1
|
Christoffers S, Seiler L, Wiebe E, Blume C. Possibilities and efficiency of MSC co-transfection for gene therapy. Stem Cell Res Ther 2024; 15:150. [PMID: 38783353 PMCID: PMC11119386 DOI: 10.1186/s13287-024-03757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are not only capable of self-renewal, trans-differentiation, homing to damaged tissue sites and immunomodulation by secretion of trophic factors but are also easy to isolate and expand. Because of these characteristics, they are used in numerous clinical trials for cell therapy including immune and neurological disorders, diabetes, bone and cartilage diseases and myocardial infarction. However, not all trials have successful outcomes, due to unfavourable microenvironmental factors and the heterogenous nature of MSCs. Therefore, genetic manipulation of MSCs can increase their prospect. Currently, most studies focus on single transfection with one gene. Even though the introduction of more than one gene increases the complexity, it also increases the effectivity as different mechanism are triggered, leading to a synergistic effect. In this review we focus on the methodology and efficiency of co-transfection, as well as the opportunities and pitfalls of these genetically engineered cells for therapy.
Collapse
Affiliation(s)
- Sina Christoffers
- Institute for Technical Chemistry, Leibniz University Hannover, Callinstr. 3-5, 30167, Hannover, Germany.
- Cluster of Excellence Hearing4all, Hannover, Germany.
| | - Lisa Seiler
- Institute for Technical Chemistry, Leibniz University Hannover, Callinstr. 3-5, 30167, Hannover, Germany
| | - Elena Wiebe
- Institute for Technical Chemistry, Leibniz University Hannover, Callinstr. 3-5, 30167, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| | - Cornelia Blume
- Institute for Technical Chemistry, Leibniz University Hannover, Callinstr. 3-5, 30167, Hannover, Germany
- Cluster of Excellence Hearing4all, Hannover, Germany
| |
Collapse
|
2
|
Peng C, Yan J, Jiang Y, Wu L, Li M, Fan X. Exploring Cutting-Edge Approaches to Potentiate Mesenchymal Stem Cell and Exosome Therapy for Myocardial Infarction. J Cardiovasc Transl Res 2024; 17:356-375. [PMID: 37819538 DOI: 10.1007/s12265-023-10438-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/12/2023] [Indexed: 10/13/2023]
Abstract
Cardiovascular diseases (CVDs) continue to be a significant global health concern. Many studies have reported promising outcomes from using MSCs and their secreted exosomes in managing various cardiovascular-related diseases like myocardial infarction (MI). MSCs and exosomes have demonstrated considerable potential in promoting regeneration and neovascularization, as well as exerting beneficial effects against apoptosis, remodeling, and inflammation in cases of myocardial infarction. Nonetheless, ensuring the durability and effectiveness of MSCs and exosomes following in vivo transplantation remains a significant concern. Recently, novel methods have emerged to improve their effectiveness and robustness, such as employing preconditioning statuses, modifying MSC and their exosomes, targeted drug delivery with exosomes, biomaterials, and combination therapy. Herein, we summarize the novel approaches that intensify the therapeutic application of MSC and their derived exosomes in treating MI.
Collapse
Affiliation(s)
- Chendong Peng
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jie Yan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yu'ang Jiang
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Lin Wu
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Cardiology, Peking University First Hospital, Beijing, 100000, China
| | - Miaoling Li
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Institute of Cardiovascular Research, Key Laboratory of Sichuan Province, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Xinrong Fan
- Department of Cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Wang Y, Liu Y, Li X, Yao L, Mbadhi M, Chen S, Lv Y, Bao X, Chen L, Chen S, Zhang J, Wu Y, Lv J, Shi L, Tang J. Vagus nerve stimulation-induced stromal cell-derived factor-l alpha participates in angiogenesis and repair of infarcted hearts. ESC Heart Fail 2023; 10:3311-3329. [PMID: 37641543 PMCID: PMC10682864 DOI: 10.1002/ehf2.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/02/2023] [Accepted: 07/02/2023] [Indexed: 08/31/2023] Open
Abstract
AIMS We aim to explore the role and mechanism of vagus nerve stimulation (VNS) in coronary endothelial cells and angiogenesis in infarcted hearts. METHODS AND RESULTS Seven days after rat myocardial infarction (MI) was prepared by ligation of the left anterior descending coronary artery, the left cervical vagus nerve was treated with electrical stimulation 1 h after intraperitoneal administration of the α7-nicotinic acetylcholine inhibitor mecamylamine or the mAChR inhibitor atropine or 3 days after local injection of Ad-shSDF-1α into the infarcted heart. Cardiac tissue acetylcholine (ACh) and serum ACh, tumour necrosis factor α (TNF-α), interleukin 1β (IL-1β) and interleukin 6 (IL-6) levels were detected by ELISA to determine whether VNS was successful. An inflammatory injury model in human coronary artery endothelial cells (HCAECs) was established by lipopolysaccharide and identified by evaluating TNF-α, IL-1β and IL-6 levels and tube formation. Immunohistochemistry staining was performed to evaluate CD31-positive vessel density and stromal cell-derived factor-l alpha (SDF-1α) expression in the MI heart in vivo and the expression and distribution of SDF-1α, C-X-C motif chemokine receptor 4 and CXCR7 in HCAECs in vitro. Western blotting was used to detect the levels of SDF-1α, V-akt murine thymoma viral oncogene homolog (AKT), phosphorylated AKT (pAKT), specificity protein 1 (Sp1) and phosphorylation of Sp1 in HCAECs. Left ventricular performance, including left ventricular systolic pressure, left ventricular end-diastolic pressure and rate of the rise and fall of ventricular pressure, should be evaluated 28 days after VNS treatment. VNS was successfully established for MI therapy with decreases in serum TNF-α, IL-1β and IL-6 levels and increases in cardiac tissue and serum ACh levels, leading to increased SDF-1α expression in coronary endothelial cells of MI hearts, triggering angiogenesis of MI hearts with increased CD31-positive vessel density, which was abolished by the m/nAChR inhibitors mecamylamine and atropine or knockdown of SDF-1α by shRNA. ACh promoted SDF-1α expression and its distribution along with the branch of the formed tube in HCAECs, resulting in an increase in the number of tubes formed in HCAECs. ACh increased the levels of pAKT and phosphorylation of Sp1 in HCAECs, resulting in inducing SDF-1α expression, and the specific effects could be abolished by mecamylamine, atropine, the PI3K/AKT blocker wortmannin or the Sp1 blocker mithramycin. Functionally, VNS improved left ventricular performance, which could be abolished by Ad-shSDF-1α. CONCLUSIONS VNS promoted angiogenesis to repair the infarcted heart by inducing SDF-1α expression and redistribution along new branches during angiogenesis, which was associated with the m/nAChR-AKT-Sp1 signalling pathway.
Collapse
Affiliation(s)
- Yan Wang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Pathology, Renmin HospitalHubei University of MedicineShiyanPR China
| | - Yun Liu
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Xing‐yuan Li
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Lu‐yuan Yao
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Anesthesiology, Institute of Anesthesiology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - MagdaleenaNaemi Mbadhi
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Shao‐Juan Chen
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Department of Stomatology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - Yan‐xia Lv
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
| | - Xin Bao
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Experimental Medical Center, Guoyao‐Dong Feng HospitalHubei University of MedicineShiyanPR China
| | - Long Chen
- Experimental Medical Center, Guoyao‐Dong Feng HospitalHubei University of MedicineShiyanPR China
| | - Shi‐You Chen
- Department of SurgeryUniversity of MissouriColumbiaMissouriUSA
| | - Jing‐xuan Zhang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Yan Wu
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Jing Lv
- Department of Anesthesiology, Institute of Anesthesiology, Taihe HospitalHubei University of MedicineShiyanPR China
| | - Liu‐liu Shi
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| | - Jun‐ming Tang
- Department of Physiology, Faculty of Basic Medical Sciences, Hubei Key Laboratory of Embryonic Stem Cell ResearchHubei University of MedicineShiyanPR China
- Institute of Basic Medical Sciences, Institute of BiomedicineHubei University of MedicineShiyanPR China
| |
Collapse
|
4
|
Handley EL, Callanan A. Modulation of Tissue Microenvironment Following Myocardial Infarction. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Ella Louise Handley
- Institute for Bioengineering School of Engineering University of Edinburgh Edinburgh EH9 3DW UK
| | - Anthony Callanan
- Institute for Bioengineering School of Engineering University of Edinburgh Edinburgh EH9 3DW UK
| |
Collapse
|
5
|
Matta A, Nader V, Lebrin M, Gross F, Prats AC, Cussac D, Galinier M, Roncalli J. Pre-Conditioning Methods and Novel Approaches with Mesenchymal Stem Cells Therapy in Cardiovascular Disease. Cells 2022; 11:1620. [PMID: 35626657 PMCID: PMC9140025 DOI: 10.3390/cells11101620] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Transplantation of mesenchymal stem cells (MSCs) in the setting of cardiovascular disease, such as heart failure, cardiomyopathy and ischemic heart disease, has been associated with good clinical outcomes in several trials. A reduction in left ventricular remodeling, myocardial fibrosis and scar size, an improvement in endothelial dysfunction and prolonged cardiomyocytes survival were reported. The regenerative capacity, in addition to the pro-angiogenic, anti-apoptotic and anti-inflammatory effects represent the main target properties of these cells. Herein, we review the different preconditioning methods of MSCs (hypoxia, chemical and pharmacological agents) and the novel approaches (genetically modified MSCs, MSC-derived exosomes and engineered cardiac patches) suggested to optimize the efficacy of MSC therapy.
Collapse
Affiliation(s)
- Anthony Matta
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- Faculty of Medicine, Holy Spirit University of Kaslik, Kaslik 446, Lebanon
- Department of Cardiology, Intercommunal Hospital Centre Castres-Mazamet, 81100 Castres, France
| | - Vanessa Nader
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- Faculty of Pharmacy, Lebanese University, Beirut 6573/14, Lebanon
| | - Marine Lebrin
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- CIC-Biotherapies, University Hospital of Toulouse, 31059 Toulouse, France
| | - Fabian Gross
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- CIC-Biotherapies, University Hospital of Toulouse, 31059 Toulouse, France
| | | | - Daniel Cussac
- INSERM I2MC—UMR1297, 31432 Toulouse, France; (A.-C.P.); (D.C.)
| | - Michel Galinier
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
| | - Jerome Roncalli
- Department of Cardiology, Institute CARDIOMET, University Hospital of Toulouse, 31059 Toulouse, France; (A.M.); (V.N.); (M.L.); (F.G.); (M.G.)
- CIC-Biotherapies, University Hospital of Toulouse, 31059 Toulouse, France
- INSERM I2MC—UMR1297, 31432 Toulouse, France; (A.-C.P.); (D.C.)
| |
Collapse
|
6
|
Lee DY, Lee SY, Jung JW, Kim JH, Oh DH, Kim HW, Kang JH, Choi JS, Kim GD, Joo ST, Hur SJ. Review of technology and materials for the development of cultured meat. Crit Rev Food Sci Nutr 2022; 63:8591-8615. [PMID: 35466822 DOI: 10.1080/10408398.2022.2063249] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cultured meat production technology suggested that can solve the problems of traditional meat production such as inadequate breeding environment, wastewater, methane gas generation, and animal ethics issues. Complementing cultured meat production methods, sales and safety concerns will make the use of cultured meat technology easier. This review contextualizes the commercialization status of cultured meat and the latest technologies and challenges associated with its production. Investigation was conducted on materials and basic cell culture technique for cultured meat culture is presented. The development of optimal cultured meat technology through these studies will be an innovative leap in food technology. The process of obtaining cells from animal muscle, culturing cells, and growing cells into meat are the basic processes of cultured meat production. The substances needed to production of cultured meat were antibiotics, digestive enzymes, basal media, serum or growth factors. Although muscle cells have been produced closer to meat due to the application of scaffolds materials and 3 D printing technology, still a limit to reducing production costs enough to be used as foods. In addition, developing edible materials is also a challenge because the materials used to produce cultured meat are still not suitable for food sources.
Collapse
Affiliation(s)
- Da Young Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Seung Yun Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jae Won Jung
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jae Hyun Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Dong Hun Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Hyun Woo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Ji Hyeop Kang
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| | - Jung Seok Choi
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk, Korea
| | - Gap-Don Kim
- Graduate School of International Agricultural Technology, Institutes of Green Bio Science and Technology, Seoul National University, Pyeongchang, Kangwong, Korea
| | - Seon-Tea Joo
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, Gyeongnam, Korea
| | - Sun Jin Hur
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi, Korea
| |
Collapse
|
7
|
Goonoo N. Tunable Biomaterials for Myocardial Tissue Regeneration: Promising New Strategies for Advanced Biointerface Control and Improved Therapeutic Outcomes. Biomater Sci 2022; 10:1626-1646. [DOI: 10.1039/d1bm01641e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Following myocardial infarction (MI) and the natural healing process, the cardiac mechanostructure changes significantly leading to reduced contractile ability and putting additional pressure on the heart muscle thereby increasing the...
Collapse
|
8
|
Modifying strategies for SDF-1/CXCR4 interaction during mesenchymal stem cell transplantation. Gen Thorac Cardiovasc Surg 2021; 70:1-10. [PMID: 34510332 PMCID: PMC8732940 DOI: 10.1007/s11748-021-01696-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/04/2021] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cell (MSC) transplantation is regarded as a promising candidate for the treatment of ischaemic heart disease. The major hurdles for successful clinical translation of MSC therapy are poor survival, retention, and engraftment in the infarcted heart. Stromal cell-derived factor-1/chemokine receptor 4 (SDF-1/CXCR4) constitutes one of the most efficient chemokine/chemokine receptor pairs regarding cell homing. In this review, we mainly focused on previous studies on how to regulate the SDF-1/CXCR4 interaction through various priming strategies to maximize the efficacy of mesenchymal stem cell transplantation on ischaemic hearts or to facilitate the required effects. The strengthened measures for enhancing the therapeutic efficacy of the SDF-1/CXCR4 interaction for mesenchymal stem cell transplantation included the combination of chemokines and cytokines, hormones and drugs, biomaterials, gene engineering, and hypoxia. The priming strategies on recipients for stem cell transplantation included ischaemic conditioning and device techniques.
Collapse
|
9
|
Tarantul VZ, Gavrilenko AV. Gene therapy for critical limb ischemia: Per aspera ad astra. Curr Gene Ther 2021; 22:214-227. [PMID: 34254916 DOI: 10.2174/1566523221666210712185742] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/24/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
Peripheral artery diseases remain a serious public health problem. Although there are many traditional methods for their treatment using conservative therapeutic techniques and surgery, gene therapy is an alternative and potentially more effective treatment option especially for "no option" patients. This review treats the results of many years of research and application of gene therapy as an example of treatment of patients with critical limb ischemia. Data on successful and unsuccessful attempts to use this technology for treating this disease are presented. Trends in changing the paradigm of approaches to therapeutic angiogenesis are noted: from viral vectors to non-viral vectors, from gene transfer to the whole organism to targeted transfer to cells and tissues, from single gene use to combination of genes; from DNA therapy to RNA therapy, from in vivo therapy to ex vivo therapy.
Collapse
Affiliation(s)
- Vyacheslav Z Tarantul
- National Research Center "Kurchatov Institute", Institute of Molecular Genetics, Moscow 123182, Russian Federation
| | - Alexander V Gavrilenko
- A.V.¬ Petrovsky Russian Scientific Center for Surgery, Moscow 119991, Russian Federation
| |
Collapse
|
10
|
Varkouhi AK, Monteiro APT, Tsoporis JN, Mei SHJ, Stewart DJ, Dos Santos CC. Genetically Modified Mesenchymal Stromal/Stem Cells: Application in Critical Illness. Stem Cell Rev Rep 2021; 16:812-827. [PMID: 32671645 PMCID: PMC7363458 DOI: 10.1007/s12015-020-10000-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Critical illnesses including sepsis, acute respiratory distress syndromes, ischemic cardiovascular disorders and acute organ injuries are associated with high mortality, morbidity as well as significant health care system expenses. While these diverse conditions require different specific therapeutic approaches, mesenchymal stem/stromal cell (MSCs) are multipotent cells capable of self-renewal, tri-lineage differentiation with a broad range regenerative and immunomodulatory activities, making them attractive for the treatment of critical illness. The therapeutic effects of MSCs have been extensively investigated in several pre-clinical models of critical illness as well as in phase I and II clinical cell therapy trials with mixed results. Whilst these studies have demonstrated the therapeutic potential for MSC therapy in critical illness, optimization for clinical use is an ongoing challenge. MSCs can be readily genetically modified by application of different techniques and tools leading to overexpress or inhibit genes related to their immunomodulatory or regenerative functions. Here we will review recent approaches designed to enhance the therapeutic potential of MSCs with an emphasis on the technology used to generate genetically modified cells, target genes, target diseases and the implication of genetically modified MSCs in cell therapy for critical illness.
Collapse
Affiliation(s)
- Amir K Varkouhi
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology (NJIT), Newark, NJ, 07102, USA
| | - Ana Paula Teixeira Monteiro
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada.,Institute of Medical Sciences and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - James N Tsoporis
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada
| | - Shirley H J Mei
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute and the University of Ottawa, Ottawa, ON, Canada
| | - Claudia C Dos Santos
- Keenan and Li Ka Shing Knowledge Institute, University Health Toronto - St. Michael's Hospital, Toronto, Ontario, Canada. .,Interdepartmental Division of Critical Care, St. Michael's Hospital/University of Toronto, 30 Bond Street, Room 4-008, Toronto, ON, M5B 1WB, Canada.
| |
Collapse
|
11
|
Toosi S, Behravan J. Osteogenesis and bone remodeling: A focus on growth factors and bioactive peptides. Biofactors 2020; 46:326-340. [PMID: 31854489 DOI: 10.1002/biof.1598] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/30/2019] [Indexed: 12/14/2022]
Abstract
Bone is one of the most frequently transplanted tissues. The bone structure and its physiological function and stem cells biology were known to be closely related to each other for many years. Bone is considered a home to the well-known systems of postnatal mesenchymal stem cells (MSCs). These bone resident MSCs provide a range of growth factors (GF) and cytokines to support cell growth following injury. These GFs include a group of proteins and peptides produced by different cells which are regulators of important cell functions such as division, migration, and differentiation. GF signaling controls the formation and development of the MSCs condensation and plays a critical role in regulating osteogenesis, chondrogenesis, and bone/mineral homeostasis. Thus, a combination of both MSCs and GFs receives high expectations in regenerative medicine, particularly in bone repair applications. It is known that the delivery of exogenous GFs to the non-union bone fracture site remarkably improves healing results. Here we present updated information on bone tissue engineering with a specific focus on GF characteristics and their application in cellular functions and tissue healing. Moreover, the interrelation of GFs with the damaged bone microenvironment and their mechanistic functions are discussed.
Collapse
Affiliation(s)
- Shirin Toosi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical, Mashhad, Iran
- Food and Drug Administration, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Javad Behravan
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical, Mashhad, Iran
- School of Pharmacy, University of Waterloo, Waterloo, Ontario, Canada
| |
Collapse
|
12
|
Rockel JS, Rabani R, Viswanathan S. Anti-fibrotic mechanisms of exogenously-expanded mesenchymal stromal cells for fibrotic diseases. Semin Cell Dev Biol 2019; 101:87-103. [PMID: 31757583 DOI: 10.1016/j.semcdb.2019.10.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/30/2019] [Indexed: 12/17/2022]
Abstract
Most chronic diseases involving inflammation have a fibrotic component that involves remodeling and excess accumulation of extracellular matrix components. Left unchecked, fibrosis leads to organ failure and death. Mesenchymal stromal cells (MSCs) are emerging as a potent cell-based therapy for a wide spectrum of fibrotic conditions due to their immunomodulatory, anti-inflammatory and anti-fibrotic properties. This review provides an overview of known mechanisms by which MSCs mediate their anti-fibrotic actions and in relation to animal models of pulmonary, liver, renal and cardiac fibrosis. Recent MSC clinical trials results in liver, lung, skin, kidney and hearts are discussed and next steps for future MSC-based therapies including pre-activated or genetically-modified cells, or extracellular vesicles are also considered.
Collapse
Affiliation(s)
- Jason S Rockel
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada.
| | - Razieh Rabani
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Arthritis Program, University Health Network, Toronto, ON, Canada; Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada; Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada; Division of Hematology, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
13
|
Schmuck EG, Hacker TA, Schreier DA, Chesler NC, Wang Z. Beneficial effects of mesenchymal stem cell delivery via a novel cardiac bioscaffold on right ventricles of pulmonary arterial hypertensive rats. Am J Physiol Heart Circ Physiol 2019; 316:H1005-H1013. [PMID: 30822119 DOI: 10.1152/ajpheart.00091.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Right ventricular failure (RVF) is a common cause of death in patients suffering from pulmonary arterial hypertension (PAH). The current treatment for PAH only moderately improves symptoms, and RVF ultimately occurs. Therefore, it is necessary to develop new treatment strategies to protect against right ventricle (RV) maladaptation despite PAH progression. In this study, we hypothesize that local mesenchymal stem cell (MSC) delivery via a novel bioscaffold can improve RV function despite persistent PAH. To test our hypothesis, we induced PAH in adult rats with SU5416 and chronic hypoxia exposure; treated with rat MSCs delivered by intravenous injection, intramyocardial injection, or epicardial placement of a bioscaffold; and then examined treatment effectiveness by in vivo pressure-volume measurement, echocardiography, histology, and immunohistochemistry. Our results showed that compared with other treatment groups, only the MSC-seeded bioscaffold group resulted in RV functional improvement, including restored stroke volume, cardiac output, and improved stroke work. Diastolic function indicated by end-diastolic pressure-volume relationship was improved by the local MSC treatments or bioscaffold alone. Cardiomyocyte hypertrophy and RV fibrosis were both reduced, and von Willebrand factor expression was restored by the MSC-seeded bioscaffold treatment. Overall, our study suggests a potential new regenerative therapy to rescue the pressure-overload failing RV with persistent pulmonary vascular disease, which may improve quality of life and/or survival of PAH patients. NEW & NOTEWORTHY We explored the effects of mesenchymal stem cell-seeded bioscaffold on right ventricles (RVs) of rats with established pulmonary arterial hypertension (PAH). Some beneficial effects were observed despite persistent PAH, suggesting that this may be a new therapy for RV to improve quality of life and/or survival of PAH patients.
Collapse
Affiliation(s)
- Eric G Schmuck
- Department of Medicine, University of Wisconsin , Madison, Wisconsin
| | - Timothy A Hacker
- Department of Medicine, University of Wisconsin , Madison, Wisconsin
| | - David A Schreier
- Department of Biomedical Engineering, University of Wisconsin , Madison, Wisconsin
| | - Naomi C Chesler
- Department of Medicine, University of Wisconsin , Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin , Madison, Wisconsin
| | - Zhijie Wang
- Department of Biomedical Engineering, University of Wisconsin , Madison, Wisconsin.,Department of Mechanical Engineering, Colorado State University , Fort Collins, Colorado
| |
Collapse
|
14
|
Vemuri SK, Nethi SK, Banala RR, Goli PVS, Annapareddy VGR, Patra CR. Europium Hydroxide Nanorods (EHNs) Ameliorate Isoproterenol-Induced Myocardial Infarction: An in Vitro and in Vivo Investigation. ACS APPLIED BIO MATERIALS 2019; 2:1078-1087. [DOI: 10.1021/acsabm.8b00669] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Susheel Kumar Nethi
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana State 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| | | | | | | | - Chitta Ranjan Patra
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, Telangana State 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
15
|
Zhu L, Dissanayaka WL, Zhang C. Dental pulp stem cells overexpressing stromal-derived factor-1α and vascular endothelial growth factor in dental pulp regeneration. Clin Oral Investig 2018; 23:2497-2509. [PMID: 30315421 DOI: 10.1007/s00784-018-2699-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 10/02/2018] [Indexed: 01/09/2023]
Abstract
OBJECTIVES The current study aimed to investigate the effects of vascular endothelial growth factor (VEGF) and stromal cell-derived factor-1α (SDF-1α) overexpressing dental pulp stem cells (DPSCs) in vascularized dental pulp regeneration in vivo. MATERIALS AND METHODS Human DPSCs were transfected with VEGF or SDF-1α using premade lentiviral particles. Overexpression was verified by quantitative polymerase chain reaction (q-PCR), enzyme-linked immunosorbent assay (ELISA), and western blot analysis. Effects of SDF-1α and VEGF overexpressing DPSCs on their proliferation (CCK-8 and MTT assays) and endothelial vascular-tube formation (Matrigel assay) were investigated in vitro. Human tooth roots sectioned into 6-mm segments were injected with gene-modified DPSCs encapsulated in PuraMatrix hydrogel and implanted in the dorsum of severe-combined-immunodeficient (SCID) mice. Implants were retrieved after 4 weeks and examined for regenerated pulp-like tissue and vascularization using histology and immunohistochemistry. p < 0.05 was considered statistically significant. RESULTS Gene-modified DPSCs expressed significantly high levels (p < 0.05) of SDF-1α and VEGF mRNA and proteins, respectively. Transfected DPSCs showed a significantly higher cell proliferation compared to that of wild-type DPSCs. Furthermore, they enhanced endothelial cell migration and vascular-tube formation on Matrigel in vitro. When injected into tooth root canals and implanted in vivo, DPSCs/SDF-1α + DPSCs/VEGF-mixed group resulted in significantly increased length of regenerated pulp-like tissue within the root canals compared to that of wild-type DPSCs/VEGF and DPSCs/SDF-1α groups. Vessel area density was significantly higher in DPSCs/SDF-1α and mixed DPSCs/SDF-1α + DPSCs/VEGF groups than in DPSCs-VEGF alone or wild-type DPSCs groups. CONCLUSION A combination of VEGF-overexpressing and SDF-1α-overexpressing DPSCs could enhance the area of vascularized dental pulp regeneration in vivo. CLINICAL RELEVANCE Enhancing vascularization in pulp regeneration is crucial to overcome the clinical limitation of the limited blood supply to the root canals via a small apical foramen enclosed by hard dentin.
Collapse
Affiliation(s)
- Lifang Zhu
- Endodontology, Faculty of Dentistry, The University of Hong Kong, 3A15, Prince Philip Dental Hospital, 34, Hospital Road, Hong Kong, SAR, China
| | | | - Chengfei Zhang
- Endodontology, Faculty of Dentistry, The University of Hong Kong, 3A15, Prince Philip Dental Hospital, 34, Hospital Road, Hong Kong, SAR, China.
| |
Collapse
|
16
|
Marofi F, Vahedi G, hasanzadeh A, Salarinasab S, Arzhanga P, Khademi B, Farshdousti Hagh M. Mesenchymal stem cells as the game‐changing tools in the treatment of various organs disorders: Mirage or reality? J Cell Physiol 2018; 234:1268-1288. [DOI: 10.1002/jcp.27152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Faroogh Marofi
- Department of Hematology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Ghasem Vahedi
- Faculty of Veterinary Medicine, University of Tehran Tehran Iran
| | - Ali hasanzadeh
- Department of Hematology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Sadegh Salarinasab
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Pishva Arzhanga
- Department of Biochemistry and Diet Therapy Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Bahareh Khademi
- Department of Medical Genetic Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | | |
Collapse
|
17
|
Nemati S, Rezabakhsh A, Khoshfetrat AB, Nourazarian A, Biray Avci Ç, Goker Bagca B, Alizadeh Sardroud H, Khaksar M, Ahmadi M, Delkhosh A, Sokullu E, Rahbarghazi R. Alginate-gelatin encapsulation of human endothelial cells promoted angiogenesis in in vivo and in vitro milieu. Biotechnol Bioeng 2017; 114:2920-2930. [DOI: 10.1002/bit.26395] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/31/2017] [Accepted: 08/01/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Sorour Nemati
- Chemical Engineering Faculty; Sahand University of Technology; Tabriz Iran
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Aysa Rezabakhsh
- Department of Pharmacology and Toxicology; Faculty of Pharmacy; Tabriz University of Medical Sciences; Tabriz Iran
| | | | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Çığır Biray Avci
- Department of Medical Biology; Faculty of Medicine; Ege University; Izmir Turkey
| | - Bakiye Goker Bagca
- Department of Medical Biology; Faculty of Medicine; Ege University; Izmir Turkey
| | | | - Majid Khaksar
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Mahdi Ahmadi
- Department of Physiology; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
| | - Aref Delkhosh
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
| | - Emel Sokullu
- Izmir Katip Celebi University; Bioengineering Department; Izmir Turkey
- Harvard Medical School; Division of Biomedical Engineering at Brigham and Women's Hospital, Harvard-MIT Health Sciences and Technology; Cambridge MA
| | - Reza Rahbarghazi
- Stem Cell Research Center; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Applied Cell Sciences; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| |
Collapse
|
18
|
Pennella S, Reggiani Bonetti L, Migaldi M, Manenti A, Lonardi R, Giuliani E, Barbieri A, Farinetti A, Mattioli AV. Does stem cell therapy induce myocardial neoangiogenesis? Histological evaluation in an ischemia/reperfusion animal model. J Cardiovasc Med (Hagerstown) 2017; 18:277-282. [PMID: 26808415 DOI: 10.2459/jcm.0000000000000357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND In an experimental model in the rabbit, a myocardial ischemia-reperfusion injury was obtained. Subsequently, the effects of homologous bone marrow stem cell (BMSC) administration were studied. METHODS In 21 New Zealand adult rabbits, ischemia/reperfusion damage was induced by temporary occlusion of the anterior descending coronary artery. Homologous BMSCs were isolated, cultured and re-suspended for injection at the level of the ischemic zone. We evaluated the proangiogenetic effect of intramyocardial injections of BMSC at the peri-infarcted area. Histological evaluations were made after 20 days from the surgical procedure. RESULTS In rabbits treated with intramyocardial BMSC administration, we demonstrated histologically capillary neoangiogenesis, without signs of tissue immunological reaction or of generation of new myocardial cells. On the contrary, only minimal neovascular supply was detected in rabbits treated with intravenous administration of BMSC. Only typical signs of ischemic myocardium injury were observed in the control group. CONCLUSION These observations suggest that the effect of direct BMSC administration in ischemic myocardium could promote a capillary neoangiogenesis, which helps to prevent ischemic myocardial damage.
Collapse
Affiliation(s)
- Sonia Pennella
- aDepartment of Life Science bDepartment of Diagnostic Medicine cDepartment of Surgery, University of Modena and RE, Modena, Italy dIstituto Nazionale per le Ricerche Cardiovascolari
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shen L, Zhang P, Zhang S, Xie L, Yao L, Lang W, Lian J, Qin W, Zhang M, Ji L. C-X-C motif chemokine ligand 8 promotes endothelial cell homing via the Akt-signal transducer and activator of transcription pathway to accelerate healing of ischemic and hypoxic skin ulcers. Exp Ther Med 2017; 13:3021-3031. [PMID: 28587375 DOI: 10.3892/etm.2017.4305] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/07/2017] [Indexed: 12/14/2022] Open
Abstract
C-X-C motif chemokine ligand 8 (CXCL-8) promotes cell homing and angiogenesis. However, under hypoxic conditions, the role of CXCL-8 in the homing of human umbilical vein endothelial cells (HUVECs), and its effect on the healing of skin ulcers caused by ischemia and hypoxia remain unknown. In the current study, assays measuring cell proliferation, in vitro angiogenesis and cell migration were performed to evaluate alterations in the proliferation, angiogenic capacity and chemotaxis of HUVECs treated with CXCL-8 protein and/or an Akt inhibitor (AZD5363 group) under hypoxic conditions. Changes in the levels of Akt, signal transducer and activator of transcription 3 (STAT3), vascular endothelial growth factor (VEGF), malondialdehyde (MDA) and total-superoxide dismutase (total-SOD) were also detected by western blotting and ELISA. In addition, in vivo experiments were performed using a skin ulcer model in mice. Ischemic and hypoxic skin ulcers were created on the thighs of C57BL/6J mice, and the effects of CXCL-8 and HUVEC transplantation on the healing capacity of skin ulcers was determined by injecting mice with HUVECs and/or CXCL-8 recombinant protein (CXCL-8, HUVEC and HUVEC + CXCL-8 groups). Vascular endothelial cell homing, changes in vascular density and the expression of VEGF, SOD, EGF and MDA within the ulcer tissue were subsequently measured. In vitro experiments demonstrated that HUVEC proliferation, migration and tube forming capacity were significantly increased by CXCL-8 under hypoxic conditions. Additionally, levels of VEGF, MDA and SOD were significantly higher in the CXCL-8 group, though were significantly decreased by the Akt and STAT3 inhibitors. In vivo experiments demonstrated that the expression of VEGF, total-SOD and EGF proteins were higher in the skin ulcer tissue of mice treated with CXCL-8 + HUVEC, relative to mice treated with HUVECs alone. Furthermore, vascular endothelial cell homing and vascular density were significantly increased in the CXCL-8 + HUVEC group, indicating that combined use of HUVECs and CXCL-8 may promote the healing of ischemic skin ulcers. The present results demonstrate that CXCL-8 may stimulate vascular endothelial cells to secrete VEGF, SOD and other cytokines via the Akt-STAT3 pathway, which in turn serves a key regulatory role in the recruitment of vascular endothelial cells, reduction of hypoxia-related injury and promotion of tissue repair following hypoxic/ischemic injury.
Collapse
Affiliation(s)
- Lei Shen
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Peng Zhang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Shanqiang Zhang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Liping Xie
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Lijie Yao
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Weiya Lang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Jie Lian
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Wei Qin
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Meng Zhang
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| | - Liang Ji
- Department of Anatomy, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, P.R. China
| |
Collapse
|
20
|
Zhang S, Chen S, Li Y, Liu Y. Melatonin as a promising agent of regulating stem cell biology and its application in disease therapy. Pharmacol Res 2016; 117:252-260. [PMID: 28042087 DOI: 10.1016/j.phrs.2016.12.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 01/20/2023]
Abstract
Stem cells have emerged as an important approach to repair and regenerate damaged tissues or organs and show great therapeutic potential in a variety of diseases. However, the low survival of engrafted stem cells still remains a major challenge for stem cell therapy. As a major hormone from the pineal gland, melatonin has been shown to play an important role in regulating the physiological and pathological functions of stem cells, such as promoting proliferation, migration and differentiation. Thus, melatonin combined with stem cell transplantation displayed promising application potential in neurodegenerative diseases, liver cirrhosis, wound healing, myocardial infarction, kidney ischemia injury, osteoporosis, etc. It exerts its physiological and pathological functions through its anti-oxidant, anti-inflammatory, anti-apoptosis and anti-ageing properties. Here, we summarize recent advances on exploring the biological role of melatonin in stem cells, and discuss its potential applications in stem cell-based therapy.
Collapse
Affiliation(s)
- Shuo Zhang
- College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Simon Chen
- Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Yuan Li
- College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yu Liu
- Department of Clinical Laboratory Diagnosis, the Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
21
|
Hu GJ, Feng YG, Lu WP, Li HT, Xie HW, Li SF. Effect of combined VEGF 165/ SDF-1 gene therapy on vascular remodeling and blood perfusion in cerebral ischemia. J Neurosurg 2016; 127:670-678. [PMID: 27982773 DOI: 10.3171/2016.9.jns161234] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Therapeutic neovascularization is a promising strategy for treating patients after an ischemic stroke; however, single-factor therapy has limitations. Stromal cell-derived factor 1 (SDF-1) and vascular endothelial growth factor (VEGF) proteins synergistically promote angiogenesis. In this study, the authors assessed the effect of combined gene therapy with VEGF165 and SDF-1 in a rat model of cerebral infarction. METHODS An adenoviral vector expressing VEGF165 and SDF-1 connected via an internal ribosome entry site was constructed (Ad- VEGF165-SDF-1). A rat model of middle cerebral artery occlusion (MCAO) was established; either Ad- VEGF165-SDF-1 or control adenovirus Ad- LacZ was stereotactically microinjected into the lateral ventricle of 80 rats 24 hours after MCAO. Coexpression and distribution of VEGF165 and SDF-1 were examined by reverse-transcription polymerase chain reaction, Western blotting, and immunofluorescence. The neurological severity score of each rat was measured on Days 3, 7, 14, 21, and 28 after MCAO. Angiogenesis and vascular remodeling were evaluated via bromodeoxyuridine and CD34 immunofluorescence labeling. Relative cerebral infarction volumes were determined by T2-weighted MRI and triphenyltetrazolium chloride staining. Cerebral blood flow, relative cerebral blood volume, and relative mean transmit time were assessed using perfusion-weighted MRI. RESULTS The Ad- VEGF165-SDF-1 vector mediated coexpression of VEGF165 and SDF-1 in multiple sites around the ischemic core, including the cortex, corpus striatum, and hippocampal granular layer. Coexpression of VEGF165 and SDF-1 improved neural function, reduced cerebral infarction volume, increased microvascular density and promoted angiogenesis in the ischemic penumbra, and improved cerebral blood flow and perfusion. CONCLUSIONS Combined VEGF165 and SDF-1 gene therapy represents a potential strategy for improving vascular remodeling and recovery of neural function after cerebral infarction.
Collapse
Affiliation(s)
- Guo-Jie Hu
- Departments of 1 Traditional Chinese Medicine and
| | - Yu-Gong Feng
- Neurosurgery, Affiliated Hospital of Qingdao University; and
| | - Wen-Peng Lu
- Department of Neurosurgery, People's Hospital of Jining, China
| | - Huan-Ting Li
- Neurosurgery, Affiliated Hospital of Qingdao University; and
| | - Hong-Wei Xie
- Neurosurgery, Affiliated Hospital of Qingdao University; and
| | - Shi-Fang Li
- Neurosurgery, Affiliated Hospital of Qingdao University; and
| |
Collapse
|
22
|
Hsieh SC, Chen HJ, Hsu SH, Yang YC, Tang CM, Chu MY, Lin PY, Fu RH, Kung ML, Chen YW, Yeh BW, Hung HS. Prominent Vascularization Capacity of Mesenchymal Stem Cells in Collagen-Gold Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28982-29000. [PMID: 27714998 DOI: 10.1021/acsami.6b09330] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The ideal characteristics of surface modification on the vascular graft for clinical application would be with excellent hemocompatibility, endothelialization capacity, and antirestenosis ability. Here, Fourier transform infrared spectroscopy (FTIR), surface enhanced Raman spectroscopy (SERS), atomic force microscopy (AFM), contact angle (θ) measurement, and thermogravimetric analysis (TGA) were used to evaluate the chemical and mechanical properties of collagen-gold nanocomposites (collagen+Au) with 17.4, 43.5, and 174 ppm of Au and suggested that the collagen+Au with 43.5 ppm of Au had better biomechanical properties and thermal stability than pure collagen. Besides, stromal-derived factor-1α (SDF-1α) at 50 ng/mL promoted the migration of mesenchymal stem cells (MSCs) on collagen+Au material through the α5β3 integrin/endothelial oxide synthase (eNOS)/metalloproteinase (MMP) signaling pathway which can be abolished by the knockdown of vascular endothelial growth factor (VEGF). The potentiality of collagen+Au with MSCs for vascular regeneration was evaluated by our in vivo rat model system. Artery tissues isolated from an implanted collagen+Au-coated catheter with MSCs expressed substantial CD-31 and α-SMA, displayed higher antifibrotic ability, antithrombotic activity, as well as anti-inflammatory response than all other materials. Our results indicated that the implantation of collagen+Au-coated catheters with MSCs could be a promising strategy for vascular regeneration.
Collapse
Affiliation(s)
- Shu-Chen Hsieh
- Department of Chemistry, National Sun Yat-Sen University , Kaohsiung, Taiwan, R.O.C
- Center for Stem Cell Research, Kaohsiung Medical University , Kaohsiung, Taiwan, R.O.C
- School of Pharmacy, College of Pharmacy, Kaohsiung Medical University , Kaohsiung, Taiwan, R.O.C
| | - Hui-Jye Chen
- Graduate Institute of Basic Medical Science, China Medical University , Taichung, Taiwan, R.O.C
| | - Shan-Hui Hsu
- Institute of Polymer Science and Engineering, National Taiwan University , Taipei, Taiwan, R.O.C
- Rehabilitation Engineering Research Center, National Taiwan University , Taipei, Taiwan, R.O.C
| | - Yi-Chin Yang
- Department of Neurosurgery, Taichung Veterans General Hospital , Taichung, Taiwan, R.O.C
| | - Cheng-Ming Tang
- Institute of Oral Sciences, Chung Shan Medical University , Taichung, Taiwan, R.O.C
| | - Mei-Yun Chu
- Graduate Institute of Basic Medical Science, China Medical University , Taichung, Taiwan, R.O.C
| | - Pei-Ying Lin
- Department of Chemistry, National Sun Yat-Sen University , Kaohsiung, Taiwan, R.O.C
| | - Ru-Huei Fu
- Graduate Institute of Immunology, China Medical University , Taichung, Taiwan, R.O.C
| | - Mei-Lang Kung
- Department of Chemistry, National Sun Yat-Sen University , Kaohsiung, Taiwan, R.O.C
| | - Yun-Wen Chen
- Department of Pharmacology, National Cheng Kung University , Tainan, Taiwan, R.O.C
| | - Bi-Wen Yeh
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University , Kaohsiung, Taiwan, R.O.C
| | - Huey-Shan Hung
- Graduate Institute of Basic Medical Science, China Medical University , Taichung, Taiwan, R.O.C
- Translational Medicine Research, China Medical University Hospital , Taichung, Taiwan, R.O.C
| |
Collapse
|
23
|
Singh A, Singh A, Sen D. Mesenchymal stem cells in cardiac regeneration: a detailed progress report of the last 6 years (2010-2015). Stem Cell Res Ther 2016; 7:82. [PMID: 27259550 PMCID: PMC4893234 DOI: 10.1186/s13287-016-0341-0] [Citation(s) in RCA: 155] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells have been used for cardiovascular regenerative therapy for decades. These cells have been established as one of the potential therapeutic agents, following several tests in animal models and clinical trials. In the process, various sources of mesenchymal stem cells have been identified which help in cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Although mesenchymal cell therapy has achieved considerable admiration, some challenges still remain that need to be overcome in order to establish it as a successful technique. This in-depth review is an attempt to summarize the major sources of mesenchymal stem cells involved in myocardial regeneration, the significant mechanisms involved in the process with a focus on studies (human and animal) conducted in the last 6 years and the challenges that remain to be addressed.
Collapse
Affiliation(s)
- Aastha Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Abhishek Singh
- School of Bio Sciences and Technology, VIT University, Vellore, India
| | - Dwaipayan Sen
- School of Bio Sciences and Technology, VIT University, Vellore, India. .,Cellular and Molecular Therapeutics Laboratory, Centre for Biomaterials, Cellular and Molecular Theranostics (CBCMT), VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
24
|
Vascular Endothelial Growth Factor Enhanced the Angiogenesis Response of Human Umbilical Cord-Derived Mesenchymal Stromal Cells in a Rat Model of Radiation Myelopathy. Neurochem Res 2015; 40:1892-903. [DOI: 10.1007/s11064-015-1684-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Revised: 06/07/2015] [Accepted: 07/24/2015] [Indexed: 12/25/2022]
|
25
|
Zhu P, Liu J, Shi J, Zhou Q, Liu J, Zhang X, Du Z, Liu Q, Guo Y. Melatonin protects ADSCs from ROS and enhances their therapeutic potency in a rat model of myocardial infarction. J Cell Mol Med 2015; 19:2232-43. [PMID: 26081690 PMCID: PMC4568927 DOI: 10.1111/jcmm.12610] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 04/06/2015] [Indexed: 12/15/2022] Open
Abstract
Myocardial infarction (MI) is a major cause of death and disability worldwide. In the last decade, mesenchymal stem cells (MSCs) based cell therapy has emerged as a promising therapeutic strategy. Although great advance have been made using MSCs to treat MI, the low viability of transplanted MSCs severely limits the efficiency of MSCs therapy. Here, we show evidence that ex vivo pre-treatment with melatonin, an endogenous hormone with newly found anti-oxidative activity, could improve survival and function of adipose tissue derived MSCs (ADSCs) in vitro as well as in vivo. ADSCs with 5 μM melatonin pre-treatment for 24 hrs showed increased expression of the antioxidant enzyme catalase and Cu/Zn superoxide dismutase (SOD-1), as well as pro-angiogenic and mitogenic factors like insulin-like growth factor 1, basic fibroblast growth factor, hepatocyte growth factor (HGF), epidermal growth factor. Furthermore, melatonin pre-treatment protected MSCs from reactive oxygen species (ROS) induced apoptosis both directly by promoting anti-apoptosis kinases like p-Akt as well as blocking caspase cascade, and indirectly by restoring the ROS impaired cell adhesion. Using a rat model of MI, we found that melatonin pre-treatment enhanced the viability of engrafted ADSCs, and promoted their therapeutic potency. Hopefully, our results may shed light on the design of more effective therapeutic strategies treating MI by MSCs in clinic.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jianfeng Liu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jinxin Shi
- Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| | - Qian Zhou
- Department of Cardiology, The Center Hospital of Zhoukou, Henan Province, China
| | - Jie Liu
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China.,Department of Geriatrics, Civil Aviation General Hospital, Beijing, China
| | - Xianwei Zhang
- The Health Department of Guard Bureau in the General Staff, Beijing, China
| | - Zhiyan Du
- Institute of Basic Medical Sciences, Academy of Military Medical Sciences, Beijing, China
| | - Qiaowei Liu
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Yuanyuan Guo
- Shijingshan Teaching Hospital of Capital Medical University, Beijing Shijingshan Hospital, Beijing, China
| |
Collapse
|
26
|
Wang M, Zou Z. Multiple mechanisms of SDF-1 promoting VEGF-induced endothelial differentiation of mesenchymal stem cells. Int J Cardiol 2014; 177:1098-1099. [PMID: 25449522 DOI: 10.1016/j.ijcard.2014.09.198] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 02/07/2023]
Affiliation(s)
- Mingke Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China; Naval Medical Research Institute, Shanghai 200433, PR China
| | - Zhongmin Zou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
27
|
Hung HS, Yang YC, Lin YC, Lin SZ, Kao WC, Hsieh HH, Chu MY, Fu RH, Hsu SH. Regulation of human endothelial progenitor cell maturation by polyurethane nanocomposites. Biomaterials 2014; 35:6810-21. [DOI: 10.1016/j.biomaterials.2014.04.076] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 04/22/2014] [Indexed: 12/24/2022]
|
28
|
Shih DTB, Burnouf T. Preparation, quality criteria, and properties of human blood platelet lysate supplements for ex vivo stem cell expansion. N Biotechnol 2014; 32:199-211. [PMID: 24929129 PMCID: PMC7102808 DOI: 10.1016/j.nbt.2014.06.001] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 05/30/2014] [Accepted: 06/02/2014] [Indexed: 02/06/2023]
Abstract
Most clinical applications of human multipotent mesenchymal stromal cells (MSCs) for cell therapy, tissue engineering, regenerative medicine, and treatment of immune and inflammatory diseases require a phase of isolation and ex vivo expansion allowing a clinically meaningful cell number to be reached. Conditions used for cell isolation and expansion should meet strict quality and safety requirements. This is particularly true for the growth medium used for MSC isolation and expansion. Basal growth media used for MSC expansion are supplemented with multiple nutrients and growth factors. Fetal bovine serum (FBS) has long been the gold standard medium supplement for laboratory-scale MSC culture. However, FBS has a poorly characterized composition and poses risk factors, as it may be a source of xenogenic antigens and zoonotic infections. FBS has therefore become undesirable as a growth medium supplement for isolating and expanding MSCs for human therapy protocols. In recent years, human blood materials, and most particularly lysates and releasates of platelet concentrates have emerged as efficient medium supplements for isolating and expanding MSCs from various origins. This review analyzes the advantages and limits of using human platelet materials as medium supplements for MSC isolation and expansion. We present the modes of production of allogeneic and autologous platelet concentrates, measures taken to ensure optimal pathogen safety profiles, and methods of preparing PLs for MSC expansion. We also discuss the supply of such blood preparations. Produced under optimal conditions of standardization and safety, human platelet materials can become the future 'gold standard' supplement for ex vivo production of MSCs for translational medicine and cell therapy applications.
Collapse
Affiliation(s)
- Daniel Tzu-Bi Shih
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; Pediatrics Department, Taipei Medical University Hospital, Taipei, Taiwan
| | - Thierry Burnouf
- Graduate Institute of Biomedical Materials and Tissue Engineering, College of Oral Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
29
|
Xiao M, Lu X, Li J, Li L, Li Y. Physiologic ischaemic training induces endothelial progenitor cell mobilization and myocardial angiogenesis via endothelial nitric oxide synthase related pathway in rabbits. J Cardiovasc Med (Hagerstown) 2014; 15:280-7. [DOI: 10.2459/jcm.0b013e32836009fe] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
30
|
Dash SN, Dash NR, Guru B, Mohapatra PC. Towards Reaching the Target: Clinical Application of Mesenchymal Stem Cells for Diabetic Foot Ulcers. Rejuvenation Res 2014; 17:40-53. [DOI: 10.1089/rej.2013.1467] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
| | - Nihar Ranjan Dash
- Department of Biochemistry, Apollo Hospitals Bhubaneswar, Odisha. India
| | | | | |
Collapse
|
31
|
Richardson JD, Nelson AJ, Zannettino ACW, Gronthos S, Worthley SG, Psaltis PJ. Optimization of the cardiovascular therapeutic properties of mesenchymal stromal/stem cells-taking the next step. Stem Cell Rev Rep 2014; 9:281-302. [PMID: 22529015 DOI: 10.1007/s12015-012-9366-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Despite current treatment options, cardiac failure is associated with significant morbidity and mortality highlighting a compelling clinical need for novel therapeutic approaches. Based on promising pre-clinical data, stem cell therapy has been suggested as a possible therapeutic strategy. Of the candidate cell types evaluated, mesenchymal stromal/stem cells (MSCs) have been widely evaluated due to their ease of isolation and ex vivo expansion, potential allogeneic utility and capacity to promote neo-angiogenesis and endogenous cardiac repair. However, the clinical application of MSCs for mainstream cardiovascular use is currently hindered by several important limitations, including suboptimal retention and engraftment and restricted capacity for bona fide cardiomyocyte regeneration. Consequently, this has prompted intense efforts to advance the therapeutic properties of MSCs for cardiovascular disease. In this review, we consider the scope of benefit from traditional plastic adherence-isolated MSCs and the lessons learned from their conventional use in preclinical and clinical studies. Focus is then given to the evolving strategies aimed at optimizing MSC therapy, including discussion of cell-targeted techniques that encompass the preparation, pre-conditioning and manipulation of these cells ex vivo, methods to improve their delivery to the heart and innovative substrate-directed strategies to support their interaction with the host myocardium.
Collapse
Affiliation(s)
- James D Richardson
- Cardiovascular Research Centre, Royal Adelaide Hospital and Department of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | | | | | | | | | | |
Collapse
|
32
|
SDF-1α reduces fibronectin expression in rat mesangial cells induced by TGF-β1 and high glucose through PI3K/Akt pathway. Exp Cell Res 2013; 319:1796-1803. [DOI: 10.1016/j.yexcr.2013.03.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/04/2013] [Accepted: 03/28/2013] [Indexed: 01/31/2023]
|
33
|
Xiaowei C, Jia M, Xiaowei W, Yina Z. Overexpression of CXCL12 chemokine up-regulates connexin and integrin expression in mesenchymal stem cells through PI3K/Akt pathway. ACTA ACUST UNITED AC 2013; 20:67-72. [PMID: 23659290 DOI: 10.3109/15419061.2013.791682] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mesenchymal stem cells offer several potential advantages over other types of stem cells for cardiac repair. Nevertheless, poor survival of donor cells is one of the major concerns that hampers a better prognosis. Integrins, which involved in cell/extracellular matrix (ECM) interaction and connexins (Cxs), with a dual role as an anti-apoptotic and gap-junctional protein, can effectively resolve this issue. CXCL12, a member of the chemokine CXC subfamily, may play a role in stem cell survival and proliferation. CXCL12 activates several signaling pathways in stem cells, particularly the survival kinase, PI3K/Akt, which is also an important mediator of integrins and Cxs. Based on these characteristics of CXCL12, we investigated the potential of CXCL12 overexpression to induce integrin and connexin expression via PI3K/Akt pathway. Mesenchymal stem cells were transfected with adenovirus for increasing CXCL12 secretion. Membranous integrin and Cx expression as well as Akt expression levels were evaluated using Western blot analysis. Transfection resulted in increased CXCL12 in situ. Increased CXCL12 elevated membrane Cx43, Cx45, and integrin αVβ3 expression, as well as Cx phosphorylaton, which was activated by PI3K/Akt pathway. This mechanism may serve to improve mesenchymal stem cell viability in host tissue.
Collapse
Affiliation(s)
- Chi Xiaowei
- The second affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China.
| | | | | | | |
Collapse
|
34
|
Chen KD, Goto S, Hsu LW, Lin TY, Nakano T, Lai CY, Chang YC, Weng WT, Kuo YR, Wang CC, Cheng YF, Ma YY, Lin CC, Chen CL. Identification of miR-27b as a novel signature from the mRNA profiles of adipose-derived mesenchymal stem cells involved in the tolerogenic response. PLoS One 2013; 8:e60492. [PMID: 23613728 PMCID: PMC3628792 DOI: 10.1371/journal.pone.0060492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 02/26/2013] [Indexed: 12/31/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (adipose-derived MSCs, ASCs) possess the ability to differentiate into multiple tissue types and have immune-modulatory properties similar to those of MSCs from other origins. However, the regulation of the MSC-elicited immune-modulatory activity by specific microRNA (miRNA) mechanisms remains unexplored. Gene expression profiling with knowledge-based functional enrichment analysis is an appropriate approach for unraveling these mechanisms. This tool can be used to examine the transcripts and miRNA regulators that differentiate the rat tolerogenic orthotopic liver transplantation (OLT; DA liver into PVG) and rejection OLT (DA liver into LEW) models. In both models, the rejection reaction was observed on postoperative day 7∼14 (rejection phase) but was overcome only by the PVG recipients. Thus, the global gene expression patterns of ASCs from spontaneously tolerant (PVG) and acute rejecting (LEW) rats in response to LPS activation were compared. In this study, we performed miRNA enrichment analysis based on the analysis of pathway, gene ontology (GO) terms and transcription factor binding site (TFBS) motif annotations. We found that the top candidate, miR-27, was specifically enriched and had the highest predicted frequency. We also identified a greater than 3-fold increase of miR-27b expression in the ASCs of tolerant recipients (DA to PVG) compared to those of rejecting recipients (DA to LEW) during the rejection phase in the rat OLT model. Furthermore, our data showed that miR-27b knockdown has a positive influence on the allosuppressive activity that inhibits T-cell proliferation. We found that miR-27 knockdown significantly induced the expression of CXCL12 in cultured ASCs and the expression of CXCL12 was responsible for the miR-27b antagomir-mediated inhibition of T-cell proliferation. These results, which through a series of comprehensive miRNA enrichment analyses, might be relevant for stem cell-based therapeutic applications in immunosuppressive function using ASCs.
Collapse
Affiliation(s)
- Kuang-Den Chen
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shigeru Goto
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Iwao Hospital, Yufuin, Japan
| | - Li-Wen Hsu
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Department of Chemistry, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yang Lin
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Toshiaki Nakano
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Yun Lai
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Chen Chang
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei-Teng Weng
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yur-Ren Kuo
- Department of Plastic and Reconstructive Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Chi Wang
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Fan Cheng
- Department of Diagnostic Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yen-Ying Ma
- Department of Obstetrics and Gynecology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Che Lin
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chao-Long Chen
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Departments of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
- * E-mail:
| |
Collapse
|
35
|
Xie J, Wang H, Song T, Wang Z, Li F, Ma J, Chen J, Nan Y, Yi H, Wang W. Tanshinone IIA and astragaloside IV promote the migration of mesenchymal stem cells by up-regulation of CXCR4. PROTOPLASMA 2013; 250:521-530. [PMID: 22872094 DOI: 10.1007/s00709-012-0435-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
Mesenchymal stem cells (MSCs) have a therapeutic potential to treat cardiovascular diseases. However, a significant barrier to MSC therapy is insufficient MSC engraftment in ischemic myocardium after systemic administration. Here, we investigated the modulatory effects of tanshinone IIA and astragaloside IV on the migration of MSCs and further defined the underlying mechanisms. CXCR4 expression in MSCs was determined by using flow cytometry, real-time PCR, and western blotting. The results showed that CXCR4 expression was significantly higher in tanshinone IIA- and astragaloside IV-stimulated MSCs than that of the control. MSC migration toward stromal cell-derived factor-1α (SDF-1α) was studied using a transwell system. MSCs treated with tanshinone IIA and astragaloside IV showed stronger migration than that of the control. Moreover, this enhanced migration ability was abrogated by a CXCR4 inhibitor. In a rat acute myocardial infarction model, MSCs stimulated with tanshinone IIA and astragaloside IV were stained with Dio and injected into model rats via the tail vein. Dio-labeled cells in myocardium sections were observed by fluorescence microscopy. Tanshinone IIA- and astragaloside IV-stimulated MSCs showed enhanced capacities to home to ischemic myocardium sites. In addition, there was no significant difference in the SDF-1α expression among groups. These data suggest that tanshinone IIA and astragaloside IV regulate MSC mobilization, at least partially via modulation of the CXCR4 expression.
Collapse
Affiliation(s)
- Juan Xie
- Department of Traditional Chinese Medicine, Xijing Hospital, Fourth Military Medical University, 17 West Changle Road, Xi'an, Shanxi Province, 710032, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Trophic actions of bone marrow-derived mesenchymal stromal cells for muscle repair/regeneration. Cells 2012; 1:832-50. [PMID: 24710532 PMCID: PMC3901134 DOI: 10.3390/cells1040832] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 09/28/2012] [Accepted: 10/09/2012] [Indexed: 12/30/2022] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BM-MSCs) represent the leading candidate cell in tissue engineering and regenerative medicine. These cells can be easily isolated, expanded in vitro and are capable of providing significant functional benefits after implantation in the damaged muscle tissues. Despite their plasticity, the participation of BM-MSCs to new muscle fiber formation is controversial; in fact, emerging evidence indicates that their therapeutic effects occur without signs of long-term tissue engraftment and involve the paracrine secretion of cytokines and growth factors with multiple effects on the injured tissue, including modulation of inflammation and immune reaction, positive extracellular matrix (ECM) remodeling, angiogenesis and protection from apoptosis. Recently, a new role for BM-MSCs in the stimulation of muscle progenitor cells proliferation has been demonstrated, suggesting the potential ability of these cells to influence the fate of local stem cells and augment the endogenous mechanisms of repair/regeneration in the damaged tissues.
Collapse
|
37
|
Deveza L, Choi J, Yang F. Therapeutic angiogenesis for treating cardiovascular diseases. Theranostics 2012; 2:801-14. [PMID: 22916079 PMCID: PMC3425124 DOI: 10.7150/thno.4419] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 05/29/2012] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular disease is the leading cause of death worldwide and is often associated with partial or full occlusion of the blood vessel network in the affected organs. Restoring blood supply is critical for the successful treatment of cardiovascular diseases. Therapeutic angiogenesis provides a valuable tool for treating cardiovascular diseases by stimulating the growth of new blood vessels from pre-existing vessels. In this review, we discuss strategies developed for therapeutic angiogenesis using single or combinations of biological signals, cells and polymeric biomaterials. Compared to direct delivery of growth factors or cells alone, polymeric biomaterials provide a three-dimensional drug-releasing depot that is capable of facilitating temporally and spatially controlled release. Biomimetic signals can also be incorporated into polymeric scaffolds to allow environmentally-responsive or cell-triggered release of biological signals for targeted angiogenesis. Recent progress in exploiting genetically engineered stem cells and endogenous cell homing mechanisms for therapeutic angiogenesis is also discussed.
Collapse
|
38
|
High density lipoprotein cholesterol promotes the proliferation of bone-derived mesenchymal stem cells via binding scavenger receptor-B type I and activation of PI3K/Akt, MAPK/ERK1/2 pathways. Mol Cell Biochem 2012; 371:55-64. [PMID: 22886428 DOI: 10.1007/s11010-012-1422-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 08/01/2012] [Indexed: 12/16/2022]
Abstract
High-density lipoprotein (HDL) possesses protective properties in cardiovascular diseases. However, the effect of HDL on the mesenchymal stem cells (MSCs), which could be mobilized to the damaged myocardial tissue, has not been well elucidated yet. In the current study, we investigated the effect of HDL on the proliferation of MSCs so as to reveal its molecular mechanisms. MSCs derived from rats were treated with HDL in different concentrations and for different periods. The proliferation of MSCs was measured with MTT and BrdU cell proliferation assay. The phosphorylation of Akt, ERK1/2 and the expression of p21 were evaluated by Western blotting. After the activity of respective pathways was down-regulated by the specific inhibitor and the gene of scavenger receptor-B type I (SR-BI) was knocked down by RNA interference, BrdU assay was performed to examine this effect of HDL on MSCs. We found that the proliferation of MSCs induced by HDL, in a time- and concentration-dependent manner, was the phosphorylation of Akt- and ERK1/2-dependent, which was significantly attenuated by the specific inhibitor to respective pathways. Moreover, MAPK/ERK1/2 pathway exerted a more dominating effect on this process. SR-BI contributed to HDL-induced proliferation of MSCs, which was effectively abolished by the silencing of SR-BI. The results suggested that HDL was capable of improving MSCs proliferation, in which MAPK/ERK1/2 and PI3K/Akt pathways involved and SR-BI played a critical role as well.
Collapse
|
39
|
Treacy O, Ryan AE, Heinzl T, O'Flynn L, Cregg M, Wilk M, Odoardi F, Lohan P, O'Brien T, Nosov M, Ritter T. Adenoviral transduction of mesenchymal stem cells: in vitro responses and in vivo immune responses after cell transplantation. PLoS One 2012; 7:e42662. [PMID: 22880073 PMCID: PMC3412834 DOI: 10.1371/journal.pone.0042662] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 07/10/2012] [Indexed: 01/16/2023] Open
Abstract
Adult mesenchymal stem cells (MSCs) are non-hematopoietic cells with multi-lineage potential which makes them attractive targets for regenerative medicine applications. However, to date, therapeutic success of MSC-therapy is limited and the genetic modification of MSCs using viral vectors is one option to improve their therapeutic potential. Ex-vivo genetic modification of MSCs using recombinant adenovirus (Ad) could be promising to reduce undesired immune responses as Ad will be removed before cell/tissue transplantation. In this regard, we investigated whether Ad-modification of MSCs alters their immunological properties in vitro and in vivo. We found that Ad-transduction of MSCs does not lead to up-regulation of major histocompatibility complex class I and II and co-stimulatory molecules CD80 and CD86. Moreover, Ad-transduction caused no significant changes in terms of pro-inflammatory cytokine expression, chemokine and chemokine receptor and Toll-like receptor expression. In addition, Ad-modification of MSCs had no affect on their ability to suppress T cell proliferation in vitro. In vivo injection of Ad-transduced MSCs did not change the frequency of various immune cell populations (antigen presenting cells, T helper and cytotoxic T cells, natural killer and natural killer T cells) neither in the blood nor in tissues. Our results indicate that Ad-modification has no major influence on the immunological properties of MSCs and therefore can be considered as a suitable gene vector for therapeutic applications of MSCs.
Collapse
Affiliation(s)
- Oliver Treacy
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Aideen E. Ryan
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Teresa Heinzl
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Lisa O'Flynn
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Marese Cregg
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Mieszko Wilk
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Francesca Odoardi
- Institute for Multiple-Sclerosis Research, Department of Neuroimmunology, University Medicine, Göttingen, Germany
| | - Paul Lohan
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Timothy O'Brien
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Mikhail Nosov
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| | - Thomas Ritter
- College of Medicine, Nursing and Health Sciences, School of Medicine, Regenerative Medicine Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
40
|
Wang Y, Zhang G, Hou Y, Chen J, Wang J, Zou C, Li D, Li H, Zhang Q, Wang A, Fan Q. Transplantation of microencapsulated Schwann cells and mesenchymal stem cells augment angiogenesis and improve heart function. Mol Cell Biochem 2012; 366:139-47. [PMID: 22488214 DOI: 10.1007/s11010-012-1291-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 03/17/2012] [Indexed: 01/26/2023]
Abstract
Because of their plasticity and availability, bone-marrow-derived mesenchymal stem cells (MSC) are a potential cell source for treating ischemic heart disease. Schwann cells (SC) play a critical role in neural remodeling and angiogenesis because of their secretion of cytokines such as vascular endothelial growth factor (VEGF). Cell microencapsulation, surrounding cells with a semipermeable polymeric membrane, is a promising tool to shelter cells from the recipient's immune system. We investigated whether transplantation of microencapsulated SC (MC-SC) and MSC together could improve heart function by augmenting angiogenesis in acute myocardial infarction (AMI). Sprague-Dawley rats with ligation of the left anterior descending artery to induce AMI were randomly divided for cell transplantation into four groups-MC-SC+MSC, MC+MSC, MSC, MC-SC, and controls. Echocardiography was performed at 3 days and 2 and 4 weeks after AMI. Rat hearts were harvested on day 28 after transplantation and examined by immunohistochemistry and western blot analysis. Echocardiography revealed differences among the groups in fractional shortening and end-systolic and end-diastolic dimensions (P < 0.05). The number of BrdU-positive cells was greater with MC-SC+MSC transplantation than the other groups (P < 0.01). The vessel density and VEGF level in the infarcted zone was significantly increased with MC-SC+MSC transplantation (P < 0.05). These results show that transplanting a combination of MC-SC and MSC could augment angiogenesis and improve heart function in AMI.
Collapse
Affiliation(s)
- Yan Wang
- Department of Cardiac Surgery, Provincial Hospital Affiliated to Shandong University, Shandong University, Jingwu Rd. 324, Jinan 250021, People's Republic of China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Robich MP, Chu LM, Oyamada S, Sodha NR, Sellke FW. Myocardial therapeutic angiogenesis: a review of the state of development and future obstacles. Expert Rev Cardiovasc Ther 2012; 9:1469-79. [PMID: 22059795 DOI: 10.1586/erc.11.148] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A significant percentage of patients have coronary artery disease that is too advanced or diffuse for percutaneous or surgical intervention. Therapeutic angiogenesis is a treatment modality to induce vessel formation that is being developed for patients with advanced coronary disease not amenable to currently available interventions. A number of approaches to induce coronary collateralization are being developed. These include gene, protein, cellular and miRNA modalities, each of which have advantages and disadvantages. At this time, no modality has emerged as the single clear choice, and combination therapies may provide synergistic benefits. However, there have been a number of recent studies advancing our knowledge as to how we can refine procollateralizing treatments. In this article, we will examine some recent successes and future obstacles in the effort to bring therapeutic angiogenesis to patients.
Collapse
Affiliation(s)
- Michael P Robich
- Department of Surgery, Division of Cardiothoracic Surgery, Warren Alpert School of Medicine, Brown University, Providence, RI 02905, USA
| | | | | | | | | |
Collapse
|
42
|
Vishnubalaji R, Manikandan M, Al-Nbaheen M, Kadalmani B, Aldahmash A, Alajez NM. In vitro differentiation of human skin-derived multipotent stromal cells into putative endothelial-like cells. BMC DEVELOPMENTAL BIOLOGY 2012; 12:7. [PMID: 22280443 PMCID: PMC3280173 DOI: 10.1186/1471-213x-12-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2011] [Accepted: 01/27/2012] [Indexed: 12/18/2022]
Abstract
Background Multipotent stem cells have been successfully isolated from various tissues and are currently utilized for tissue-engineering and cell-based therapies. Among the many sources, skin has recently emerged as an attractive source for multipotent cells because of its abundance. Recent literature showed that skin stromal cells (SSCs) possess mesoderm lineage differentiation potential; however, the endothelial differentiation and angiogenic potential of SSC remains elusive. In our study, SSCs were isolated from human neonatal foreskin (hNFSSCs) and adult dermal skin (hADSSCs) using explants cultures and were compared with bone marrow (hMSC-TERT) and adipose tissue-derived mesenchymal stem cells (hADMSCs) for their potential differentiation into osteoblasts, adipocytes, and endothelial cells. Results Concordant with previous studies, both MSCs and SSCs showed similar morphology, surface protein expression, and were able to differentiate into osteoblasts and adipocytes. Using an endothelial induction culture system combined with an in vitro matrigel angiogenesis assay, hNFSSCs and hADSSCs exhibited the highest tube-forming capability, which was similar to those formed by human umbilical vein endothelial cells (HUVEC), with hNFSSCs forming the most tightly packed, longest, and largest diameter tubules among the three cell types. CD146 was highly expressed on hNFSSCs and HUVEC followed by hADSSCs, and hMSC-TERT, while its expression was almost absent on hADMSCs. Similarly, higher vascular density (based on the expression of CD31, CD34, vWF, CD146 and SMA) was observed in neonatal skin, followed by adult dermal skin and adipose tissue. Thus, our preliminary data indicated a plausible relationship between vascular densities, and the expression of CD146 on multipotent cells derived from those tissues. Conclusions Our data is the first to demonstrate that human dermal skin stromal cells can be differentiated into endothelial lineage. Hence, SSCs represents a novel source of stem/stromal cells for tissue regeneration and the vascularization of engineered tissues. Moreover, the CD146 investigations suggested that the microenvironmental niche might contribute to direct stromal cells multipotency toward certain lineages, which warrants further investigation.
Collapse
|
43
|
Yang JJ, Yang X, Liu ZQ, Hu SY, Du ZY, Feng LL, Liu JF, Chen YD. Transplantation of Adipose Tissue-Derived Stem Cells Overexpressing Heme Oxygenase-1 Improves Functions and Remodeling of Infarcted Myocardium in Rabbits. TOHOKU J EXP MED 2012; 226:231-41. [DOI: 10.1620/tjem.226.231] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Jun-jie Yang
- Department of Cardiology, PLA General Hospital
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences
| | - Xia Yang
- Department of Cardiology, PLA General Hospital
| | - Zhi-qiang Liu
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences
| | - Shun-yin Hu
- Department of Cardiology, PLA General Hospital
| | - Zhi-yan Du
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences
| | - Lan-lan Feng
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences and Tissue Engineering Research Center, Academy of Military Medical Sciences
| | | | | |
Collapse
|
44
|
Mimeault M, Batra SK. Great promise of tissue-resident adult stem/progenitor cells in transplantation and cancer therapies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 741:171-86. [PMID: 22457110 DOI: 10.1007/978-1-4614-2098-9_12] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Recent progress in tissue-resident adult stem/progenitor cell research has inspired great interest because these immature cells from your own body can act as potential, easily accessible cell sources for cell transplantation in regenerative medicine and cancer therapies. The use of adult stem/progenitor cells endowed with a high self-renewal ability and multilineage differentiation potential, which are able to regenerate all the mature cells in the tissues from their origin, offers great promise in replacing non-functioning or lost cells and regenerating diseased and damaged tissues. The presence of a small subpopulation of adult stem/progenitor cells in most tissues and organs provides the possibility of stimulating their in vivo differentiation, or of using their ex vivo expanded progenies for cell-replacement and gene therapies with multiple applications in humans without a high-risk of graft rejection and major side effects. Among the diseases that could be treated by adult stem cell-based therapies are hematopoietic and immune disorders, multiple degenerative disorders such as Parkinson's and Alzheimer's diseases, Types 1 and 2 diabetes mellitus as well as skin, eye, liver, lung, tooth and cardiovascular disorders. In addition, a combination of the current cancer treatments with an adjuvant treatment consisting of an autologous or allogeneic adult stem/progenitor cell transplantation also represents a promising strategy for treating and even curing diverse aggressive, metastatic, recurrent and lethal cancers. In this chapter, we reviewed the most recent advancements on the characterization of phenotypic and functional properties of adult stem/progenitor cell types found in bone marrow, heart, brain and other tissues and discussed their therapeutic implications in the stem cell-based transplantation therapy.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska, USA.
| | | |
Collapse
|
45
|
Overexpression of hepatitis B x-interacting protein in HepG2 cells enhances tumor-induced angiogenesis. Mol Cell Biochem 2011; 364:165-71. [DOI: 10.1007/s11010-011-1215-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 12/21/2011] [Indexed: 11/26/2022]
|
46
|
Guiducci S, Manetti M, Romano E, Mazzanti B, Ceccarelli C, Dal Pozzo S, Milia AF, Bellando-Randone S, Fiori G, Conforti ML, Saccardi R, Ibba-Manneschi L, Matucci-Cerinic M. Bone marrow-derived mesenchymal stem cells from early diffuse systemic sclerosis exhibit a paracrine machinery and stimulate angiogenesis in vitro. Ann Rheum Dis 2011; 70:2011-21. [PMID: 21821866 DOI: 10.1136/ard.2011.150607] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To characterise bone marrow-derived mesenchymal stem cells (MSCs) from patients with systemic sclerosis (SSc) for the expression of factors implicated in MSC recruitment at sites of injury, angiogenesis and fibrosis. The study also analysed whether the production/release of bioactive mediators by MSCs were affected by stimulation with cytokines found upregulated in SSc serum and tissues, and whether MSCs could modulate dermal microvascular endothelial cell (MVEC) angiogenesis. METHODS MSCs obtained from five patients with early severe diffuse SSc (SSc-MSCs) and five healthy donors (H-MSCs) were stimulated with vascular endothelial growth factor (VEGF), transforming growth factor β (TGFβ) or stromal cell-derived factor-1 (SDF-1). Transcript and protein levels of SDF-1 and its receptor CXCR4, VEGF, TGFβ(1) and receptors TβRI and TβRII were evaluated by quantitative real-time PCR, western blotting and confocal microscopy. VEGF, SDF-1 and TGFβ(1) secretion in culture supernatant was measured by ELISA. MVEC capillary morphogenesis was performed on Matrigel with the addition of MSC-conditioned medium. RESULTS In SSc-MSCs the basal expression of proangiogenic SDF-1/CXCR4 and VEGF was significantly increased compared with H-MSCs. SSc-MSCs constitutively released higher levels of SDF-1 and VEGF. SDF-1/CXCR4 were upregulated after VEGF stimulation and CXCR4 redistributed from the cytoplasm to the cell surface. VEGF was increased by SDF-1 challenge. VEGF, TGFβ and SDF-1 stimulation upregulated TGFβ(1), TβRI and TβRII in SSc-MSCs. TβRII redistributed from the cytoplasm to focal adhesion contacts. SSc-MSC-conditioned medium showed a greater proangiogenic effect on MVECs than H-MSCs. Experiments with blocking antibodies showed that MSC-derived cytokines were responsible for this potent proangiogenic effect. CONCLUSION SSc-MSCs constitutively overexpress and release bioactive mediators/proangiogenic factors and potentiate dermal MVEC angiogenesis.
Collapse
Affiliation(s)
- Serena Guiducci
- Department of Biomedicine, Division of Rheumatology, AOUC, Excellence Centre for Research, Transfer and High Education DENOthe, University of Florence, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Muona K, Mäkinen K, Hedman M, Manninen H, Ylä-Herttuala S. 10-year safety follow-up in patients with local VEGF gene transfer to ischemic lower limb. Gene Ther 2011; 19:392-5. [DOI: 10.1038/gt.2011.109] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Nakanishi C, Nagaya N, Ohnishi S, Yamahara K, Takabatake S, Konno T, Hayashi K, Kawashiri MA, Tsubokawa T, Yamagishi M. Gene and protein expression analysis of mesenchymal stem cells derived from rat adipose tissue and bone marrow. Circ J 2011; 75:2260-8. [PMID: 21747191 DOI: 10.1253/circj.cj-11-0246] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSC) are multipotent and reside in bone marrow (BM), adipose tissue and many other tissues. However, the molecular foundations underlying the differences in proliferation, differentiation potential and paracrine effects between adipose tissue-derived MSC (ASC) and BM-derived MSC (BM-MSC) are not well-known. Therefore, we investigated differences in the gene and secretory protein expressions of the 2 types of MSC. METHODS AND RESULTS ASC and BM-MSC were obtained from subcutaneous adipose tissue and BM of adult Lewis rats. ASC proliferated as rapidly as BM-MSC, and had expanded 200-fold in approximately 2 weeks. On microarray analysis of 31,099 genes, 571 (1.8%) were more highly (>3-fold) expressed in ASC, and a number of these genes were associated with mitosis and immune response. On the other hand, 571 genes (1.8%) were more highly expressed in BM-MSC, and some of these genes were associated with organ development and morphogenesis. In secretory protein analysis, ASC secreted significantly larger amounts of growth factor and inflammatory cytokines, such as vascular endothelial growth factor, hepatocyte growth factor and interleukin 6, whereas BM-MSC secreted significantly larger amounts of stromal-derived factor-1α. CONCLUSIONS There are significant differences between ASC and BM-MSC in the cytokine secretome, which may provide clues to the molecule mechanisms associated with tissue regeneration and alternative cell sources.
Collapse
Affiliation(s)
- Chiaki Nakanishi
- Division of Cardiovascular Medicine, Kanazawa University Graduate School of Medicine, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kuraitis D, Hou C, Zhang Y, Vulesevic B, Sofrenovic T, McKee D, Sharif Z, Ruel M, Suuronen EJ. Ex vivo generation of a highly potent population of circulating angiogenic cells using a collagen matrix. J Mol Cell Cardiol 2011; 51:187-97. [PMID: 21569777 DOI: 10.1016/j.yjmcc.2011.04.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 04/02/2011] [Accepted: 04/26/2011] [Indexed: 11/26/2022]
Abstract
Biomaterials that have the ability to augment angiogenesis are highly sought-after for applications in regenerative medicine, particularly for revascularization of ischemic and infarcted tissue. We evaluated the culture of human circulating angiogenic cells (CAC) on collagen type I-based matrices, and compared this to traditional selective-adhesion cultures on fibronectin. Culture on a collagen matrix supported the proliferation of CD133(+) and CD34(+)CD133(+) CACs. When subjected to serum starvation, the matrix conferred a resistance to cell death for CD34(+) and CD133(+) progenitors and increased phosphorylation of Akt. After 4days of culture, phenotypically enriched populations of endothelial cells (CD31(+)CD144(+)) and progenitor cells (CD34(+)CD133(+)) emerged. Culture on matrix upregulated the phosphorylation and activation of ERK1/2 pathway members, and matrix-cultured cells also had an enhanced functional capacity for adhesion and invasion. These functional improvements were abrogated when cultured in the presence of ERK inhibitors. The formation of vessel-like structures in an angiogenesis assay was augmented with matrix-cultured cells, which were also more likely to physically associate with such structures compared to CACs taken from culture on fibronectin. In vivo, treatment with matrix-cultured cells increased the size and density of arterioles, and was superior at restoring perfusion in a mouse model of hindlimb ischemia, compared to fibronectin-cultured cell treatment. This work suggests that a collagen-based matrix, as a novel substrate for CAC culture, possesses the ability to enrich endothelial and angiogenic populations and lead to clinically relevant functional enhancements.
Collapse
Affiliation(s)
- Drew Kuraitis
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, Ontario, Canada K1Y 4W7.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Rapti K, Chaanine AH, Hajjar RJ. Targeted gene therapy for the treatment of heart failure. Can J Cardiol 2011; 27:265-83. [PMID: 21601767 PMCID: PMC5902317 DOI: 10.1016/j.cjca.2011.02.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Revised: 02/10/2011] [Accepted: 02/11/2011] [Indexed: 12/18/2022] Open
Abstract
Chronic heart failure is one of the leading causes of morbidity and mortality in Western countries and is a major financial burden to the health care system. Pharmacologic treatment and implanting devices are the predominant therapeutic approaches. They improve survival and have offered significant improvement in patient quality of life, but they fall short of producing an authentic remedy. Cardiac gene therapy, the introduction of genetic material to the heart, offers great promise in filling this void. In-depth knowledge of the underlying mechanisms of heart failure is, obviously, a prerequisite to achieve this aim. Extensive research in the past decades, supported by numerous methodological breakthroughs, such as transgenic animal model development, has led to a better understanding of the cardiovascular diseases and, inadvertently, to the identification of several candidate genes. Of the genes that can be targeted for gene transfer, calcium cycling proteins are prominent, as abnormalities in calcium handling are key determinants of heart failure. A major impediment, however, has been the development of a safe, yet efficient, delivery system. Nonviral vectors have been used extensively in clinical trials, but they fail to produce significant gene expression. Viral vectors, especially adenoviral, on the other hand, can produce high levels of expression, at the expense of safety. Adeno-associated viral vectors have emerged in recent years as promising myocardial gene delivery vehicles. They can sustain gene expression at a therapeutic level and maintain it over extended periods of time, even for years, and, most important, without a safety risk.
Collapse
Affiliation(s)
- Kleopatra Rapti
- Cardiovascular Research Center, Mount Sinai School of Medicine, New York, New York, USA
| | | | | |
Collapse
|