1
|
Kozłowska A, Wojtacha P, Równiak M, Kolenkiewicz M, Huang ACW. ADHD pathogenesis in the immune, endocrine and nervous systems of juvenile and maturating SHR and WKY rats. Psychopharmacology (Berl) 2019; 236:2937-2958. [PMID: 30737597 PMCID: PMC6820808 DOI: 10.1007/s00213-019-5180-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/23/2019] [Indexed: 01/10/2023]
Abstract
RATIONALE Attention-deficit/hyperactivity disorder (ADHD) is one of the most common neurobehavioural disorders with morphological and functional brain abnormalities. However, there is a growing body of evidence that abnormalities in the immune and endocrine systems may also account for the ADHD pathogenesis. OBJECTIVES To test ADHD pathogenesis in neurological, immune and endocrine systems, this study examined the concentrations of cytokines, chemokines, oxidative stress markers, metabolic parameters, steroid hormones and steroidogenic enzymes in the serum and/or tissues of spontaneously hypertensive rats (SHRs, animal model of ADHD) and Wistar Kyoto rats (WKYs, control animals). Moreover, the volume of the medial prefrontal cortex (mPFC) as well as the density of dopamine 2 (D2) receptor-expressing cells and tyrosine hydroxylase (TH)-positive nerve fibres in it was also elucidated. METHODS Peripheral blood, spleen and adrenal gland samples, as well as brain sections collected on day 35 (juvenile) and day 70 (maturating) from SHRs and WKYs, were processed by ELISA and immunohistochemistry, respectively. RESULTS The results show significant increases of serum and/or tissue concentrations of cytokines, chemokines and oxidative stress markers in juvenile SHRs when compared to the age-matched WKYs. These increases were accompanied by a lowered volume of the mPFC and up-regulation of D2 in this brain region. In maturating SHRs, the levels of inflammatory and oxidative stress markers were normalised and accompanied by elevated contents of steroid hormones. CONCLUSIONS Significant elevations of serum and/or tissue contents of cytokines, chemokines and oxidative stress markers as well as volumetric and neurochemical alterations in the mPFC of juvenile SHRs may suggest the cooperation of neurological and immune systems in the ADHD pathogenesis. Elevated levels of steroid hormones in maturating SHRs may be a compensatory effect involved in reducing inflammation and ADHD symptoms.
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Human Physiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Warszawska Av, 30, 10-082 Olsztyn, Poland
| | - Paweł Wojtacha
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Maciej Równiak
- Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Małgorzata Kolenkiewicz
- Department of Pathophysiology, School Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Warszawska Av, 30, 10-082 Olsztyn, Poland
| | | |
Collapse
|
2
|
Macfelda K, Kapeller B, Holly A, Podesser BK, Losert U, Brandes K, Goettel P, Mueller J. Bioelectrical signals improve cardiac function and modify gene expression of extracellular matrix components. ESC Heart Fail 2017; 4:291-300. [PMID: 28772035 PMCID: PMC5542736 DOI: 10.1002/ehf2.12169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/14/2017] [Accepted: 05/30/2017] [Indexed: 11/10/2022] Open
Abstract
Aims Beyond the influence of stimulating devices on cardiac excitation, their use in treating patients with heart failure has positive effects on the myocardium at the molecular level. Electrical signals can induce a wide spectrum of effects in living tissue. Therefore, we sought to determine whether applying electrical microcurrent directly to failing hearts leads to functional improvement. Methods and results Sixteen male spontaneously hypertensive rats (SHRs) with heart failure underwent application of a patch electrode to the left ventricular epicardium and placement of a subcutaneous counter electrode. The electrode delivered a 0.35 μA microcurrent to nine of the SHRs for 45 ± 3 days; the other seven SHRs were used as controls. At baseline and before the SHRs were humanely put to death, we measured the left ventricular ejection fraction (LVEF) and the thickness of the LV posterior wall during systole and diastole (LVPWs/d). We used quantitative PCR to determine extracellular matrix parameters [collagen I–III, matrix metalloproteinase (MMP)‐2, MMP‐9, tissue inhibitor of metalloproteinases 3 (TIMP3), TIMP4, connexins (Cxs) 40/43/45, transforming growth factor (TGF)‐β, and interleukin (IL)‐6]. Among SHRs undergoing microcurrent application, LVEF normalized (mean decrease, 22.8%; P = 0.009), and LVPWs decreased (mean, 35.3%; P = 0.001). Compared with the control group, the SHRs receiving microcurrent exhibited a mean decrease in the gene expression of collagen I (10.6%, P = 0.003), TIMP3 (18.5%, P = 0.005), Cx43 (14.3%, P = 0.003), Cx45 (12.7%, P = 0.020), TGF‐β (13.0%, P = 0.005), and IL‐6 (53.7%, P = 0.000). Microcurrent application induced no changes in the expression of collagen III, MMP‐2, MMP‐9, TIMP4, or Cx40. Conclusions Applying microcurrent to the LV epicardium of SHRs leads to statistically significant functional improvement and alterations in the levels of inflammatory and extracellular matrix components.
Collapse
Affiliation(s)
- Karin Macfelda
- Department of Biomedical Research (Cell Biology), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Barbara Kapeller
- Department of Biomedical Research (Cell Biology), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Alexander Holly
- Department of Biomedical Research (Cell Biology), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Bruno K Podesser
- Department of Biomedical Research (Cell Biology), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Udo Losert
- Department of Biomedical Research (Cell Biology), Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kersten Brandes
- Berlin Heals, Knesebeckstrasse 59-61, 10719, Berlin, Germany
| | - Peter Goettel
- Berlin Heals, Knesebeckstrasse 59-61, 10719, Berlin, Germany
| | | |
Collapse
|
3
|
Gupta J, Dominic EA, Fink JC, Ojo AO, Barrows IR, Reilly MP, Townsend RR, Joffe MM, Rosas SE, Wolman M, Patel SS, Keane MG, Feldman HI, Kusek JW, Raj DS, the CRIC Study Investigators. Association between Inflammation and Cardiac Geometry in Chronic Kidney Disease: Findings from the CRIC Study. PLoS One 2015; 10:e0124772. [PMID: 25909952 PMCID: PMC4409366 DOI: 10.1371/journal.pone.0124772] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/08/2015] [Indexed: 01/27/2023] Open
Abstract
Background Left ventricular hypertrophy (LVH) and myocardial contractile dysfunction are independent predictors of mortality in patients with chronic kidney disease (CKD). The association between inflammatory biomarkers and cardiac geometry has not yet been studied in a large cohort of CKD patients with a wide range of kidney function. Methods Plasma levels of interleukin (IL)-1β, IL-1 receptor antagonist (IL-1RA), IL-6, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β, high-sensitivity C-Reactive protein (hs-CRP), fibrinogen and serum albumin were measured in 3,939 Chronic Renal Insufficiency Cohort study participants. Echocardiography was performed according to the recommendations of the American Society of Echocardiography and interpreted at a centralized core laboratory. Results LVH, systolic dysfunction and diastolic dysfunction were present in 52.3%, 11.8% and 76.3% of the study subjects, respectively. In logistic regression analysis adjusted for age, sex, race/ethnicity, diabetic status, current smoking status, systolic blood pressure, urinary albumin- creatinine ratio and estimated glomerular filtration rate, hs-CRP (OR 1.26 [95% CI 1.16, 1.37], p<0.001), IL-1RA (1.23 [1.13, 1.34], p<0.0001), IL-6 (1.25 [1.14, 1.36], p<0.001) and TNF-α (1.14 [1.04, 1.25], p = 0.004) were associated with LVH. The odds for systolic dysfunction were greater for subjects with elevated levels of hs-CRP (1.32 [1.18, 1.48], p<0.001) and IL-6 (1.34 [1.21, 1.49], p<0.001). Only hs-CRP was associated with diastolic dysfunction (1.14 [1.04, 1.26], p = 0.005). Conclusion In patients with CKD, elevated plasma levels of hs-CRP and IL-6 are associated with LVH and systolic dysfunction.
Collapse
Affiliation(s)
- Jayanta Gupta
- Department of Biomedical Sciences, Texas Tech University Health Sciences Center, El Paso, Texas, United States of America
| | - Elizabeth A. Dominic
- The George Washington University School of Medicine, Washington, DC, United States of America
| | - Jeffrey C. Fink
- Division of Nephrology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Akinlolu O. Ojo
- Division of Nephrology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ian R. Barrows
- The George Washington University School of Medicine, Washington, DC, United States of America
| | - Muredach P. Reilly
- Cardiovascular Institute, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Raymond R. Townsend
- Renal and Electrolyte Division, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Marshall M. Joffe
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sylvia E. Rosas
- Joslyn Diabetic Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Melanie Wolman
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Samir S. Patel
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC, United States of America
| | - Martin G. Keane
- Department of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Harold I. Feldman
- Renal and Electrolyte Division, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - John W. Kusek
- Division of Kidney, Urologic, and Hematologic Diseases, The National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, United States of America
| | - Dominic S. Raj
- Division of Renal Diseases and Hypertension, The George Washington University, Washington, DC, United States of America
- * E-mail:
| | | |
Collapse
|
4
|
Takayama K, Kawakami Y, Lee S, Greco N, Lavasani M, Mifune Y, Cummins JH, Yurube T, Kuroda R, Kurosaka M, Fu FH, Huard J. Involvement of ERCC1 in the pathogenesis of osteoarthritis through the modulation of apoptosis and cellular senescence. J Orthop Res 2014; 32:1326-32. [PMID: 24964749 PMCID: PMC4134687 DOI: 10.1002/jor.22656] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/10/2014] [Indexed: 02/04/2023]
Abstract
DNA damage is a cause of age related pathologies, including osteoarthritis (OA). Excision repair cross complementation group 1 (ERCC1) is an endonuclease required for DNA damage repair. In this study we investigated the function of ERCC1 in chondrocytes and its association with the pathophysiology of OA. ERCC1 expression in normal and osteoarthritic cartilage was assessed, as were changes in ERCC1 expression in chondrocytes under catabolic stress. Inhibiting ERCC1 in chondrocytes under interleukin-1β stimulation using small interfering RNA (siRNA) was also evaluated. Finally, cellular senescence and apoptosis were examined in relation to ERCC1 function. ERCC1 expression was decreased in OA cartilage and increased within 4 h of exposure to interleukin (IL)-1β, but decreased after 12 h. The inhibition of ERCC1 by siRNA increased the expression of matrix metallopeptidase 13 and decreased collagen type II. ERCC1 inhibition also increased the number of apoptotic and senescent cells. The inhibition of ERCC1 in chondrocytes increased their expression of OA related proteins, apoptosis, cellular senescence, and hypertrophic-like changes which suggest that ERCC1 is critical for protecting human chondrocytes (HCs) from catabolic stresses and provides insights into the pathophysiology of OA and a potential target for its treatment. (191)
Collapse
Affiliation(s)
- Koji Takayama
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yohei Kawakami
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Sahnghoon Lee
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Nick Greco
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Mitra Lavasani
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Yutaka Mifune
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - James H. Cummins
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Takashi Yurube
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Ryosuke Kuroda
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Masahiro Kurosaka
- Department of Orthopaedic Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | - Freddie H. Fu
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Johnny Huard
- Stem Cell Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania 15219,Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| |
Collapse
|
5
|
Abstract
All seven STAT proteins are expressed in the heart, and in this review we will focus on their contribution to cardiac physiology and to ischemic heart disease and its consequences. A substantial literature has focused on the roles of STAT1 and STAT3 in ischemic heart disease, where, at least in the acute phase, they appear to have a yin-yang relationship. STAT1 contributes to the loss of irreplaceable cardiac myocytes both by increasing apoptosis and by reducing cardioprotective autophagy. In contrast, STAT3 is cardioprotective, since STAT3-deficient mice have larger infarcts following ischemic injury, and a number of cardioprotective agents have been shown to act, at least partly, through STAT3 activation. STAT3 is also absolutely required for preconditioning—a process where periods of brief ischemia protect against a subsequent or previous prolonged ischemic episode. Prolonged activation of STAT3, however, is strongly implicated in the post-infarction remodeling of the heart which leads to heart failure, where, possibly together with STAT5, it augments activation of the renin-angiotensin system.
Collapse
Affiliation(s)
- Richard A Knight
- Medical Molecular Biology Unit; University College London; London, UK
| | | | | |
Collapse
|
6
|
Effects of heme oxygenase-1 upregulation on blood pressure and cardiac function in an animal model of hypertensive myocardial infarction. Int J Mol Sci 2013; 14:2684-706. [PMID: 23358254 PMCID: PMC3588009 DOI: 10.3390/ijms14022684] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 01/06/2013] [Accepted: 01/21/2013] [Indexed: 12/28/2022] Open
Abstract
In this study, we evaluate the effect of HO-1 upregulation on blood pressure and cardiac function in the new model of infarct spontaneous hypertensive rats (ISHR). Male spontaneous hypertensive rats (SHR) at 13 weeks (n = 40) and age-matched male Wistar (WT) rats (n = 20) were divided into six groups: WT (sham + normal saline (NS)), WT (sham + Co(III) Protoporphyrin IX Chloride (CoPP)), SHR (myocardial infarction (MI) + NS), SHR (MI + CoPP), SHR (MI + CoPP + Tin Mesoporphyrin IX Dichloride (SnMP)), SHR (sham + NS); CoPP 4.5 mg/kg, SnMP 15 mg/kg, for six weeks, one/week, i.p., n = 10/group. At the sixth week, echocardiography (UCG) and hemodynamics were performed. Then, blood samples and heart tissue were collected. Copp treatment in the SHR (MI + CoPP) group lowered blood pressure, decreased infarcted area, restored cardiac function (left ventricular ejection fraction (LVEF), left ventricular fraction shortening (LVFS), +dp/dtmax, (−dp/dtmax)/left ventricular systolic pressure (LVSP)), inhibited cardiac hypertrophy and ventricular enlargement (downregulating left ventricular end-systolic diameter (LVEDD), left ventricular end-systolic diameter (LVESD) and heart weight/body weight (HW/BW)), lowered serum CRP, IL-6 and Glu levels and increased serum TB, NO and PGI2 levels. Western blot and immunohistochemistry showed that HO-1 expression was elevated in the SHR (MI + CoPP) group, while co-administration with SnMP suppressed the benefit functions mentioned above. In conclusion, HO-1 upregulation can lower blood pressure and improve post-infarct cardiac function in the ISHR model. These functions may be involved in the inhibition of inflammation and the ventricular remodeling process and in the amelioration of glucose metabolism and endothelial dysfunction.
Collapse
|
7
|
|
8
|
González A, López B, Ravassa S, Beaumont J, Zudaire A, Gallego I, Brugnolaro C, Díez J. Cardiotrophin-1 in hypertensive heart disease. Endocrine 2012; 42:9-17. [PMID: 22418690 DOI: 10.1007/s12020-012-9649-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 02/27/2012] [Indexed: 01/19/2023]
Abstract
Hypertensive heart disease, here defined by the presence of pathologic left ventricular hypertrophy in the absence of a cause other than arterial hypertension, is characterized by complex changes in myocardial structure including enhanced cardiomyocyte growth and non-cardiomyocyte alterations that induce the remodeling of the myocardium, and ultimately, deteriorate left ventricular function and facilitate the development of heart failure. It is now accepted that a number of pathological processes mediated by mechanical, neurohormonal, and cytokine routes acting on the cardiomyocyte and the non-cardiomyocyte compartments are responsible for myocardial remodeling in the context of arterial hypertension. For instance, cardiotrophin-1 is a cytokine member of the interleukin-6 superfamily, produced by cardiomyocytes and non-cardiomyocytes in situations of biomechanical stress that once secreted interacts with its receptor, the heterodimer formed by gp130 and gp90 (also known as leukemia inhibitory factor receptor beta), activating different signaling pathways leading to cardiomyocyte hypertrophy, as well as myocardial fibrosis. Beyond its potential mechanistic contribution to the development of hypertensive heart disease, cardiotrophin-1 offers the opportunity for a new translational approach to this condition. In fact, recent evidence suggests that cardiotrophin-1 may serve as both a biomarker of left ventricular hypertrophy and dysfunction in hypertensive patients, and a potential target for therapies aimed to prevent and treat hypertensive heart disease beyond blood pressure control.
Collapse
Affiliation(s)
- Arantxa González
- Área de Ciencias Cardiovasculares, Centro de Investigación Médica Aplicada, Universidad de Navarra, Av. Pío XII 55, 31008, Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Quijada P, Toko H, Fischer KM, Bailey B, Reilly P, Hunt KD, Gude NA, Avitabile D, Sussman MA. Preservation of myocardial structure is enhanced by pim-1 engineering of bone marrow cells. Circ Res 2012; 111:77-86. [PMID: 22619278 DOI: 10.1161/circresaha.112.265207] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RATIONALE Bone marrow-derived cells to treat myocardial injury improve cardiac function and support beneficial cardiac remodeling. However, survival of stem cells is limited due to low proliferation of transferred cells. OBJECTIVE To demonstrate long-term potential of c-kit(+) bone marrow stem cells (BMCs) enhanced with Pim-1 kinase to promote positive cardiac remodeling. METHODS AND RESULTS Lentiviral modification of c-kit(+) BMCs to express Pim-1 (BMCeP) increases proliferation and expression of prosurvival proteins relative to BMCs expressing green fluorescent protein (BMCe). Intramyocardial delivery of BMCeP at time of infarction supports improvements in anterior wall dimensions and prevents left ventricle dilation compared with hearts treated with vehicle alone. Reduction of the akinetic left ventricular wall was observed in BMCeP-treated hearts at 4 and 12 weeks after infarction. Early recovery of cardiac function in BMCeP-injected hearts facilitated modest improvements in hemodynamic function up to 12 weeks after infarction between cell-treated groups. Persistence of BMCeP is improved relative to BMCe within the infarct together with increased recruitment of endogenous c-kit(+) cells. Delivery of BMC populations promotes cellular hypertrophy in the border and infarcted regions coupled with an upregulation of hypertrophic genes. Thus, BMCeP treatment yields improved structural remodeling of infarcted myocardium compared with control BMCs. CONCLUSIONS Genetic modification of BMCs with Pim-1 may serve as a therapeutic approach to promote recovery of myocardial structure. Future approaches may take advantage of salutary BMC actions in conjunction with other stem cell types to increase efficacy of cellular therapy and improve myocardial performance in the injured myocardium.
Collapse
|
10
|
Nogueira-Silva C, Piairo P, Carvalho-Dias E, Peixoto FO, Moura RS, Correia-Pinto J. Leukemia inhibitory factor in rat fetal lung development: expression and functional studies. PLoS One 2012; 7:e30517. [PMID: 22291973 PMCID: PMC3264589 DOI: 10.1371/journal.pone.0030517] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 12/16/2011] [Indexed: 11/29/2022] Open
Abstract
Background Leukemia inhibitory factor (LIF) and interleukin-6 (IL-6) are members of the family of the glycoprotein 130 (gp130)-type cytokines. These cytokines share gp130 as a common signal transducer, which explains why they show some functional redundancy. Recently, it was demonstrated that IL-6 promotes fetal lung branching. Additionally, LIF has been implicated in developmental processes of some branching organs. Thus, in this study LIF expression pattern and its effects on fetal rat lung morphogenesis were assessed. Methodology/Principal Findings LIF and its subunit receptor LIFRα expression levels were evaluated by immunohistochemistry and western blot in fetal rat lungs of different gestational ages, ranging from 13.5 to 21.5 days post-conception. Throughout all gestational ages studied, LIF was constitutively expressed in pulmonary epithelium, whereas LIFRα was first mainly expressed in the mesenchyme, but after pseudoglandular stage it was also observed in epithelial cells. These results point to a LIF epithelium-mesenchyme cross-talk, which is known to be important for lung branching process. Regarding functional studies, fetal lung explants were cultured with increasing doses of LIF or LIF neutralizing antibodies during 4 days. MAPK, AKT, and STAT3 phosphorylation in the treated lung explants was analyzed. LIF supplementation significantly inhibited lung growth in spite of an increase in p44/42 phosphorylation. On the other hand, LIF inhibition significantly stimulated lung growth via p38 and Akt pathways. Conclusions/Significance The present study describes that LIF and its subunit receptor LIFRα are constitutively expressed during fetal lung development and that they have an inhibitory physiological role on fetal lung branching.
Collapse
Affiliation(s)
- Cristina Nogueira-Silva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Obstetrics and Gynecology, Hospital de Braga, Braga, Portugal
| | - Paulina Piairo
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Emanuel Carvalho-Dias
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Urology, Hospital de São João, Porto, Portugal
| | - Francisca O. Peixoto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rute S. Moura
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Correia-Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal
- ICVS/3Bs - PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Department of Pediatric Surgery, Hospital de Braga, Braga, Portugal
- * E-mail:
| |
Collapse
|
11
|
Booth AJ, Bishop DK. TGF-beta, IL-6, IL-17 and CTGF direct multiple pathologies of chronic cardiac allograft rejection. Immunotherapy 2010; 2:511-20. [PMID: 20636005 PMCID: PMC2931419 DOI: 10.2217/imt.10.33] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cardiac transplantation is an effective treatment for heart failure refractive to therapy. Although immunosuppressive therapeutics have increased first year survival rates, chronic rejection remains a significant barrier to long-term graft survival. Chronic rejection manifests as patchy interstitial fibrosis, vascular occlusion and progressive loss of graft function. Recent evidence from experimental and patient studies suggests that the development of cardiomyocyte hypertrophy is another hallmark of chronic cardiac allograft rejection. This pathologic hypertrophy is tightly linked to the immune cytokine IL-6, which promotes facets of chronic rejection in concert with TGF-beta and IL-17. These factors potentiate downstream mediators, such as CTGF, which promote the fibrosis associated with the disease. In this article, we summarize contemporary findings that have revealed several elements involved in the induction and progression of chronic rejection of cardiac allografts. Further efforts to elucidate the interplay between these factors may direct the development of targeted therapies for this disease.
Collapse
Affiliation(s)
- Adam J Booth
- Division of Pulmonary & Critical Care, Department of Internal Medicine, University of Michigan Medical Center, 6240 MSRBIII/0624, 1150 W Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | |
Collapse
|
12
|
Diaz JA, Booth AJ, Lu G, Wood SC, Pinsky DJ, Bishop DK. Critical role for IL-6 in hypertrophy and fibrosis in chronic cardiac allograft rejection. Am J Transplant 2009; 9:1773-83. [PMID: 19538487 PMCID: PMC2756490 DOI: 10.1111/j.1600-6143.2009.02706.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic cardiac allograft rejection is the major barrier to long term graft survival. There is currently no effective treatment for chronic rejection except re-transplantation. Though neointimal development, fibrosis, and progressive deterioration of graft function are hallmarks of chronic rejection, the immunologic mechanisms driving this process are poorly understood. These experiments tested a functional role for IL-6 in chronic rejection by utilizing serial echocardiography to assess the progression of chronic rejection in vascularized mouse cardiac allografts. Cardiac allografts in mice transiently depleted of CD4+ cells that develop chronic rejection were compared with those receiving anti-CD40L therapy that do not develop chronic rejection. Echocardiography revealed the development of hypertrophy in grafts undergoing chronic rejection. Histologic analysis confirmed hypertrophy that coincided with graft fibrosis and elevated intragraft expression of IL-6. To elucidate the role of IL-6 in chronic rejection, cardiac allograft recipients depleted of CD4+ cells were treated with neutralizing anti-IL-6 mAb. IL-6 neutralization ameliorated cardiomyocyte hypertrophy, graft fibrosis, and prevented deterioration of graft contractility associated with chronic rejection. These observations reveal a new paradigm in which IL-6 drives development of pathologic hypertrophy and fibrosis in chronic cardiac allograft rejection and suggest that IL-6 could be a therapeutic target to prevent this disease.
Collapse
Affiliation(s)
- J A Diaz
- Department of Surgery, Division of Cardiovascular Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA.
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Novel insights into the role of cardiotrophin-1 in cardiovascular diseases. J Mol Cell Cardiol 2009; 46:142-8. [DOI: 10.1016/j.yjmcc.2008.11.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2008] [Revised: 10/31/2008] [Accepted: 11/05/2008] [Indexed: 01/19/2023]
|
15
|
Schlüter KD, Wenzel S. Angiotensin II: a hormone involved in and contributing to pro-hypertrophic cardiac networks and target of anti-hypertrophic cross-talks. Pharmacol Ther 2008; 119:311-25. [PMID: 18619489 DOI: 10.1016/j.pharmthera.2008.05.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 05/30/2008] [Indexed: 12/23/2022]
Abstract
Angiotensin II (Ang II) plays a major role in the progression of myocardial hypertrophy to heart failure. Inhibiting the angiotensin converting enzyme (ACE) or blockade of the corresponding Ang II receptors is used extensively in clinical practice, but there is scope for refinement of this mode of therapy. This review summarizes the current understanding of the direct effects of Ang II on cardiomyocytes and then focus particularly on interaction of components of the renin-angiotensin system with other hormones and cytokines. New findings described in approximately 400 papers identified in the PubMed database and published during the 2.5 years are discussed in the context of previous relevant literature. The cardiac action of Ang II is influenced by the activity of different isoforms of ACE leading to different amounts of Ang II by comparison with other angiotensinogen-derived peptides. The effect of Ang II is mediated by at least two different AT receptors that are differentially expressed in cardiomyocytes from neonatal, adult and failing hearts. The intracellular effects of Ang II are influenced by nitric oxide (NO)/cGMP-dependent cross talk and are mediated by the release of autocrine factors, such as transforming growth factor (TGF)-beta1 and interleukin (IL)-6. Besides interactions with cytokines, Ang II is involved in systemic networks including aldosterone, parathyroid hormone and adrenomedullin, which have their own effects on cardiomyocytes that modify, amplify or antagonize the primary effect of Ang II. Finally, hyperinsulemia and hyperglycaemia influence Ang II-dependent processes in diabetes and its cardiac sequelae.
Collapse
Affiliation(s)
- K-D Schlüter
- Physiologisches Institut, Justus-Liebig-Universität Giessen, Germany.
| | | |
Collapse
|
16
|
Coles B, Fielding CA, Rose-John S, Scheller J, Jones SA, O'Donnell VB. Classic interleukin-6 receptor signaling and interleukin-6 trans-signaling differentially control angiotensin II-dependent hypertension, cardiac signal transducer and activator of transcription-3 activation, and vascular hypertrophy in vivo. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:315-25. [PMID: 17591976 PMCID: PMC1941613 DOI: 10.2353/ajpath.2007.061078] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Interleukin (IL)-6 acts via a receptor complex consisting of the cognate IL-6 receptor (IL-6R) or the soluble IL-6 receptor (sIL-6R) and glycoprotein 130 (gp130). Here, we investigated the role of these IL-6R components in hypertension and vascular hypertrophy in mice. Angiotensin (Ang) II (1.1 mg/kg/day) caused hypertension and cardiac/aortic hypertrophy in wild-type, but not IL-6(-/-), mice throughout 7 days. A recombinant dimeric soluble gp130 (sgp130Fc; 50 to 100 microg, i.p.) blocked Ang II hypertension but not hypertrophy in wild-type mice. Cognate IL-6R was detected in aortic smooth muscle, but its levels and those of plasma sIL-6R were approximately 50% decreased in IL-6(-/-) mice. Ang II infusion activated signal transducer and activator of transcription-3 in heart of WT and decreased Ang II receptor 1 (ATR1) expression in aorta. Both responses were unaffected by sgp130Fc and absent in IL-6(-/-) mice. In summary, we show that IL-6 trans-signaling is required for Ang II-dependent hypertension, but that hypertrophy, down-regulation of AT1R, and cardiac signal transducer and activator of transcription-3 activation are mediated via cognate IL-6R. These data show that IL-6 responses in a single disease context are governed by both modes of IL-6 signaling, with each pathway eliciting different outcomes. Inhibition of IL-6 signaling is suggested as a potential therapy for hypertension and cardiac hypertrophy.
Collapse
Affiliation(s)
- Barbara Coles
- Dept of Medical Biochemistry and Immunology, Heath Park, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
17
|
Manhiani MM, Quigley JE, Socha MJ, Motamed K, Imig JD. IL6 suppression provides renal protection independent of blood pressure in a murine model of salt-sensitive hypertension. Kidney Blood Press Res 2007; 30:195-202. [PMID: 17575466 DOI: 10.1159/000104094] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 03/19/2007] [Indexed: 11/19/2022] Open
Abstract
Impaired cytochrome P450 epoxygenase enzyme (Cyp2c) regulation contributes to renal damage in angiotensin salt-sensitive hypertension (ANG/HS). We hypothesized that interleukin-6 null mice (IL6-/-) would improve Cyp2c regulation and reduce renal damage in hypertensive mice fed a high salt diet. Systolic blood pressure increased to a greater extent in ANG/HS hypertension as compared to angiotensin (ANG) hypertension but blood pressure did not differ between WT and IL6-/- hypertensive groups. Albuminuria, a marker for renal injury, increased significantly in ANG/HS hypertension in WT mice (5,113 +/- 1,050 mug/day) and was attenuated in the ANG/HS IL6-/- group (1,306 +/- 385 mug/day). Renal Cyp2c protein expression significantly decreased with ANG/HS hypertension in WT mice as compared to high salt alone. However, the ability to upregulate Cyp2c expression in response to a high salt diet was restored in the ANG/HS IL6 deficient hypertensive mice. Renal expression of soluble epoxide hydrolase, which inactivates protective epoxygenase metabolites, was significantly reduced in ANG/HS IL6-/- hypertensive mice compared to the ANG/HS WT group. These data suggest that IL6, while having no effect on blood pressure, impairs regulation of epoxygenase producing Cyp2c, which could contribute to the development of renal injury in angiotensin salt-sensitive hypertension.
Collapse
Affiliation(s)
- M M Manhiani
- Department of Vascular Biology, Medical College of Georgia, Augusta, GA, USA
| | | | | | | | | |
Collapse
|
18
|
Fischer P, Hilfiker-Kleiner D. Survival pathways in hypertrophy and heart failure: the gp130-STAT3 axis. Basic Res Cardiol 2007; 102:279-97. [PMID: 17530315 DOI: 10.1007/s00395-007-0658-z] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 12/26/2022]
Abstract
Circulating levels of interleukin (IL)-6 and related cytokines are elevated in patients with congestive heart failure and after myocardial infarction. Serum IL-6 concentrations are related to decreasing functional status of these patients and provide important prognostic information.Moreover, in the failing human heart, multiple components of the IL-6- glycoprotein (gp)130 receptor system are impaired, implicating an important role of this system in cardiac pathophysiology.Experimental studies have shown that the common receptor subunit of IL-6 cytokines is phosphorylated in response to pressure overload and myocardial infarction and that it subsequently activates at least three different downstream signaling pathways, the signal transducers and activators of transcription 1 and 3 (STAT1/3), the Src-homology tyrosine phosphatase 2 (SHP2)-Ras-ERK, and the PI3K-Akt system. Gp130 receptor mediated signaling promotes cardiomyocyte survival, induces hypertrophy, modulates cardiac extracellular matrix and cardiac function. In this regard, the gp130 receptor system and its main downstream mediator STAT3 play a key role in cardioprotection. This review summarizes the current knowledge of IL-6 cytokines, gp130 receptor and STAT3 signaling in the heart exposed to physiological (aging, pregnancy) and pathophysiological stress (ischemia, pressure overload, inflammation and cardiotoxic agents) with a special focus on the potential role of individual IL-6 cytokines.
Collapse
Affiliation(s)
- P Fischer
- Dept. of Cardiology & Angiology, Medical School Hannover, Hannover, Germany
| | | |
Collapse
|
19
|
|
20
|
Terrell AM, Crisostomo PR, Wairiuko GM, Wang M, Morrell ED, Meldrum DR. Jak/STAT/SOCS signaling circuits and associated cytokine-mediated inflammation and hypertrophy in the heart. Shock 2006; 26:226-34. [PMID: 16912647 DOI: 10.1097/01.shk.0000226341.32786.b9] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cytokines are important mediators of cardiac disease. Accumulating evidence indicates that members of the interleukin-6 family of cytokines promote cardiac hypertrophy through the activation of the Janus kinase-signal transducer and activator of transcription (Jak/STAT) pathway. Aberrant Jak/STAT signaling may promote progression from hypertrophy to heart failure. Suppressor of cytokine signaling (SOCS) proteins are underexplored, negative regulators of Jak/STAT signaling. SOCS proteins may also interact with other inflammatory pathways known to affect cardiac function. A better understanding of the therapeutic potential of these proteins may lead to the controlled progression of heart failure and the limitation of myocardial depression. This review summarizes the cardiophysiological effect of the IL-6 cytokine family, outlines the mechanistic pathway of Jak/STAT signaling, explores the regulatory role of SOCS proteins in the heart, and discusses the potential of using SOCS proteins clinically.
Collapse
Affiliation(s)
- Andrew M Terrell
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | | | | |
Collapse
|
21
|
Cerutti C, Kurdi M, Bricca G, Hodroj W, Paultre C, Randon J, Gustin MP. Transcriptional alterations in the left ventricle of three hypertensive rat models. Physiol Genomics 2006; 27:295-308. [PMID: 16882881 DOI: 10.1152/physiolgenomics.00318.2005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Left ventricular hypertrophy (LVH) is commonly associated with hypertension and represents an independent cardiovascular risk factor. The aim of this study was to test the hypothesis that the cardiac overload related to hypertension is associated to a specific gene expression pattern independently of genetic background. Gene expression levels were obtained with microarrays for 15,866 transcripts from RNA of left ventricles from 12-wk-old rats of three hypertensive models [spontaneously hypertensive rat (SHR), Lyon hypertensive rat (LH), and heterozygous TGR(mRen2)27 rat] and their respective controls. More than 60% of the detected transcripts displayed significant changes between the three groups of normotensive rats, showing large interstrain variability. Expression data were analyzed with respect to hypertension, LVH, and chromosomal distribution. Only four genes had significantly modified expression in the three hypertensive models among which a single gene, coding for sialyltransferase 7A, was consistently overexpressed. Correlation analysis between expression data and left ventricular mass index (LVMI) over all rats identified a larger set of genes whose expression was continuously related with LVMI, including known genes associated with cardiac remodeling. Positioning the detected transcripts along the chromosomes pointed out high-density regions mostly located within blood pressure and cardiac mass quantitative trait loci. Although our study could not detect a unique reprogramming of cardiac cells involving specific genes at early stage of LVH, it allowed the identification of some genes associated with LVH regardless of genetic background. This study thus provides a set of potentially important genes contained within restricted chromosomal regions involved in cardiovascular diseases.
Collapse
Affiliation(s)
- Catherine Cerutti
- Equipe d'Accueil 3740 Génomique fonctionnelle dans l'athérothrombose, Université Lyon 1, Lyon, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Ziegelhöffer-Mihalovicova B, Arnold N, Marx G, Tannapfel A, Zimmer HG, Rassler B. Effects of salt loading and various therapies on cardiac hypertrophy and fibrosis in young spontaneously hypertensive rats. Life Sci 2006; 79:838-46. [PMID: 16624325 DOI: 10.1016/j.lfs.2006.02.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2005] [Revised: 01/20/2006] [Accepted: 02/28/2006] [Indexed: 11/16/2022]
Abstract
We investigated the effects of salt loading on blood pressure, cardiac hypertrophy and fibrosis as well as on the effectiveness of various antihypertensive therapies in young spontaneously hypertensive rats (SHR). Twenty-five male SHR were salt-stimulated by drinking 1% NaCl from 3 to 6 months of age. Eighteen of them were treated for the last 2 weeks of salt loading with either the angiotensin-converting enzyme inhibitor captopril, the beta-adrenergic receptor blocker propranolol or the calcium-channel antagonist verapamil. Age-matched male Wistar-Kyoto (WKY) rats and SHR drinking only water served as controls. At the age of 6 months, SHR had significantly elevated blood pressure that was unchanged by salt loading. Relative heart weight was increased in SHR without (3.3) and even more so with salt intake (3.6 vs. 2.4 in WKY). Left ventricular (LV) hypertrophy was accompanied by a 17-fold increase in the expression of mRNA for atrial natriuretic factor (ANF) both in untreated and salt-loaded SHR compared to WKY (p<0.001). Collagen I and III mRNA increased 1.7-1.8-fold in SHR without and with additional salt intake (p<0.01). None of the therapies significantly reduced blood pressure or hypertrophy. Although captopril had no antihypertensive effect, it reduced ANF, collagen I and III mRNA in LV to control level. Less pronounced effects were achieved with verapamil. These findings emphasize the cardioprotective role of captopril which may not be fully expressed in the presence of elevated salt intake.
Collapse
|
23
|
Mohri T, Fujio Y, Maeda M, Ito T, Iwakura T, Oshima Y, Uozumi Y, Segawa M, Yamamoto H, Kishimoto T, Azuma J. Leukemia inhibitory factor induces endothelial differentiation in cardiac stem cells. J Biol Chem 2005; 281:6442-7. [PMID: 16407199 DOI: 10.1074/jbc.m508969200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The importance of interleukin 6 (IL-6)-related cytokines in cardiac homeostasis has been studied extensively; however, little is known about their biological significance in cardiac stem cells. Here we describe that leukemia inhibitory factor (LIF), a member of IL-6-related cytokines, activated STAT3 and ERK1/2 in cardiac Sca-1+ stem cells. LIF stimulation resulted in the induction of endothelial cell-specific genes, including VE-cadherin, Flk-1, and CD31, whereas neither smooth muscle nor cardiac muscle marker genes such as GATA4, GATA6, Nkx-2.5, and calponin were up-regulated. Immunocytochemical examination showed that about 25% of total cells were positively stained with anti-CD31 antibody 14 days after LIF stimulation. Immunofluorescent microscopic analyses identified the Sca-1+ cells that were also positively stained with anti-von Willebrand factor antibody, indicating the differentiating process of Sca-1+ cells into the endothelial cells. IL-6, which did not activate STAT3 and ERK1/2, failed to induce the differentiation of cardiac stem cells into the endothelial cells. In cardiac stem cells, the transduction with dominant negative STAT3 abrogated the LIF-induced endothelial differentiation. And the inhibition of ERK1/2 with the MEK1/2 inhibitor U0126 also prevented the differentiation of Sca-1+ cells into endothelial cells. Thus, both STAT3 and ERK1/2 are required for LIF-mediated endothelial differentiation in cardiac stem cells. Collectively, it is proposed that LIF regulates the commitment of cardiac stem cells into the endothelial cell lineage, contributing to neovascularization in the process of tissue remodeling and/or regeneration.
Collapse
Affiliation(s)
- Tomomi Mohri
- Department of Clinical Evaluation of Medicines and Therapeutics, Graduate School of Pharmaceutical Sciences, Osaka University, Suita City, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
González A, López B, Martín-Raymondi D, Lozano E, Varo N, Barba J, Serrano M, Díez J. Usefulness of plasma cardiotrophin-1 in assessment of left ventricular hypertrophy regression in hypertensive patients. J Hypertens 2005; 23:2297-304. [PMID: 16269972 DOI: 10.1097/01.hjh.0000184406.12634.f9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE We investigated whether regression of left ventricular hypertrophy (LVH) in response to antihypertensive treatment is associated with plasma cardiotrophin-1 (CT-1) in hypertensive patients. METHODS The study was performed in 47 patients with mild to moderate essential hypertension, and LVH was assessed echocardiographically. The family doctor gave antihypertensive treatment and followed all patients. LVH regression was diagnosed if the baseline left ventricular mass index (LVMI) decreased to normal values after 1 year of treatment. Plasma CT-1 was determined by an enzyme-linked immunosorbent assay. RESULTS The LVMI was normalized in 23 patients (49%) and persisted at an abnormally increased level in 24 patients (51%) after 1 year of treatment, whereas the reduction in clinic and home blood pressure was similar in the two groups: CT-1 decreased (-48%, P < 0.005) and increased (+35%, P < 0.05) in patients in whom LVH regressed and LVH persisted, respectively. Final values of CT-1 were inversely correlated (r = 0.534, P < 0.001) with the decrease in LVMI after treatment in all patients. A significant association (chi2 = 16.87, P < 0.001) was found between normalization of CT-1 and regression of LVH with treatment. A cut-off value of 41 fmol/ml for CT-1 provided a relative risk of 43.13 (95% confidence interval, 4.88-380.48) for detecting LVH regression. CONCLUSION These results show an association between treatment-induced decrease of plasma CT-1 and LVH regression in essential hypertension. Although preliminary, these findings suggest that the determination of plasma CT-1 may be useful for the follow-up of hypertensive heart disease in routine clinical practice.
Collapse
Affiliation(s)
- Arantxa González
- Division of Cardiovascular Pathophysiology, Centre for Applied Medical Research, School of Medicine, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Abstract
The role of cytokines in the pathogenesis of cardiovascular disease is increasingly evident since the identification of immune/inflammatory mechanisms in atherosclerosis and heart failure. In this review, we describe how innate and adaptive immune cascades trigger the release of cytokines and chemokines, resulting in the initiation and progression of atherosclerosis. We discuss how cytokines have direct and indirect effects on myocardial function. These include myocardial depressant effects of nitric oxide (NO) synthase-generated NO, as well as the biochemical effects of cytokine-stimulated arachidonic acid metabolites on cardiomyocytes. Cytokine influences on myocardial function are time-, concentration-, and subtype-specific. We provide a comprehensive review of these cytokine-mediated immune and inflammatory cascades implicated in the most common forms of cardiovascular disease.
Collapse
Affiliation(s)
- Vishal C Mehra
- Section of Cardiovascular Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|