1
|
Lv T, Liu C, Ye M, Li G, Liu Z. Ketone therapy improves cardiac function and structure in rodents with heart failure: A systematic review and meta-analysis. Nutr Res 2025; 137:56-70. [PMID: 40252394 DOI: 10.1016/j.nutres.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 03/20/2025] [Accepted: 03/20/2025] [Indexed: 04/21/2025]
Abstract
This meta-analysis aimed to quantitatively assess the effects of ketone intervention on cardiac function and structure in rodents with heart failure (HF). We hypothesized that ketone intervention could enhance the cardiac function and structure in HF. We systematically searched PubMed, Cochrane Library, and Embase databases for relevant studies up to April 13, 2024. Ketone therapy encompassed a ketogenic diet, ketone esters, medium-chain triglycerides, and β-hydroxybutyrate. The effect measures are mainly expressed as standardized mean difference (SMD) and 95% confidence interval (CI). Our meta-analysis included 24 animal studies. Ketone therapy significantly improved left ventricular ejection fraction (SMD: 1.31, 95% CI: 0.79-1.82, I2 = 77%), cardiac output (SMD: 0.70, 95% CI: 0.28-1.11, I2 = 0%), and ameliorated myocardial hypertrophy (SMD: -1.95, 95% CI: -2.76 to -1.13, I2 = 76%), myocardial fibrosis (SMD: -0.87, 95% CI: -1.60 to -0.15, I2 = 68%), and ventricular remodeling in HF rodents. Subgroup analysis indicated that ketone intervention worsened myocardial fibrosis in non-HF rodents (SMD: 0.86, 95% CI: 0.09-1.63, I2 = 78%) and had no significant effect on cardiac function. Additionally, further subgroup analysis indicated that ketogenic diet significantly alleviated cardiac hypertrophy and fibrosis, whereas ketone esters did not yield significant effects. The effect of ketone on left ventricular ejection fraction strengthened with the duration of intervention. Our results suggested that ketone therapy significantly improved the cardiac systolic function and structure in rodents with HF, and had no effect in rodents non-HF. Thus, ketone intervention may be a promising treatment for HF patients.
Collapse
Affiliation(s)
- Tingting Lv
- Department of General Practice, Shaoxing People's Hospital, Shaoxing, PR China; Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| | - Chunyan Liu
- Department of Infection Management, Shaoxing People's Hospital, Shaoxing, PR China.
| | - Mengfei Ye
- Department of Psychiatry, Shaoxing Seventh People's Hospital (Affiliated Mental Health Center, Medical College of Shaoxing University), Shaoxing, Zhejiang, PR China
| | - Gang Li
- Department of General Practice, Shaoxing People's Hospital, Shaoxing, PR China
| | - Zheng Liu
- Department of Pharmacology, School of Medicine, Shaoxing University, Shaoxing, Zhejiang, PR China
| |
Collapse
|
2
|
Sun Q, Karwi QG, Wong N, Lopaschuk GD. Advances in myocardial energy metabolism: metabolic remodelling in heart failure and beyond. Cardiovasc Res 2024; 120:1996-2016. [PMID: 39453987 PMCID: PMC11646102 DOI: 10.1093/cvr/cvae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/28/2024] [Accepted: 07/03/2024] [Indexed: 10/27/2024] Open
Abstract
The very high energy demand of the heart is primarily met by adenosine triphosphate (ATP) production from mitochondrial oxidative phosphorylation, with glycolysis providing a smaller amount of ATP production. This ATP production is markedly altered in heart failure, primarily due to a decrease in mitochondrial oxidative metabolism. Although an increase in glycolytic ATP production partly compensates for the decrease in mitochondrial ATP production, the failing heart faces an energy deficit that contributes to the severity of contractile dysfunction. The relative contribution of the different fuels for mitochondrial ATP production dramatically changes in the failing heart, which depends to a large extent on the type of heart failure. A common metabolic defect in all forms of heart failure [including heart failure with reduced ejection fraction (HFrEF), heart failure with preserved EF (HFpEF), and diabetic cardiomyopathies] is a decrease in mitochondrial oxidation of pyruvate originating from glucose (i.e. glucose oxidation). This decrease in glucose oxidation occurs regardless of whether glycolysis is increased, resulting in an uncoupling of glycolysis from glucose oxidation that can decrease cardiac efficiency. The mitochondrial oxidation of fatty acids by the heart increases or decreases, depending on the type of heart failure. For instance, in HFpEF and diabetic cardiomyopathies myocardial fatty acid oxidation increases, while in HFrEF myocardial fatty acid oxidation either decreases or remains unchanged. The oxidation of ketones (which provides the failing heart with an important energy source) also differs depending on the type of heart failure, being increased in HFrEF, and decreased in HFpEF and diabetic cardiomyopathies. The alterations in mitochondrial oxidative metabolism and glycolysis in the failing heart are due to transcriptional changes in key enzymes involved in the metabolic pathways, as well as alterations in redox state, metabolic signalling and post-translational epigenetic changes in energy metabolic enzymes. Of importance, targeting the mitochondrial energy metabolic pathways has emerged as a novel therapeutic approach to improving cardiac function and cardiac efficiency in the failing heart.
Collapse
Affiliation(s)
- Qiuyu Sun
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Qutuba G Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, Saint John’s, NL A1B 3V6, Canada
| | - Nathan Wong
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Gary D Lopaschuk
- Cardiovascular Research Center, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
3
|
Khouri H, Roberge M, Ussher JR, Aguer C. Acetoacetate and d- and l-β-hydroxybutyrate have distinct effects on basal and insulin-stimulated glucose uptake in L6 skeletal muscle cells. Am J Physiol Cell Physiol 2024; 326:C1710-C1720. [PMID: 38708524 DOI: 10.1152/ajpcell.00718.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/25/2024] [Indexed: 05/07/2024]
Abstract
Ketone bodies (acetoacetate and β-hydroxybutyrate) are oxidized in skeletal muscle mainly during fasting as an alternative source of energy to glucose. Previous studies suggest that there is a negative relationship between increased muscle ketolysis and muscle glucose metabolism in mice with obesity and/or type 2 diabetes. Therefore, we investigated the connection between increased ketone body exposure and muscle glucose metabolism by measuring the effect of a 3-h exposure to ketone bodies on glucose uptake in differentiated L6 myotubes. We showed that exposure to acetoacetate at a typical concentration (0.2 mM) resulted in increased basal glucose uptake in L6 myotubes, which was dependent on increased membrane glucose transporter type 4 (GLUT4) translocation. Basal and insulin-stimulated glucose uptake was also increased with a concentration of acetoacetate reflective of diabetic ketoacidosis or a ketogenic diet (1 mM). We found that β-hydroxybutyrate had a variable effect on basal glucose uptake: a racemic mixture of the two β-hydroxybutyrate enantiomers (d and l) appeared to decrease basal glucose uptake, while 3 mM d-β-hydroxybutyrate alone increased basal glucose uptake. However, the effects of the ketone bodies individually were not observed when acetoacetate was present in combination with β-hydroxybutyrate. These results provide insight that will help elucidate the effect of ketone bodies in the context of specific metabolic diseases and nutritional states (e.g., type 2 diabetes and ketogenic diets).NEW & NOTEWORTHY A limited number of studies investigate the effect of ketone bodies at concentrations reflective of both typical fasting and ketoacidosis. We tested a mix of physiologically relevant concentrations of ketone bodies, which allowed us to highlight the differential effects of d- and l-β-hydroxybutyrate and acetoacetate on skeletal muscle cell glucose uptake. Our findings will assist in better understanding the mechanisms that contribute to muscle insulin resistance and provide guidance on recommendations regarding ketogenic diets.
Collapse
Affiliation(s)
- Hannah Khouri
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort - recherche, Ottawa, Ontario, Canada
| | - Mathilde Roberge
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort - recherche, Ottawa, Ontario, Canada
| | - John R Ussher
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Céline Aguer
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Institut du Savoir Montfort - recherche, Ottawa, Ontario, Canada
- Department of Physiology, Faculty of Medicine and Health Sciences, McGill University - Campus Outaouais, Gatineau, Quebec, Canada
| |
Collapse
|
4
|
Niezen S, Connelly MA, Hirsch C, Kizer JR, Benitez ME, Minchenberg S, Perez‐Matos MC, Jiang ZG, Mukamal KJ. Elevated Plasma Levels of Ketone Bodies Are Associated With All-Cause Mortality and Incidence of Heart Failure in Older Adults: The CHS. J Am Heart Assoc 2023; 12:e029960. [PMID: 37609928 PMCID: PMC10547348 DOI: 10.1161/jaha.123.029960] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/20/2023] [Indexed: 08/24/2023]
Abstract
Background Chronic disease, such as heart failure, influences cellular metabolism and shapes circulating metabolites. The relationships between key energy metabolites and chronic diseases in aging are not well understood. This study aims to determine the relationship between main components of energy metabolism with all-cause mortality and incident heart failure. Methods and Results We analyzed the association between plasma metabolite levels with all-cause mortality and incident heart failure among US older adults in the CHS (Cardiovascular Health Study). We followed 1758 participants without heart failure at baseline with hazard ratios (HRs) of analyte levels and metabolic profiles characterized by high levels of ketone bodies for all-cause mortality and incident heart failure. Multivariable Cox analyses revealed a dose-response relationship of 50% increase in all-cause mortality between lowest and highest quintiles of ketone body concentrations (HR, 1.5 [95% CI, 1.0-1.9]; P=0.007). Ketone body levels remained associated with incident heart failure after adjusting for cardiovascular disease confounders (HR, 1.2 [95% CI, 1.0-1.3]; P=0.02). Using K-means cluster analysis, we identified a cluster with higher levels of ketone bodies, citrate, interleukin-6, and B-type natriuretic peptide but lower levels of pyruvate, body mass index, and estimated glomerular filtration rate. The cluster with elevated ketone body levels was associated with higher all-cause mortality (HR, 1.7 [95% CI, 1.1-2.7]; P=0.01). Conclusions Higher concentrations of ketone bodies predict incident heart failure and all-cause mortality in an older US population, independent of metabolic and cardiovascular confounders. This association suggests a potentially important relationship between ketone body metabolism and aging.
Collapse
Affiliation(s)
- Sebastian Niezen
- Department of MedicineUniversity of Pittsburgh Medical Center, University of PittsburghPittsburghPA
| | | | - Calvin Hirsch
- Department of General Internal MedicineUniversity of California Davis HealthSacramentoCA
| | - Jorge R. Kizer
- Cardiac Section, San Francisco Veterans Affairs Health Care System, Departments of Medicine, and Epidemiology and BiostatisticsUniversity of California San FranciscoSan FranciscoCA
| | - Maria E. Benitez
- Department of Internal MedicineAdvocate Illinois Masonic Medical CenterChicagoIL
| | - Scott Minchenberg
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | | | - Zhenghui Gordon Jiang
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| | - Kenneth J. Mukamal
- Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA
| |
Collapse
|
5
|
Low V, Li Z, Blenis J. Metabolite activation of tumorigenic signaling pathways in the tumor microenvironment. Sci Signal 2022; 15:eabj4220. [DOI: 10.1126/scisignal.abj4220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of metabolites exchanged in the tumor microenvironment is largely thought of as fuels to drive the increased biosynthetic and bioenergetic demands of growing tumors. However, this view is shifting as metabolites are increasingly shown to function as signaling molecules that directly regulate oncogenic pathways. Combined with our growing understanding of the essential role of stromal cells, this shift has led to increased interest in how the collective and interconnected metabolome of the tumor microenvironment can drive malignant transformation, epithelial-to-mesenchymal transition, drug resistance, immune evasion, and metastasis. In this review, we discuss how metabolite exchange between tumors and various cell types in the tumor microenvironment—such as fibroblasts, adipocytes, and immune cells—can activate signaling pathways that drive cancer progression.
Collapse
Affiliation(s)
- Vivien Low
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Zhongchi Li
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| | - John Blenis
- Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
6
|
High-Fat Diet-Induced Fatty Liver Is Associated with Immunosuppressive Response during Sepsis in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5833857. [PMID: 34925696 PMCID: PMC8674062 DOI: 10.1155/2021/5833857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
High-fat diet-induced fatty liver is an indolent and chronic disease accompanied by immune dysfunction and metabolic disturbances involving numerous biological pathways. This study investigated how this abnormal metabolic disorder influences sepsis in mice. Mice were fed with normal chow (NC) or high-fat diet (HFD), and palmitic acid (PA) was used to treat hepatocytes to mimic fat accumulation in vitro. Lipopolysaccharide (LPS) was used to induce sepsis and related immune responses. Mice fed on a high-fat diet displayed higher mortality and more severe liver damage but compromised immunoreaction. The supernatant from PA-treated primary hepatocytes markedly diminished the inflammatory cytokine expression of macrophages after LPS stimulation, which showed a state of immunosuppression. Metabolomics analysis indicated the level of many key metabolites with possible roles in immunoreaction was altered in the HFD and PA groups compared with corresponding controls; specifically, β-hydroxybutyric acid (BHB) showed an immunosuppressive effect on Raw264.7 cells during the LPS stimulation. Transcriptomic analysis suggested that several differential signaling pathways may be associated with the alteration of immune function between the NC and HFD groups, as well as in the in vitro model. Our study suggests that the consumption of HFD may alter the hepatic metabolic profile, and that certain metabolites may remold the immune system to immunosuppressive state in the context of sepsis.
Collapse
|
7
|
Sithara T, Drosatos K. Metabolic Complications in Cardiac Aging. Front Physiol 2021; 12:669497. [PMID: 33995129 PMCID: PMC8116539 DOI: 10.3389/fphys.2021.669497] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Aging is a process that can be accompanied by molecular and cellular alterations that compromise cardiac function. Although other metabolic disorders with increased prevalence in aged populations, such as diabetes mellitus, dyslipidemia, and hypertension, are associated with cardiovascular complications; aging-related cardiomyopathy has some unique features. Healthy hearts oxidize fatty acids, glucose, lactate, ketone bodies, and amino acids for producing energy. Under physiological conditions, cardiac mitochondria use fatty acids and carbohydrate mainly to generate ATP, 70% of which is derived from fatty acid oxidation (FAO). However, relative contribution of nutrients in ATP synthesis is altered in the aging heart with glucose oxidation increasing at the expense of FAO. Cardiac aging is also associated with impairment of mitochondrial abundance and function, resulting in accumulation of reactive oxygen species (ROS) and activation of oxidant signaling that eventually leads to further mitochondrial damage and aggravation of cardiac function. This review summarizes the main components of pathophysiology of cardiac aging, which pertain to cardiac metabolism, mitochondrial function, and systemic metabolic changes that affect cardiac function.
Collapse
Affiliation(s)
- Thomas Sithara
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Konstantinos Drosatos
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|
8
|
Fernandez-Caggiano M, Eaton P. Heart failure-emerging roles for the mitochondrial pyruvate carrier. Cell Death Differ 2021; 28:1149-1158. [PMID: 33473180 PMCID: PMC8027425 DOI: 10.1038/s41418-020-00729-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/14/2020] [Accepted: 12/27/2020] [Indexed: 01/30/2023] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is the entry point for the glycolytic end-product pyruvate to the mitochondria. MPC activity, which is controlled by its abundance and post-translational regulation, determines whether pyruvate is oxidised in the mitochondria or metabolised in the cytosol. MPC serves as a crucial metabolic branch point that determines the fate of pyruvate in the cell, enabling metabolic adaptations during health, such as exercise, or as a result of disease. Decreased MPC expression in several cancers limits the mitochondrial oxidation of pyruvate and contributes to lactate accumulation in the cytosol, highlighting its role as a contributing, causal mediator of the Warburg effect. Pyruvate is handled similarly in the failing heart where a large proportion of it is reduced to lactate in the cytosol instead of being fully oxidised in the mitochondria. Several recent studies have found that the MPC abundance was also reduced in failing human and mouse hearts that were characterised by maladaptive hypertrophic growth, emulating the anabolic scenario observed in some cancer cells. In this review we discuss the evidence implicating the MPC as an important, perhaps causal, mediator of heart failure progression.
Collapse
Affiliation(s)
- Mariana Fernandez-Caggiano
- grid.4868.20000 0001 2171 1133The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Philip Eaton
- grid.4868.20000 0001 2171 1133The William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| |
Collapse
|
9
|
Takahara S, Soni S, Maayah ZH, Ferdaoussi M, Dyck JRB. Ketone Therapy for Heart Failure: Current Evidence for Clinical Use. Cardiovasc Res 2021; 118:977-987. [PMID: 33705533 DOI: 10.1093/cvr/cvab068] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/09/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
During conditions that result in depleted circulating glucose levels, ketone bodies synthesized in the liver are necessary fuel substrates for the brain. In other organs such as the heart, the reliance on ketones for generating energy is less life threatening as the heart can utilize alternative fuel sources such as fatty acids. However, during pathophysiological conditions such as heart failure, cardiac defects in metabolic processes that normally allow for sufficient energy production from fatty acids and carbohydrates contribute to a decline in contractile function. As such, it has been proposed that the failing heart relies more on ketone bodies as an energy source than previously appreciated. Furthermore, it has been suggested that ketone bodies may function as signaling molecules that can suppress systemic and cardiac inflammation. Thus, it is possible that intentionally elevating circulating ketones may be beneficial as an adjunct treatment for heart failure. Although many approaches can be used for 'ketone therapy', each of these has their own advantages and disadvantages in the treatment of heart failure. Thus, we summarize current preclinical and clinical studies involving various types of ketone therapy in cardiac disease and discuss the advantages and disadvantages of each modality as possible treatments for heart failure.
Collapse
Affiliation(s)
- Shingo Takahara
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Shubham Soni
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Zaid H Maayah
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Mourad Ferdaoussi
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Jason R B Dyck
- Cardiovascular Research Centre, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Brahma MK, Wende AR, McCommis KS. CrossTalk opposing view: Ketone bodies are not an important metabolic fuel for the heart. J Physiol 2021; 600:1005-1007. [PMID: 33644874 DOI: 10.1113/jp281005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Manoja K Brahma
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Adam R Wende
- Division of Molecular & Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Kyle S McCommis
- Biochemistry & Molecular Biology, Saint Louis University School of Medicine, St Louis, MO, USA
| |
Collapse
|
11
|
Lopaschuk GD, Karwi QG, Ho KL, Pherwani S, Ketema EB. Ketone metabolism in the failing heart. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158813. [PMID: 32920139 DOI: 10.1016/j.bbalip.2020.158813] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/26/2020] [Accepted: 09/05/2020] [Indexed: 12/13/2022]
Abstract
The high energy demands of the heart are met primarily by the mitochondrial oxidation of fatty acids and glucose. However, in heart failure there is a decrease in cardiac mitochondrial oxidative metabolism and glucose oxidation that can lead to an energy starved heart. Ketone bodies are readily oxidized by the heart, and can provide an additional source of energy for the failing heart. Ketone oxidation is increased in the failing heart, which may be an adaptive response to lessen the severity of heart failure. While ketone have been widely touted as a "thrifty fuel", increasing ketone oxidation in the heart does not increase cardiac efficiency (cardiac work/oxygen consumed), but rather does provide an additional fuel source for the failing heart. Increasing ketone supply to the heart and increasing mitochondrial ketone oxidation increases mitochondrial tricarboxylic acid cycle activity. In support of this, increasing circulating ketone by iv infusion of ketone bodies acutely improves heart function in heart failure patients. Chronically, treatment with sodium glucose co-transporter 2 inhibitors, which decreases the severity of heart failure, also increases ketone body supply to the heart. While ketogenic diets increase circulating ketone levels, minimal benefit on cardiac function in heart failure has been observed, possibly due to the fact that these dietary regimens also markedly increase circulating fatty acids. Recent studies, however, have suggested that administration of ketone ester cocktails may improve cardiac function in heart failure. Combined, emerging data suggests that increasing cardiac ketone oxidation may be a therapeutic strategy to treat heart failure.
Collapse
Affiliation(s)
- Gary D Lopaschuk
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada.
| | - Qutuba G Karwi
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada; Department of Pharmacology, College of Medicine, University of Diyala, Diyala, Iraq
| | - Kim L Ho
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Pherwani
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| | - Ezra B Ketema
- Cardiovascular Research Centre, Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
12
|
Brahma MK, Ha C, Pepin ME, Mia S, Sun Z, Chatham JC, Habegger KM, Abel ED, Paterson AJ, Young ME, Wende AR. Increased Glucose Availability Attenuates Myocardial Ketone Body Utilization. J Am Heart Assoc 2020; 9:e013039. [PMID: 32750298 PMCID: PMC7792234 DOI: 10.1161/jaha.119.013039] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Background Perturbations in myocardial substrate utilization have been proposed to contribute to the pathogenesis of cardiac dysfunction in diabetic subjects. The failing heart in nondiabetics tends to decrease reliance on fatty acid and glucose oxidation, and increases reliance on ketone body oxidation. In contrast, little is known regarding the mechanisms mediating this shift among all 3 substrates in diabetes mellitus. Therefore, we tested the hypothesis that changes in myocardial glucose utilization directly influence ketone body catabolism. Methods and Results We examined ventricular-cardiac tissue from the following murine models: (1) streptozotocin-induced type 1 diabetes mellitus; (2) high-fat-diet-induced glucose intolerance; and transgenic inducible cardiac-restricted expression of (3) glucose transporter 4 (transgenic inducible cardiac restricted expression of glucose transporter 4); or (4) dominant negative O-GlcNAcase. Elevated blood glucose (type 1 diabetes mellitus and high-fat diet mice) was associated with reduced cardiac expression of β-hydroxybutyrate-dehydrogenase and succinyl-CoA:3-oxoacid CoA transferase. Increased myocardial β-hydroxybutyrate levels were also observed in type 1 diabetes mellitus mice, suggesting a mismatch between ketone body availability and utilization. Increased cellular glucose delivery in transgenic inducible cardiac restricted expression of glucose transporter 4 mice attenuated cardiac expression of both Bdh1 and Oxct1 and reduced rates of myocardial BDH1 activity and β-hydroxybutyrate oxidation. Moreover, elevated cardiac protein O-GlcNAcylation (a glucose-derived posttranslational modification) by dominant negative O-GlcNAcase suppressed β-hydroxybutyrate dehydrogenase expression. Consistent with the mouse models, transcriptomic analysis confirmed suppression of BDH1 and OXCT1 in patients with type 2 diabetes mellitus and heart failure compared with nondiabetic patients. Conclusions Our results provide evidence that increased glucose leads to suppression of cardiac ketolytic capacity through multiple mechanisms and identifies a potential crosstalk between glucose and ketone body metabolism in the diabetic myocardium.
Collapse
Affiliation(s)
- Manoja K. Brahma
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
| | - Chae‐Myeong Ha
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
| | - Mark E. Pepin
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
- Biomedical EngineeringUniversity of Alabama at BirminghamALUSA
| | - Sobuj Mia
- Medicine, Division of Cardiovascular DiseasesUniversity of Alabama at BirminghamALUSA
| | - Zhihuan Sun
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
| | - John C. Chatham
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
| | - Kirk M. Habegger
- Medicine, Division of Endocrinology, Diabetes, and MetabolismUniversity of Alabama at BirminghamALUSA
| | - Evan Dale Abel
- Fraternal Order of Eagles Diabetes Research Center and Division of Endocrinology and MetabolismCarver College of MedicineUniversity of IowaIowa CityIAUSA
| | - Andrew J. Paterson
- Medicine, Division of Endocrinology, Diabetes, and MetabolismUniversity of Alabama at BirminghamALUSA
| | - Martin E. Young
- Medicine, Division of Cardiovascular DiseasesUniversity of Alabama at BirminghamALUSA
| | - Adam R. Wende
- Departments of PathologyDivision of Molecular and Cellular PathologyUniversity of Alabama at BirminghamALUSA
- Biomedical EngineeringUniversity of Alabama at BirminghamALUSA
| |
Collapse
|
13
|
Zuurbier CJ, Bertrand L, Beauloye CR, Andreadou I, Ruiz‐Meana M, Jespersen NR, Kula‐Alwar D, Prag HA, Eric Botker H, Dambrova M, Montessuit C, Kaambre T, Liepinsh E, Brookes PS, Krieg T. Cardiac metabolism as a driver and therapeutic target of myocardial infarction. J Cell Mol Med 2020; 24:5937-5954. [PMID: 32384583 PMCID: PMC7294140 DOI: 10.1111/jcmm.15180] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/13/2020] [Accepted: 03/08/2020] [Indexed: 12/11/2022] Open
Abstract
Reducing infarct size during a cardiac ischaemic-reperfusion episode is still of paramount importance, because the extension of myocardial necrosis is an important risk factor for developing heart failure. Cardiac ischaemia-reperfusion injury (IRI) is in principle a metabolic pathology as it is caused by abruptly halted metabolism during the ischaemic episode and exacerbated by sudden restart of specific metabolic pathways at reperfusion. It should therefore not come as a surprise that therapy directed at metabolic pathways can modulate IRI. Here, we summarize the current knowledge of important metabolic pathways as therapeutic targets to combat cardiac IRI. Activating metabolic pathways such as glycolysis (eg AMPK activators), glucose oxidation (activating pyruvate dehydrogenase complex), ketone oxidation (increasing ketone plasma levels), hexosamine biosynthesis pathway (O-GlcNAcylation; administration of glucosamine/glutamine) and deacetylation (activating sirtuins 1 or 3; administration of NAD+ -boosting compounds) all seem to hold promise to reduce acute IRI. In contrast, some metabolic pathways may offer protection through diminished activity. These pathways comprise the malate-aspartate shuttle (in need of novel specific reversible inhibitors), mitochondrial oxygen consumption, fatty acid oxidation (CD36 inhibitors, malonyl-CoA decarboxylase inhibitors) and mitochondrial succinate metabolism (malonate). Additionally, protecting the cristae structure of the mitochondria during IR, by maintaining the association of hexokinase II or creatine kinase with mitochondria, or inhibiting destabilization of FO F1 -ATPase dimers, prevents mitochondrial damage and thereby reduces cardiac IRI. Currently, the most promising and druggable metabolic therapy against cardiac IRI seems to be the singular or combined targeting of glycolysis, O-GlcNAcylation and metabolism of ketones, fatty acids and succinate.
Collapse
Affiliation(s)
- Coert J. Zuurbier
- Department of AnesthesiologyLaboratory of Experimental Intensive Care and AnesthesiologyAmsterdam Infection & ImmunityAmsterdam Cardiovascular SciencesAmsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Luc Bertrand
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
| | - Christoph R. Beauloye
- Institut de Recherche Expérimentale et CliniquePole of Cardiovascular ResearchUniversité catholique de LouvainBrusselsBelgium
- Cliniques Universitaires Saint‐LucBrusselsBelgium
| | - Ioanna Andreadou
- Laboratory of PharmacologyFaculty of PharmacyNational and Kapodistrian University of AthensAthensGreece
| | - Marisol Ruiz‐Meana
- Department of CardiologyHospital Universitari Vall d’HebronVall d’Hebron Institut de Recerca (VHIR)CIBER‐CVUniversitat Autonoma de Barcelona and Centro de Investigación Biomédica en Red‐CVMadridSpain
| | | | | | - Hiran A. Prag
- Department of MedicineUniversity of CambridgeCambridgeUK
| | - Hans Eric Botker
- Department of CardiologyAarhus University HospitalAarhus NDenmark
| | - Maija Dambrova
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Christophe Montessuit
- Department of Pathology and ImmunologyUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Tuuli Kaambre
- Laboratory of Chemical BiologyNational Institute of Chemical Physics and BiophysicsTallinnEstonia
| | - Edgars Liepinsh
- Pharmaceutical PharmacologyLatvian Institute of Organic SynthesisRigaLatvia
| | - Paul S. Brookes
- Department of AnesthesiologyUniversity of Rochester Medical CenterRochesterNYUSA
| | - Thomas Krieg
- Department of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
14
|
Renguet E, Ginion A, Gélinas R, Bultot L, Auquier J, Robillard Frayne I, Daneault C, Vanoverschelde JL, Des Rosiers C, Hue L, Horman S, Beauloye C, Bertrand L. Metabolism and acetylation contribute to leucine-mediated inhibition of cardiac glucose uptake. Am J Physiol Heart Circ Physiol 2017. [PMID: 28646031 DOI: 10.1152/ajpheart.00738.2016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
High plasma leucine levels strongly correlate with type 2 diabetes. Studies of muscle cells have suggested that leucine alters the insulin response for glucose transport by activating an insulin-negative feedback loop driven by the mammalian target of rapamycin/p70 ribosomal S6 kinase (mTOR/p70S6K) pathway. Here, we examined the molecular mechanism involved in leucine's action on cardiac glucose uptake. Leucine was indeed able to curb glucose uptake after insulin stimulation in both cultured cardiomyocytes and perfused hearts. Although leucine activated mTOR/p70S6K, the mTOR inhibitor rapamycin did not prevent leucine's inhibitory action on glucose uptake, ruling out the contribution of the insulin-negative feedback loop. α-Ketoisocaproate, the first metabolite of leucine catabolism, mimicked leucine's effect on glucose uptake. Incubation of cardiomyocytes with [13C]leucine ascertained its metabolism to ketone bodies (KBs), which had a similar negative impact on insulin-stimulated glucose transport. Both leucine and KBs reduced glucose uptake by affecting translocation of glucose transporter 4 (GLUT4) to the plasma membrane. Finally, we found that leucine elevated the global protein acetylation level. Pharmacological inhibition of lysine acetyltransferases counteracted this increase in protein acetylation and prevented leucine's inhibitory action on both glucose uptake and GLUT4 translocation. Taken together, these results indicate that leucine metabolism into KBs contributes to inhibition of cardiac glucose uptake by hampering the translocation of GLUT4-containing vesicles via acetylation. They offer new insights into the establishment of insulin resistance in the heart.NEW & NOTEWORTHY Catabolism of the branched-chain amino acid leucine into ketone bodies efficiently inhibits cardiac glucose uptake through decreased translocation of glucose transporter 4 to the plasma membrane. Leucine increases protein acetylation. Pharmacological inhibition of acetylation reverses leucine's action, suggesting acetylation involvement in this phenomenon.Listen to this article's corresponding podcast at http://ajpheart.podbean.com/e/leucine-metabolism-inhibits-cardiac-glucose-uptake/.
Collapse
Affiliation(s)
- Edith Renguet
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Audrey Ginion
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Roselle Gélinas
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Laurent Bultot
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Julien Auquier
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | | | | | - Jean-Louis Vanoverschelde
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.,Cliniques Universitaires Saint-Luc, Division of Cardiology, Brussels, Belgium
| | - Christine Des Rosiers
- Montreal Heart Institute, Montreal, Quebec, Canada.,Department of Nutrition, Université de Montréal, Montreal, Quebec, Canada; and
| | - Louis Hue
- Université catholique de Louvain, de Duve Institute, Brussels, Belgium
| | - Sandrine Horman
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium
| | - Christophe Beauloye
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium.,Cliniques Universitaires Saint-Luc, Division of Cardiology, Brussels, Belgium
| | - Luc Bertrand
- Université catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Pole of Cardiovascular Research, Brussels, Belgium;
| |
Collapse
|
15
|
Gormsen LC, Svart M, Thomsen HH, Søndergaard E, Vendelbo MH, Christensen N, Tolbod LP, Harms HJ, Nielsen R, Wiggers H, Jessen N, Hansen J, Bøtker HE, Møller N. Ketone Body Infusion With 3-Hydroxybutyrate Reduces Myocardial Glucose Uptake and Increases Blood Flow in Humans: A Positron Emission Tomography Study. J Am Heart Assoc 2017; 6:JAHA.116.005066. [PMID: 28242634 PMCID: PMC5524028 DOI: 10.1161/jaha.116.005066] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND High levels of ketone bodies are associated with improved survival as observed with regular exercise, caloric restriction, and-most recently-treatment with sodium-glucose linked transporter 2 inhibitor antidiabetic drugs. In heart failure, indices of ketone body metabolism are upregulated, which may improve energy efficiency and increase blood flow in skeletal muscle and the kidneys. Nevertheless, it is uncertain how ketone bodies affect myocardial glucose uptake and blood flow in humans. Our study was therefore designed to test whether ketone body administration in humans reduces myocardial glucose uptake (MGU) and increases myocardial blood flow. METHODS AND RESULTS Eight healthy subjects, median aged 60 were randomly studied twice: (1) During 390 minutes infusion of Na-3-hydroxybutyrate (KETONE) or (2) during 390 minutes infusion of saline (SALINE), together with a concomitant low-dose hyperinsulinemic-euglycemic clamp to inhibit endogenous ketogenesis. Myocardial blood flow was measured by 15O-H2O positron emission tomography/computed tomography, myocardial fatty acid metabolism by 11C-palmitate positron emission tomography/computed tomography and MGU by 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Similar euglycemia, hyperinsulinemia, and suppressed free fatty acids levels were recorded on both study days; Na-3-hydroxybutyrate infusion increased circulating Na-3-hydroxybutyrate levels from zero to 3.8±0.5 mmol/L. MGU was halved by hyperketonemia (MGU [nmol/g per minute]: 304±97 [SALINE] versus 156±62 [KETONE], P<0.01), whereas no effects were observed on palmitate uptake oxidation or esterification. Hyperketonemia increased heart rate by ≈25% and myocardial blood flow by 75%. CONCLUSIONS Ketone bodies displace MGU and increase myocardial blood flow in healthy humans; these novel observations suggest that ketone bodies are important cardiac fuels and vasodilators, which may have therapeutic potentials.
Collapse
Affiliation(s)
- Lars C Gormsen
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Mads Svart
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Esben Søndergaard
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| | - Mikkel H Vendelbo
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Nana Christensen
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Poulsen Tolbod
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Hendrik Johannes Harms
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Roni Nielsen
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Henrik Wiggers
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Jessen
- Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark
| | - Jakob Hansen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark
| | - Hans Erik Bøtker
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Møller
- Department of Endocrinology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
16
|
Abstract
Ketone body metabolism is a central node in physiological homeostasis. In this review, we discuss how ketones serve discrete fine-tuning metabolic roles that optimize organ and organism performance in varying nutrient states and protect from inflammation and injury in multiple organ systems. Traditionally viewed as metabolic substrates enlisted only in carbohydrate restriction, observations underscore the importance of ketone bodies as vital metabolic and signaling mediators when carbohydrates are abundant. Complementing a repertoire of known therapeutic options for diseases of the nervous system, prospective roles for ketone bodies in cancer have arisen, as have intriguing protective roles in heart and liver, opening therapeutic options in obesity-related and cardiovascular disease. Controversies in ketone metabolism and signaling are discussed to reconcile classical dogma with contemporary observations.
Collapse
Affiliation(s)
- Patrycja Puchalska
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA
| | - Peter A Crawford
- Center for Metabolic Origins of Disease, Sanford Burnham Prebys Medical Discovery Institute, Orlando, FL 32827, USA.
| |
Collapse
|
17
|
Rojas-Morales P, Tapia E, Pedraza-Chaverri J. β-Hydroxybutyrate: A signaling metabolite in starvation response? Cell Signal 2016; 28:917-23. [PMID: 27083590 DOI: 10.1016/j.cellsig.2016.04.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/09/2016] [Indexed: 02/08/2023]
Abstract
Ketone bodies β-hydroxybutyrate (BHB) and acetoacetate are important metabolic substrates for energy production during prolonged fasting. However, BHB also has signaling functions. Through several metabolic pathways or processes, BHB modulates nutrient utilization and energy expenditure. These findings suggest that BHB is not solely a metabolic intermediate, but also acts as a signal to regulate metabolism and maintain energy homeostasis during nutrient deprivation. We briefly summarize the metabolism and emerging physiological functions of ketone bodies and highlight the potential role for BHB as a signaling molecule in starvation response.
Collapse
Affiliation(s)
- Pedro Rojas-Morales
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Edilia Tapia
- Laboratorio de Fisiopatología Renal, Departamento de Nefrología, Instituto Nacional de Cardiología - Ignacio Chávez, Mexico City, Mexico
| | - José Pedraza-Chaverri
- Departamento de Biología, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
18
|
Kanikarla-Marie P, Jain SK. Hyperketonemia (acetoacetate) upregulates NADPH oxidase 4 and elevates oxidative stress, ICAM-1, and monocyte adhesivity in endothelial cells. Cell Physiol Biochem 2015; 35:364-73. [PMID: 25591777 DOI: 10.1159/000369702] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2014] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND/AIMS The incidence of developing microvascular dysfunction is significantly higher in type 1 diabetic (T1D) patients. Hyperketonemia (acetoacetate, β-hydroxybutyrate) is frequently found along with hyperglycemia in T1D. Whether hyperketonemia per se contributes to the excess oxidative stress and cellular injury observed in T1D is not known. METHODS HUVEC were treated with ketones in the presence or absence of high glucose for 24 h. NOX4 siRNA was used to specifically knockdown NOX4 expression in HUVEC. RESULTS Ketones alone or in combination with high glucose treatment cause a significant increase in oxidative stress, ICAM-1, and monocyte adhesivity to HUVEC. Using an antisense approach, we show that ketone induced increases in ROS, ICAM-1 expression, and monocyte adhesion in endothelial cells were prevented in NOX4 knockdown cells. CONCLUSION This study reports that elevated levels of ketones upregulate NOX, contributing to increased oxidative stress, ICAM-1 levels, and cellular dysfunction. This provides a novel biochemical mechanism that elucidates the role of hyperketonemia in the excess cellular injury in T1D. New drugs targeting inhibition of NOX seems promising in preventing higher risk of complications associated with T1D.
Collapse
Affiliation(s)
- Preeti Kanikarla-Marie
- Departments of Pediatrics and Biochemistry & Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | | |
Collapse
|
19
|
Bouteldja N, Andersen LT, Møller N, Gormsen LC. Using positron emission tomography to study human ketone body metabolism: a review. Metabolism 2014; 63:1375-84. [PMID: 25195069 DOI: 10.1016/j.metabol.2014.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 07/14/2014] [Accepted: 08/02/2014] [Indexed: 11/25/2022]
Abstract
Ketone bodies - 3-hydroxybutyrate and acetoacetate - are important fuel substrates, which can be oxidized by most tissues in the body. They are synthesized in the liver and are derived from fatty acids released from adipose tissue. Intriguingly, under conditions of stress such as fasting, arterio-venous catheterization studies have shown that the brain switches from the use of almost 100% glucose to the use of >50-60% ketone bodies. A similar adaptive mechanism is observed in the heart, where fasting induces a shift toward ketone body uptake that provides the myocardium with an alternate fuel source and also favorably affects myocardial contractility. Within the past years there has been a renewed interest in ketone bodies and the possible beneficial effects of fasting/semi-fasting/exercising and other "ketogenic" regimens have received much attention. In this perspective, it is promising that positron emission tomography (PET) techniques with isotopically labeled ketone bodies, fatty acids and glucose offer an opportunity to study interactions between ketone body, fatty acid and glucose metabolism in tissues such as the brain and heart. PET scans are non-invasive and thus eliminates the need to place catheters in vascular territories not easily accessible. The short half-life of e.g. 11C-labeled PET tracers even allows multiple scans on the same study day and reduces the total radiation burden associated with the procedure. This short review aims to give an overview of current knowledge on ketone body metabolism obtained by PET studies and discusses the methodological challenges and perspectives involved in PET ketone body research.
Collapse
Affiliation(s)
- Nadia Bouteldja
- Department of Radiology, Hospital of Southwest Denmark, 6700 Esbjerg, Denmark
| | - Lone Thing Andersen
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | - Niels Møller
- Department of Endocrinology, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine & PET Center, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark.
| |
Collapse
|
20
|
Cotter DG, Schugar RC, Crawford PA. Ketone body metabolism and cardiovascular disease. Am J Physiol Heart Circ Physiol 2013; 304:H1060-76. [PMID: 23396451 PMCID: PMC3625904 DOI: 10.1152/ajpheart.00646.2012] [Citation(s) in RCA: 294] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 02/06/2013] [Indexed: 12/13/2022]
Abstract
Ketone bodies are metabolized through evolutionarily conserved pathways that support bioenergetic homeostasis, particularly in brain, heart, and skeletal muscle when carbohydrates are in short supply. The metabolism of ketone bodies interfaces with the tricarboxylic acid cycle, β-oxidation of fatty acids, de novo lipogenesis, sterol biosynthesis, glucose metabolism, the mitochondrial electron transport chain, hormonal signaling, intracellular signal transduction pathways, and the microbiome. Here we review the mechanisms through which ketone bodies are metabolized and how their signals are transmitted. We focus on the roles this metabolic pathway may play in cardiovascular disease states, the bioenergetic benefits of myocardial ketone body oxidation, and prospective interactions among ketone body metabolism, obesity, metabolic syndrome, and atherosclerosis. Ketone body metabolism is noninvasively quantifiable in humans and is responsive to nutritional interventions. Therefore, further investigation of this pathway in disease models and in humans may ultimately yield tailored diagnostic strategies and therapies for specific pathological states.
Collapse
Affiliation(s)
- David G Cotter
- Department of Medicine, Center for Cardiovascular Research, Washington University, Saint Louis, Missouri 63110, USA
| | | | | |
Collapse
|
21
|
Cotter DG, Schugar RC, Wentz AE, d'Avignon DA, Crawford PA. Successful adaptation to ketosis by mice with tissue-specific deficiency of ketone body oxidation. Am J Physiol Endocrinol Metab 2013; 304:E363-74. [PMID: 23233542 PMCID: PMC3566508 DOI: 10.1152/ajpendo.00547.2012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During states of low carbohydrate intake, mammalian ketone body metabolism transfers energy substrates originally derived from fatty acyl chains within the liver to extrahepatic organs. We previously demonstrated that the mitochondrial enzyme coenzyme A (CoA) transferase [succinyl-CoA:3-oxoacid CoA transferase (SCOT), encoded by nuclear Oxct1] is required for oxidation of ketone bodies and that germline SCOT-knockout (KO) mice die within 48 h of birth because of hyperketonemic hypoglycemia. Here, we use novel transgenic and tissue-specific SCOT-KO mice to demonstrate that ketone bodies do not serve an obligate energetic role within highly ketolytic tissues during the ketogenic neonatal period or during starvation in the adult. Although transgene-mediated restoration of myocardial CoA transferase in germline SCOT-KO mice is insufficient to prevent lethal hyperketonemic hypoglycemia in the neonatal period, mice lacking CoA transferase selectively within neurons, cardiomyocytes, or skeletal myocytes are all viable as neonates. Like germline SCOT-KO neonatal mice, neonatal mice with neuronal CoA transferase deficiency exhibit increased cerebral glycolysis and glucose oxidation, and, while these neonatal mice exhibit modest hyperketonemia, they do not develop hypoglycemia. As adults, tissue-specific SCOT-KO mice tolerate starvation, exhibiting only modestly increased hyperketonemia. Finally, metabolic analysis of adult germline Oxct1(+/-) mice demonstrates that global diminution of ketone body oxidation yields hyperketonemia, but hypoglycemia emerges only during a protracted state of low carbohydrate intake. Together, these data suggest that, at the tissue level, ketone bodies are not a required energy substrate in the newborn period or during starvation, but rather that integrated ketone body metabolism mediates adaptation to ketogenic nutrient states.
Collapse
Affiliation(s)
- David G Cotter
- Division of Cardiology, Dept. of Medicine, Washington Univ. School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | |
Collapse
|
22
|
Montessuit C, Lerch R. Regulation and dysregulation of glucose transport in cardiomyocytes. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:848-56. [PMID: 22967513 DOI: 10.1016/j.bbamcr.2012.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 11/29/2022]
Abstract
The ability of the heart muscle to derive energy from a wide variety of substrates provides the myocardium with remarkable capacity to adapt to the ever-changing metabolic environment depending on factors including nutritional state and physical activity. There is increasing evidence that loss of metabolic flexibility of the myocardium contributes to cardiac dysfunction in disease conditions such as diabetes, ischemic heart disease and heart failure. At the level of glucose metabolism reduced metabolic adaptation in most cases is characterized by impaired stimulation of transarcolemmal glucose transport in the cardiomyocytes in response to insulin, referred to as insulin resistance, or to other stimuli such as energy deficiency. This review discusses cellular mechanisms involved in the regulation of glucose uptake in cardiomyocytes and their potential implication in impairment of stimulation of glucose transport under disease conditions. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Cardiac Pathways of Differentiation, Metabolism and Contraction.
Collapse
Affiliation(s)
- Christophe Montessuit
- Department of Medical Specialties, Geneva University Hospitals, Geneva, Switzerland.
| | | |
Collapse
|
23
|
Frigolet ME, Ramos Barragán VE, Tamez González M. Low-carbohydrate diets: a matter of love or hate. ANNALS OF NUTRITION AND METABOLISM 2011; 58:320-34. [PMID: 21985780 DOI: 10.1159/000331994] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Accepted: 08/18/2011] [Indexed: 12/14/2022]
Abstract
Low-carbohydrate diets (LChD) have become very popular among the general population. These diets have been used to lose body weight and to ameliorate various abnormalities like diabetes, nonalcoholic fatty liver disease, polycystic ovary syndrome, narcolepsy, epilepsy, and others. Reports suggest that body weight reduction and glycemic control could be attained while following LChD. However, these advantages are more notably found in short periods of time consuming an LChD. Indeed, the safety and efficacy of the latter diets in the long term have not been sufficiently explored. In contrast to what has been proposed, other mentioned pathologies are not improved or are even worsened by carbohydrate restriction. Therefore, the aim of this review is to define the concept of LChD and to explain their clinical effects in the short and long term, their influence on metabolism, and the opinion of nutrition or health authorities. Finally, evincing the research gaps of LChD that are here exposed will later allow us to reach a consensus with regard to their utilization.
Collapse
|
24
|
Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 2011; 50:567-75. [PMID: 21163346 PMCID: PMC3557825 DOI: 10.1016/j.freeradbiomed.2010.12.006] [Citation(s) in RCA: 946] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/29/2010] [Accepted: 12/04/2010] [Indexed: 12/14/2022]
Abstract
Oxidative stress has been implicated as a contributor to both the onset and the progression of diabetes and its associated complications. Some of the consequences of an oxidative environment are the development of insulin resistance, β-cell dysfunction, impaired glucose tolerance, and mitochondrial dysfunction, which can lead ultimately to the diabetic disease state. Experimental and clinical data suggest an inverse association between insulin sensitivity and ROS levels. Oxidative stress can arise from a number of different sources, whether disease state or lifestyle, including episodes of ketosis, sleep restriction, and excessive nutrient intake. Oxidative stress activates a series of stress pathways involving a family of serine/threonine kinases, which in turn have a negative effect on insulin signaling. More experimental evidence is needed to pinpoint the mechanisms contributing to insulin resistance in both type 1 diabetics and nondiabetic individuals. Oxidative stress can be reduced by controlling hyperglycemia and calorie intake. Overall, this review outlines various mechanisms that lead to the development of oxidative stress. Intervention and therapy that alter or disrupt these mechanisms may serve to reduce the risk of insulin resistance and the development of diabetes.
Collapse
Affiliation(s)
- Justin L Rains
- Department of Pediatrics, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
25
|
Yamada T, Zhang SJ, Westerblad H, Katz A. {beta}-Hydroxybutyrate inhibits insulin-mediated glucose transport in mouse oxidative muscle. Am J Physiol Endocrinol Metab 2010; 299:E364-73. [PMID: 20516259 DOI: 10.1152/ajpendo.00142.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Blood ketone body levels increase during starvation and untreated diabetes. Here we tested the hypothesis that ketone bodies directly inhibit insulin action in skeletal muscle. We investigated the effect of d,l-beta-hydroxybutyrate (BOH; the major ketone body in vivo) on insulin-mediated glucose uptake (2-deoxyglucose) in isolated mouse soleus (oxidative) and extensor digitorum longus (EDL; glycolytic) muscle. BOH inhibited insulin-mediated glucose uptake in soleus (but not in EDL) muscle in a time- and concentration-dependent manner. Following 19.5 h of exposure to 5 mM BOH, insulin-mediated (20 mU/ml) glucose uptake was inhibited by approximately 90% (substantial inhibition was also observed in 3-O-methylglucose transport). The inhibitory effect of BOH was reproduced with d- but not l-BOH. BOH did not significantly affect hypoxia- or AICAR-mediated (activates AMP-dependent protein kinase) glucose uptake. The BOH effect did not require the presence/utilization of glucose since it was also seen when glucose in the medium was substituted with pyruvate. To determine whether the BOH effect was mediated by oxidative stress, an exogenous antioxidant (1 mM tempol) was used; however, tempol did not reverse the BOH effect on insulin action. BOH did not alter the levels of total tissue GLUT4 protein or insulin-mediated tyrosine phosphorylation of the insulin receptor and insulin receptor substrate-1 but blocked insulin-mediated phosphorylation of protein kinase B by approximately 50%. These data demonstrate that BOH inhibits insulin-mediated glucose transport in oxidative muscle by inhibiting insulin signaling. Thus ketone bodies may be potent diabetogenic agents in vivo.
Collapse
Affiliation(s)
- Takashi Yamada
- Dept. of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
26
|
Seifert EL, Fiehn O, Bezaire V, Bickel DR, Wohlgemuth G, Adams SH, Harper ME. Long-chain fatty acid combustion rate is associated with unique metabolite profiles in skeletal muscle mitochondria. PLoS One 2010; 5:e9834. [PMID: 20352092 PMCID: PMC2844415 DOI: 10.1371/journal.pone.0009834] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Accepted: 02/17/2010] [Indexed: 11/18/2022] Open
Abstract
Background/Aim Incomplete or limited long-chain fatty acid (LCFA) combustion in skeletal muscle has been associated with insulin resistance. Signals that are responsive to shifts in LCFA β-oxidation rate or degree of intramitochondrial catabolism are hypothesized to regulate second messenger systems downstream of the insulin receptor. Recent evidence supports a causal link between mitochondrial LCFA combustion in skeletal muscle and insulin resistance. We have used unbiased metabolite profiling of mouse muscle mitochondria with the aim of identifying candidate metabolites within or effluxed from mitochondria and that are shifted with LCFA combustion rate. Methodology/Principal Findings Large-scale unbiased metabolomics analysis was performed using GC/TOF-MS on buffer and mitochondrial matrix fractions obtained prior to and after 20 min of palmitate catabolism (n = 7 mice/condition). Three palmitate concentrations (2, 9 and 19 µM; corresponding to low, intermediate and high oxidation rates) and 9 µM palmitate plus tricarboxylic acid (TCA) cycle and electron transport chain inhibitors were each tested and compared to zero palmitate control incubations. Paired comparisons of the 0 and 20 min samples were made by Student's t-test. False discovery rate were estimated and Type I error rates assigned. Major metabolite groups were organic acids, amines and amino acids, free fatty acids and sugar phosphates. Palmitate oxidation was associated with unique profiles of metabolites, a subset of which correlated to palmitate oxidation rate. In particular, palmitate oxidation rate was associated with distinct changes in the levels of TCA cycle intermediates within and effluxed from mitochondria. Conclusions/Significance This proof-of-principle study establishes that large-scale metabolomics methods can be applied to organelle-level models to discover metabolite patterns reflective of LCFA combustion, which may lead to identification of molecules linking muscle fat metabolism and insulin signaling. Our results suggest that future studies should focus on the fate of effluxed TCA cycle intermediates and on mechanisms ensuring their replenishment during LCFA metabolism in skeletal muscle.
Collapse
Affiliation(s)
- Erin L. Seifert
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Oliver Fiehn
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Véronic Bezaire
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - David R. Bickel
- Ottawa Institute for Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Gert Wohlgemuth
- Genome Center, University of California Davis, Davis, California, United States of America
| | - Sean H. Adams
- Obesity and Metabolism Research Unit, USDA-ARS Western Human Nutrition Research Center, Agricultural Research Service, United States Department of Agriculture, and Department of Nutrition, University of California Davis, Davis, California, United States of America
- * E-mail: (SHA); (M-EH)
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail: (SHA); (M-EH)
| |
Collapse
|
27
|
Yap LP, Garcia JV, Han D, Cadenas E. The energy-redox axis in aging and age-related neurodegeneration. Adv Drug Deliv Rev 2009; 61:1283-98. [PMID: 19716388 PMCID: PMC2784280 DOI: 10.1016/j.addr.2009.07.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 07/23/2009] [Indexed: 02/07/2023]
Abstract
Decrease in mitochondrial energy-transducing capacity is a feature of the aging process that accompanies redox alterations, such as increased generation of mitochondrial oxidants, altered GSH status, and increased protein oxidation. The decrease in mitochondrial energy-transducing capacity and altered redox status should be viewed as a concerted process that embodies the mitochondrial energy-redox axis and is linked through various mechanisms including: (a) an inter-convertible reducing equivalents pool (i.e., NAD(P)(+)/NAD(P)H) and (b) redox-mediated protein post-translational modifications involved in energy metabolism. The energy-redox axis provides the rationale for therapeutic approaches targeted to each or both component(s) of the axis that effectively preserves or improve mitochondrial function and that have implications for aging and age-related neurodegenerative disorders.
Collapse
Affiliation(s)
- Li-Peng Yap
- Department of Molecular Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
| | - Jerome V. Garcia
- Department of Molecular Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
- University of LaVerne, Natural Science Division, Department of Biology, 1950 3 Street, LaVerne, CA 91750, USA
| | - Derick Han
- Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, 2011 Zonal Avenue, Los Angeles, CA 90089-9121, USA
| | - Enrique Cadenas
- Department of Molecular Pharmacology & Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089-9121, USA
| |
Collapse
|
28
|
Baker S, Jerums G, Proietto J. Effects and clinical potential of very-low-calorie diets (VLCDs) in type 2 diabetes. Diabetes Res Clin Pract 2009; 85:235-42. [PMID: 19560834 DOI: 10.1016/j.diabres.2009.06.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/30/2009] [Accepted: 06/02/2009] [Indexed: 12/19/2022]
Abstract
A recent study has shown that obese patients with newly diagnosed type 2 diabetes who lose 10% of their body weight are more likely to achieve glycaemic and blood pressure targets, despite weight regain. A well-established non-surgical method for achieving weight loss >or=10% within 3 months is the use of very-low-calorie diets (VLCDs). In patients with diabetes, VLCDs are associated with rapid improvement in glycaemia and cardiovascular risk factors. The present review analyses the evidence from available trials on the effects of VLCDs on body weight, glycaemic control and complications, and their potential for clinical use in diabetes management.
Collapse
Affiliation(s)
- Scott Baker
- Department of Medicine, Austin Health, University of Melbourne, Heidelberg Repatriation Hospital, 300 Waterdale Road, West Heidelberg, VIC 3081, Australia.
| | | | | |
Collapse
|
29
|
Interstitial glucose concentration in insulin-resistant human skeletal muscle: influence of one bout of exercise and of local perfusion with insulin or vanadate. Eur J Appl Physiol 2008; 103:595-603. [DOI: 10.1007/s00421-008-0753-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2008] [Indexed: 11/25/2022]
|
30
|
Pelletier A, Coderre L. Ketone bodies alter dinitrophenol-induced glucose uptake through AMPK inhibition and oxidative stress generation in adult cardiomyocytes. Am J Physiol Endocrinol Metab 2007; 292:E1325-32. [PMID: 17227964 DOI: 10.1152/ajpendo.00186.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In aerobic conditions, the heart preferentially oxidizes fatty acids. However, during metabolic stress, glucose becomes the major energy source, and enhanced glucose uptake has a protective effect on heart function and cardiomyocyte survival. Thus abnormal regulation of glucose uptake may contribute to the development of cardiac disease in diabetics. Ketone bodies are often elevated in poorly controlled diabetics and are associated with increased cellular oxidative stress. Thus we sought to determine the effect of the ketone body beta-hydroxybutyrate (OHB) on cardiac glucose uptake during metabolic stress. We used 2,4-dinitrophenol (DNP), an uncoupler of the mitochondrial oxidative chain, to mimic hypoxia in cardiomyocytes. Our data demonstrated that chronic exposure to OHB provoked a concentration-dependent decrease of DNP action, resulting in 56% inhibition of DNP-mediated glucose uptake at 5 mM OHB. This was paralleled by a diminution of DNP-mediated AMP-activated protein kinase (AMPK) and p38 MAPK phosphorylation. Chronic exposure to OHB also increased reactive oxygen species (ROS) production by 1.9-fold compared with control cells. To further understand the role of ROS in OHB action, cardiomyocytes were incubated with H(2)O(2). Our results demonstrated that this treatment diminished DNP-induced glucose uptake without altering activation of the AMPK/p38 MAPK signaling pathway. Incubation with the antioxidant N-acetylcysteine partially restored DNP-mediated glucose but not AMPK/p38 MAPK activation. In conclusion, these results suggest that ketone bodies, through inhibition of the AMPK/p38 MAPK signaling pathway and ROS overproduction, regulate DNP action and thus cardiac glucose uptake. Altered glucose uptake in hyperketonemic states during metabolic stress may contribute to diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Amélie Pelletier
- Montreal Diabetes Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
| | | |
Collapse
|