localizes to myofibrillar Z-discs together with the actin-binding protein FLNc. Forced contractions of myotubes by electrical pulse stimulation (EPS) induce focal disruptions in myofibrils and translocation of both proteins from Z-discs to these lesions, suggesting a role in induction and/or repair of these structures. The immediate proximity of tyrosylated, dynamic microtubules and EB3 to lesions implies that also these play a role in these processes. This implication is supported by the fact that in nocodazole-treated myotubes that lack functional microtubules, the number of lesions induced by EPS is significantly reduced. In summary, we here show that FILIP1 is a cytolinker protein that is associated with both microtubules and actin filaments, and might play a role in the assembly of myofibrils and their stabilization upon mechanical stress to protect them from damage.
Collapse
Affiliation(s)
- Valentina Grande
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121, Bonn, Germany
| | - Julia Schuld
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121, Bonn, Germany
| | - Peter F M van der Ven
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121, Bonn, Germany
| | - Oliver J Gruss
- Institute of Genetics, University of Bonn, Karlrobert-Kreiten-Str. 13, 53115, Bonn, Germany
| | - Dieter O Fürst
- Institute for Cell Biology, University of Bonn, Ulrich-Haberland-Str. 61a, 53121, Bonn, Germany.
| |
Collapse
|
8
|
Wang J, Fan Y, Sanger JM, Sanger JW. STED analysis reveals the organization of nonmuscle muscle II, muscle myosin II, and F-actin in nascent myofibrils. Cytoskeleton (Hoboken) 2022; 79:122-132. [PMID: 36125330 DOI: 10.1002/cm.21729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/30/2023]
Abstract
A three-step model has been proposed to describe myofibril assembly in vertebrate cardiac and skeletal muscle cells beginning with premyofibrils, followed by nascent myofibrils, and ending as mature myofibrils (reviewed in Sanger, Wang, et al. (2017). Assembly and maintenance of myofibrils in striated muscle. Handbook of Experimental Pharmacology 235, 39-75; Wang, Fan, (2020). Myofibril assembly and the roles of the ubiquitin proteasome system. Cytoskeleton 77, 456-479). Premyofibrils are composed of minisarcomeres that contain nonmuscle myosin II filaments interdigitating with actin filaments embedded at their barbed ends in muscle-specific alpha-actinin-rich Z-bodies. Sarcomeres in mature myofibrils have filaments of muscle myosin II that interact with actin filaments that are attached to muscle alpha-actinin in Z-bands. Nascent myofibrils, the transitional step between premyofibrils and mature myofibrils, possess two types of myosins II, that is, nonmuscle myosin II and muscle myosin II. The relationship of these two different myosins II in nascent myofibrils, however, is not clear. Stimulated emission depletion (STED) microscopic analyses of nascent myofibrils in both embryonic chick cardiomyocytes, and hiPSC-derived cardiomyocytes revealed that nonmuscle myosin II is in the middle of the nascent myofibril, surrounded by overlapping muscle myosin II filaments at the periphery, and non-striated filamentous actin is present in the nascent myofibril. These findings support the original three-step model of myofibril assembly proposed by Rhee, Sanger, and Sanger, (1994). The premyofibrils: Evidence for its role in myofibrillogenesis. Cell Motility and the Cytoskeleton 28, 1-24.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
9
|
Ahmed RE, Tokuyama T, Anzai T, Chanthra N, Uosaki H. Sarcomere maturation: function acquisition, molecular mechanism, and interplay with other organelles. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210325. [PMID: 36189811 PMCID: PMC9527934 DOI: 10.1098/rstb.2021.0325] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 06/15/2022] [Indexed: 12/31/2022] Open
Abstract
During postnatal cardiac development, cardiomyocytes mature and turn into adult ones. Hence, all cellular properties, including morphology, structure, physiology and metabolism, are changed. One of the most important aspects is the contractile apparatus, of which the minimum unit is known as a sarcomere. Sarcomere maturation is evident by enhanced sarcomere alignment, ultrastructural organization and myofibrillar isoform switching. Any maturation process failure may result in cardiomyopathy. Sarcomere function is intricately related to other organelles, and the growing evidence suggests reciprocal regulation of sarcomere and mitochondria on their maturation. Herein, we summarize the molecular mechanism that regulates sarcomere maturation and the interplay between sarcomere and other organelles in cardiomyocyte maturation. This article is part of the theme issue 'The cardiomyocyte: new revelations on the interplay between architecture and function in growth, health, and disease'.
Collapse
Affiliation(s)
- Razan E. Ahmed
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Takeshi Tokuyama
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Tatsuya Anzai
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
- Department of Pediatrics, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Nawin Chanthra
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| | - Hideki Uosaki
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan
| |
Collapse
|
10
|
Shi H, Wang C, Gao BZ, Henderson JH, Ma Z. Cooperation between myofibril growth and costamere maturation in human cardiomyocytes. Front Bioeng Biotechnol 2022; 10:1049523. [PMID: 36394013 PMCID: PMC9663467 DOI: 10.3389/fbioe.2022.1049523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/19/2022] [Indexed: 12/14/2022] Open
Abstract
Costameres, as striated muscle-specific cell adhesions, anchor both M-lines and Z-lines of the sarcomeres to the extracellular matrix. Previous studies have demonstrated that costameres intimately participate in the initial assembly of myofibrils. However, how costamere maturation cooperates with myofibril growth is still underexplored. In this work, we analyzed zyxin (costameres), α-actinin (Z-lines) and myomesin (M-lines) to track the behaviors of costameres and myofibrils within the cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs). We quantified the assembly and maturation of costameres associated with the process of myofibril growth within the hiPSC-CMs in a time-dependent manner. We found that asynchrony existed not only between the maturation of myofibrils and costameres, but also between the formation of Z-costameres and M-costameres that associated with different structural components of the sarcomeres. This study helps us gain more understanding of how costameres assemble and incorporate into the cardiomyocyte sarcomeres, which sheds a light on cardiomyocyte mechanobiology.
Collapse
Affiliation(s)
- Huaiyu Shi
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Chenyan Wang
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Bruce Z. Gao
- Department of Bioengineering, Clemson University, Clemson, SC, United States
| | - James H. Henderson
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, Syracuse University, Syracuse, NY, United States,BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY, United States,*Correspondence: Zhen Ma,
| |
Collapse
|
11
|
Wang J, Fan Y, Mittal B, Sanger JM, Sanger JW. Comparison of incorporation of wild type and mutated actins into sarcomeres in skeletal muscle cells: A fluorescence recovery after photobleaching study. Cytoskeleton (Hoboken) 2022; 79:105-115. [PMID: 36085566 DOI: 10.1002/cm.21725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 01/30/2023]
Abstract
The α-actin mutation G15R in the nucleotide-binding pocket of skeletal muscle, causes severe actin myopathy in human skeletal muscles. Expressed in cultured embryonic quail skeletal myotubes, YFP-G15R-α-actin incorporates in sarcomeres in a pattern indistinguishable from wildtype YFP-α-actin. However, patches of YFP-G15R-α-actin form, resembling those in patients. Analyses with FRAP of incorporation of YFP-G15R-α-actin showed major differences between fast-exchanging plus ends of overlapping actin filaments in Z-bands, versus slow exchanging ends of overlapping thin filaments in the middle of sarcomeres. Wildtype skeletal muscle YFP-α-actin shows a faster rate of incorporation at plus ends of F-actin than at their minus ends. Incorporation of YFP-G15R-α-actin molecules is reduced at plus ends, increased at minus ends. The same relationship of wildtype YFP-α-actin incorporation is seen in myofibrils treated with cytochalasin-D: decreased dynamics at plus ends, increased dynamics at minus ends, and F-actin aggregates. Speculation: imbalance of normal polarized assembly of F-actin creates excess monomers that form F-actin aggregates. Two other severe skeletal muscle YFP-α-actin mutations (H40Y and V163L) not in the nucleotide pocket do not affect actin dynamics, and lack F-actin aggregates. These results indicate that normal α-actin plus and minus end dynamics are needed to maintain actin filament stability, and avoid F-actin patches.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Balraj Mittal
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
12
|
Zhang Z, Zhang W, Blakes R, Sundby LJ, Shi Z, Rockey DC, Ervasti JM, Nam YJ. Fibroblast fate determination during cardiac reprogramming by remodeling of actin filaments. Stem Cell Reports 2022; 17:1604-1619. [PMID: 35688153 PMCID: PMC9287671 DOI: 10.1016/j.stemcr.2022.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/23/2022] Open
Abstract
Fibroblasts can be reprogrammed into induced cardiomyocyte-like cells (iCMs) by forced expression of cardiogenic transcription factors. However, it remains unknown how fibroblasts adopt a cardiomyocyte (CM) fate during their spontaneous ongoing transdifferentiation toward myofibroblasts (MFs). By tracing fibroblast lineages following cardiac reprogramming in vitro, we found that most mature iCMs are derived directly from fibroblasts without transition through the MF state. This direct conversion is attributable to mutually exclusive induction of cardiac sarcomeres and MF cytoskeletal structures in the cytoplasm of fibroblasts during reprogramming. For direct fate switch from fibroblasts to iCMs, significant remodeling of actin isoforms occurs in fibroblasts, including induction of α-cardiac actin and decrease of the actin isoforms predominant in MFs. Accordingly, genetic or pharmacological ablation of MF-enriched actin isoforms significantly enhances cardiac reprogramming. Our results demonstrate that remodeling of actin isoforms is required for fibroblast to CM fate conversion by cardiac reprogramming.
Collapse
Affiliation(s)
- Zhentao Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Wenhui Zhang
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Robert Blakes
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA
| | - Lauren J Sundby
- Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Zengdun Shi
- Department of Internal Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Don C Rockey
- Department of Internal Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - James M Ervasti
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA; Program in Molecular, Cellular, Developmental Biology, and Genetics, University of Minnesota, Minneapolis, MN, USA
| | - Young-Jae Nam
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
13
|
Wang J, Fan Y, Wang C, Dube S, Poiesz BJ, Dube DK, Ma Z, Sanger JM, Sanger JW. Inhibitors of the Ubiquitin Proteasome System block myofibril assembly in cardiomyocytes derived from chick embryos and human pluripotent stem cells. Cytoskeleton (Hoboken) 2022; 78:461-491. [PMID: 35502133 DOI: 10.1002/cm.21697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
Details of sarcomeric protein assembly during de novo myofibril formation closely resemble myofibrillogenesis in skeletal and cardiac myocytes in birds, rodents and zebrafish. The arrangement of proteins during myofibrillogenesis follows a three-step process: beginning with premyofibrils, followed by nascent myofibrils, and concluding with mature myofibrils (reviewed in Sanger et al., 2017). Our aim is to determine if the same pathway is followed in human cardiomyocytes derived from human inducible pluripotent stem cells. We found that the human cardiomyocytes developed patterns of protein organization identical to the three-step series seen in the model organisms cited above. Further experiments showed that myofibril assembly can be blocked at the nascent myofibril by five different inhibitors of the Ubiquitin Proteasome System (UPS) stage in both avian and human cardiomyocytes. With the exception of Carfilzomib, removal of the UPS inhibitors allows nascent myofibrils to proceed to mature myofibrils. Some proteasomal inhibitors, such as Bortezomib and Carfilzomib, used to treat multiple myeloma patients, have off-target effects of damage to hearts in three to six percent of these patients. These cardiovascular adverse events may result from prevention of mature myofibril formation in the cardiomyocytes. In summary, our results support a common three-step model for the formation of myofibrils ranging from avian to human cardiomyocytes. The Ubiquitin Proteasome System is required for progression from nascent myofibrils to mature myofibrils. Our experiments suggest a possible explanation for the cardiac and skeletal muscle off-target effects reported in multiple myeloma patients treated with proteasome inhibitors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Chenyan Wang
- Department of Biomedical & Chemical Engineering, The BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY
| | - Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Bernard J Poiesz
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, NY
| | - Zhen Ma
- Department of Biomedical & Chemical Engineering, The BioInspired Institute for Materials and Living Systems, Syracuse University, Syracuse, NY
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
14
|
Fox CD, Mesquita PHC, Godwin JS, Angleri V, Damas F, Ruple BA, Sexton CL, Brown MD, Kavazis AN, Young KC, Ugrinowitsch C, Libardi CA, Roberts MD. Frequent Manipulation of Resistance Training Variables Promotes Myofibrillar Spacing Changes in Resistance-Trained Individuals. Front Physiol 2021; 12:773995. [PMID: 34975527 PMCID: PMC8715010 DOI: 10.3389/fphys.2021.773995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022] Open
Abstract
We sought to determine if manipulating resistance training (RT) variables differentially altered the expression of select sarcoplasmic and myofibril proteins as well as myofibrillar spacing in myofibers. Resistance-trained men (n = 20; 26 ± 3 years old) trained for 8 weeks where a randomized leg performed either a standard (CON) or variable RT protocol (VAR: manipulation of load, volume, muscle action, and rest intervals at each RT session). A pre-training (PRE) vastus lateralis biopsy was obtained from a randomized single leg, and biopsies were obtained from both legs 96 h following the last training bout. The sarcoplasmic protein pool was assayed for proteins involved in energy metabolism, and the myofibril protein pool was assayed for relative myosin heavy chain (MHC) and actin protein abundances. Sections were also histologically analyzed to obtain myofibril spacing characteristics. VAR resulted in ~12% greater volume load (VL) compared to CON (p < 0.001). The mean fiber cross-sectional area increased following both RT protocols [CON: 14.6% (775.5 μm2), p = 0.006; VAR: 13.9% (743.2 μm2), p = 0.01 vs. PRE for both], but without significant differences between protocols (p = 0.79). Neither RT protocol affected a majority of assayed proteins related to energy metabolism, but both training protocols increased hexokinase 2 protein levels and decreased a mitochondrial beta-oxidation marker (VLCAD protein; p < 0.05). Citrate synthase activity levels increased with CON RT (p < 0.05), but not VAR RT. The relative abundance of MHC (summed isoforms) decreased with both training protocols (p < 0.05). However, the relative abundance of actin protein (summed isoforms) decreased with VAR only (13.5 and 9.0%, respectively; p < 0.05). A decrease in percent area occupied by myofibrils was observed from PRE to VAR (−4.87%; p = 0.048), but not for the CON (4.53%; p = 0.979). In contrast, there was an increase in percent area occupied by non-contractile space from PRE to VAR (10.14%; p = 0.048), but not PRE to CON (0.72%; p = 0.979). In conclusion, while both RT protocols increased muscle fiber hypertrophy, a higher volume-load where RT variables were frequently manipulated increased non-contractile spacing in resistance-trained individuals.
Collapse
Affiliation(s)
- Carlton D. Fox
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Joshua S. Godwin
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Vitor Angleri
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Felipe Damas
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
| | - Bradley A. Ruple
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Casey L. Sexton
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | - Michael D. Brown
- School of Kinesiology, Auburn University, Auburn, AL, United States
| | | | - Kaelin C. Young
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine – Auburn Campus, Auburn, AL, United States
| | - Carlos Ugrinowitsch
- School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil
| | - Cleiton A. Libardi
- MUSCULAB, Laboratory of Neuromuscular Adaptations to Resistance Training, Department of Physical Education, Federal University of São Carlos, São Carlos, Brazil
- *Correspondence: Cleiton A. Libardi, ; Michael D. Roberts,
| | - Michael D. Roberts
- School of Kinesiology, Auburn University, Auburn, AL, United States
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine – Auburn Campus, Auburn, AL, United States
- *Correspondence: Cleiton A. Libardi, ; Michael D. Roberts,
| |
Collapse
|
15
|
Dube DK, Wang J, Fan Y, Dube S, Abbott L, Sanger JM, Channaveerappa D, Darie CC, Poiesz BJ, Sanger JW. Effect of MG-132 on myofibrillogenesis and the ubiquitination of GAPDH in quail myotubes. Cytoskeleton (Hoboken) 2021; 78:375-390. [PMID: 34698442 DOI: 10.1002/cm.21690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 11/10/2022]
Abstract
In the three-step myofibrillogenesis model, mature myofibrils are formed through two intermediate structures: premyofibrils and nascent myofibrils. We have recently reported that several inhibitors of the Ubiquitin Proteosome System, for example, MG-132, and DBeQ, reversibly block progression of nascent myofibrils to mature myofibrils. In this investigation, we studied the effects of MG132 and DBeQ on the expression of various myofibrillar proteins including actin, myosin light and heavy chains, tropomyosin, myomesin, and myosin binding protein-C in cultured embryonic quail myotubes by western blotting using two loading controls-α-tubulin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Surprisingly, we found that MG-132 affected the level of expression of GAPDH but DBeQ did not. Reverse transcription polymerase chain reaction (RT-PCR) and quantitative reverse transcription-PCR (qRT-PCR) showed no significant effect of MG-132 on GAPDH transcription. Two-dimensional (2D) western blot analyses with extracts of control and MG-132-treated cells using anti-ubiquitin antibody indicated that MG132-treated myotubes show a stronger emitter-coupled logic signal. However, Spot% and Spot volume calculations for all spots from both western blot film signals and matched Coomassie-stained 2D polyacrylamide gel electrophoresis showed that the intensity of staining in a spot of ~39 kDa protein is 3.5-fold lower in the gel of MG-132-treated extracts. Mass spectrometry analyses identified the ~39 kDa protein as quail GAPDH. Immunohistochemical analysis of fixed MG-132-treated myotubes with anti-GAPDH antibody showed extensive clump formation, which may be analogous to granule formation by stress response factors in MG132-treated cells. This is the first report on in vivo ubiquitination of GAPDH. This may be essential for the moonlighting (Jeffery, 1999) activity of GAPDH for tailoring stress in myotubes.
Collapse
Affiliation(s)
- Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Lynn Abbott
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Devika Channaveerappa
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| | - Costel C Darie
- Biochemistry and Proteomics Group, Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York, USA
| | - Bernard J Poiesz
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
16
|
Latham SL, Weiß N, Schwanke K, Thiel C, Croucher DR, Zweigerdt R, Manstein DJ, Taft MH. Myosin-18B Regulates Higher-Order Organization of the Cardiac Sarcomere through Thin Filament Cross-Linking and Thick Filament Dynamics. Cell Rep 2021; 32:108090. [PMID: 32877672 DOI: 10.1016/j.celrep.2020.108090] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/07/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022] Open
Abstract
MYO18B loss-of-function mutations and depletion significantly compromise the structural integrity of striated muscle sarcomeres. The molecular function of the encoded protein, myosin-18B (M18B), within the developing muscle is unknown. Here, we demonstrate that recombinant M18B lacks motor ATPase activity and harbors previously uncharacterized N-terminal actin-binding domains, properties that make M18B an efficient actin cross-linker and molecular brake capable of regulating muscle myosin-2 contractile forces. Spatiotemporal analysis of M18B throughout cardiomyogenesis and myofibrillogenesis reveals that this structural myosin undergoes nuclear-cytoplasmic redistribution during myogenic differentiation, where its incorporation within muscle stress fibers coincides with actin striation onset. Furthermore, this analysis shows that M18B is directly integrated within the muscle myosin thick filament during myofibril maturation. Altogether, our data suggest that M18B has evolved specific biochemical properties that allow it to define and maintain sarcomeric organization from within the thick filament via its dual actin cross-linking and motor modulating capabilities.
Collapse
Affiliation(s)
- Sharissa L Latham
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany; The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Hospital Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Nadine Weiß
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany
| | - Kristin Schwanke
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Claudia Thiel
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany
| | - David R Croucher
- The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia; St Vincent's Hospital Clinical School, UNSW Sydney, NSW 2052, Australia
| | - Robert Zweigerdt
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiac, Thoracic, Transplantation and Vascular Surgery, REBIRTH-Cluster of Excellence, Hannover Medical School, Hannover 30625, Germany
| | - Dietmar J Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany
| | - Manuel H Taft
- Institute for Biophysical Chemistry, Hannover Medical School, Hannover 30625, Germany.
| |
Collapse
|
17
|
Gerbin KA, Grancharova T, Donovan-Maiye RM, Hendershott MC, Anderson HG, Brown JM, Chen J, Dinh SQ, Gehring JL, Johnson GR, Lee H, Nath A, Nelson AM, Sluzewski MF, Viana MP, Yan C, Zaunbrecher RJ, Cordes Metzler KR, Gaudreault N, Knijnenburg TA, Rafelski SM, Theriot JA, Gunawardane RN. Cell states beyond transcriptomics: Integrating structural organization and gene expression in hiPSC-derived cardiomyocytes. Cell Syst 2021; 12:670-687.e10. [PMID: 34043964 DOI: 10.1016/j.cels.2021.05.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/07/2020] [Accepted: 04/30/2021] [Indexed: 12/11/2022]
Abstract
Although some cell types may be defined anatomically or by physiological function, a rigorous definition of cell state remains elusive. Here, we develop a quantitative, imaging-based platform for the systematic and automated classification of subcellular organization in single cells. We use this platform to quantify subcellular organization and gene expression in >30,000 individual human induced pluripotent stem cell-derived cardiomyocytes, producing a publicly available dataset that describes the population distributions of local and global sarcomere organization, mRNA abundance, and correlations between these traits. While the mRNA abundance of some phenotypically important genes correlates with subcellular organization (e.g., the beta-myosin heavy chain, MYH7), these two cellular metrics are heterogeneous and often uncorrelated, which suggests that gene expression alone is not sufficient to classify cell states. Instead, we posit that cell state should be defined by observing full distributions of quantitative, multidimensional traits in single cells that also account for space, time, and function.
Collapse
Affiliation(s)
- Kaytlyn A Gerbin
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Tanya Grancharova
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | | | | | - Helen G Anderson
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Jackson M Brown
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Jianxu Chen
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Stephanie Q Dinh
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Jamie L Gehring
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Gregory R Johnson
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - HyeonWoo Lee
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Aditya Nath
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | | | - M Filip Sluzewski
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Matheus P Viana
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | - Calysta Yan
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA
| | | | | | | | | | | | - Julie A Theriot
- Allen Institute for Cell Science, 615 Westlake Ave N, Seattle, WA, USA; Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| | | |
Collapse
|
18
|
Kostan J, Pavšič M, Puž V, Schwarz TC, Drepper F, Molt S, Graewert MA, Schreiner C, Sajko S, van der Ven PFM, Onipe A, Svergun DI, Warscheid B, Konrat R, Fürst DO, Lenarčič B, Djinović-Carugo K. Molecular basis of F-actin regulation and sarcomere assembly via myotilin. PLoS Biol 2021; 19:e3001148. [PMID: 33844684 PMCID: PMC8062120 DOI: 10.1371/journal.pbio.3001148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/22/2021] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
Sarcomeres, the basic contractile units of striated muscle cells, contain arrays of thin (actin) and thick (myosin) filaments that slide past each other during contraction. The Ig-like domain-containing protein myotilin provides structural integrity to Z-discs-the boundaries between adjacent sarcomeres. Myotilin binds to Z-disc components, including F-actin and α-actinin-2, but the molecular mechanism of binding and implications of these interactions on Z-disc integrity are still elusive. To illuminate them, we used a combination of small-angle X-ray scattering, cross-linking mass spectrometry, and biochemical and molecular biophysics approaches. We discovered that myotilin displays conformational ensembles in solution. We generated a structural model of the F-actin:myotilin complex that revealed how myotilin interacts with and stabilizes F-actin via its Ig-like domains and flanking regions. Mutant myotilin designed with impaired F-actin binding showed increased dynamics in cells. Structural analyses and competition assays uncovered that myotilin displaces tropomyosin from F-actin. Our findings suggest a novel role of myotilin as a co-organizer of Z-disc assembly and advance our mechanistic understanding of myotilin's structural role in Z-discs.
Collapse
Affiliation(s)
- Julius Kostan
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Miha Pavšič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Vid Puž
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Thomas C. Schwarz
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Friedel Drepper
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Sibylle Molt
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Bonn, Germany
| | | | - Claudia Schreiner
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Sara Sajko
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Peter F. M. van der Ven
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Bonn, Germany
| | - Adekunle Onipe
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Unit, c/o DESY, Hamburg, Germany
| | - Bettina Warscheid
- Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Robert Konrat
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
| | - Dieter O. Fürst
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Bonn, Germany
| | - Brigita Lenarčič
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Kristina Djinović-Carugo
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna, Austria
- Department of Chemistry and Biochemistry, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
19
|
Colpan M, Iwanski J, Gregorio CC. CAP2 is a regulator of actin pointed end dynamics and myofibrillogenesis in cardiac muscle. Commun Biol 2021; 4:365. [PMID: 33742108 PMCID: PMC7979805 DOI: 10.1038/s42003-021-01893-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
The precise assembly of actin-based thin filaments is crucial for muscle contraction. Dysregulation of actin dynamics at thin filament pointed ends results in skeletal and cardiac myopathies. Here, we discovered adenylyl cyclase-associated protein 2 (CAP2) as a unique component of thin filament pointed ends in cardiac muscle. CAP2 has critical functions in cardiomyocytes as it depolymerizes and inhibits actin incorporation into thin filaments. Strikingly distinct from other pointed-end proteins, CAP2's function is not enhanced but inhibited by tropomyosin and it does not directly control thin filament lengths. Furthermore, CAP2 plays an essential role in cardiomyocyte maturation by modulating pre-sarcomeric actin assembly and regulating α-actin composition in mature thin filaments. Identification of CAP2's multifunctional roles provides missing links in our understanding of how thin filament architecture is regulated in striated muscle and it reveals there are additional factors, beyond Tmod1 and Lmod2, that modulate actin dynamics at thin filament pointed ends.
Collapse
Affiliation(s)
- Mert Colpan
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Jessika Iwanski
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
20
|
Jabre S, Hleihel W, Coirault C. Nuclear Mechanotransduction in Skeletal Muscle. Cells 2021; 10:cells10020318. [PMID: 33557157 PMCID: PMC7913907 DOI: 10.3390/cells10020318] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
Skeletal muscle is composed of multinucleated, mature muscle cells (myofibers) responsible for contraction, and a resident pool of mononucleated muscle cell precursors (MCPs), that are maintained in a quiescent state in homeostatic conditions. Skeletal muscle is remarkable in its ability to adapt to mechanical constraints, a property referred as muscle plasticity and mediated by both MCPs and myofibers. An emerging body of literature supports the notion that muscle plasticity is critically dependent upon nuclear mechanotransduction, which is transduction of exterior physical forces into the nucleus to generate a biological response. Mechanical loading induces nuclear deformation, changes in the nuclear lamina organization, chromatin condensation state, and cell signaling, which ultimately impacts myogenic cell fate decisions. This review summarizes contemporary insights into the mechanisms underlying nuclear force transmission in MCPs and myofibers. We discuss how the cytoskeleton and nuclear reorganizations during myogenic differentiation may affect force transmission and nuclear mechanotransduction. We also discuss how to apply these findings in the context of muscular disorders. Finally, we highlight current gaps in knowledge and opportunities for further research in the field.
Collapse
Affiliation(s)
- Saline Jabre
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
| | - Walid Hleihel
- Department of Biology, Faculty of Arts and Sciences, Holy Spirit University of Kasik (USEK), Jounieh 446, Lebanon;
- Department of Basic Health Sciences, Faculty of Medicine, Holy Spirit University of Kaslik (USEK), Jounieh 446, Lebanon
| | - Catherine Coirault
- Sorbonne Université, INSERM UMRS-974 and Institut de Myologie, 75013 Paris, France;
- Correspondence:
| |
Collapse
|
21
|
Petrany MJ, Swoboda CO, Sun C, Chetal K, Chen X, Weirauch MT, Salomonis N, Millay DP. Single-nucleus RNA-seq identifies transcriptional heterogeneity in multinucleated skeletal myofibers. Nat Commun 2020; 11:6374. [PMID: 33311464 PMCID: PMC7733460 DOI: 10.1038/s41467-020-20063-w] [Citation(s) in RCA: 218] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023] Open
Abstract
While the majority of cells contain a single nucleus, cell types such as trophoblasts, osteoclasts, and skeletal myofibers require multinucleation. One advantage of multinucleation can be the assignment of distinct functions to different nuclei, but comprehensive interrogation of transcriptional heterogeneity within multinucleated tissues has been challenging due to the presence of a shared cytoplasm. Here, we utilized single-nucleus RNA-sequencing (snRNA-seq) to determine the extent of transcriptional diversity within multinucleated skeletal myofibers. Nuclei from mouse skeletal muscle were profiled across the lifespan, which revealed the presence of distinct myonuclear populations emerging in postnatal development as well as aging muscle. Our datasets also provided a platform for discovery of genes associated with rare specialized regions of the muscle cell, including markers of the myotendinous junction and functionally validated factors expressed at the neuromuscular junction. These findings reveal that myonuclei within syncytial muscle fibers possess distinct transcriptional profiles that regulate muscle biology.
Collapse
Affiliation(s)
- Michael J Petrany
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Casey O Swoboda
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Chengyi Sun
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Kashish Chetal
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T Weirauch
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Nathan Salomonis
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Douglas P Millay
- Division of Molecular Cardiovascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
22
|
Wang J, Fan Y, Dube S, Agassy NW, Dube DK, Sanger JM, Sanger JW. Myofibril assembly and the roles of the ubiquitin proteasome system. Cytoskeleton (Hoboken) 2020; 77:456-479. [PMID: 33124174 DOI: 10.1002/cm.21641] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/07/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022]
Abstract
De novo assembly of myofibrils in vertebrate cross-striated muscles progresses in three distinct steps, first from a minisarcomeric alignment of several nonmuscle and muscle proteins in premyofibrils, followed by insertions of additional proteins and increased organization in nascent myofibrils, ending with mature contractile myofibrils. In a search for controls of the process of myofibril assembly, we discovered that the transition from nascent to mature myofibrils could be halted by inhibitors of three distinct functions of the ubiquitin proteasome system (UPS). First, inhibition of pathway to E3 Cullin ligases that ubiquitinate proteins led to an arrest of myofibrillogenesis at the nascent myofibril stage. Second, inhibition of p97 protein extractions of ubiquitinated proteins led to a similar arrest of myofibrillogenesis at the nascent myofibril stage. Third, inhibitors of proteolytic action by proteasomes also blocked nascent myofibrils from transitioning to mature myofibrils. In contrast, inhibitors of autophagy or lysosomes did not affect myofibrillogenesis. To probe for differences in the effects of UPS inhibitors during myofibrillogenesis, we analyzed by fluorescence recovery after photobleaching the exchange rates of two selected sarcomeric proteins (muscle myosin II heavy chains and light chains). In the presence of p97 and proteasomal inhibitors, the dynamics of each of these two myosin proteins decreased in the nascent myofibril stage, but were unaffected in the mature myofibril stage. The increased stability of myofibrils occurring in the transition from nascent to mature myofibril assembly indicates the importance of dynamics and selective destruction in the muscle myosin II proteins for the remodeling of nascent to mature myofibrils.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Syamalima Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Nicodeme Wanko Agassy
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Dipak K Dube
- Department of Medicine, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
23
|
Under construction: The dynamic assembly, maintenance, and degradation of the cardiac sarcomere. J Mol Cell Cardiol 2020; 148:89-102. [PMID: 32920010 DOI: 10.1016/j.yjmcc.2020.08.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/11/2022]
Abstract
The sarcomere is the basic contractile unit of striated muscle and is a highly ordered protein complex with the actin and myosin filaments at its core. Assembling the sarcomere constituents into this organized structure in development, and with muscle growth as new sarcomeres are built, is a complex process coordinated by numerous factors. Once assembled, the sarcomere requires constant maintenance as its continuous contraction is accompanied by elevated mechanical, thermal, and oxidative stress, which predispose proteins to misfolding and toxic aggregation. To prevent protein misfolding and maintain sarcomere integrity, the sarcomere is monitored by an assortment of protein quality control (PQC) mechanisms. The need for effective PQC is heightened in cardiomyocytes which are terminally differentiated and must survive for many years while preserving optimal mechanical output. To prevent toxic protein aggregation, molecular chaperones stabilize denatured sarcomere proteins and promote their refolding. However, when old and misfolded proteins cannot be salvaged by chaperones, they must be recycled via degradation pathways: the calpain and ubiquitin-proteasome systems, which operate under basal conditions, and the stress-responsive autophagy-lysosome pathway. Mutations to and deficiency of the molecular chaperones and associated factors charged with sarcomere maintenance commonly lead to sarcomere structural disarray and the progression of heart disease, highlighting the necessity of effective sarcomere PQC for maintaining cardiac function. This review focuses on the dynamic regulation of assembly and turnover at the sarcomere with an emphasis on the chaperones involved in these processes and describes the alterations to chaperones - through mutations and deficient expression - implicated in disease progression to heart failure.
Collapse
|
24
|
Cracknell T, Mannsverk S, Nichols A, Dowle A, Blanco G. Proteomic resolution of IGFN1 complexes reveals a functional interaction with the actin nucleating protein COBL. Exp Cell Res 2020; 395:112179. [PMID: 32768501 PMCID: PMC7584501 DOI: 10.1016/j.yexcr.2020.112179] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/06/2020] [Accepted: 07/11/2020] [Indexed: 01/09/2023]
Abstract
The Igfn1 gene produces multiple proteins by alternative splicing predominantly expressed in skeletal muscle. Igfn1 deficient clones derived from C2C12 myoblasts show reduced fusion index and morphological differences compared to control myotubes. Here, we first show that G:F actin ratios are significantly higher in differentiating IGFN1-deficient C2C12 myoblasts, suggesting that fusion and differentiation defects are underpinned by deficient actin remodelling. We obtained pull-downs from skeletal muscle with IGFN1 fragments and applied a proteomics approach. The proteomic composition of IGFN1 complexes identified the cytoskeleton and an association with the proteasome as the main networks. The actin nucleating protein COBL was selected for further validation. COBL is expressed in C2C12 myoblasts from the first stages of myoblast fusion but not in proliferating cells. COBL is also expressed in adult muscle and, as IGFN1, localizes to the Z-disc. We show that IGFN1 interacts, stabilizes and colocalizes with COBL and prevents the ability of COBL to form actin ruffles in COS7 cells. COBL loss of function C2C12-derived clones are able to fuse, therefore indicating that COBL or the IGFN1/COBL interaction are not essential for myoblast fusion.
Collapse
Affiliation(s)
| | - Steinar Mannsverk
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Angus Nichols
- Department of Biology, University of York, York, YO32 5UQ, UK
| | - Adam Dowle
- Technology Facility, Department of Biology, University of York, York, YO32 5UQ, UK
| | - Gonzalo Blanco
- Department of Biology, University of York, York, YO32 5UQ, UK.
| |
Collapse
|
25
|
Crawford Parks TE, Marcellus KA, Péladeau C, Jasmin BJ, Ravel-Chapuis A. Overexpression of Staufen1 in DM1 mouse skeletal muscle exacerbates dystrophic and atrophic features. Hum Mol Genet 2020; 29:2185-2199. [PMID: 32504084 DOI: 10.1093/hmg/ddaa111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/15/2020] [Accepted: 05/27/2020] [Indexed: 12/15/2022] Open
Abstract
In myotonic dystrophy type 1 (DM1), the CUG expansion (CUGexp) in the 3' untranslated region of the dystrophia myotonica protein kinase messenger ribonucleic acid affects the homeostasis of ribonucleic acid-binding proteins, causing the multiple symptoms of DM1. We have previously reported that Staufen1 is increased in skeletal muscles from DM1 mice and patients and that sustained Staufen1 expression in mature mouse muscle causes a progressive myopathy. Here, we hypothesized that the elevated levels of Staufen1 contributes to the myopathic features of the disease. Interestingly, the classic DM1 mouse model human skeletal actin long repeat (HSALR) lacks overt atrophy while expressing CUGexp transcripts and elevated levels of endogenous Staufen1, suggesting a lower sensitivity to atrophic signaling in this model. We report that further overexpression of Staufen1 in the DM1 mouse model HSALR causes a myopathy via inhibition of protein kinase B signaling through an increase in phosphatase tensin homolog, leading to the expression of atrogenes. Interestingly, we also show that Staufen1 regulates the expression of muscleblind-like splicing regulator 1 and CUG-binding protein elav-like family member 1 in wild-type and DM1 skeletal muscle. Together, data obtained from these new DM1 mouse models provide evidence for the role of Staufen1 as an atrophy-associated gene that impacts progressive muscle wasting in DM1. Accordingly, our findings highlight the potential of Staufen1 as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Tara E Crawford Parks
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Kristen A Marcellus
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Christine Péladeau
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Aymeric Ravel-Chapuis
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada.,Eric Poulin Centre for Neuromuscular Disease, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
26
|
Taneja N, Neininger AC, Burnette DT. Coupling to substrate adhesions drives the maturation of muscle stress fibers into myofibrils within cardiomyocytes. Mol Biol Cell 2020; 31:1273-1288. [PMID: 32267210 PMCID: PMC7353145 DOI: 10.1091/mbc.e19-11-0652] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Forces generated by heart muscle contraction must be balanced by adhesion to the extracellular matrix (ECM) and to other cells for proper heart function. Decades of data have suggested that cell-ECM adhesions are important for sarcomere assembly. However, the relationship between cell-ECM adhesions and sarcomeres assembling de novo remains untested. Sarcomeres arise from muscle stress fibers (MSFs) that are translocating on the top (dorsal) surface of cultured cardiomyocytes. Using an array of tools to modulate cell-ECM adhesion, we established a strong positive correlation between the extent of cell-ECM adhesion and sarcomere assembly. On the other hand, we found a strong negative correlation between the extent of cell-ECM adhesion and the rate of MSF translocation, a phenomenon also observed in nonmuscle cells. We further find a conserved network architecture that also exists in nonmuscle cells. Taken together, our results show that cell-ECM adhesions mediate coupling between the substrate and MSFs, allowing their maturation into sarcomere-containing myofibrils.
Collapse
Affiliation(s)
- Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Abigail C Neininger
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| |
Collapse
|
27
|
Sherman W, Grosberg A. An adapted particle swarm optimization algorithm as a model for exploring premyofibril formation. AIP ADVANCES 2020; 10:045126. [PMID: 32341885 PMCID: PMC7166122 DOI: 10.1063/1.5145010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/28/2020] [Indexed: 06/11/2023]
Abstract
While the fundamental steps outlining myofibril formation share a similar scheme for different cell and species types, various granular details involved in the development of a functional contractile muscle are not well understood. Many studies of myofibrillogenesis focus on the protein interactions that are involved in myofibril maturation with the assumption that there is a fully formed premyofibril at the start of the process. However, there is little known regarding how the premyofibril is initially constructed. Fortunately, the protein α-actinin, which has been consistently identified throughout the maturation process, is found in premyofibrils as punctate aggregates known as z-bodies. We propose a theoretical model based on the particle swarm optimization algorithm that can explore how these α-actinin clusters form into the patterns observed experimentally. Our algorithm can produce different pattern configurations by manipulating specific parameters that can be related to α-actinin mobility and binding affinity. These patterns, which vary experimentally according to species and muscle cell type, speak to the versatility of α-actinin and demonstrate how its behavior may be altered through interactions with various regulatory, signaling, and metabolic proteins. The results of our simulations invite speculation that premyofibrils can be influenced toward developing different patterns by altering the behavior of individual α-actinin molecules, which may be linked to key differences present in different cell types.
Collapse
|
28
|
Li S, Wen H, Du S. Defective sarcomere organization and reduced larval locomotion and fish survival in slow muscle heavy chain 1 (smyhc1) mutants. FASEB J 2020; 34:1378-1397. [PMID: 31914689 PMCID: PMC6956737 DOI: 10.1096/fj.201900935rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 11/11/2022]
Abstract
Zebrafish skeletal muscles are broadly divided into slow-twitch and fast-twitch muscle fibers. The slow fibers, which express a slow fiber-specific myosin heavy chain 1 (Smyhc1), are the first group of muscle fibers formed during myogenesis. To uncover Smyhc1 function in muscle growth, we generated three mutant alleles with reading frame shift mutations in the zebrafish smyhc1 gene using CRISPR. The mutants showed shortened sarcomeres with no thick filaments and M-lines in slow fibers of the mutant embryos. However, the formation of slow muscle precursors and expression of other slow muscle genes were not affected and fast muscles appeared normal. The smyhc1 mutant embryos and larvae showed reduced locomotion and food intake. The mutant larvae exhibited increased lethality of incomplete penetrance. Approximately 2/5 of the homozygous mutants were viable and grew into reproductive adults. These adult mutants displayed a typical pattern of slow and fast muscle fiber distribution, and regained normal slow muscle formation. Together, our studies indicate that Smyhc1 is essential for myogenesis in embryonic slow muscles, and loss of Smyhc1 results in defective sarcomere assembly, reduces larval motility and fish survival, but has no visible impact on muscle growth in juvenile and adult zebrafish that escape the larval lethality.
Collapse
Affiliation(s)
- Siping Li
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
- The Key Laboratory of Mariculture, Ministry of Education, Fishery College of Ocean University of China, Qingdao 266003, China
| | - Haishen Wen
- The Key Laboratory of Mariculture, Ministry of Education, Fishery College of Ocean University of China, Qingdao 266003, China
| | - Shaojun Du
- Institute of Marine and Environmental Technology, Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21202, USA
| |
Collapse
|
29
|
Prill K, Carlisle C, Stannard M, Windsor Reid PJ, Pilgrim DB. Myomesin is part of an integrity pathway that responds to sarcomere damage and disease. PLoS One 2019; 14:e0224206. [PMID: 31644553 PMCID: PMC6808450 DOI: 10.1371/journal.pone.0224206] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 10/08/2019] [Indexed: 12/17/2022] Open
Abstract
The structure and function of the sarcomere of striated muscle is well studied but the steps of sarcomere assembly and maintenance remain under-characterized. With the aid of chaperones and factors of the protein quality control system, muscle proteins can be folded and assembled into the contractile apparatus of the sarcomere. When sarcomere assembly is incomplete or the sarcomere becomes damaged, suites of chaperones and maintenance factors respond to repair the sarcomere. Here we show evidence of the importance of the M-line proteins, specifically myomesin, in the monitoring of sarcomere assembly and integrity in previously characterized zebrafish muscle mutants. We show that myomesin is one of the last proteins to be incorporated into the assembling sarcomere, and that in skeletal muscle, its incorporation requires connections with both titin and myosin. In diseased zebrafish sarcomeres, myomesin1a shows an early increase of gene expression, hours before chaperones respond to damaged muscle. We found that myomesin expression is also more specific to sarcomere damage than muscle creatine kinase, and our results and others support the use of myomesin assays as an early, specific, method of detecting muscle damage.
Collapse
Affiliation(s)
- Kendal Prill
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Casey Carlisle
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Megan Stannard
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - David B. Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
30
|
Wang J, Fan Y, Sanger JM, Sanger JW. Nonmuscle myosin II in cardiac and skeletal muscle cells. Cytoskeleton (Hoboken) 2019; 75:339-351. [PMID: 29781105 DOI: 10.1002/cm.21454] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 04/27/2018] [Accepted: 05/05/2018] [Indexed: 11/08/2022]
Abstract
De novo assembly of contractile myofibrils begins with the formation of premyofibrils where filaments of non-muscle myosin (NM II), and actin organize in sarcomeric patterns with Z-Bodies containing muscle-specific alpha-actinin. Interactions of muscle specific myosin (MM II) with NM II occur in a nascent myofibril stage that precedes the assembly of mature myofibrils. By the final stage of myofibrillogenesis, the only myosin II present in the mature myofibrils is MM II. In this current study of myofibril assembly, the three vertebrate isoforms of NM II (A, B, and C) and sarcomeric alpha-actinin, ligated to GFP family proteins, were coexpressed in avian embryonic skeletal and cardiac muscle cells. Each isoform of NM II localized only in the mini-A-Bands of premyofibrils and nascent myofibrils. There was no evidence of localization of NM II in Z-Bodies of premyofibrils and nascent myofibrils or in Z-Bands of mature myofibrils. Fluorescence Recovery After Photobleaching (FRAP) experiments indicated similar exchange rates in premyofibrils for NM II isoforms A and B, whereas the IIC isoform was significantly less dynamic. Fluorescence Resonance Energy Transfer (FRET) measurements of colocalized fluorescent pairs of different NM II isoforms yielded signals similar to identical pairs, indicating copolymerization of the different NM II pairs. The role of NM II may reside in establishing the future sarcomere pattern in mature myofibrils by binding to the oppositely polarized actin filaments that extend between pairs of Z-Bodies along premyofibrils prior to their transformation into mature myofibrils.
Collapse
Affiliation(s)
- Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| | - Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, Syracuse, New York, 13210
| |
Collapse
|
31
|
Tran MP, Tsutsumi R, Erberich JM, Chen KD, Flores MD, Cooper KL. Evolutionary loss of foot muscle during development with characteristics of atrophy and no evidence of cell death. eLife 2019; 8:50645. [PMID: 31612857 PMCID: PMC6855805 DOI: 10.7554/elife.50645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 10/01/2019] [Indexed: 12/19/2022] Open
Abstract
Many species that run or leap across sparsely vegetated habitats, including horses and deer, evolved the severe reduction or complete loss of foot muscles as skeletal elements elongated and digits were lost, and yet the developmental mechanisms remain unknown. Here, we report the natural loss of foot muscles in the bipedal jerboa, Jaculus jaculus. Although adults have no muscles in their feet, newborn animals have muscles that rapidly disappear soon after birth. We were surprised to find no evidence of apoptotic or necrotic cell death during stages of peak myofiber loss, countering well-supported assumptions of developmental tissue remodeling. We instead see hallmarks of muscle atrophy, including an ordered disassembly of the sarcomere associated with upregulation of the E3 ubiquitin ligases, MuRF1 and Atrogin-1. We propose that the natural loss of muscle, which remodeled foot anatomy during evolution and development, involves cellular mechanisms that are typically associated with disease or injury. Intrinsic muscles are a group of muscles deep inside the hands and feet. They help to control the precise movements required, for example, for a pianist to play their instrument or for certain animals to climb with remarkable agility. Some animals, such as horses and deer, have evolved in such a way that they no longer grasp objects with hands and feet. Where intrinsic muscles were once present in the hands and feet of their ancestors, these animals now have strong ligaments that prevent over-extension of the wrist and ankle joints during hard landings. Given their size, it is difficult to study horses and deer in the laboratory and understand how they lost their intrinsic muscles during evolution. Tran et al. therefore focused on a small rodent called the lesser Egyptian jerboa, which also displays long legs with strong ligaments and no intrinsic muscles. Newborn jerboas have foot muscles that look very much like the intrinsic muscles found in mice, but these muscles disappear within 4 days of birth. A mechanism called programmed cell death is often responsible for specific tissues disappearing during development, but the experiments of Tran et al. revealed that this was not the case in jerboas. Instead, their intrinsic muscles were degraded by processes triggered by genes that disassemble underused muscles. In mice and humans, fasting, nerve injuries, or immobility trigger this type of muscle degradation, but in jerboas these processes appear to be a normal part of development. This unexpected discovery shows that development and disease-like processes are linked, and that more studies of nontraditional research animals may help scientists better understand these connections.
Collapse
Affiliation(s)
- Mai P Tran
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Rio Tsutsumi
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Joel M Erberich
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Kevin D Chen
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Michelle D Flores
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| | - Kimberly L Cooper
- Division of Biological Sciences, Section of Cellular and Developmental Biology, University of California, San Diego, La Jolla, United States
| |
Collapse
|
32
|
Bildyug N. Extracellular Matrix in Regulation of Contractile System in Cardiomyocytes. Int J Mol Sci 2019; 20:E5054. [PMID: 31614676 PMCID: PMC6834325 DOI: 10.3390/ijms20205054] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/07/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The contractile apparatus of cardiomyocytes is considered to be a stable system. However, it undergoes strong rearrangements during heart development as cells progress from their non-muscle precursors. Long-term culturing of mature cardiomyocytes is also accompanied by the reorganization of their contractile apparatus with the conversion of typical myofibrils into structures of non-muscle type. Processes of heart development as well as cell adaptation to culture conditions in cardiomyocytes both involve extracellular matrix changes, which appear to be crucial for the maturation of contractile apparatus. The aim of this review is to analyze the role of extracellular matrix in the regulation of contractile system dynamics in cardiomyocytes. Here, the remodeling of actin contractile structures and the expression of actin isoforms in cardiomyocytes during differentiation and adaptation to the culture system are described along with the extracellular matrix alterations. The data supporting the regulation of actin dynamics by extracellular matrix are highlighted and the possible mechanisms of such regulation are discussed.
Collapse
Affiliation(s)
- Natalya Bildyug
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg 194064, Russia.
| |
Collapse
|
33
|
Cai M, Han L, Liu L, He F, Chu W, Zhang J, Tian Z, Du S. Defective sarcomere assembly in smyd1a and smyd1b zebrafish mutants. FASEB J 2019; 33:6209-6225. [PMID: 30817176 PMCID: PMC6463926 DOI: 10.1096/fj.201801578r] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 01/22/2019] [Indexed: 12/16/2022]
Abstract
Two smyd1 paralogues, smyd1a and smyd1b, have been identified in zebrafish. Although Smyd1b function has been reported in fast muscle, its function in slow muscle and the function of Smyd1a, in general, are uncertain. In this study, we generated 2 smyd1a mutant alleles and analyzed the muscle defects in smyd1a and smyd1b single and double mutants in zebrafish. We demonstrated that knockout of smyd1a alone had no visible effect on muscle development and fish survival. This was in contrast to the smyd1b mutant, which exhibited skeletal and cardiac muscle defects, leading to early embryonic lethality. The smyd1a and smyd1b double mutants, however, showed a stronger muscle defect compared with smyd1a or smyd1b mutation alone, namely, the complete disruption of sarcomere organization in slow and fast muscles. Immunostaining revealed that smyd1a; smyd1b double mutations had no effect on myosin gene expression but resulted in a dramatic reduction of myosin protein levels in muscle cells of zebrafish embryos. This was accompanied by the up-regulation of hsp40 and hsp90-α1 gene expression. Together, our studies indicate that both Smyd1a and Smyd1b partake in slow and fast muscle development although Smyd1b plays a dominant role compared with Smyd1a.-Cai, M., Han, L., Liu, L., He, F., Chu, W., Zhang, J., Tian, Z., Du, S. Defective sarcomere assembly in smyd1a and smyd1b zebrafish mutants.
Collapse
Affiliation(s)
- Mengxin Cai
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Lichen Han
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lusha Liu
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Feng He
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- School of Fisheries, Ocean University of China, Qingdao, China
| | - Wuying Chu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, China
| | - Jianshe Zhang
- Department of Bioengineering and Environmental Science, Changsha University, Changsha, China
| | - Zhenjun Tian
- Institute of Sports and Exercise Biology, Shaanxi Normal University, Xi’an, China
| | - Shaojun Du
- Department of Biochemistry and Molecular Biology, Institute of Marine and Environmental Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
34
|
Jiu Y, Kumari R, Fenix AM, Schaible N, Liu X, Varjosalo M, Krishnan R, Burnette DT, Lappalainen P. Myosin-18B Promotes the Assembly of Myosin II Stacks for Maturation of Contractile Actomyosin Bundles. Curr Biol 2018; 29:81-92.e5. [PMID: 30581023 DOI: 10.1016/j.cub.2018.11.045] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/12/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
Abstract
Cell adhesion, morphogenesis, mechanosensing, and muscle contraction rely on contractile actomyosin bundles, where the force is produced through sliding of bipolar myosin II filaments along actin filaments. The assembly of contractile actomyosin bundles involves registered alignment of myosin II filaments and their subsequent fusion into large stacks. However, mechanisms underlying the assembly of myosin II stacks and their physiological functions have remained elusive. Here, we identified myosin-18B, an unconventional myosin, as a stable component of contractile stress fibers. Myosin-18B co-localized with myosin II motor domains in stress fibers and was enriched at the ends of myosin II stacks. Importantly, myosin-18B deletion resulted in drastic defects in the concatenation and persistent association of myosin II filaments with each other and thus led to severely impaired assembly of myosin II stacks. Consequently, lack of myosin-18B resulted in defective maturation of actomyosin bundles from their precursors in osteosarcoma cells. Moreover, myosin-18B knockout cells displayed abnormal morphogenesis, migration, and ability to exert forces to the environment. These results reveal a critical role for myosin-18B in myosin II stack assembly and provide evidence that myosin II stacks are important for a variety of vital processes in cells.
Collapse
Affiliation(s)
- Yaming Jiu
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland; CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Reena Kumari
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Aidan M Fenix
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Niccole Schaible
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Xiaonan Liu
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Markku Varjosalo
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Pekka Lappalainen
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, 00014 Helsinki, Finland.
| |
Collapse
|
35
|
Fenix AM, Neininger AC, Taneja N, Hyde K, Visetsouk MR, Garde RJ, Liu B, Nixon BR, Manalo AE, Becker JR, Crawley SW, Bader DM, Tyska MJ, Liu Q, Gutzman JH, Burnette DT. Muscle-specific stress fibers give rise to sarcomeres in cardiomyocytes. eLife 2018; 7:42144. [PMID: 30540249 PMCID: PMC6307863 DOI: 10.7554/elife.42144] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/11/2018] [Indexed: 11/13/2022] Open
Abstract
The sarcomere is the contractile unit within cardiomyocytes driving heart muscle contraction. We sought to test the mechanisms regulating actin and myosin filament assembly during sarcomere formation. Therefore, we developed an assay using human cardiomyocytes to monitor sarcomere assembly. We report a population of muscle stress fibers, similar to actin arcs in non-muscle cells, which are essential sarcomere precursors. We show sarcomeric actin filaments arise directly from muscle stress fibers. This requires formins (e.g., FHOD3), non-muscle myosin IIA and non-muscle myosin IIB. Furthermore, we show short cardiac myosin II filaments grow to form ~1.5 μm long filaments that then 'stitch' together to form the stack of filaments at the core of the sarcomere (i.e., the A-band). A-band assembly is dependent on the proper organization of actin filaments and, as such, is also dependent on FHOD3 and myosin IIB. We use this experimental paradigm to present evidence for a unifying model of sarcomere assembly.
Collapse
Affiliation(s)
- Aidan M Fenix
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Abigail C Neininger
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Nilay Taneja
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Karren Hyde
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Mike R Visetsouk
- Department of Biological Sciences, Cell and Molecular Biology, University of Wisconsin Milwaukee, Milwaukee, United States
| | - Ryan J Garde
- Department of Biological Sciences, Cell and Molecular Biology, University of Wisconsin Milwaukee, Milwaukee, United States
| | - Baohong Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - Benjamin R Nixon
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Annabelle E Manalo
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Jason R Becker
- Department of Medicine, Vanderbilt University Medical Center, Nashville, United States
| | - Scott W Crawley
- Department of Biological Sciences, The University of Toledo, Toledo, United States
| | - David M Bader
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Matthew J Tyska
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| | - Qi Liu
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, United States
| | - Jennifer H Gutzman
- Department of Biological Sciences, Cell and Molecular Biology, University of Wisconsin Milwaukee, Milwaukee, United States
| | - Dylan T Burnette
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, United States
| |
Collapse
|
36
|
White J, Wang J, Fan Y, Dube DK, Sanger JW, Sanger JM. Myofibril Assembly in Cultured Mouse Neonatal Cardiomyocytes. Anat Rec (Hoboken) 2018; 301:2067-2079. [DOI: 10.1002/ar.23961] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/05/2018] [Accepted: 06/12/2018] [Indexed: 01/06/2023]
Affiliation(s)
- Jennifer White
- Department of Cell and Developmental BiologySUNY Upstate Medical University Syracuse New York
| | - Jushuo Wang
- Department of Cell and Developmental BiologySUNY Upstate Medical University Syracuse New York
| | - Yingli Fan
- Department of Cell and Developmental BiologySUNY Upstate Medical University Syracuse New York
| | - Dipak K. Dube
- Department of MedicineSUNY Upstate Medical University Syracuse New York
| | - Joseph W. Sanger
- Department of Cell and Developmental BiologySUNY Upstate Medical University Syracuse New York
| | - Jean M. Sanger
- Department of Cell and Developmental BiologySUNY Upstate Medical University Syracuse New York
| |
Collapse
|
37
|
Palandri A, Martin E, Russi M, Rera M, Tricoire H, Monnier V. Identification of cardioprotective drugs by medium-scale in vivo pharmacological screening on a Drosophila cardiac model of Friedreich's ataxia. Dis Model Mech 2018; 11:dmm033811. [PMID: 29898895 PMCID: PMC6078405 DOI: 10.1242/dmm.033811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 06/06/2018] [Indexed: 12/30/2022] Open
Abstract
Friedreich's ataxia (FA) is caused by reduced levels of frataxin, a highly conserved mitochondrial protein. There is currently no effective treatment for this disease, which is characterized by progressive neurodegeneration and cardiomyopathy, the latter being the most common cause of death in patients. We previously developed a Drosophila melanogaster cardiac model of FA, in which the fly frataxin is inactivated specifically in the heart, leading to heart dilatation and impaired systolic function. Methylene Blue (MB) was highly efficient to prevent these cardiac dysfunctions. Here, we used this model to screen in vivo the Prestwick Chemical Library, comprising 1280 compounds. Eleven drugs significantly reduced the cardiac dilatation, some of which may possibly lead to therapeutic applications in the future. The one with the strongest protective effects was paclitaxel, a microtubule-stabilizing drug. In parallel, we characterized the histological defects induced by frataxin deficiency in cardiomyocytes and observed strong sarcomere alterations with loss of striation of actin fibers, along with full disruption of the microtubule network. Paclitaxel and MB both improved these structural defects. Therefore, we propose that frataxin inactivation induces cardiac dysfunction through impaired sarcomere assembly or renewal due to microtubule destabilization, without excluding additional mechanisms. This study is the first drug screening of this extent performed in vivo on a Drosophila model of cardiac disease. Thus, it also brings the proof of concept that cardiac functional imaging in adult Drosophila flies is usable for medium-scale in vivo pharmacological screening, with potent identification of cardioprotective drugs in various contexts of cardiac diseases.
Collapse
Affiliation(s)
- Amandine Palandri
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Elodie Martin
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Maria Russi
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Michael Rera
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Hervé Tricoire
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| | - Véronique Monnier
- Université Paris Diderot, Sorbonne Paris Cité, Unité de Biologie Fonctionnelle et Adaptative (BFA) UMR8251 CNRS, 75205, Paris Cedex 13, France
| |
Collapse
|
38
|
Wang L, Geist J, Grogan A, Hu LYR, Kontrogianni-Konstantopoulos A. Thick Filament Protein Network, Functions, and Disease Association. Compr Physiol 2018; 8:631-709. [PMID: 29687901 PMCID: PMC6404781 DOI: 10.1002/cphy.c170023] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sarcomeres consist of highly ordered arrays of thick myosin and thin actin filaments along with accessory proteins. Thick filaments occupy the center of sarcomeres where they partially overlap with thin filaments. The sliding of thick filaments past thin filaments is a highly regulated process that occurs in an ATP-dependent manner driving muscle contraction. In addition to myosin that makes up the backbone of the thick filament, four other proteins which are intimately bound to the thick filament, myosin binding protein-C, titin, myomesin, and obscurin play important structural and regulatory roles. Consistent with this, mutations in the respective genes have been associated with idiopathic and congenital forms of skeletal and cardiac myopathies. In this review, we aim to summarize our current knowledge on the molecular structure, subcellular localization, interacting partners, function, modulation via posttranslational modifications, and disease involvement of these five major proteins that comprise the thick filament of striated muscle cells. © 2018 American Physiological Society. Compr Physiol 8:631-709, 2018.
Collapse
Affiliation(s)
- Li Wang
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Janelle Geist
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | - Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, USA
| | | |
Collapse
|
39
|
Carlisle C, Prill K, Pilgrim D. Chaperones and the Proteasome System: Regulating the Construction and Demolition of Striated Muscle. Int J Mol Sci 2017; 19:E32. [PMID: 29271938 PMCID: PMC5795982 DOI: 10.3390/ijms19010032] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 11/28/2017] [Accepted: 12/18/2017] [Indexed: 12/21/2022] Open
Abstract
Protein folding factors (chaperones) are required for many diverse cellular functions. In striated muscle, chaperones are required for contractile protein function, as well as the larger scale assembly of the basic unit of muscle, the sarcomere. The sarcomere is complex and composed of hundreds of proteins and the number of proteins and processes recognized to be regulated by chaperones has increased dramatically over the past decade. Research in the past ten years has begun to discover and characterize the chaperones involved in the assembly of the sarcomere at a rapid rate. Because of the dynamic nature of muscle, wear and tear damage is inevitable. Several systems, including chaperones and the ubiquitin proteasome system (UPS), have evolved to regulate protein turnover. Much of our knowledge of muscle development focuses on the formation of the sarcomere but recent work has begun to elucidate the requirement and role of chaperones and the UPS in sarcomere maintenance and disease. This review will cover the roles of chaperones in sarcomere assembly, the importance of chaperone homeostasis and the cooperation of chaperones and the UPS in sarcomere integrity and disease.
Collapse
Affiliation(s)
- Casey Carlisle
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Kendal Prill
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| | - Dave Pilgrim
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
40
|
Lee MS, Yang HS. Sphingosine-1-Phosphate Immobilized on Nanotopographical Scaffolds Improve Myogenic Differentiation. Biotechnol J 2017; 12. [PMID: 29144589 DOI: 10.1002/biot.201700309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 11/02/2017] [Indexed: 11/12/2022]
Abstract
The skeletal muscle consists of highly aligned dense cables of collagen fibers with nanometer feature size to support muscle fibers. The skeletal myocyte can be greatly affected to differentiate by their surrounding topographical structure. To improve myogenic differentiation, we fabricated cell culture platform that sphingosine-1-phosphate (S1P) which regulated myocyte behavior is immobilized on a biomimetic nanopatterned polyurethaneacrylate (PUA) substrate using 3,4-dihydroxyphenylalanine (L-DOPA) for providing topographical and biological cues synergistically. In the present study, we hypothesized that cultured C2C12 cells can be induced to synergistically promote myogenic differenntiation on nanopatterned PUA-L-DOPA-S1P. We confirmed that nanopatterned PUA-L-DOPA-S1P has high hydrophilicity with a suitable range of water contact angle and small intensity of phosphate peak (P2p) by analyses of water contact analyzer and X-ray photoelectron spectroscopy. In addition, C2C12 cells culured on nanopatterned PUA-L-DOPA-S1P has well-oriented and organized myodubes formed with greater expression of myogenic regulatory factors such as MyoD and MyoG comapred to flat PUA groups. This functional platform which is not only provided topographical and biological cues has a suitable potential function to apply muscle cell niche as similar structure of muscle fiber but also utilized cell behavior within tissue engineered scaffolds and cellular microenvironment.
Collapse
Affiliation(s)
- Min Suk Lee
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| | - Hee Seok Yang
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Republic of Korea
| |
Collapse
|
41
|
Midgett M, López CS, David L, Maloyan A, Rugonyi S. Increased Hemodynamic Load in Early Embryonic Stages Alters Myofibril and Mitochondrial Organization in the Myocardium. Front Physiol 2017; 8:631. [PMID: 28912723 PMCID: PMC5582297 DOI: 10.3389/fphys.2017.00631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/14/2017] [Indexed: 01/08/2023] Open
Abstract
Normal blood flow is essential for proper heart formation during embryonic development, as abnormal hemodynamic load (blood pressure and shear stress) results in cardiac defects seen in congenital heart disease (CHD). However, the detrimental remodeling processes that relate altered blood flow to cardiac malformation and defects remain unclear. Heart development is a finely orchestrated process with rapid transformations that occur at the tissue, cell, and subcellular levels. Myocardial cells play an essential role in cardiac tissue maturation by aligning in the direction of stretch and increasing the number of contractile units as hemodynamic load increases throughout development. This study elucidates the early effects of altered blood flow on myofibril and mitochondrial configuration in the outflow tract myocardium in vivo. Outflow tract banding was used to increase hemodynamic load in the chicken embryo heart between Hamburger and Hamilton stages 18 and 24 (~24 h during tubular heart stages). 3D focused ion beam scanning electron microscopy analysis determined that increased hemodynamic load induced changes in the developing myocardium, characterized by thicker myofibril bundles that were more disbursed in circumferential orientation, and mitochondria that organized in large clusters around the nucleus. Proteomic mass-spectrometry analysis quantified altered protein composition after banding that is consistent with altered myofibril thin filament assembly and function, and mitochondrial maintenance and organization. Additionally, pathway analysis of the proteomics data identified possible activation of signaling pathways in response to banding, including the renin-angiotensin system (RAS). Imaging and proteomic data combined indicate that myofibril and mitochondrial arrangement in early embryonic stages is a critical developmental process that when disturbed by altered blood flow may contribute to cardiac malformation and defects.
Collapse
Affiliation(s)
- Madeline Midgett
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States
| | - Claudia S López
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States.,Multiscale Microscopy Core, OHSU Center for Spatial Systems Biomedicine, Oregon Health & Science UniversityPortland, OR, United States
| | - Larry David
- Proteomics Core, Oregon Health & Science UniversityPortland, OR, United States
| | - Alina Maloyan
- Knight Cardiovascular Institute, Oregon Health & Science UniversityPortland, OR, United States
| | - Sandra Rugonyi
- Biomedical Engineering, Oregon Health & Science UniversityPortland, OR, United States
| |
Collapse
|
42
|
Hissa B, Oakes PW, Pontes B, Ramírez-San Juan G, Gardel ML. Cholesterol depletion impairs contractile machinery in neonatal rat cardiomyocytes. Sci Rep 2017; 7:43764. [PMID: 28256617 PMCID: PMC5335656 DOI: 10.1038/srep43764] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
Cholesterol regulates numerous cellular processes. Depleting its synthesis in skeletal myofibers induces vacuolization and contraction impairment. However, little is known about how cholesterol reduction affects cardiomyocyte behavior. Here, we deplete cholesterol by incubating neonatal cardiomyocytes with methyl-beta-cyclodextrin. Traction force microscopy shows that lowering cholesterol increases the rate of cell contraction and generates defects in cell relaxation. Cholesterol depletion also increases membrane tension, Ca2+ spikes frequency and intracellular Ca2+ concentration. These changes can be correlated with modifications in caveolin-3 and L-Type Ca2+ channel distributions across the sarcolemma. Channel regulation is also compromised since cAMP-dependent PKA activity is enhanced, increasing the probability of L-Type Ca2+ channel opening events. Immunofluorescence reveals that cholesterol depletion abrogates sarcomeric organization, changing spacing and alignment of α-actinin bands due to increase in proteolytic activity of calpain. We propose a mechanism in which cholesterol depletion triggers a signaling cascade, culminating with contraction impairment and myofibril disruption in cardiomyocytes.
Collapse
Affiliation(s)
- Barbara Hissa
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| | - Patrick W. Oakes
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| | - Bruno Pontes
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Guillermina Ramírez-San Juan
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| | - Margaret L. Gardel
- James Franck Institute, Institute for Biophysical Dynamics and Physics Department, University of Chicago, Chicago, IL, United States
| |
Collapse
|
43
|
Jiu Y, Peränen J, Schaible N, Cheng F, Eriksson JE, Krishnan R, Lappalainen P. Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. J Cell Sci 2017; 130:892-902. [PMID: 28096473 PMCID: PMC5358333 DOI: 10.1242/jcs.196881] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 01/04/2017] [Indexed: 12/17/2022] Open
Abstract
The actin and intermediate filament cytoskeletons contribute to numerous cellular processes, including morphogenesis, cytokinesis and migration. These two cytoskeletal systems associate with each other, but the underlying mechanisms of this interaction are incompletely understood. Here, we show that inactivation of vimentin leads to increased actin stress fiber assembly and contractility, and consequent elevation of myosin light chain phosphorylation and stabilization of tropomyosin-4.2 (see Geeves et al., 2015). The vimentin-knockout phenotypes can be rescued by re-expression of wild-type vimentin, but not by the non-filamentous ‘unit length form’ vimentin, demonstrating that intact vimentin intermediate filaments are required to facilitate the effects on the actin cytoskeleton. Finally, we provide evidence that the effects of vimentin on stress fibers are mediated by activation of RhoA through its guanine nucleotide exchange factor GEF-H1 (also known as ARHGEF2). Vimentin depletion induces phosphorylation of the microtubule-associated GEF-H1 on Ser886, and thereby promotes RhoA activity and actin stress fiber assembly. Taken together, these data reveal a new mechanism by which intermediate filaments regulate contractile actomyosin bundles, and may explain why elevated vimentin expression levels correlate with increased migration and invasion of cancer cells. Summary: Vimentin intermediate filaments control the activity of RhoA, and consequent stress fiber assembly and contractility by downregulating its guanine nucleotide exchange factor GEF-H1.
Collapse
Affiliation(s)
- Yaming Jiu
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, Helsinki 00014, Finland
| | - Johan Peränen
- Faculty of Medicine, P.O. Box 63, University of Helsinki, Helsinki 00014, Finland
| | - Niccole Schaible
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Fang Cheng
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FI-20521 Turku, Finland
| | - John E Eriksson
- Cell Biology, Biosciences, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland.,Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, POB 123, FI-20521 Turku, Finland
| | - Ramaswamy Krishnan
- Department of Emergency Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Pekka Lappalainen
- Institute of Biotechnology, P.O. Box 56, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
44
|
Abstract
In this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities. However, evidence still questions the possibility that the proteins function as templates, or scaffolds, on which the thin and thick filaments could be assembled. In addition, the progress in muscle research during the last decades highlighted a number of other factors that could potentially be involved in the mechanism of length regulation: molecular chaperones that may guide folding and assembly of actin and myosin; capping proteins that can influence the rates of assembly-disassembly of the myofilaments; Ca2+ transients that can activate or deactivate protein interactions, etc. The entire mechanism of sarcomere assembly appears complex and highly dynamic. This mechanism is also capable of producing filaments of about the correct size without titin and nebulin. What then is the role of these proteins? Evidence points to titin and nebulin stabilizing structures of the respective filaments. This stabilizing effect, based on linear proteins of a fixed size, implies that titin and nebulin are indeed molecular rulers of the filaments. Although the proteins may not function as templates in the assembly of the filaments, they measure and stabilize exactly the same size of the functionally important for the muscles segments in each of the respective filaments.
Collapse
|
45
|
Sanger JW, Wang J, Fan Y, White J, Mi-Mi L, Dube DK, Sanger JM, Pruyne D. Assembly and Maintenance of Myofibrils in Striated Muscle. Handb Exp Pharmacol 2017; 235:39-75. [PMID: 27832381 DOI: 10.1007/164_2016_53] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this chapter, we present the current knowledge on de novo assembly, growth, and dynamics of striated myofibrils, the functional architectural elements developed in skeletal and cardiac muscle. The data were obtained in studies of myofibrils formed in cultures of mouse skeletal and quail myotubes, in the somites of living zebrafish embryos, and in mouse neonatal and quail embryonic cardiac cells. The comparative view obtained revealed that the assembly of striated myofibrils is a three-step process progressing from premyofibrils to nascent myofibrils to mature myofibrils. This process is specified by the addition of new structural proteins, the arrangement of myofibrillar components like actin and myosin filaments with their companions into so-called sarcomeres, and in their precise alignment. Accompanying the formation of mature myofibrils is a decrease in the dynamic behavior of the assembling proteins. Proteins are most dynamic in the premyofibrils during the early phase and least dynamic in mature myofibrils in the final stage of myofibrillogenesis. This is probably due to increased interactions between proteins during the maturation process. The dynamic properties of myofibrillar proteins provide a mechanism for the exchange of older proteins or a change in isoforms to take place without disassembling the structural integrity needed for myofibril function. An important aspect of myofibril assembly is the role of actin-nucleating proteins in the formation, maintenance, and sarcomeric arrangement of the myofibrillar actin filaments. This is a very active field of research. We also report on several actin mutations that result in human muscle diseases.
Collapse
Affiliation(s)
- Joseph W Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA.
| | - Jushuo Wang
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Yingli Fan
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Jennifer White
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Lei Mi-Mi
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Dipak K Dube
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - Jean M Sanger
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA
| | - David Pruyne
- Department of Cell and Developmental Biology, SUNY Upstate Medical University, 766 Irving Avenue, Syracuse, NY, 13224, USA.
| |
Collapse
|
46
|
Livne A, Geiger B. The inner workings of stress fibers - from contractile machinery to focal adhesions and back. J Cell Sci 2016; 129:1293-304. [PMID: 27037413 DOI: 10.1242/jcs.180927] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Ventral stress fibers and focal adhesions are physically coupled structures that play key roles in cellular mechanics and force sensing. The tight functional interdependence between the two is manifested not only by their apparent proximity but also by the fact that ventral stress fibers and focal adhesions are simultaneously diminished upon actomyosin relaxation, and grow when subjected to external stretching. However, whereas the apparent co-regulation of the two structures is well-documented, the underlying mechanisms remains poorly understood. In this Commentary, we discuss some of the fundamental, yet still open questions regarding ventral stress fiber structure, its force-dependent assembly, as well as its capacity to generate force. We also challenge the common approach - i.e. ventral stress fibers are variants of the well-studied striated or smooth muscle machinery - by presenting and critically discussing alternative venues. By highlighting some of the less-explored aspects of the interplay between stress fibers and focal adhesions, we hope that this Commentary will encourage further investigation in this field.
Collapse
Affiliation(s)
- Ariel Livne
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
47
|
Reimann L, Wiese H, Leber Y, Schwäble AN, Fricke AL, Rohland A, Knapp B, Peikert CD, Drepper F, van der Ven PFM, Radziwill G, Fürst DO, Warscheid B. Myofibrillar Z-discs Are a Protein Phosphorylation Hot Spot with Protein Kinase C (PKCα) Modulating Protein Dynamics. Mol Cell Proteomics 2016; 16:346-367. [PMID: 28028127 DOI: 10.1074/mcp.m116.065425] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
The Z-disc is a protein-rich structure critically important for the development and integrity of myofibrils, which are the contractile organelles of cross-striated muscle cells. We here used mouse C2C12 myoblast, which were differentiated into myotubes, followed by electrical pulse stimulation (EPS) to generate contracting myotubes comprising mature Z-discs. Using a quantitative proteomics approach, we found significant changes in the relative abundance of 387 proteins in myoblasts versus differentiated myotubes, reflecting the drastic phenotypic conversion of these cells during myogenesis. Interestingly, EPS of differentiated myotubes to induce Z-disc assembly and maturation resulted in increased levels of proteins involved in ATP synthesis, presumably to fulfill the higher energy demand of contracting myotubes. Because an important role of the Z-disc for signal integration and transduction was recently suggested, its precise phosphorylation landscape further warranted in-depth analysis. We therefore established, by global phosphoproteomics of EPS-treated contracting myotubes, a comprehensive site-resolved protein phosphorylation map of the Z-disc and found that it is a phosphorylation hotspot in skeletal myocytes, underscoring its functions in signaling and disease-related processes. In an illustrative fashion, we analyzed the actin-binding multiadaptor protein filamin C (FLNc), which is essential for Z-disc assembly and maintenance, and found that PKCα phosphorylation at distinct serine residues in its hinge 2 region prevents its cleavage at an adjacent tyrosine residue by calpain 1. Fluorescence recovery after photobleaching experiments indicated that this phosphorylation modulates FLNc dynamics. Moreover, FLNc lacking the cleaved Ig-like domain 24 exhibited remarkably fast kinetics and exceedingly high mobility. Our data set provides research community resource for further identification of kinase-mediated changes in myofibrillar protein interactions, kinetics, and mobility that will greatly advance our understanding of Z-disc dynamics and signaling.
Collapse
Affiliation(s)
- Lena Reimann
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Heike Wiese
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Yvonne Leber
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Anja N Schwäble
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anna L Fricke
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Anne Rohland
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Bettina Knapp
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Christian D Peikert
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Peter F M van der Ven
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Gerald Radziwill
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany.,§BIOSS Centre for Biological Signalling Studies, University of Freiburg
| | - Dieter O Fürst
- ¶Department of Molecular Cell Biology, Institute for Cell Biology, University of Bonn, 53121 Bonn, Germany
| | - Bettina Warscheid
- From the ‡Department of Biochemistry and Functional Proteomics, Institute of Biology II, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; .,§BIOSS Centre for Biological Signalling Studies, University of Freiburg
| |
Collapse
|
48
|
Mazelet L, Parker MO, Li M, Arner A, Ashworth R. Role of Active Contraction and Tropomodulins in Regulating Actin Filament Length and Sarcomere Structure in Developing Zebrafish Skeletal Muscle. Front Physiol 2016; 7:91. [PMID: 27065876 PMCID: PMC4814503 DOI: 10.3389/fphys.2016.00091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 02/26/2016] [Indexed: 01/13/2023] Open
Abstract
Whilst it is recognized that contraction plays an important part in maintaining the structure and function of mature skeletal muscle, its role during development remains undefined. In this study the role of movement in skeletal muscle maturation was investigated in intact zebrafish embryos using a combination of genetic and pharmacological approaches. An immotile mutant line (cacnb1 (ts25) ) which lacks functional voltage-gated calcium channels (dihydropyridine receptors) in the muscle and pharmacological immobilization of embryos with a reversible anesthetic (Tricaine), allowed the study of paralysis (in mutants and anesthetized fish) and recovery of movement (reversal of anesthetic treatment). The effect of paralysis in early embryos (aged between 17 and 24 hours post-fertilization, hpf) on skeletal muscle structure at both myofibrillar and myofilament level was determined using both immunostaining with confocal microscopy and small angle X-ray diffraction. The consequences of paralysis and subsequent recovery on the localization of the actin capping proteins Tropomodulin 1 & 4 (Tmod) in fish aged from 17 hpf until 42 hpf was also assessed. The functional consequences of early paralysis were investigated by examining the mechanical properties of the larval muscle. The length-force relationship, active and passive tension, was measured in immotile, recovered and control skeletal muscle at 5 and 7 day post-fertilization (dpf). Recovery of muscle function was also assessed by examining swimming patterns in recovered and control fish. Inhibition of the initial embryonic movements (up to 24 hpf) resulted in an increase in myofibril length and a decrease in width followed by almost complete recovery in both moving and paralyzed fish by 42 hpf. In conclusion, myofibril organization is regulated by a dual mechanism involving movement-dependent and movement-independent processes. The initial contractile event itself drives the localization of Tmod1 to its sarcomeric position, capping the actin pointed ends and ultimately regulating actin length. This study demonstrates that both contraction and contractile-independent mechanisms are important for the regulation of myofibril organization, which in turn is necessary for establishing proper skeletal muscle structure and function during development in vivo in zebrafish.
Collapse
Affiliation(s)
- Lise Mazelet
- School of Biological and Chemical Sciences, Queen Mary, University of London London, UK
| | - Matthew O Parker
- School of Health Sciences and Social Work, University of Portsmouth Portsmouth, UK
| | - Mei Li
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Anders Arner
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | - Rachel Ashworth
- The Blizard Institute/Institute of Health Sciences Education, Barts and The London School of Medicine and Dentistry London, UK
| |
Collapse
|
49
|
Tojkander S, Gateva G, Husain A, Krishnan R, Lappalainen P. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly. eLife 2015; 4:e06126. [PMID: 26652273 PMCID: PMC4714978 DOI: 10.7554/elife.06126] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 10/15/2015] [Indexed: 12/20/2022] Open
Abstract
Adhesion and morphogenesis of many non-muscle cells are guided by contractile actomyosin bundles called ventral stress fibers. While it is well established that stress fibers are mechanosensitive structures, physical mechanisms by which they assemble, align, and mature have remained elusive. Here we show that arcs, which serve as precursors for ventral stress fibers, undergo lateral fusion during their centripetal flow to form thick actomyosin bundles that apply tension to focal adhesions at their ends. Importantly, this myosin II-derived force inhibits vectorial actin polymerization at focal adhesions through AMPK-mediated phosphorylation of VASP, and thereby halts stress fiber elongation and ensures their proper contractility. Stress fiber maturation additionally requires ADF/cofilin-mediated disassembly of non-contractile stress fibers, whereas contractile fibers are protected from severing. Taken together, these data reveal that myosin-derived tension precisely controls both actin filament assembly and disassembly to ensure generation and proper alignment of contractile stress fibers in migrating cells. DOI:http://dx.doi.org/10.7554/eLife.06126.001 Muscle cells are the best-known example of a cell in the human body that can contract. These cells contain bundles of filaments made of proteins called actin and myosin, which can generate pulling forces. However, many other cells in the human body also rely on similar “contractile actomyosin bundles” to help them stick to each other, to maintain the correct shape or to migrate from one location to another. These bundles in the non-muscle cells are often called “ventral stress fibers”. Ventral stress fibers develop from structures commonly referred to as “arcs”. Previous work has clearly established that ventral stress fibers are sensitive to mechanical forces. However, the underlying mechanism behind this process was not known, and it remained unclear how external forces could promote these actomyosin bundles to assemble, align and mature. Tojkander et al. documented the formation of ventral stress fibers in migrating human cells grown in the laboratory. This revealed that pre-existing arcs fuse with each other to form thicker and more contractile actomyosin bundles. The formation of these bundles then pulls on the two ends of the stress fibers that are attached to sites on the edges of the cell. Tojkander et al. also showed that this tension inactivates a protein called VASP, which is also found at these sites. Inactivating VASP inhibits the construction of actin filaments, which in turn stops the stress fibers from elongating and allows them to contract. Further experiments then revealed that ventral stress fibers are maintained and can even become thicker under a sustained pulling force. Conversely, stress fibers that were not under tension were decorated by proteins that promote the disassembly of actin filaments. This subsequently led to the disappearance of these fibers. Future studies could now examine whether the newly identified pathway, which allows mechanical forces to control the assembly and alignment of stress fibers, is conserved in other cell-types. Furthermore, and because the assembly of such mechanosensitive actomyosin bundles is often defective in cancer cells, it will also be important to study this pathway’s significance in the context of cancer progression. DOI:http://dx.doi.org/10.7554/eLife.06126.002
Collapse
Affiliation(s)
- Sari Tojkander
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Gergana Gateva
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Amjad Husain
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
| | - Pekka Lappalainen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
50
|
Sallimus and the Dynamics of Sarcomere Assembly in Drosophila Flight Muscles. J Mol Biol 2015; 427:2151-8. [DOI: 10.1016/j.jmb.2015.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 11/19/2022]
|