1
|
Wei X, Wang L, Duan C, Chen K, Li X, Guo X, Chen P, Liu H, Fan Y. Cardiac patches made of brown adipose-derived stem cell sheets and conductive electrospun nanofibers restore infarcted heart for ischemic myocardial infarction. Bioact Mater 2023; 27:271-287. [PMID: 37122901 PMCID: PMC10130885 DOI: 10.1016/j.bioactmat.2023.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 03/26/2023] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Cell sheet engineering has been proven to be a promising strategy for cardiac remodeling post-myocardial infarction. However, insufficient mechanical strength and low cell retention lead to limited therapeutic efficiency. The thickness and area of artificial cardiac patches also affect their therapeutic efficiency. Cardiac patches prepared by combining cell sheets with electrospun nanofibers, which can be transplanted and sutured to the surface of the infarcted heart, promise to solve this problem. Here, we fabricated a novel cardiac patch by stacking brown adipose-derived stem cells (BADSCs) sheet layer by layer, and then they were combined with multi-walled carbon nanotubes (CNTs)-containing electrospun polycaprolactone/silk fibroin nanofibers (CPSN). The results demonstrated that BADSCs tended to generate myocardium-like structures seeded on CPSN. Compared with BADSCs suspension-containing electrospun nanofibers, the transplantation of the CPSN-BADSCs sheets (CNBS) cardiac patches exhibited accelerated angiogenesis and decreased inflammation in a rat myocardial infarction model. In addition, the CNBS cardiac patches could regulate macrophage polarization and promote gap junction remodeling, thus restoring cardiac functions. Overall, the hybrid cardiac patches made of electrospun nanofibers and cell sheets provide a novel solution to cardiac remodeling after ischemic myocardial infarction.
Collapse
Affiliation(s)
- Xinbo Wei
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Li Wang
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Cuimi Duan
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Kai Chen
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Xia Li
- Beijing Citident Stomatology Hospital, Beijing, 100032, PR China
| | - Ximin Guo
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences, Beijing, 100850, PR China
| | - Peng Chen
- Department of Ultrasound, The Third Medical Center, Chinese PLA General Hospital, Beijing, PR China
| | - Haifeng Liu
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology (Beihang University) of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, PR China
| |
Collapse
|
2
|
Mesenchymal Stem Cells for Cardiac Regeneration: from Differentiation to Cell Delivery. Stem Cell Rev Rep 2021; 17:1666-1694. [PMID: 33954876 DOI: 10.1007/s12015-021-10168-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2021] [Indexed: 12/20/2022]
Abstract
Mesenchymal stem cells (MSCs) are so far the most widely researched stem cells in clinics and used as an experimental cellular therapy module, particularly in cardiac regeneration and repair. Ever since the discovery of cardiomyogenesis induction in MSCs, a wide variety of differentiation protocols have been extensively used in preclinical models. However, pre differentiated MSC-derived cardiomyocytes have not been used in clinical trials; highlighting discrepancies and limitations in its use as a source of derived cardiomyocytes for transplantation to improve the damaged heart function. Therefore, this review article focuses on the strategies used to derive cardiomyocytes-like cells from MSCs isolated from three widely used tissue sources and their differentiation efficiencies. We have further discussed the role of MSCs in inducing angiogenesis as a cellular precursor to endothelial cells and its secretory aspects including exosomes. We have then discussed the strategies used for delivering cells in the damaged heart and how its retention plays a critical role in the overall outcome of the therapy. We have also conversed about the scope of the local and systemic modes of delivery of MSCs and the application of biomaterials to improve the overall delivery efficacy and function. We have finally discussed the advantages and limitations of cell delivery to the heart and the future scope of MSCs in cardiac regenerative therapy.
Collapse
|
3
|
Al-Ghadban S, Bunnell BA. Adipose Tissue-Derived Stem Cells: Immunomodulatory Effects and Therapeutic Potential. Physiology (Bethesda) 2021; 35:125-133. [PMID: 32027561 DOI: 10.1152/physiol.00021.2019] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adipose-derived stem cells (ASCs) can self-renew and differentiate along multiple cell lineages. ASCs are also potently anti-inflammatory due to their inherent ability to regulate the immune system by secreting anti-inflammatory cytokines and growth factors that play a crucial role in the pathology of many diseases, including multiple sclerosis, diabetes mellitus, Crohn's, SLE, and graft-versus-host disease. The immunomodulatory effects and mechanisms of action of ASCs on pathological conditions are reviewed here.
Collapse
Affiliation(s)
- Sara Al-Ghadban
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Bruce A Bunnell
- Center for Stem Cell Research & Regenerative Medicine, Tulane University School of Medicine, New Orleans, Louisiana.,Department of Pharmacology, School of Medicine, Tulane University, New Orleans, Louisiana
| |
Collapse
|
4
|
Rogers CJ, Harman RJ, Bunnell BA, Schreiber MA, Xiang C, Wang FS, Santidrian AF, Minev BR. Rationale for the clinical use of adipose-derived mesenchymal stem cells for COVID-19 patients. J Transl Med 2020; 18:203. [PMID: 32423449 PMCID: PMC7232924 DOI: 10.1186/s12967-020-02380-2] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
In late 2019, a novel coronavirus (SARS-CoV-2) emerged in Wuhan, capital city of Hubei province in China. Cases of SARS-CoV-2 infection quickly grew by several thousand per day. Less than 100 days later, the World Health Organization declared that the rapidly spreading viral outbreak had become a global pandemic. Coronavirus disease 2019 (COVID-19) is typically associated with fever and respiratory symptoms. It often progresses to severe respiratory distress and multi-organ failure which carry a high mortality rate. Older patients or those with medical comorbidities are at greater risk for severe disease. Inflammation, pulmonary edema and an over-reactive immune response can lead to hypoxia, respiratory distress and lung damage. Mesenchymal stromal/stem cells (MSCs) possess potent and broad-ranging immunomodulatory activities. Multiple in vivo studies in animal models and ex vivo human lung models have demonstrated the MSC's impressive capacity to inhibit lung damage, reduce inflammation, dampen immune responses and aid with alveolar fluid clearance. Additionally, MSCs produce molecules that are antimicrobial and reduce pain. Upon administration by the intravenous route, the cells travel directly to the lungs where the majority are sequestered, a great benefit for the treatment of pulmonary disease. The in vivo safety of local and intravenous administration of MSCs has been demonstrated in multiple human clinical trials, including studies of acute respiratory distress syndrome (ARDS). Recently, the application of MSCs in the context of ongoing COVID-19 disease and other viral respiratory illnesses has demonstrated reduced patient mortality and, in some cases, improved long-term pulmonary function. Adipose-derived stem cells (ASC), an abundant type of MSC, are proposed as a therapeutic option for the treatment of COVID-19 in order to reduce morbidity and mortality. Additionally, when proven to be safe and effective, ASC treatments may reduce the demand on critical hospital resources. The ongoing COVID-19 outbreak has resulted in significant healthcare and socioeconomic burdens across the globe. There is a desperate need for safe and effective treatments. Cellular based therapies hold great promise for the treatment of COVID-19. This literature summary reviews the scientific rationale and need for clinical studies of adipose-derived stem cells and other types of mesenchymal stem cells in the treatment of patients who suffer with COVID-19.
Collapse
Affiliation(s)
| | | | - Bruce A. Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University School of Medicine, New Orleans, LA USA
| | - Martin A. Schreiber
- Department of Surgery, Oregon Health and Science University, Portland, OR USA
| | - Charlie Xiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003 China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center, Beijing, 100039 China
| | | | - Boris R. Minev
- Calidi Biotherapeutics, Inc., San Diego, CA USA
- Department of Radiation Medicine and Applied Sciences, Moores UCSD Cancer Center, San Diego, CA USA
| |
Collapse
|
5
|
Zhou LN, Wang JC, Zilundu PLM, Wang YQ, Guo WP, Zhang SX, Luo H, Zhou JH, Deng RD, Chen DF. A comparison of the use of adipose-derived and bone marrow-derived stem cells for peripheral nerve regeneration in vitro and in vivo. Stem Cell Res Ther 2020; 11:153. [PMID: 32272974 PMCID: PMC7147018 DOI: 10.1186/s13287-020-01661-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/15/2020] [Accepted: 03/23/2020] [Indexed: 01/08/2023] Open
Abstract
Background To date, it has repeatedly been demonstrated that infusing bone marrow-derived stem cells (BMSCs) into acellular nerve scaffolds can promote and support axon regeneration through a peripheral nerve defect. However, harvesting BMSCs is an invasive and painful process fraught with a low cellular yield. Methods In pursuit of alternative stem cell sources, we isolated stem cells from the inguinal subcutaneous adipose tissue of adult Sprague–Dawley rats (adipose-derived stem cells, ADSCs). We used a co-culture system that allows isolated adult mesenchymal stem cells (MSCs) and Schwann cells (SCs) to grow in the same culture medium but without direct cellular contact. We verified SC phenotype in vitro by cell marker analysis and used red fluorescent protein-tagged ADSCs to detect their fate after being injected into a chemically extracted acellular nerve allograft (CEANA). To compare the regenerative effects of CEANA containing either BMSCs or ADSCs with an autograft and CEANA only on the sciatic nerve defect in vivo, we performed histological and functional assessments up to 16 weeks after grafting. Results In vitro, we observed reciprocal beneficial effects of ADSCs and SCs in the ADSC–SC co-culture system. Moreover, ADSCs were able to survive in CEANA for 5 days after in vitro implantation. Sixteen weeks after grafting, all results consistently showed that CEANA infused with BMSCs or ADSCs enhanced injured sciatic nerve repair compared to the acellular CEANA-only treatment. Furthermore, their beneficial effects on sciatic injury regeneration were comparable as histological and functional parameters evaluated showed no statistically significant differences. However, the autograft group was roundly superior to both the BMSC- or ADSC-loaded CEANA groups. Conclusion The results of the present study show that ADSCs are a viable alternative stem cell source for treating sciatic nerve injury in lieu of BMSCs.
Collapse
Affiliation(s)
- Li Na Zhou
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China.
| | - Jia Chuan Wang
- Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | | | - Ya Qiong Wang
- Department of Electron Microscope, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Wen Ping Guo
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Sai Xia Zhang
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Hui Luo
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Jian Hong Zhou
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Ru Dong Deng
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China
| | - Dong Feng Chen
- Department of Anatomy, School of basic medical sciences, Guangzhou University of Chinese Medicine, 232 Waihuan East Road, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
6
|
Hernández R, Jiménez-Luna C, Perales-Adán J, Perazzoli G, Melguizo C, Prados J. Differentiation of Human Mesenchymal Stem Cells towards Neuronal Lineage: Clinical Trials in Nervous System Disorders. Biomol Ther (Seoul) 2020; 28:34-44. [PMID: 31649208 PMCID: PMC6939692 DOI: 10.4062/biomolther.2019.065] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been proposed as an alternative therapy to be applied into several pathologies of the nervous system. These cells can be obtained from adipose tissue, umbilical cord blood and bone marrow, among other tissues, and have remarkable therapeutic properties. MSCs can be isolated with high yield, which adds to their ability to differentiate into non-mesodermal cell types including neuronal lineage both in vivo and in vitro. They are able to restore damaged neural tissue, thus being suitable for the treatment of neural injuries, and possess immunosuppressive activity, which may be useful for the treatment of neurological disorders of inflammatory etiology. Although the long-term safety of MSC-based therapies remains unclear, a large amount of both pre-clinical and clinical trials have shown functional improvements in animal models of nervous system diseases following transplantation of MSCs. In fact, there are several ongoing clinical trials evaluating the possible benefits this cell-based therapy could provide to patients with neurological damage, as well as their clinical limitations. In this review we focus on the potential of MSCs as a therapeutic tool to treat neurological disorders, summarizing the state of the art of this topic and the most recent clinical studies.
Collapse
Affiliation(s)
- Rosa Hernández
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| | - Cristina Jiménez-Luna
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Department of Oncology, Ludwig Institute for Cancer Research, University of Lausanne, Epalinges 1066, Switzerland
| | - Jesús Perales-Adán
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| | - José Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada, Granada 18100, Spain.,Department of Anatomy and Embryology, University of Granada, Granada 18016, Spain.,Biosanitary Institute of Granada (ibs.GRANADA), Granada 18012, Spain
| |
Collapse
|
7
|
Zhang J, Huang C. A new combination of transcription factors increases the harvesting efficiency of pacemaker‑like cells. Mol Med Rep 2019; 19:3584-3592. [PMID: 30864738 PMCID: PMC6472109 DOI: 10.3892/mmr.2019.10012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 02/01/2019] [Indexed: 01/22/2023] Open
Abstract
Biological pacemakers that combine cell-based and gene-based therapies are a promising treatment for sick sinus syndrome or severe atrioventricular block. The current study aimed to induce differentiation of adipose tissue-derived stem cells (ADSCs) into cardiac pacemaker cells through co-expression of the transcription factors insulin gene enhancer binding protein 1 (ISL-1) and T-box18 (Tbx18). ADSCs were transfected with green fluorescent protein, ISL-1, Tbx18 or ISL-1+Tbx18 fluorescent protein lentiviral vectors, and subsequently co-cultured with neonatal rat ventricular cardiomyocytes in vitro for 7 days. The potential for regulating the differentiation of ADSCs into pacemaker-like cells was evaluated by cell morphology, beating rate, reverse transcription-quantitative polymerase chain reaction, western blotting, immunofluorescence and electrophysiological activity. ADSCs were successfully transformed into spontaneously beating cells that exhibited a behavior similar to that of co-cultured pacemaker cells. This effect was significantly increased in the combined ISL-1 and Tbx18 group. These results provide a potential strategy for enriching the cardiac pacemaker cell population from ADSCs.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
8
|
Zhang J, Yang M, Yang AK, Wang X, Tang YH, Zhao QY, Wang T, Chen YT, Huang CX. Insulin gene enhancer binding protein 1 induces adipose tissue‑derived stem cells to differentiate into pacemaker‑like cells. Int J Mol Med 2018; 43:879-889. [PMID: 30483766 PMCID: PMC6317671 DOI: 10.3892/ijmm.2018.4002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/20/2018] [Indexed: 01/22/2023] Open
Abstract
Hybrid approaches combining gene- and cell-based therapies to make biological pacemakers are a promising therapeutic avenue for bradyarrhythmia. The present study aimed to direct adipose tissue-derived stem cells (ADSCs) to differentiate specifically into cardiac pacemaker cells by overexpressing a single transcription factor, insulin gene enhancer binding protein 1 (ISL-1). In the present study, the ADSCs were transfected with ISL‑1 or mCherry fluorescent protein lentiviral vectors and co-cultured with neonatal rat ventricular cardiomyocytes (NRVMs) in vitro for 5-7 days. The feasibility of regulating the differentiation of ADSCs into pacemaker-like cells by overexpressing ISL-1 was evaluated by observation of cell morphology and beating rate, reverse transcription-quantitative polymerase chain reaction analysis, western blotting, immunofluorescence and analysis of electrophysiological activity. In conclusion, these data indicated that the overexpression of ISL-1 in ADSCs may enhance the pacemaker phenotype and automaticity in vitro, features which were significantly increased following co‑culture induction.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - An-Kang Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing-Yan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yu-Ting Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
9
|
Neshati V, Mollazadeh S, Fazly Bazzaz BS, Iranshahi M, Mojarrad M, Naderi-Meshkin H, Kerachian MA. Cardiogenic effects of characterized Geum urbanum extracts on adipose-derived human mesenchymal stem cells. Biochem Cell Biol 2018; 96:610-618. [DOI: 10.1139/bcb-2017-0313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Stem cell therapy is considered as a promising treatment for cardiovascular diseases. Adipose-derived mesenchymal stem cells (ADMSCs) have the ability to undergo cardiomyogenesis. Medicinal plants are effective and safe candidates for cell differentiation. Therefore, the aim of our study was to investigate cardiogenic effects of characterized (HPLC–UV) extracts of Geum urbanum on ADMSCs of adipose tissue. The methanolic extracts of the root and aerial parts of G. urbanum were obtained and MTT assay was used for studying their cytotoxic effects. Then, cells were treated with 50 or 100 μg/mL of the extracts from root and aerial parts of G. urbanum. MTT assay showed that the extracts of G. urbanum did not have any toxic effects on ADMSCs. Immunostaining results showed increase in the expression of α-actinin and cardiac troponin I (cTnI), and quantitative real-time reverse-transcription PCR data confirmed the upregulation of ACTN, ACTC1, and TNNI3 genes in ADMSCs after treatment. According to HPLC fingerprinting, some cardiogenic effects of G. urbanum extracts are probably due to ellagic and gallic acid derivatives. Our findings indicated that G. urbanum extracts effectively upregulated some essential cardiogenic markers, which confirmed the therapeutic role of this plant as a traditional cardiac medicine.
Collapse
Affiliation(s)
- Vajiheh Neshati
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Sedigheh Fazly Bazzaz
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mojarrad
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hojjat Naderi-Meshkin
- Stem Cell and Regenerative Medicine Research Group, Academic Center for Education, Culture, Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mohammad Amin Kerachian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Zhu Y, Tan J, Zhu H, Lin G, Yin F, Wang L, Song K, Wang Y, Zhou G, Yi W. Development of kartogenin-conjugated chitosan–hyaluronic acid hydrogel for nucleus pulposus regeneration. Biomater Sci 2017; 5:784-791. [PMID: 28261733 DOI: 10.1039/c7bm00001d] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Injectable constructs for in vivo gelation have many advantages in the regeneration of degenerated nucleus pulposus.
Collapse
|
11
|
Yang M, Zhang GG, Wang T, Wang X, Tang YH, Huang H, Barajas-Martinez H, Hu D, Huang CX. TBX18 gene induces adipose-derived stem cells to differentiate into pacemaker-like cells in the myocardial microenvironment. Int J Mol Med 2016; 38:1403-1410. [PMID: 27632938 PMCID: PMC5065308 DOI: 10.3892/ijmm.2016.2736] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 08/31/2016] [Indexed: 12/22/2022] Open
Abstract
T-box 18 (TBX18) plays a crucial role in the formation and development of the head of the sinoatrial node. The objective of this study was to induce adipose-derived stem cells (ADSCs) to produce pacemaker-like cells by transfection with the TBX18 gene. A recombinant adenovirus vector carrying the human TBX18 gene was constructed to transfect ADSCs. The ADSCs transfected with TBX18 were considered the TBX18-ADSCs. The control group was the GFP-ADSCs. The transfected cells were co-cultured with neonatal rat ventricular cardiomyocytes (NRVMs). The results showed that the mRNA expression of TBX18 in TBX18-ADSCs was significantly higher than in the control group after 48 h and 7 days. After 7 days of co-culturing with NRVMs, there was no significant difference in the expression of the myocardial marker cardiac troponin I (cTnI) between the two groups. RT-qPCR and western blot analysis showed that the expression of HCN4 was higher in the TBX18-ADSCs than in the GFP-ADSCs. The If current was detected using the whole cell patch clamp technique and was blocked by the specific blocker CsCl. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSCMs) showed approximately twice the current density compared with the ADSCs. Our study indicated that the TBX18 gene induces ADSCs to differentiate into pacemaker-like cells in the cardiac microenvironment. Although further experiments are required in order to assess safety and efficacy prior to implementation in clinical practice, this technique may provide new avenues for the clinical therapy of bradycardia.
Collapse
Affiliation(s)
- Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Ge-Ge Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Teng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Yan-Hong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | | | - Dan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Cong-Xin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
12
|
Wei R, Yang J, Gao M, Wang H, Hou W, Mu Y, Chen G, Hong T. Infarcted cardiac microenvironment may hinder cardiac lineage differentiation of human embryonic stem cells. Cell Biol Int 2016; 40:1235-1246. [PMID: 27600481 DOI: 10.1002/cbin.10679] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 09/04/2016] [Indexed: 11/07/2022]
Abstract
Microenvironment regulates cell fate and function. In this study, we investigated the effects of the infarcted cardiac microenvironment on cardiac differentiation of human embryonic stem cells (hESCs). hESCs were intramyocardially transplanted into infarcted or uninjured rat hearts. After 4 weeks, mesodermal and cardiac lineage markers were detected by immunofluorescence. Cardiac function was assessed by echocardiography. hESCs were differentiated in vitro under hypoxic (5% O2 ), low-nutrient (5% FBS), or control condition. The numbers of beating clusters, proportions of cardiac troponin T (cTnT)-positive cells, and relative levels of cardiac-specific markers were determined. Results showed that in both uninjured and infarcted hearts, hESCs survived, underwent development, and formed intracardiac grafts, with a higher proportion in the uninjured hearts. However, cells that were double positive for human fetal liver kinase 1 (Flk1), a marker of cardiac progenitors, and human β-tubulin, a marker for labeling human cells, were found in the uninjured hearts but not in the infarcted hearts. hESC transplantation did not restore the cardiac function of acutely infarcted rats. In vitro, low FBS treatment was associated with fewer beating clusters, a lower proportion of cTnT-positive cells and lower levels of cardiac troponin I (cTnI) and α-myosin heavy chain (α-MHC) expression than those in the control. Conversely, hypoxia treatment was associated with a higher proportion of cTnT-positive cells and higher levels of cTnI expression. In conclusion, transplanted hESCs differentiate toward Flk1-positive cardiac progenitors in the uninjured but not infarcted hearts. The infarcted cardiac microenvironment recapitulated is unsuitable for cardiac differentiation of hESCs, likely due to nutrient deprivation.
Collapse
Affiliation(s)
- Rui Wei
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Jin Yang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Meijuan Gao
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Haining Wang
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Wenfang Hou
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing, China
| | - Guian Chen
- Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China
| | - Tianpei Hong
- Department of Endocrinology and Metabolism, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China. .,Clinical Stem Cell Research Centre, Peking University Third Hospital, Beijing, China.
| |
Collapse
|
13
|
Jiang L, Wang Y, Pan F, Zhao X, Zhang H, Lei M, Liu T, Lu JR. Synergistic effect of bioactive lipid and condition medium on cardiac differentiation of human mesenchymal stem cells from different tissues. Cell Biochem Funct 2016; 34:163-72. [PMID: 26990081 PMCID: PMC5031220 DOI: 10.1002/cbf.3175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/22/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
Human umbilical cord mesenchymal stem cells (hUCMSCs) and human adipose tissue mesenchymal stem cells (hATMSCs) have the potential to differentiate into cardiomyocytes, making them promising therapeutic candidates for treating damaged cardiac tissues. Currently, however, the differentiated cells induced from hUCMSCs or hATMSCs can hardly display functional characteristics similar to cardiomyocytes. In this study, we have investigated the effects of bioactive lipid sphingosine-1-phosphate (S1P) on cardiac differentiations of hUCMSCs and hATMSCs in condition medium composed of cardiac myocytes culture medium or 5-azacytidine. Cardiac differentiations were identified through immunofluorescence staining, and the results were observed with fluorescence microscopy and confocal microscopy. Synergistic effects of S1P and condition medium on cell viability were evaluated by MTT assays. Functional characteristics similar to cardiomyocytes were evaluated through detecting calcium transient. The differentiated hUCMSCs or hATMSCs in each group into cardiomyocytes showed positive expressions of cardiac specific proteins, including α-actin, connexin-43 and myosin heavy chain-6 (MYH-6). MTT assays showed that suitable differentiation time was 14 days and that the optimal concentration of S1P was 0.5 μM. Moreover, incorporation of S1P and cardiac myocytes culture medium gave rise to calcium transients, an important marker for displaying in vivo electrophysiological properties. This feature was not observed in the S1P-5-azacytidine group, indicating the possible lack of cellular stimuli such as transforming growth factor-beta, TGF-β.
Collapse
Affiliation(s)
- Lili Jiang
- Dalian R&D Center for Stem Cell and Tissue Engineering, Faculty of Chemical Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
| | - Yanwen Wang
- Cardiovascular and Genetic Medicine Research Groups, School of BiomedicineUniversity of ManchesterManchesterUK
| | - Fang Pan
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| | - Xiubo Zhao
- Department of Chemical & Biological EngineeringUniversity of SheffieldMappin Street, Sheffield, S1 3JDUK
| | - Henggui Zhang
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| | - Ming Lei
- Cardiovascular and Genetic Medicine Research Groups, School of BiomedicineUniversity of ManchesterManchesterUK
| | - Tianqing Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Faculty of Chemical Environmental and Biological Science and TechnologyDalian University of TechnologyDalianChina
| | - Jian R. Lu
- Biological Physics Group, School of Physics and AstronomyUniversity of ManchesterManchesterUK
| |
Collapse
|
14
|
Mvula B, Abrahamse H. Differentiation Potential of Adipose-Derived Stem Cells When Cocultured with Smooth Muscle Cells, and the Role of Low-Intensity Laser Irradiation. Photomed Laser Surg 2015; 34:509-515. [PMID: 26594838 DOI: 10.1089/pho.2015.3978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVE The aim of the study was to investigate the differentiation potential of adipose-derived stem cells (ADSCs) when cocultured with smooth muscle cells (SMCs), and to determine the role of low-intensity laser irradiation (LILI). BACKGROUND DATA ADSCs isolated from adipose tissue are isolated with ease and in large amounts. SMCs constitute most parts of the intestinal, urinary, reproductive, and cardiovascular systems. LILI has been found to have positive effects on different cell types, including ADSCs. METHODS The study used ADSCs (Stempro Adipose Derived Stem Cells-R7788-115) and SMCs (SKU-T-1 American Type Culture Collection HTB-114) cell lines. These cell lines were cocultured in a 1:1 ratio with and without growth factors and then exposed to LILI using 636 nm at 5 J/cm2. RESULTS Cell viability and proliferation increased significantly in the cocultured groups that were exposed to LILI alone, as well as in combination with growth factors. Further, there was a significant decrease in the expression of stem cell markers with a concomitant increase in SMC markers. CONCLUSIONS These results suggest that ADSCs have the ability to differentiate into SMCs when cocultured with SMCs, whereas LILI potentially augments the differentiation potential and need. This further highlights the significant role that LILI has to offer ADSC therapy in regenerative medicine.
Collapse
Affiliation(s)
- Bernard Mvula
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg , Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg , Johannesburg, South Africa
| |
Collapse
|
15
|
Song K, Yan X, Li S, Zhang Y, Wang H, Wang L, Lim M, Liu T. Preparation and detection of calcium alginate/bone powder hybrid microbeads forin vitroculture of ADSCs. J Microencapsul 2015; 32:811-9. [DOI: 10.3109/02652048.2015.1094533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Wegener M, Bader A, Giri S. How to mend a broken heart: adult and induced pluripotent stem cell therapy for heart repair and regeneration. Drug Discov Today 2015; 20:667-85. [PMID: 25720353 DOI: 10.1016/j.drudis.2015.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 11/30/2014] [Accepted: 02/16/2015] [Indexed: 01/06/2023]
Abstract
The recently developed ability to differentiate primary adult stem cells and induced pluripotent stem cells (iPSCs) into cardiomyocytes is providing unprecedented opportunities to produce an unlimited supply of cardiomyocytes for use in patients with heart disease. Here, we examine the evidence for the preclinical use of such cells for successful heart regeneration. We also describe advances in the identification of new cardiac molecular and cellular targets to induce proliferation of cardiomyocytes for heart regeneration. Such new advances are paving the way for a new innovative drug development process for the treatment of heart disease.
Collapse
Affiliation(s)
- Marie Wegener
- Centre for Biotechnology and Biomedicine, Department of Cell Techniques and Applied Stem Cell Biology, Medical Faculty of University of Leipzig, Deutscher Platz 5, Leipzig D-04103, Germany
| | - Augustinus Bader
- Centre for Biotechnology and Biomedicine, Department of Cell Techniques and Applied Stem Cell Biology, Medical Faculty of University of Leipzig, Deutscher Platz 5, Leipzig D-04103, Germany
| | - Shibashish Giri
- Centre for Biotechnology and Biomedicine, Department of Cell Techniques and Applied Stem Cell Biology, Medical Faculty of University of Leipzig, Deutscher Platz 5, Leipzig D-04103, Germany.
| |
Collapse
|
17
|
Pham TLB, Nguyen TT, Van Bui A, Nguyen MT, Van Pham P. Fetal heart extract facilitates the differentiation of human umbilical cord blood-derived mesenchymal stem cells into heart muscle precursor cells. Cytotechnology 2014; 68:645-58. [PMID: 25377264 DOI: 10.1007/s10616-014-9812-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 10/27/2014] [Indexed: 02/07/2023] Open
Abstract
Human umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) are a promising stem cell source with the potential to modulate the immune system as well as the capacity to differentiate into osteoblasts, chondrocytes, and adipocytes. In previous publications, UCB-MSCs have been successfully differentiated into cardiomyocytes. This study aimed to improve the efficacy of differentiation of UCB-MSCs into cardiomyocytes by combining 5-azacytidine (Aza) with mouse fetal heart extract (HE) in the induction medium. UCB-MSCs were isolated from umbilical cord blood according to a published protocol. Murine fetal hearts were used to produce fetal HE using a rapid freeze-thaw procedure. MSCs at the 3rd to 5th passage were differentiated into cardiomyocytes in two kinds of induction medium: complete culture medium plus Aza (Aza group) and complete culture medium plus Aza and fetal HE (Aza + HE group). The results showed that the cells in both kinds of induction medium exhibited the phenotype of cardiomyocytes. At the transcriptional level, the cells expressed a number of cardiac muscle-specific genes such as Nkx2.5, Gata 4, Mef2c, HCN2, hBNP, α-Ca, cTnT, Desmin, and β-MHC on day 27 in the Aza group and on day 18 in the Aza + HE group. At the translational level, sarcomic α-actin was expressed on day 27 in the Aza group and day 18 in the Aza + HE group. Although they expressed specific genes and proteins of cardiac muscle cells, the induced cells in both groups did not contract and beat spontaneously. These properties are similar to properties of heart muscle precursor cells in vivo. These results demonstrated that the fetal HE facilitates the differentiation process of human UCB-MSCs into heart muscle precursor cells.
Collapse
Affiliation(s)
- Truc Le-Buu Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tam Thanh Nguyen
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Anh Van Bui
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - My Thu Nguyen
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University, Ho Chi Minh City, Vietnam.
| |
Collapse
|
18
|
Mesenchymal stem cell delivery strategies to promote cardiac regeneration following ischemic injury. Biomaterials 2014; 35:3956-74. [PMID: 24560461 DOI: 10.1016/j.biomaterials.2014.01.075] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 01/30/2014] [Indexed: 02/06/2023]
Abstract
Myocardial infarction (MI) is one of the leading causes of mortality worldwide and is associated with irreversible cardiomyocyte death and pathological remodeling of cardiac tissue. In the past 15 years, several animal models have been developed for pre-clinical testing to assess the potential of stem cells for functional tissue regeneration and the attenuation of left ventricular remodeling. The promising results obtained in terms of improved cardiac function, neo-angiogenesis and reduction in infarct size have motivated the initiation of clinical trials in humans. Despite the potential, the results of these studies have highlighted that the effective delivery and retention of viable cells within the heart remain significant challenges that have limited the therapeutic efficacy of cell-based therapies for treating the ischemic myocardium. In this review, we discuss key elements for designing clinically translatable cell-delivery approaches to promote myocardial regeneration. Key topics addressed include cell selection, with a focus on mesenchymal stem cells derived from the bone marrow (bMSCs) and adipose tissue (ASCs), including a discussion of their potential mechanisms of action. Natural and synthetic biomaterials that have been investigated as injectable cell delivery vehicles for cardiac applications are critically reviewed, including an analysis of the role of the biomaterials themselves in the therapeutic scheme.
Collapse
|
19
|
Wang L, Song K, Qu X, Wang H, Zhu H, Xu X, Zhang M, Tang Y, Yang X. hTERT Gene Immortalized Human Adipose-Derived Stem Cells and its Multiple Differentiations: a Preliminary Investigation. Appl Biochem Biotechnol 2013; 169:1546-56. [DOI: 10.1007/s12010-012-0019-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2012] [Accepted: 12/04/2012] [Indexed: 01/19/2023]
|
20
|
Adipose tissue-derived stem cell response to the differently processed 316L stainless steel substrates. Tissue Cell 2012; 44:365-72. [DOI: 10.1016/j.tice.2012.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 05/28/2012] [Accepted: 06/01/2012] [Indexed: 11/18/2022]
|
21
|
Direct comparison of distinct cardiomyogenic induction methodologies in human cardiac-derived c-kit positive progenitor cells. Tissue Eng Regen Med 2012. [DOI: 10.1007/s13770-012-0336-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
22
|
Qu X, Liu T, Song K, Li X, Ge D. Induced pluripotent stem cells generated from human adipose-derived stem cells using a non-viral polycistronic plasmid in feeder-free conditions. PLoS One 2012; 7:e48161. [PMID: 23110200 PMCID: PMC3482207 DOI: 10.1371/journal.pone.0048161] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 09/21/2012] [Indexed: 11/18/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) can be generated from somatic cells by ectopic expression of defined transcription factors (TFs). However, the optimal cell type and the easy reprogramming approaches that minimize genetic aberrations of parent cells must be considered before generating the iPSCs. This paper reports a method to generate iPSCs from adult human adipose-derived stem cells (hADSCs) without the use of a feeder layer, by ectopic expression of the defined transcription factors OCT4, SOX2, KLF4 and C-MYC using a polycistronic plasmid. The results, based on the expression of pluripotent marker, demonstrated that the iPSCs have the characteristics similar to those of embryonic stem cells (ESCs). The iPSCs differentiated into three embryonic germ layers both in vitro by embryoid body generation and in vivo by teratoma formation after being injected into immunodeficient mice. More importantly, the plasmid DNA does not integrate into the genome of human iPSCs as revealed by Southern blotting experiments. Karyotypic analysis also demonstrated that the reprogramming of hADSCs by the defined factors did not induce chromosomal abnormalities. Therefore, this technology provides a platform for studying the biology of iPSCs without viral vectors, and can hopefully overcome immune rejection and ethical concerns, which are the two important barriers of ESC applications.
Collapse
Affiliation(s)
- Xinjian Qu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Liaoning, Dalian, China
| | - Tianqing Liu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Liaoning, Dalian, China
| | - Kedong Song
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Liaoning, Dalian, China
| | - Xiangqin Li
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Liaoning, Dalian, China
| | - Dan Ge
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Liaoning, Dalian, China
| |
Collapse
|
23
|
Growth Characteristics of Human Adipose-Derived Stem Cells During Long Time Culture Regulated by Cyclin A and Cyclin D1. Appl Biochem Biotechnol 2012; 168:2230-44. [DOI: 10.1007/s12010-012-9932-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 10/03/2012] [Indexed: 01/01/2023]
|
24
|
Reed SA, Leahy ER. Growth and Development Symposium: Stem cell therapy in equine tendon injury. J Anim Sci 2012; 91:59-65. [PMID: 23100589 DOI: 10.2527/jas.2012-5736] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tendon injuries affect all levels of athletic horses and represent a significant loss to the equine industry. Accumulation of microdamage within the tendon architecture leads to formation of core lesions. Traditional approaches to tendon repair are based on an initial period of rest to limit the inflammatory process followed by a controlled reloading program designed to promote the maturation and linear arrangement of scar tissue within the lesion. However, these treatment protocols are inefficient, resulting in prolonged recovery periods and frequent recurrence. Current alternative therapies include the use of bone marrow-derived mesenchymal stem cells (BMSC) and a population of nucleated cells from adipose containing adipose-derived mesenchymal stem cells (AdMSC). Umbilical cord blood-derived stem cells (UCB) have recently received attention for their increased plasticity in vitro and potential as a therapeutic aid. Both BMSC and AdMSC require expansion in culture before implantation to obtain a pure stem cell population, limiting the time frame for implantation. Collected at parturition, UCB can be cryopreserved for future use. Furthermore, the low immunogenicity of the UCB population allows for allogeneic implantation. Current research indicates that BMSC, AdMSC, and UCB can differentiate into tenocyte-like cells in vitro, increasing expression of scleraxis, tenascin c, and extracellular matrix proteins. When implanted, BMSC and AdMSC engraft into the tendon and improve tendon architecture. However, treatment with these stem cells does not decrease recovery period. Furthermore, the resulting regeneration is not optimal, as the resulting tissue is still inferior to native tendon. Umbilical cord blood-derived stem cells may provide an alternate source of stem cells that promote improved regeneration of tendon tissue. A more naïve cell population, these cells may have a greater rate of engraftment as well as an increased ability to secrete bioactive factors and recruit additional reparative cells. Further work should clarify the role of distinct stem cell sources in the regenerating tendon and the need for a naïve or differentiated cell type for implantation.
Collapse
Affiliation(s)
- S A Reed
- Department of Animal Science, University of Connecticut, Storrs, CT 06269, USA.
| | | |
Collapse
|
25
|
Lv XJ, Zhou GD, Liu Y, Liu X, Chen JN, Luo XS, Cao YL. In vitro proliferation and differentiation of adipose-derived stem cells isolated using anti-CD105 magnetic beads. Int J Mol Med 2012; 30:826-34. [PMID: 22825748 DOI: 10.3892/ijmm.2012.1063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/09/2012] [Indexed: 11/06/2022] Open
Abstract
The present study aimed to investigate the feasibility of isolating adipose-derived stem cells (ADSCs) by selecting cells that express the surface receptor CD105. Surface antigen expression of the unsorted cells was undertaken using FACS analysis. Primary adipose-derived cells were isolated. The second passage cells were incubated with anti-CD105 magnetic beads, and separated using a magnetic separator. Cell growth and colony formation was determined by counting and Giemsa staining, respectively. Cells also underwent histological immunohistochemical, and RT-PCR analyses to determine their chondrogenic, adipogenic and osteogenic potential. Increased cell proliferation and colony formation was observed in CD105-positive (CD105⁺) as compared to the CD105-negative (CD105⁻) cells (P<0.001). Following induction, the expression of type II collagen and the number of calcium deposits and lipid droplets in the CD105⁺ ADCs were markedly higher than in the CD105⁻ ADCs. Furthermore, increased alkaline phosphatase (AKP), leptin and PPARγ2 mRNA expression was detected in the CD105⁺ ADCs (P<0.01). Isolation of CD105⁺ ADSCs by MACS was feasible. Thus, CD105 can be used as a relatively specific marker for the selection of ADSCs. Although the chondrogenic, adipogenic and osteogenic potential of these cells is suggestive of their potential for use in tissue engineering treatments, further in vivo studies are necessary.
Collapse
Affiliation(s)
- Xiao-Jie Lv
- General Hospital of Second Artillery of PLA, Beijing 100088, PR China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Investigation of coculture of human adipose-derived stem cells and mature adipocytes. Appl Biochem Biotechnol 2012; 167:2381-7. [PMID: 22717768 DOI: 10.1007/s12010-012-9764-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 06/04/2012] [Indexed: 12/26/2022]
Abstract
The purpose of this study was to evaluate the differentiation potential of human adipose-derived stem cells (hADSCs) into adipocytes by coculturing them with human mature adipocytes. The transwell culture system was utilized for indirect coculture of hADSCs and human mature adipocytes at four different hADSCs-to-mature adipocytes ratios, i.e., 1:5, 1:1, 2:1, and 5:1. After 8 days of coculture, the Oil Red O and Trypan Blue stainings were performed for the evaluation of adipogenic differentiation of hADSCs. In addition, flow cytometric analysis and Hoechst 33342/PI double staining were performed after 20 days of coculture. The Oil Red O and Trypan Blue stainings showed that hADSCs with high viability could not differentiate into mature adipocytes after 8 or 20 days of coculture. However, flow cytometric analysis indicated that CD105 expression of hADSCs decreased after 20 days of coculture. These results indicated that hADSCs cocultured with human adult adipocytes could not successfully differentiate into adipocytes.
Collapse
|
27
|
Abstract
The immobilization of cells into polymeric scaffolds releasing therapeutic factors, such as alginate microcapsules, has been widely employed as a drug-delivery system for numerous diseases for many years. As a result of the potential benefits stem cells offer, during recent decades, this type of cell has gained the attention of the scientific community in the field of cell microencapsulation technology and has opened many perspectives. Stem cells represent an ideal tool for cell immobilization and so does alginate as a biomaterial of choice in the elaboration of these biomimetic scaffolds, offering us the possibility of benefiting from both disciplines in a synergistic way. This review intends to give an overview of the many possibilities and the current situation of immobilized stem cells in alginate bioscaffolds, showing the diverse therapeutic applications they can already be employed in; not only drug-delivery systems, but also tissue engineering platforms.
Collapse
|
28
|
Cawthorn WP, Scheller EL, MacDougald OA. Adipose tissue stem cells meet preadipocyte commitment: going back to the future. J Lipid Res 2012; 53:227-46. [PMID: 22140268 PMCID: PMC3269153 DOI: 10.1194/jlr.r021089] [Citation(s) in RCA: 561] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
White adipose tissue (WAT) is perhaps the most plastic organ in the body, capable of regeneration following surgical removal and massive expansion or contraction in response to altered energy balance. Research conducted for over 70 years has investigated adipose tissue plasticity on a cellular level, spurred on by the increasing burden that obesity and associated diseases are placing on public health globally. This work has identified committed preadipocytes in the stromal vascular fraction of adipose tissue and led to our current understanding that adipogenesis is important not only for WAT expansion, but also for maintenance of adipocyte numbers under normal metabolic states. At the turn of the millenium, studies investigating preadipocyte differentiation collided with developments in stem cell research, leading to the discovery of multipotent stem cells within WAT. Such adipose tissue-derived stem cells (ASCs) are capable of differentiating into numerous cell types of both mesodermal and nonmesodermal origin, leading to their extensive investigation from a therapeutic and tissue engineering perspective. However, the insights gained through studying ASCs have also contributed to more-recent progress in attempts to better characterize committed preadipocytes in adipose tissue. Thus, ASC research has gone back to its roots, thereby expanding our knowledge of preadipocyte commitment and adipose tissue biology.
Collapse
Affiliation(s)
- William P Cawthorn
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
29
|
Bollini S, Pozzobon M, Nobles M, Riegler J, Dong X, Piccoli M, Chiavegato A, Price AN, Ghionzoli M, Cheung KK, Cabrelle A, O'Mahoney PR, Cozzi E, Sartore S, Tinker A, Lythgoe MF, De Coppi P. In vitro and in vivo cardiomyogenic differentiation of amniotic fluid stem cells. Stem Cell Rev Rep 2011; 7:364-80. [PMID: 21120638 DOI: 10.1007/s12015-010-9200-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cell therapy has developed as a complementary treatment for myocardial regeneration. While both autologous and allogeneic uses have been advocated, the ideal candidate has not been identified yet. Amniotic fluid-derived stem (AFS) cells are potentially a promising resource for cell therapy and tissue engineering of myocardial injuries. However, no information is available regarding their use in an allogeneic context. c-kit-sorted, GFP-positive rat AFS (GFP-rAFS) cells and neonatal rat cardiomyocytes (rCMs) were characterized by cytocentrifugation and flow cytometry for the expression of mesenchymal, embryonic and cell lineage-specific antigens. The activation of the myocardial gene program in GFP-rAFS cells was induced by co-culture with rCMs. The stem cell differentiation was evaluated using immunofluorescence, RT-PCR and single cell electrophysiology. The in vivo potential of Endorem-labeled GFP-rAFS cells for myocardial repair was studied by transplantation in the heart of animals with ischemia/reperfusion injury (I/R), monitored by magnetic resonance imaging (MRI). Three weeks after injection a small number of GFP-rAFS cells acquired an endothelial or smooth muscle phenotype and to a lesser extent CMs. Despite the low GFP-rAFS cells count in the heart, there was still an improvement of ejection fraction as measured by MRI. rAFS cells have the in vitro propensity to acquire a cardiomyogenic phenotype and to preserve cardiac function, even if their potential may be limited by poor survival in an allogeneic setting.
Collapse
Affiliation(s)
- Sveva Bollini
- Stem Cell Processing Laboratory-Fondazione Città della Speranza, Venetian Institute of Molecular Medicine (VIMM), University of Padua, Via G. Orus, 2, 35129, Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Wei Y, Gong K, Zheng Z, Wang A, Ao Q, Gong Y, Zhang X. Chitosan/silk fibroin-based tissue-engineered graft seeded with adipose-derived stem cells enhances nerve regeneration in a rat model. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1947-1964. [PMID: 21656031 DOI: 10.1007/s10856-011-4370-z] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 05/30/2011] [Indexed: 05/30/2023]
Abstract
Sciatic nerve injury presents an ongoing challenge in reconstructive surgery. Local stem cell application has recently been suggested as a possible novel therapy. In the present study we evaluated the potential of a chitosan/silk fibroin scaffold serving as a delivery vehicle for adipose-derived stem cells and as a structural framework for the injured nerve regeneration. The cell-loaded scaffolds were used to regenerate rat sciatic nerve across a 10 mm surgically-induced sciatic nerve injury. The functional nerve recovery was assessed by both walking track and histology analysis. Results showed that the reconstruction of the injured sciatic nerve had been significantly enhanced with restoration of nerve continuity and function recovery in the cell-loaded scaffold groups, and their target skeletal muscle had been extensively reinnervated. This study raises a potential possibility of using the newly developed nerve grafts as a promising alternative for nerve regeneration.
Collapse
Affiliation(s)
- Yujun Wei
- School of Life Sciences, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, 100084, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Planat-Benard V. Les cellules souches mésenchymateuses de moelle osseuse et du tissu adipeux en médecine régénératrice cardiovasculaire. Med Sci (Paris) 2011. [DOI: 10.1051/medsci/2011273280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
32
|
Zhu Y, Liu T, Ye H, Song K, Ma X, Cui Z. Enhancement of adipose-derived stem cell differentiation in scaffolds with IGF-I gene impregnation under dynamic microenvironment. Stem Cells Dev 2011; 19:1547-56. [PMID: 20408758 DOI: 10.1089/scd.2010.0054] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Biochemical and mechanical signals enabling cardiac regeneration can be elucidated by using in vitro tissue engineering models. We hypothesized that human insulin-like growth factor-I (IGF-I) and 3-dimensional (3D) dynamic microenvironment could enhance the survival and differentiation of adipose tissue-derived stem cells (ADSCs). In this study, ADSCs were cultured on 3D porous scaffolds with or without plasmid DNA PIRES2-IGF-I in cardiac media, in static culture dishes, and in a spinning flask bioreactor, respectively. Cell viability, formation of cardiac-like structure, expression of functional proteins, and gene expressions were tested in the cultured constructs on day 14. The results showed that dynamic microenvironment enhanced the release of plasmid DNA; the ADSCs can be transfected by the released plasmid DNA PIRES2-IGF-I in scaffold. IGF-I showed beneficial effects on cellular viability and increase of total protein and also increased the expressions of cardiac-specific proteins and genes in the grafts. It was also demonstrated that dynamic stirring environment could promote the proliferation of ADSCs. Therefore, IGF-I, expressed by ADSCs transfected by DNA PIRES2-IGF-I incorporated into scaffold, and hydrodynamic microenvironment can independently and interactively increase cellular viability and interactively increase the expression of cardiac-specific proteins and genes in the grafts. The results would be useful for developing tissue-engineered grafts for myocardial repair.
Collapse
Affiliation(s)
- Yanxia Zhu
- Dalian R&D Center for Stem Cell and Tissue Engineering, Dalian University of Technology, Dalian, China
| | | | | | | | | | | |
Collapse
|
33
|
Wei Y, Gong K, Zheng Z, Liu L, Wang A, Zhang L, Ao Q, Gong Y, Zhang X. Schwann-like cell differentiation of rat adipose-derived stem cells by indirect co-culture with Schwann cells in vitro. Cell Prolif 2010; 43:606-16. [PMID: 21039999 DOI: 10.1111/j.1365-2184.2010.00710.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Schwann cell (SC) transplantation is a promising therapy for peripheral nerve transaction, however, clinical use of SCs is limited due to their very limited availability. Adipose-derived stem cells (ADSCs) have been identified as an alternative source of adult stem cells in recent years. The aim of this study was to evaluate the feasibility of using ADSCs as a source of stem cells for differentiation into Schwann-like cells by an indirect co-culture approach, in vitro. MATERIALS AND METHODS Multilineage differentiation potential of the obtained ADSCs was assayed by testing their ability to differentiate into osteoblasts and adipocytes. The ADSCs were co-cultured with SCs to be induced into Schwann-like cells through proximity, using a Millicell system. Expression of typical SC markers S-100, GFAP and P75NTR of the treated ADSCs was determined by immunocytochemical staining, western blotting and RT-PCR. Myelination capacity of the differentiated ADSCs (dADSCs) was evaluated in dADSC/dorsal root ganglia neuron (DRGN) co-cultures. RESULTS The treated ADSCs adopted a spindle shaped-like morphology after co-cultured with SCs for 6 days. All results of immunocytochemical staining, western blotting and RT-PCR showed that the treated cells expressed S-100, GFAP and P75NTR, indications of differentiation. dADSCs could form Schwann-like cell myelin in co-culture with DRGNs. Undifferentiated ADSCs (uADSCs) did not form myelin compared to DRGNs cultured alone, but could produce neurite extension. CONCLUSIONS These results demonstrate that this indirect co-culture microenvironment could induce ADSCs to differentiate into Schwann-like cells in vitro, which may be beneficial for treatment of peripheral nerve injuries in the near future.
Collapse
Affiliation(s)
- Y Wei
- School of Life Sciences, State Key Laboratory of Biomembrane and Membrane Biotechnology, Tsinghua University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Choi YS, Dusting GJ, Stubbs S, Arunothayaraj S, Han XL, Collas P, Morrison WA, Dilley RJ. Differentiation of human adipose-derived stem cells into beating cardiomyocytes. J Cell Mol Med 2010; 14:878-89. [PMID: 20070436 PMCID: PMC3823119 DOI: 10.1111/j.1582-4934.2010.01009.x] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human adipose-derived stem cells (ASCs) may differentiate into cardiomyocytes and this provides a source of donor cells for tissue engineering. In this study, we evaluated cardiomyogenic differentiation protocols using a DNA demethylating agent 5-azacytidine (5-aza), a modified cardiomyogenic medium (MCM), a histone deacetylase inhibitor trichostatin A (TSA) and co-culture with neonatal rat cardiomyocytes. 5-aza treatment reduced both cardiac actin and TropT mRNA expression. Incubation in MCM only slightly increased gene expression (1.5- to 1.9-fold) and the number of cells co-expressing nkx2.5/sarcomeric α-actin (27.2%versus 0.2% in control). TSA treatment increased cardiac actin mRNA expression 11-fold after 1 week, which could be sustained for 2 weeks by culturing cells in cardiomyocyte culture medium. TSA-treated cells also stained positively for cardiac myosin heavy chain, α-actin, TropI and connexin43; however, none of these treatments produced beating cells. ASCs in non-contact co-culture showed no cardiac differentiation; however, ASCs co-cultured in direct contact co-culture exhibited a time-dependent increase in cardiac actin mRNA expression (up to 33-fold) between days 3 and 14. Immunocytochemistry revealed co-expression of GATA4 and Nkx2.5, α-actin, TropI and cardiac myosin heavy chain in CM-DiI labelled ASCs. Most importantly, many of these cells showed spontaneous contractions accompanied by calcium transients in culture. Human ASC (hASC) showed synchronous Ca2+ transient and contraction synchronous with surrounding rat cardiomyocytes (106 beats/min.). Gap junctions also formed between them as observed by dye transfer. In conclusion, cell-to-cell interaction was identified as a key inducer for cardiomyogenic differentiation of hASCs. This method was optimized by co-culture with contracting cardiomyocytes and provides a potential cardiac differentiation system to progress applications for cardiac cell therapy or tissue engineering.
Collapse
|
35
|
Tang J, Wang J, Zheng F, Kong X, Guo L, Yang J, Zhang L, Huang Y. Combination of chemokine and angiogenic factor genes and mesenchymal stem cells could enhance angiogenesis and improve cardiac function after acute myocardial infarction in rats. Mol Cell Biochem 2010; 339:107-18. [PMID: 20058054 DOI: 10.1007/s11010-009-0374-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 12/21/2009] [Indexed: 01/09/2023]
Abstract
Gene and stem-cell therapies hold promise for the treatment of ischemic cardiovascular disease. Combined stem cell, chemokine, and angiogenic growth factor gene therapy could augment angiogenesis, and better improve heart function in the infarcted myocardium. In order to prove this action, we established the animal model of myocardial infarction (MI) was by occlusion of the left anterior descending artery in rats. Seven days after surgery, 5.0 x 10(6) Ad-EGFP-MSC, 5.0 x 10(6) Ad-SDF-1-MSC, 5.0 x 10(6) Ad-VEGF-MSC, or 5.0 x 10(6) Ad-SDF-VEGF-MSC (Ad-SDF-1-VEGF-MSC) suspension in 0.2 ml of serum-free medium was injected into four sites in the infarcted hearts. Results showed that MSCs transfected with Ad-VEGF and Ad-SDF-1 produced more SDF-1 and VEGF protein than MSCs alone, the increased protein levels of VEGF and SDF-1 activated Akt in MSCs transfected with Ad-VEGF and Ad-SDF-1, and improved the survival capability of the MSCs in vitro and in vivo. These transplanted cells showed that the characteristic phenotype of cardiomyocyte (e.g., cTnt) and endothelial cells (e.g., CD31). Four weeks after transplantation, reduced infarct size and fibrosis, greater vascular density, and a thicker left ventricle wall were observed in Ad-SDF-VEGF-MSC group. Measurement of hemodynamic parameters showed an improvement in left ventricular performance in Ad-SDF-VEGF-MSC group compared with other groups. These results demonstrated that combination of chemokine and angiogenic factor gene and stem cells could enhance angiogenesis and improves cardiac function after acute myocardial infarction in rats.
Collapse
Affiliation(s)
- Junming Tang
- Department of Cardiology, Institute of Clinical Medicine, Renmin Hospital, Yunyang Medical College, Shiyan, Hubei 442000, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|