1
|
Raza A, Williams AR, Abeer MM. Importance of ABC Transporters in the Survival of Parasitic Nematodes and the Prospect for the Development of Novel Control Strategies. Pathogens 2023; 12:755. [PMID: 37375445 DOI: 10.3390/pathogens12060755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
ABC transporters, a family of ATP-dependent transmembrane proteins, are responsible for the active transport of a wide range of molecules across cell membranes, including drugs, toxins, and nutrients. Nematodes possess a great diversity of ABC transporters; however, only P-glycoproteins have been well-characterized compared to other classes. The ABC transport proteins have been implicated in developing resistance to various classes of anthelmintic drugs in parasitic nematodes; their role in plant and human parasitic nematodes still needs further investigation. Therefore, ABC transport proteins offer a potential opportunity to develop nematode control strategies. Multidrug resistance inhibitors are becoming more attractive for controlling nematodes due to their potential to increase drug efficacy in two ways: (i) by limiting drug efflux from nematodes, thereby increasing the amount of drug that reaches its target site, and (ii) by reducing drug excretion by host animals, thereby enhancing drug bioavailability. This article reviews the role of ABC transporters in the survival of parasitic nematodes, including the genes involved, their regulation and physiological roles, as well as recent developments in their characterization. It also discusses the association of ABC transporters with anthelmintic resistance and the possibility of targeting them with next-generation inhibitors or nutraceuticals (e.g., polyphenols) to control parasitic infections.
Collapse
Affiliation(s)
- Ali Raza
- Queensland Alliance for Agriculture & Food Innovation, Centre for Animal Science, The University of Queensland, St Lucia, QLD 4067, Australia
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Frederiksberg, Denmark
| | | |
Collapse
|
2
|
Zheng M, Jiang X, Kong X, Guo Y, Zhang W, Di W. Proteomic analysis of Fasciola gigantica excretory and secretory products ( FgESPs) co-immunoprecipitated using a time course of infected buffalo sera. Front Microbiol 2022; 13:1089394. [PMID: 36620027 PMCID: PMC9816151 DOI: 10.3389/fmicb.2022.1089394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Widespread Fasciola gigantica infection in buffaloes has caused great economic losses in buffalo farming. Studies on F. gigantica excretory and secretory products (FgESP) have highlighted their importance in F. gigantica parasitism and their potential in vaccine development. Identifying FgESP components involved in F. gigantica-buffalo interactions during different periods is important for developing effective strategies against fasciolosis. Methods Buffaloes were assigned to non-infection (n = 3, as control group) and infection (n = 3) groups. The infection group was orally administrated 250 metacercariae. Sera were collected at 3, 10, and 16 weeks post-infection (wpi) for the non-infection group and at 0 (pre-infection), 1, 3, 6, 8, 10, 13, and 16 wpi for the infection group. FgESP components interacting with sera from the non-infection and infection groups assay were pulled down by co-IP and identified using LC-MS/MS. Interacting FgESP components in infection group were subjected to Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway and gene ontology (GO) functional annotation to infer their potential functions. Results and discussion Proteins of FgESP components identified in the non-infection group at 3, 10, and 16 wpi accounted for 80.5%, 84.3%, and 82.1% of all proteins identified in these three time points, respectively, indicating surroundings did not affect buffalo immune response during maintenance. Four hundred and ninety proteins were identified in the infection group, of which 87 were consistently identified at 7 time points. Following GO analysis showed that most of these 87 proteins were in biological processes, while KEGG analysis showed they mainly functioned in metabolism and cellular processing, some of which were thought to functions throughout the infection process. The numbers of specific interactors identified for each week were 1 (n = 12), 3 (n = 5), 6 (n = 8), 8 (n = 15), 10 (n = 23), 13 (n = 22), and 16 (n = 14) wpi, some of which were thought to functions in specific infection process. This study screened the antigenic targets in FgESP during a dense time course over a long period. These findings may enhance the understanding of molecular F. gigantica-buffalo interactions and help identify new potential vaccine and drug target candidates.
Collapse
Affiliation(s)
- Mengwei Zheng
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Xuelian Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Xinping Kong
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yanfeng Guo
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China,*Correspondence: Weiyu Zhang, ✉
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, China,Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China,Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China,Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China,Wenda Di, ✉
| |
Collapse
|
3
|
Caña-Bozada V, Morales-Serna FN, Fajer-Ávila EJ, Llera-Herrera R. De novo transcriptome assembly and identification of G-Protein-Coupled-Receptors (GPCRs) in two species of monogenean parasites of fish. Parasite 2022; 29:51. [PMID: 36350193 PMCID: PMC9645230 DOI: 10.1051/parasite/2022052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/13/2022] [Indexed: 11/11/2022] Open
Abstract
Genomic resources for Platyhelminthes of the class Monogenea are scarce, despite the diversity of these parasites, some species of which are highly pathogenic to their fish hosts. This work aimed to generate de novo-assembled transcriptomes of two monogenean species, Scutogyrus longicornis (Dactylogyridae) and Rhabdosynochus viridisi (Diplectanidae), providing a protocol for cDNA library preparation with low input samples used in single cell transcriptomics. This allowed us to work with sub-microgram amounts of total RNA with success. These transcriptomes consist of 25,696 and 47,187 putative proteins, respectively, which were further annotated according to the Swiss-Prot, Pfam, GO, KEGG, and COG databases. The completeness values of these transcriptomes evaluated with BUSCO against Metazoa databases were 54.1% and 73%, respectively, which is in the range of other monogenean species. Among the annotations, a large number of terms related to G-protein-coupled receptors (GPCRs) were found. We identified 109 GPCR-like sequences in R. viridisi, and 102 in S. longicornis, including family members specific for Platyhelminthes. Rhodopsin was the largest family according to GRAFS classification. Two putative melatonin receptors found in S. longicornis represent the first record of this group of proteins in parasitic Platyhelminthes. Forty GPCRs of R. viridisi and 32 of S. longicornis that were absent in Vertebrata might be potential drug targets. The present study provides the first publicly available transcriptomes for monogeneans of the subclass Monopisthocotylea, which can serve as useful genomic datasets for functional genomic research of this important group of parasites.
Collapse
Affiliation(s)
- Víctor Caña-Bozada
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental Mazatlán Sinaloa 82112 Mexico
| | - F. Neptalí Morales-Serna
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México Mazatlán Sinaloa 82040 Mexico
| | - Emma J. Fajer-Ávila
- Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo Ambiental Mazatlán Sinaloa 82112 Mexico
| | - Raúl Llera-Herrera
- Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Universidad Nacional Autónoma de México Mazatlán Sinaloa 82040 Mexico
| |
Collapse
|
4
|
Vianney TJ, Berger DJ, Doyle SR, Sankaranarayanan G, Serubanja J, Nakawungu PK, Besigye F, Sanya RE, Holroyd N, Allan F, Webb EL, Elliott AM, Berriman M, Cotton JA. Genome-wide analysis of Schistosoma mansoni reveals limited population structure and possible praziquantel drug selection pressure within Ugandan hot-spot communities. PLoS Negl Trop Dis 2022; 16:e0010188. [PMID: 35981002 PMCID: PMC9426917 DOI: 10.1371/journal.pntd.0010188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/30/2022] [Accepted: 07/05/2022] [Indexed: 12/23/2022] Open
Abstract
Populations within schistosomiasis control areas, especially those in Africa, are recommended to receive regular mass drug administration (MDA) with praziquantel (PZQ) as the main strategy for controlling the disease. The impact of PZQ treatment on schistosome genetics remains poorly understood, and is limited by a lack of high-resolution genetic data on the population structure of parasites within these control areas. We generated whole-genome sequence data from 174 individual miracidia collected from both children and adults from fishing communities on islands in Lake Victoria in Uganda that had received either annual or quarterly MDA with PZQ over four years, including samples collected immediately before and four weeks after treatment. Genome variation within and between samples was characterised and we investigated genomic signatures of natural selection acting on these populations that could be due to PZQ treatment. The parasite population on these islands was more diverse than found in nearby villages on the lake shore. We saw little or no genetic differentiation between villages, or between the groups of villages with different treatment intensity, but slightly higher genetic diversity within the pre-treatment compared to post-treatment parasite populations. We identified classes of genes significantly enriched within regions of the genome with evidence of recent positive selection among post-treatment and intensively treated parasite populations. The differential selection observed in post-treatment and pre-treatment parasite populations could be linked to any reduced susceptibility of parasites to praziquantel treatment.
Collapse
Affiliation(s)
- Tushabe John Vianney
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Duncan J. Berger
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Stephen R. Doyle
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | | | - Joel Serubanja
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Prossy Kabuubi Nakawungu
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Fred Besigye
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Richard E. Sanya
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Health and Systems for Health Unit, African Population and Health Research Center, Nairobi, Kenya
| | - Nancy Holroyd
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Fiona Allan
- Department of Life Sciences, Natural History Museum, London, United Kingdom
| | - Emily L. Webb
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Alison M. Elliott
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and the London School of Hygiene & Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Matthew Berriman
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| | - James A. Cotton
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
5
|
Yu Y, Li J, Wang W, Wang T, Qi W, Zheng X, Duan L, Chen J, Li S, Han X, Zhang W, Duan L. Transcriptome analysis uncovers the key pathways and candidate genes related to the treatment of Echinococcus granulosus protoscoleces with the repurposed drug pyronaridine. BMC Genomics 2021; 22:534. [PMID: 34256697 PMCID: PMC8276484 DOI: 10.1186/s12864-021-07875-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/01/2021] [Indexed: 11/10/2022] Open
Abstract
Background Cystic echinococcosis (CE) is a life-threatening zoonosis caused by the larval form of Echinococcus granulosus tapeworm. Our previous study showed that an approved drug pyronaridine (PND) is highly effective against CE, both in vitro and in an animal model. To identify possible target genes, transcriptome analysis was performed with E. granulosus sensu stricto protoscoleces treated with PND. Results A total of 1,321 genes were differentially expressed in protoscoleces treated with PND, including 541 upregulated and 780 downregulated genes. Gene ontology and KEGG analyses revealed that the spliceosome, mitogen-activated protein kinase (MAPK) pathway and ATP-binding cassette (ABC) transporters were the top three enriched pathways. Western blot analysis showed that PND treatment resulted in a dose-dependent increase in protein expression levels of EgMKK1 (MKK3/6-like) and EgMKK2 (MEK1/2-like), two members of MAPK cascades. Interestingly, several heat shock protein (HSP) genes were greatly downregulated including stress-inducible HSPs and their constitutive cognates, and some of them belong to Echinococcus-specific expansion of HSP70. Conclusions PND has a great impact on the spliceosome, MAPK pathway and ABC transporters, which may underline the mechanisms by which PND kills E. granulosus protoscoleces. In addition, PND downregulates HSPs expression, suggesting a close relationship between the drug and HSPs. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07875-w.
Collapse
Affiliation(s)
- Yingfang Yu
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Jun Li
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China
| | - Weisi Wang
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Tian Wang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China
| | - Wenjing Qi
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China
| | - Xueting Zheng
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China
| | - Lei Duan
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Jiaxu Chen
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Shizhu Li
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China
| | - Xiumin Han
- Qinghai Provincial People's Hospital, 810007, Xining, China
| | - Wenbao Zhang
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Clinical Medical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, 830054, Urumqi, China.
| | - Liping Duan
- NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, 200025, Shanghai, China. .,Qinghai Provincial People's Hospital, 810007, Xining, China.
| |
Collapse
|
6
|
Dai F, Yoo WG, Lu Y, Song JH, Lee JY, Byun Y, Pak JH, Sohn WM, Hong SJ. Sodium-bile acid co-transporter is crucial for survival of a carcinogenic liver fluke Clonorchis sinensis in the bile. PLoS Negl Trop Dis 2020; 14:e0008952. [PMID: 33284789 PMCID: PMC7746286 DOI: 10.1371/journal.pntd.0008952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 12/17/2020] [Accepted: 11/03/2020] [Indexed: 12/29/2022] Open
Abstract
The liver fluke Clonorchis sinensis inhabits the bile ducts, where bile concentration disparities across the fluke cell membrane can cause bile intoxication. Sodium-bile acid co-transporter (SBAT) plays a crucial role in bile acid recycling. The process by which SBAT imports bile acids is electrically coupled to sodium ion co-transportation. Here, we report that the SBAT of C. sinensis (CsSBAT) is involved in bile acid transportation. CsSBAT cDNA encoded a putative polypeptide of 546 amino acid residues. Furthermore, CsSBAT consisted of ten putative transmembrane domains, and its 3D structure was predicted to form panel and core domains. The CsSBAT had one bile acid- and three Na+-binding sites, enabling coordination of a symport process. CsSBAT was mainly localized in the mesenchymal tissue throughout the fluke body and sparsely localized in the basement of the tegument, intestinal epithelium, and excretory bladder wall. Bile acid permeated into the adult flukes in a short time and remained at a low concentration level. Bile acid accumulated inside the mesenchymal tissue when CsSBAT was inhibited using polyacrylic acid–tetradeoxycholic acid conjugate. The accumulated bile acid deteriorated the C. sinensis adults leading to death. CsSBAT silencing shortened the lifespan of the fluke when it was placed into bile. Taken together, we propose that CsSBAT transports bile acids in the mesenchymal tissue and coordinate with outward transporters to maintain bile acid homeostasis of C. sinensis adults, contributing to C. sinensis survival in the bile environment. Clonorchiasis is a neglected tropical disease caused by infection with the liver fluke Clonorchis sinensis. C. sinensis is a biological carcinogen causing cholangiocarcinoma in humans. Juvenile worms inhabit and grow to adults in the bile ducts. Bile acids in the bile are double-edged molecules; they promote metabolism, but differences in their concentration across the cell membrane could lead to bile intoxication. The sodium-bile acid co-transporter of C. sinensis (CsSBAT) is indispensable for maintaining its normal physiology and bile detoxification in the bile duct. However, information related to the molecular and biological characteristics of the SBAT of liver flukes is not available. Here, we cloned CsSBAT for the first time in trematodes and characterized its tertiary structure and physiological functions. The sequential and structural properties of CsSBAT were similar to the apical sodium-bile acid co-transporter found in mammalian intestines. CsSBAT shared a mesenchymal tissue distribution with Na+-taurocholate co-transporting polypeptide in the hepatocytes adjacent to the bile ducts. Bile acids accumulated in C. sinensis adults when CsSBAT was inhibited, causing their death. This information might promote further studies on the physiological functions of SBAT and other trematode bile transporters and open new avenues toward developing novel anthelminthic drugs.
Collapse
Affiliation(s)
- Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Department of Parasitology, School of Biology and Basic Medical Sciences, Medical College, Soochow University, Suzhou, Jiangsu, PR China
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Yanyan Lu
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- Liubei Center for Disease Control and Prevention, Liuzhou, Guangxi, PR China
| | - Jin-Ho Song
- Department of Pharmacology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Ji-Yun Lee
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Youngro Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Republic of Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Republic of Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
7
|
Buddenborg SK, Kamel B, Bu L, Zhang SM, Mkoji GM, Loker ES. Transcriptional responses of Biomphalaria pfeifferi and Schistosoma mansoni following exposure to niclosamide, with evidence for a synergistic effect on snails following exposure to both stressors. PLoS Negl Trop Dis 2019; 13:e0006927. [PMID: 31841501 PMCID: PMC6936870 DOI: 10.1371/journal.pntd.0006927] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/30/2019] [Accepted: 11/05/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Schistosomiasis is one of the world's most common NTDs. Successful control operations often target snail vectors with the molluscicide niclosamide. Little is known about how niclosamide affects snails, including for Biomphalaria pfeifferi, the most important vector for Schistosoma mansoni in Africa. We used Illumina technology to explore how field-derived B. pfeifferi, either uninfected or harboring cercariae-producing S. mansoni sporocysts, respond to a sublethal treatment of niclosamide. This study afforded the opportunity to determine if snails respond differently to biotic or abiotic stressors, and if they reserve unique responses for when presented with both stressors in combination. We also examined how sporocysts respond when their snail host is treated with niclosamide. PRINCIPAL FINDINGS Cercariae-producing sporocysts within snails treated with niclosamide express ~68% of the genes in the S. mansoni genome, as compared to 66% expressed by intramolluscan stages of S. mansoni in snails not treated with niclosamide. Niclosamide does not disable sporocysts nor does it seem to provoke from them distinctive responses associated with detoxifying a xenobiotic. For uninfected B. pfeifferi, niclosamide treatment alone increases expression of several features not up-regulated in infected snails including particular cytochrome p450s and heat shock proteins, glutathione-S-transferases, antimicrobial factors like LBP/BPI and protease inhibitors, and also provokes strong down regulation of proteases. Exposure of infected snails to niclosamide resulted in numerous up-regulated responses associated with apoptosis along with down-regulated ribosomal and defense functions, indicative of a distinctive, compromised state not achieved with either stimulus alone. CONCLUSIONS/SIGNIFICANCE This study helps define the transcriptomic responses of an important and under-studied schistosome vector to S. mansoni sporocysts, to niclosamide, and to both in combination. It suggests the response of S. mansoni sporocysts to niclosamide is minimal and not reflective of a distinct repertoire of genes to handle xenobiotics while in the snail host. It also offers new insights for how niclosamide affects snails.
Collapse
Affiliation(s)
- Sarah K. Buddenborg
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque NM United States of America
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton United Kingdom
| | - Bishoy Kamel
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque NM United States of America
| | - Lijing Bu
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque NM United States of America
| | - Si-Ming Zhang
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque NM United States of America
| | - Gerald M. Mkoji
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi KEN
| | - Eric S. Loker
- Department of Biology, Center for Evolutionary and Theoretical Immunology, University of New Mexico, Albuquerque NM United States of America
| |
Collapse
|
8
|
Form and Function in the Digenea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1154:3-20. [DOI: 10.1007/978-3-030-18616-6_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
9
|
Identification and characterization of the Fasciola hepatica sodium- and chloride-dependent taurine transporter. PLoS Negl Trop Dis 2018; 12:e0006428. [PMID: 29702654 PMCID: PMC5942844 DOI: 10.1371/journal.pntd.0006428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 05/09/2018] [Accepted: 04/03/2018] [Indexed: 01/06/2023] Open
Abstract
The parasitic liver fluke Fasciola hepatica infests mainly ruminants, but it can also cause fasciolosis in people, who ingest the metacercariae encysted on plants. The drug of choice to treat fasciolosis is triclabendazole (TBZ), which has been on the market for several decades. This is also true for the other available drugs. Accordingly, drug-resistant flukes have been emerging at an increasing rate making it desirable to identify alternative drug targets. Here, we focused on the fact that adult F. hepatica persists in the hostile environment of the bile ducts of infected organisms. A common way to render bile acids less toxic is to conjugate them to taurine (2-aminoethanesulfonic acid). We cloned a transporter from the solute carrier-6 (SLC6) family, which was most closely related to the GABA-transporter-2 of other organisms. When heterologously expressed, this F. hepatica transporter supported the high-affinity cellular uptake of taurine (KM = 12.0 ± 0.5 μM) but not of GABA. Substrate uptake was dependent on Na+- and Cl- (calculated stoichiometry 2:1). Consistent with the low chloride concentration in mammalian bile, the F. hepatica transporter had a higher apparent affinity for Cl- (EC50 = 14±3 mM) than the human taurine transporter (EC50 = 55±7 mM). We incubated flukes with unconjugated bile acids in the presence and absence of taurine: taurine promoted survival of flukes; the taurine transporter inhibitor guanidinoethansulfonic acid abolished this protective effect of taurine. Based on these observations, we conclude that the taurine transporter is critical for the survival of liver flukes in the bile. Thus, the taurine transporter represents a candidate drug target.
Collapse
|
10
|
Characterization of a novel organic solute transporter homologue from Clonorchis sinensis. PLoS Negl Trop Dis 2018; 12:e0006459. [PMID: 29702646 PMCID: PMC5942847 DOI: 10.1371/journal.pntd.0006459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/09/2018] [Accepted: 04/18/2018] [Indexed: 12/21/2022] Open
Abstract
Clonorchis sinensis is a liver fluke that can dwell in the bile ducts of mammals. Bile acid transporters function to maintain the homeostasis of bile acids in C. sinensis, as they induce physiological changes or have harmful effects on C. sinensis survival. The organic solute transporter (OST) transports mainly bile acid and belongs to the SLC51 subfamily of solute carrier transporters. OST plays a critical role in the recirculation of bile acids in higher animals. In this study, we cloned full-length cDNA of the 480-amino acid OST from C. sinensis (CsOST). Genomic analysis revealed 11 exons and nine introns. The CsOST protein had a 'Solute_trans_a' domain with 67% homology to Schistosoma japonicum OST. For further analysis, the CsOST protein sequence was split into the ordered domain (CsOST-N) at the N-terminus and disordered domain (CsOST-C) at the C-terminus. The tertiary structure of each domain was built using a threading-based method and determined by manual comparison. In a phylogenetic tree, the CsOST-N domain belonged to the OSTα and CsOST-C to the OSTβ clade. These two domains were more highly conserved with the OST α- and β-subunits at the structure level than at sequence level. These findings suggested that CsOST comprised the OST α- and β-subunits. CsOST was localized in the oral and ventral suckers and in the mesenchymal tissues abundant around the intestine, vitelline glands, uterus, and testes. This study provides fundamental data for the further understanding of homologues in other flukes.
Collapse
|
11
|
Dai F, Yoo WG, Lee JY, Lu Y, Pak JH, Sohn WM, Hong SJ. Multidrug resistance-associated protein 4 is a bile transporter of Clonorchis sinensis simulated by in silico docking. Parasit Vectors 2017; 10:578. [PMID: 29157307 PMCID: PMC5697364 DOI: 10.1186/s13071-017-2523-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/05/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Multidrug resistance-associated protein 4 (MRP4) is a member of the C subfamily of the ABC family of ATP-binding cassette (ABC) transporters. MRP4 regulates ATP-dependent efflux of various organic anionic substrates and bile acids out of cells. Since Clonorchis sinensis lives in host's bile duct, accumulation of bile juice can be toxic to the worm's tissues and cells. Therefore, C. sinensis needs bile transporters to reduce accumulation of bile acids within its body. RESULTS We cloned MRP4 (CsMRP4) from C. sinensis and obtained a cDNA encoding an open reading frame of 1469 amino acids. Phylogenetic analysis revealed that CsMRP4 belonged to the MRP/SUR/CFTR subfamily. A tertiary structure of CsMRP4 was generated by homology modeling based on multiple structures of MRP1 and P-glycoprotein. CsMRP4 had two membrane-spanning domains (MSD1 & 2) and two nucleotide-binding domains (NBD1 & 2) as common structural folds. Docking simulation with nine bile acids showed that CsMRP4 transports bile acids through the inner cavity. Moreover, it was found that CsMRP4 mRNA was more abundant in the metacercariae than in the adults. Mouse immune serum, generated against the CsMRP4-NBD1 (24.9 kDa) fragment, localized CsMRP4 mainly in mesenchymal tissues and oral and ventral suckers of the metacercariae and the adults. CONCLUSIONS Our findings shed new light on MRPs and their homologs and provide a platform for further structural and functional investigations on the bile transporters and parasites' survival.
Collapse
Affiliation(s)
- Fuhong Dai
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea
| | - Won Gi Yoo
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea
| | - Ji-Yun Lee
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea
| | - Yanyan Lu
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea
| | - Jhang Ho Pak
- Department of Convergence Medicine, University of Ulsan College of Medicine and Asan Institute for Life Sciences, Asan Medical Center, Seoul, 05505, South Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 52828, South Korea
| | - Sung-Jong Hong
- Department of Medical Environmental Biology, Chung-Ang University College of Medicine, Seoul, 06974, South Korea.
| |
Collapse
|
12
|
Mordvinov VA, Ershov NI, Pirozhkova DS, Pakharukov YV, Pakharukova MY. ABC transporters in the liver fluke Opisthorchis felineus. Mol Biochem Parasitol 2017; 216:60-68. [PMID: 28729070 DOI: 10.1016/j.molbiopara.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 01/06/2023]
Abstract
ATP-binding cassette transporters (ABC transporters) are essential components of normal cellular physiological machinery in all eukaryotic and prokaryotic species, including parasites. Some ABC transporters, e.g., P-glycoproteins, are involved in the efflux of toxins and xenobiotics from the cell. At present, nothing is known about ABC transporter genes in epidemiologically important liver flukes from the Opisthorchiidae family, including European liver fluke Opisthorchis felineus. Opisthorchiasis caused by O. felineus is a serious public health problem on the territory of Russia and other Eastern European countries. ABC drug transporters are attractive objects of research on molecular markers of resistance and on ways to potentiate sensitivity to anthelmintics through suppression of the transporters themselves with specific inhibitors. Here we aimed at the identification of ABC transporters in the O. felineus transcriptome and identification of P-glycoproteins. In addition, our aim was to assess ABC transcript abundance in the RNA-seq data, to study the mRNA expression of P-glycoprotein genes by Droplet Digital PCR throughout the life cycle of O. felineus, and to test the gene induction in response to xenobiotics or anthelminthic agents. We found 23 nucleotide sequences encoding ABC transporters belonging to different subfamilies, including four sequences of P-glycoproteins. According to the transcript abundance in the RNA-seq data, one of P-glycoproteins (P4) has the highest expression among all ABC genes in the adult worm. P-glycoproteins showed substantially differential mRNA expression throughout the fluke life cycle, with high expression in the adult worms. Putative activity of P-glycoproteins as xenobiotic efflux pumps was found to be linked to the excretory system of O. felineus and to be inhibited by verapamil or tariquidar. Thus, ABC drug transporters in the liver fluke O. felineus are functionally active, indicating that ABC drug transporters are likely to be molecular targets for a combination therapy aimed at prevention of a xenobiotic removal from helminth tissues and at increasing the drug concentration in the tissues.
Collapse
Affiliation(s)
- Viatcheslav A Mordvinov
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia; Institute of Molecular Biology and Biophysics SB RAMS, 2/12 Timakova Str., Novosibirsk 630060, Russia
| | - Nikita I Ershov
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Darya S Pirozhkova
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia
| | - Yuri V Pakharukov
- Industrial University of Tyumen, 38 Volodarskogo Str., Tyumen 625000, Russia
| | - Maria Y Pakharukova
- Institute of Cytology and Genetics SB RAS, 10 Lavrentiev Ave., Novosibirsk 630090, Russia; Institute of Molecular Biology and Biophysics SB RAMS, 2/12 Timakova Str., Novosibirsk 630060, Russia; Novosibirsk State University, 2 Pirogova Str., Novosibirsk 630090, Russia.
| |
Collapse
|
13
|
The Role of Xenobiotic-Metabolizing Enzymes in Anthelmintic Deactivation and Resistance in Helminths. Trends Parasitol 2016; 32:481-491. [PMID: 26968642 DOI: 10.1016/j.pt.2016.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/03/2016] [Accepted: 02/10/2016] [Indexed: 12/24/2022]
Abstract
Xenobiotic-metabolizing enzymes (XMEs) modulate the biological activity and behavior of many drugs, including anthelmintics. The effects of anthelmintics can often be abolished by XMEs when the drugs are metabolized to an inefficient compound. XMEs therefore play a significant role in anthelmintic efficacy. Moreover, differences in XMEs between helminths are reflected by differences in anthelmintic metabolism between target species. Taking advantage of the newly sequenced genomes of many helminth species, progress in this field has been remarkable. The present review collects up to date information regarding the most important XMEs (phase I and phase II biotransformation enzymes; efflux transporters) in helminths. The participation of these XMEs in anthelmintic metabolism and their possible roles in drug resistance are evaluated.
Collapse
|
14
|
Cuperus FJC, Claudel T, Gautherot J, Halilbasic E, Trauner M. The role of canalicular ABC transporters in cholestasis. Drug Metab Dispos 2014; 42:546-60. [PMID: 24474736 DOI: 10.1124/dmd.113.056358] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cholestasis, a hallmark feature of hepatobiliary disease, is characterized by the retention of biliary constituents. Some of these constituents, such as bile acids, inflict damage to hepatocytes and bile duct cells. This damage may lead to inflammation, fibrosis, cirrhosis, and eventually carcinogenesis, sequelae that aggravate the underlying disease and deteriorate clinical outcome. Canalicular ATP-binding cassette (ABC) transporters, which mediate the excretion of individual bile constituents, play a key role in bile formation and cholestasis. The study of these transporters and their regulatory nuclear receptors has revolutionized our understanding of cholestatic disease. This knowledge has served as a template to develop novel treatment strategies, some of which are currently already undergoing phase III clinical trials. In this review we aim to provide an overview of the structure, function, and regulation of canalicular ABC transporters. In addition, we will focus on the role of these transporters in the pathogenesis and treatment of cholestatic bile duct and liver diseases.
Collapse
Affiliation(s)
- Frans J C Cuperus
- Hans Popper Laboratory of Molecular Hepatology, Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | | | | | | | | |
Collapse
|
15
|
Increased action of triclabendazole (TCBZ) in vitro against a TCBZ-resistant isolate of Fasciola hepatica following its co-incubation with the P-glycoprotein inhibitor, R(+)-verapamil. Exp Parasitol 2013; 135:642-53. [DOI: 10.1016/j.exppara.2013.09.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 09/09/2013] [Accepted: 09/22/2013] [Indexed: 01/31/2023]
|
16
|
Increased susceptibility of a triclabendazole (TCBZ)-resistant isolate of Fasciola hepatica to TCBZ following co-incubation in vitro with the P-glycoprotein inhibitor, R(+)-verapamil. Parasitology 2013; 140:1287-303. [PMID: 23756576 DOI: 10.1017/s0031182013000759] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A study was carried out to investigate whether the action of triclabendazole sulphoxide (TCBZ.SO) against the liver fluke, Fasciola hepatica is altered by inhibition of P-glycoprotein (Pgp)-linked drug efflux pumps. The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible fluke isolates were used for this in vitro study and the Pgp inhibitor selected was R(+)-verapamil [R(+)-VPL]. For experiments with the Oberon isolate, flukes were incubated for 24 h with either R(+)-VPL (1×10-4 m) on its own, TCBZ.SO (15 μg mL-1) alone, a combination of R(+)-VPL (1×10-4 m) plus TCBZ.SO (15 μg mL-1), TCBZ.SO (50 μg mL-1) on its own, or a combination of TCBZ.SO (50 μg mL-1) plus R(+)-VPL (1×10-4 m). They were also incubated in TCBZ.SO (50 μg mL-1) alone or in combination with R(+)-VPL (1×10-4 m) until they became inactive; and in TCBZ.SO (50 μg mL-1) alone for a time to match that of the combination inactivity time. Flukes from the Cullompton isolate were treated with either TCBZ.SO (50 μg mL-1) alone or in combination with R(+)-VPL (1×10-4 m) until they became inactive, or with TCBZ.SO (50 μg mL-1) alone time-matched to the combination inactivity time. Morphological changes resulting from drug treatment and following Pgp inhibition were assessed by means of scanning electron microscopy. Incubation in R(+)-VPL alone had a minimal effect on either isolate. TCBZ.SO treatment had a relatively greater impact on the TCBZ-susceptible Cullompton isolate. When R(+)-VPL was combined with TCBZ.SO in the incubation medium, however, the surface disruption to both isolates was more severe than that seen after TCBZ.SO treatment alone; also, the time taken to reach inactivity was shorter. More significantly, though, the potentiation of drug activity was greater in the Oberon isolate; also, it was more distinct at the higher concentration of TCBZ.SO. So, the Oberon isolate appears to be particularly sensitive to efflux pump inhibition. The results of this study suggest that enhanced drug efflux in the Oberon isolate may be involved in the mechanism of resistance to TCBZ.
Collapse
|
17
|
Azzaroli F, Raspanti ME, Simoni P, Montagnani M, Lisotti A, Cecinato P, Arena R, Simonazzi G, Farina A, Rizzo N, Mazzella G. High doses of ursodeoxycholic acid up-regulate the expression of placental breast cancer resistance protein in patients affected by intrahepatic cholestasis of pregnancy. PLoS One 2013; 8:e64101. [PMID: 23717540 PMCID: PMC3663799 DOI: 10.1371/journal.pone.0064101] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 04/09/2013] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Ursodeoxycholic acid (UDCA) administration in intrahepatic cholestasis of pregnancy (ICP) induces bile acids (BA) efflux from the foetal compartment, but the molecular basis of this transplacental transport is only partially defined. AIM To determine if placental breast cancer resistance protein (BCRP), able to transport BA, is regulated by UDCA in ICP. METHODS 32 pregnant women with ICP (14 untreated, 34.9±5.17 years; 18 treated with UDCA--25 mg/Kg/day, 32.7±4.62 years,) and 12 healthy controls (33.4±3.32 years) agreed to participate in the study. Placentas were obtained at delivery and processed for membrane extraction. BCRP protein expression was evaluated by immunoblotting techniques and chemiluminescence quantified with a luminograph measuring emitted photons; mRNA expression with real time PCR. Statistical differences between groups were evaluated by ANOVA with Dunn's Multiple Comparison test. RESULTS BCRP was expressed only on the apical membrane of the syncytiotrophoblast. A significant difference was observed among the three groups both for mRNA (ANOVA, p = 0.0074) and protein (ANOVA, p<0.0001) expression. BCRP expression was similar in controls and in the untreated ICP group. UDCA induced a significant increase in placental BCRP mRNA and protein expression compared to controls (350.7±106.3 vs 100±18.68% of controls, p<0.05 and 397.8±56.02 vs 100±11.44% of controls, p<0.001, respectively) and untreated ICP (90.29±17.59% of controls, p<0.05 and 155.0±13.87%, p<0.01). CONCLUSION Our results confirm that BCRP is expressed only on the apical membrane of the syncytiotrophoblast and show that ICP treatment with high dose UDCA significantly upregulates placental BCRP expression favouring BA efflux from the foetal compartment.
Collapse
Affiliation(s)
- Francesco Azzaroli
- Department of Medical and Surgical Sciences, S.Orsola-Malpighi Hospital, University of Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Schistosomes are parasitic flatworms that cause schistosomiasis, a neglected tropical disease that affects hundreds of millions worldwide. Treatment and control of schistosomiasis relies almost entirely on the single drug praziquantel (PZQ), making the prospect of emerging drug resistance particularly worrisome. This review will survey reports of PZQ (and other drug) resistance in schistosomes and other platyhelminths, and explore mechanisms by which drug resistance might develop. Newer genomic and post-genomic strategies that offer the promise of better understanding of how drug resistance might arise in these organisms will be discussed. These approaches could also lead to insights into the mode of action of these drugs and potentially provide markers for monitoring the emergence of resistance.
Collapse
|
19
|
Greenberg RM. ABC multidrug transporters in schistosomes and other parasitic flatworms. Parasitol Int 2013; 62:647-53. [PMID: 23474413 DOI: 10.1016/j.parint.2013.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 12/19/2022]
Abstract
Schistosomiasis, a neglected tropical disease affecting hundreds of millions, is caused by parasitic flatworms of the genus Schistosoma. Treatment and control of schistosomiasis relies almost exclusively on a single drug, praziquantel (PZQ), a dangerous situation for a disease of this magnitude. Though PZQ is highly effective overall, it has drawbacks, and reports of worms showing PZQ resistance, either induced in the laboratory or isolated from the field, are disconcerting. Multidrug transporters underlie multidrug resistance (MDR), a phenomenon in which resistance to a single drug is accompanied by unexpected cross-resistance to several structurally unrelated compounds. Some of the best studied multidrug transporters are members of the ancient and very large ATP-binding cassette (ABC) superfamily of efflux transporters. ABC multidrug transporters such as P-glycoprotein (Pgp; ABCB1) are also associated with drug resistance in parasites, including helminths such as schistosomes. In addition to their association with drug resistance, however, ABC transporters also function in a wide variety of physiological processes in metazoans. In this review, we examine recent studies that help define the role of schistosome ABC transporters in regulating drug susceptibility, and in normal schistosome physiology, including reproduction and excretory activity. We postulate that schistosome ABC transporters could be useful targets for compounds that enhance the effectiveness of current therapeutics as well as for agents that act as antischistosomals on their own.
Collapse
Affiliation(s)
- Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
20
|
Blazquez AG, Briz O, Romero MR, Rosales R, Monte MJ, Vaquero J, Macias RIR, Cassio D, Marin JJG. Characterization of the role of ABCG2 as a bile acid transporter in liver and placenta. Mol Pharmacol 2012; 81:273-83. [PMID: 22096226 DOI: 10.1124/mol.111.075143] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
ABCG2 is involved in epithelial transport/barrier functions. Here, we have investigated its ability to transport bile acids in liver and placenta. Cholylglycylamido fluorescein (CGamF) was exported by WIF-B9/R cells, which do not express the bile salt export pump (BSEP). Sensitivity to typical inhibitors suggested that CGamF export was mainly mediated by ABCG2. In Chinese hamster ovary (CHO cells), coexpression of rat Oatp1a1 and human ABCG2 enhanced the uptake and efflux, respectively, of CGamF, cholic acid (CA), glycoCA (GCA), tauroCA, and taurolithocholic acid-3-sulfate. The ability of ABCG2 to export these bile acids was confirmed by microinjecting them together with inulin in Xenopus laevis oocytes expressing this pump. ABCG2-mediated bile acid transport was inhibited by estradiol 17β-d-glucuronide and fumitremorgin C. Placental barrier for bile acids accounted for <2-fold increase in fetal cholanemia despite >14-fold increased maternal cholanemia induced by obstructive cholestasis in pregnant rats. In rat placenta, the expression of Abcg2, which was much higher than that of Bsep, was not affected by short-term cholestasis. In pregnant rats, fumitremorgin C did not affect uptake/secretion of GCA by the liver but inhibited its fetal-maternal transfer. Compared with wild-type mice, obstructive cholestasis in pregnant Abcg2(-/-) knockout mice induced similar bile acid accumulation in maternal serum but higher accumulation in placenta, fetal serum, and liver. In conclusion, ABCG2 is able to transport bile acids. The importance of this function depends on the relative expression in the same epithelium of other bile acid exporters. Thus, ABCG2 may play a key role in bile acid transport in placenta, as BSEP does in liver.
Collapse
Affiliation(s)
- Alba G Blazquez
- Laboratory of Experimental Hepatology and Drug Targeting, National Institute for the Study of Liver and Gastrointestinal Diseases, University of Salamanca, Salamanca, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kasinathan RS, Morgan WM, Greenberg RM. Genetic knockdown and pharmacological inhibition of parasite multidrug resistance transporters disrupts egg production in Schistosoma mansoni. PLoS Negl Trop Dis 2011; 5:e1425. [PMID: 22163059 PMCID: PMC3232217 DOI: 10.1371/journal.pntd.0001425] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/27/2011] [Indexed: 12/17/2022] Open
Abstract
P-glycoprotein (Pgp) and multidrug resistance-associated proteins (MRPs) are ATP-dependent transporters involved in efflux of toxins and xenobiotics from cells. When overexpressed, these transporters can mediate multidrug resistance (MDR) in mammalian cells, and changes in Pgp expression and sequence are associated with drug resistance in helminths. In addition to the role they play in drug efflux, MDR transporters are essential components of normal cellular physiology, and targeting them may prove a useful strategy for development of new therapeutics or of compounds that enhance the efficacy of current anthelmintics. We previously showed that expression of Schistosoma mansoni MDR transporters increases in response to praziquantel (PZQ), the current drug of choice against schistosomiasis, and that reduced PZQ sensitivity correlates with higher levels of these parasite transporters. We have also shown that PZQ inhibits transport by SMDR2, a Pgp orthologue from S. mansoni, and that PZQ is a likely substrate of SMDR2. Here, we examine the physiological roles of SMDR2 and SmMRP1 (the S. mansoni orthologue of MRP1) in S. mansoni adults, using RNAi to knock down expression, and pharmacological agents to inhibit transporter function. We find that both types of treatments disrupt parasite egg deposition by worms in culture. Furthermore, administration of different MDR inhibitors to S. mansoni-infected mice results in a reduction in egg burden in host liver. These schistosome MDR transporters therefore appear to play essential roles in parasite egg production, and can be targeted genetically and pharmacologically. Since eggs are responsible for the major pathophysiological consequences of schistosomiasis, and since they are also the agents for transmission of the disease, these results suggest a potential strategy for reducing disease pathology and spread. Schistosomes are parasitic flatworms that are the causative agents of schistosomiasis, a major tropical disease. As adults, schistosomes reside within the host vasculature, taking up nutrients, evading host defenses, and expelling wastes and toxins. Multidrug resistance transporters are involved in removal of toxins and foreign compounds, including drugs, from cells. These transporters have broad selectivity, and when upregulated or mutated, can confer resistance to a wide spectrum of drugs against mammalian tumor cells. They are also associated with drug resistance in various parasites, including helminths. In this report, we have used knockdown of expression of these proteins and pharmacological inhibition of their transport function to dissect their physiological role in the schistosome life cycle. We find that either reducing transporter expression or pharmacologically inhibiting transporter function leads to disruption of egg production by adult worms. Eggs deposited within the host are the major cause of disease pathology, and eggs excreted by the host are the means of continuation of the life cycle and transmission of the disease. The capability to interfere with schistosome egg production could have major implications for development of new treatment strategies.
Collapse
Affiliation(s)
- Ravi S. Kasinathan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - William M. Morgan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert M. Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
22
|
Kasinathan RS, Greenberg RM. Pharmacology and potential physiological significance of schistosome multidrug resistance transporters. Exp Parasitol 2011; 132:2-6. [PMID: 21420955 DOI: 10.1016/j.exppara.2011.03.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 12/16/2022]
Abstract
Schistosomes are the causative agents of schistosomiasis, a neglected tropical disease affecting hundreds of millions worldwide and a major global health burden. Current control of schistosomiasis depends largely on a single drug, praziquantel (PZQ). One potential physiological target for new antischistosomal drugs is the parasite's excretory system, which removes wastes and xenobiotics. Multidrug resistance (MDR) transporters that are members of the ATP-binding cassette (ABC) superfamily of proteins are ATP-dependent efflux pumps involved in removal of toxins and xenobiotics from cells. They mediate the phenomenon of multidrug resistance, in which cells resistant to one drug show cross-resistance to a broad range of other agents, and are also associated with reduced drug susceptibility in parasitic helminths. In this review, we survey the different types of ABC transporter genes present within the schistosome genome, and examine recent evidence indicating that at least some of these transporters may play a role in fine-tuning susceptibility of schistosomes to PZQ. Disruption of their function may therefore provide a strategy for enhancing drug action or overcoming or attenuating drug resistance. Furthermore, dissection of the roles these transporters may play in normal schistosome physiology could potentially lead to identification of highly "druggable" targets for new antischistosomals.
Collapse
Affiliation(s)
- Ravi S Kasinathan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104, USA
| | | |
Collapse
|
23
|
Bártíková H, Vokřál I, Forstová-Křížová V, Skálová L, Lamka J, Szotáková B. The transport of albendazole and albendazole sulphoxide in the lancet fluke (Dicrocoelium dendriticum). Vet Parasitol 2011; 176:27-33. [DOI: 10.1016/j.vetpar.2010.10.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Revised: 10/13/2010] [Accepted: 10/20/2010] [Indexed: 12/27/2022]
|
24
|
Dupuy J, Alvinerie M, Ménez C, Lespine A. Interaction of anthelmintic drugs with P-glycoprotein in recombinant LLC-PK1-mdr1a cells. Chem Biol Interact 2010; 186:280-6. [PMID: 20513441 DOI: 10.1016/j.cbi.2010.05.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 12/22/2022]
Abstract
Given the widespread use of formulations combining anthelmintics which are possible P-glycoprotein interfering agents, the understanding of drug interactions with efflux ABC transporters is of concern for improving anthelmintic control. We determined the ability of 14 anthelmintics from different classes to interact with abcb1a (mdr1a, P-glycoprotein, Pgp) by following the intracellular accumulation of rhodamine 123 (Rho 123), a fluorescent Pgp substrate, in LLC-PK1 cells overexpressing Pgp. The cytotoxicity of the compounds that are able to interfere with Pgp activity was evaluated in cells overexpressing Pgp and compared with parental cells using the MTS viability assay. Among all the anthelmintics used, ivermectin (IVM), triclabendazole (TCZ), triclabendazole sulfoxide (TCZ-SO), closantel (CLOS) and rafoxanide (RAF) increased the intracellular Rho 123 in Pgp overexpressing cells, while triclabendazole sulfone, albendazole, mebendazole, oxfendazole, thiabendazole, nitroxynil, levamisole, praziquantel and clorsulon failed to have any effect. The concentration needed to reach the maximal Rho 123 accumulation (E(max)) was obtained with 10 microM for IVM, 80 microM for CLOS, 40 microM for TCZ and TCZ-SO, and 80 microM for RAF. We showed that for these five drugs parental cell line was more sensitive to drug toxicity compared with Pgp recombinant cell line. Such in vitro approach constitutes a powerful tool to predict Pgp-drug interactions when formulations combining several anthelmintics are administered and may contribute to the required optimization of efficacy of anthelmintics.
Collapse
Affiliation(s)
- Jacques Dupuy
- INRA UR66, Laboratoire de Pharmacologie-Toxicologie, F-31027 Toulouse Cedex 3, France.
| | | | | | | |
Collapse
|
25
|
Kasinathan RS, Morgan WM, Greenberg RM. Schistosoma mansoni express higher levels of multidrug resistance-associated protein 1 (SmMRP1) in juvenile worms and in response to praziquantel. Mol Biochem Parasitol 2010; 173:25-31. [PMID: 20470831 DOI: 10.1016/j.molbiopara.2010.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 12/13/2022]
Abstract
The ATP-binding cassette (ABC) superfamily of proteins comprises several ATP-dependent efflux pumps involved in transport of toxins and xenobiotics from cells. These transporters are essential components of normal physiology, and a subset is associated with development of multidrug resistance. P-glycoprotein (Pgp) and the multidrug resistance-associated proteins (MRPs) represent two classes of these multidrug resistance (MDR) transporters. MRP1 is one type of mammalian MRP, which preferentially transports anionic compounds and compounds detoxified by cellular enzymes such as glutathione-S-transferase. It also transports signaling molecules, including immunomodulators. In schistosomes, both Pgp and MRP substrates localize to the excretory system, a potentially attractive target for new antischistosomals. We have previously shown that expression of schistosome Pgp (SMDR2) is altered in worms exposed to praziquantel (PZQ), the current drug of choice against schistosomiasis, and is expressed at higher levels in worms from isolates with reduced PZQ susceptibility. We have also shown that PZQ interacts directly with SMDR2. Here, we examine the relationship between PZQ and SmMRP1, a Schistosoma mansoni homolog of mammalian MRP1. SmMRP1 RNA is differentially expressed in adult males and females, and levels increase transiently following exposure of adult worms to sub-lethal concentrations of PZQ. A corresponding, though delayed, increase in anti-MRP1-immunoreactive protein also occurs following exposure to PZQ. PZQ-insensitive juvenile worms express higher levels of both SmMRP1 and SMDR2 RNA than mature adults, consistent with the hypothesis that increases in levels of schistosome multidrug transporters may be involved in development or maintenance of reduced susceptibility to PZQ.
Collapse
Affiliation(s)
- Ravi S Kasinathan
- Department of Pathobiology, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | |
Collapse
|
26
|
Drug resistance mechanisms in helminths: is it survival of the fittest? Trends Parasitol 2009; 25:328-35. [DOI: 10.1016/j.pt.2009.04.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/25/2009] [Accepted: 04/02/2009] [Indexed: 11/20/2022]
|
27
|
Robinson MW, Menon R, Donnelly SM, Dalton JP, Ranganathan S. An integrated transcriptomics and proteomics analysis of the secretome of the helminth pathogen Fasciola hepatica: proteins associated with invasion and infection of the mammalian host. Mol Cell Proteomics 2009; 8:1891-907. [PMID: 19443417 DOI: 10.1074/mcp.m900045-mcp200] [Citation(s) in RCA: 224] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To infect their mammalian hosts, Fasciola hepatica larvae must penetrate and traverse the intestinal wall of the duodenum, move through the peritoneum, and penetrate the liver. After migrating through and feeding on the liver, causing extensive tissue damage, the parasites move to their final niche in the bile ducts where they mature and produce eggs. Here we integrated a transcriptomics and proteomics approach to profile Fasciola secretory proteins that are involved in host-pathogen interactions and to correlate changes in their expression with the migration of the parasite. Prediction of F. hepatica secretory proteins from 14,031 expressed sequence tags (ESTs) available from the Wellcome Trust Sanger Centre using the semiautomated EST2Secretome pipeline showed that the major components of adult parasite secretions are proteolytic enzymes including cathepsin L, cathepsin B, and asparaginyl endopeptidase cysteine proteases as well as novel trypsin-like serine proteases and carboxypeptidases. Proteomics analysis of proteins secreted by infective larvae, immature flukes, and adult F. hepatica showed that these proteases are developmentally regulated and correlate with the passage of the parasite through host tissues and its encounters with different host macromolecules. Proteases such as FhCL3 and cathepsin B have specific functions in larvae activation and intestinal wall penetration, whereas FhCL1, FhCL2, and FhCL5 are required for liver penetration and tissue and blood feeding. Besides proteases, the parasites secrete an array of antioxidants that are also highly regulated according to their migration through host tissues. However, whereas the proteases of F. hepatica are secreted into the parasite gut via a classical endoplasmic reticulum/Golgi pathway, we speculate that the antioxidants, which all lack a signal sequence, are released via a non-classical trans-tegumental pathway.
Collapse
Affiliation(s)
- Mark W Robinson
- Institute for the Biotechnology of Infectious Diseases, University of Technology Sydney, Ultimo, Sydney, New South Wales 2007, Australia.
| | | | | | | | | |
Collapse
|