1
|
Xiao Y, Li J, Xu J, Sheng M, Qiu Z, Xu W. Mechanistic decoding of octyl methoxycinnamate-induced breast toxicity via network toxicology, mendelian randomization, and molecular simulations. Reprod Toxicol 2025; 135:108943. [PMID: 40345629 DOI: 10.1016/j.reprotox.2025.108943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/06/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Octyl methoxycinnamate (OMC), a widely used UV filter, has raised concerns due to its potential reproductive toxicity and association with endocrine disruption. This study systematically identified OMC-induced breast toxicity targets and elucidated underlying molecular mechanisms by integrating network toxicology, differential gene expression analysis, Mendelian randomization (MR), molecular docking, and molecular dynamics (MD) simulations. Using SwissTargetPrediction, OMIM, GeneCards and DisGeNET databases, 185 potential targets linked to OMC exposure and breast injury were identified. STRING and Cytoscape analyses highlighted 31 hub targets. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment revealed significant associations with immune responses, cell proliferation, and signaling pathways. Analysis of GEO datasets identified overlapping differentially expressed genes (DEGs) between core targets and breast cancer (BC). MR analysis demonstrated a causal relationship between PTGS2 and BC risk. Molecular docking indicated strong binding affinities between OMC and core targets, particularly MMP9. MD simulations further confirmed stable OMC-PTGS2 interactions, supporting PTGS2 as a key mediator of OMC-induced breast toxicity. This work provides a theoretical foundation for understanding OMC's breast toxicity mechanisms and lays groundwork for preventing or managing breast disorders in populations exposed to OMC-containing environments.
Collapse
Affiliation(s)
- Yinghao Xiao
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - Jixin Li
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - Jiahui Xu
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - Mingyang Sheng
- College of Pharmacy, Changchun University of Chinese Medicine, China
| | - Zhidong Qiu
- College of Pharmacy, Changchun University of Chinese Medicine, China.
| | - Wei Xu
- College of Pharmacy, Changchun University of Chinese Medicine, China.
| |
Collapse
|
2
|
Arzuk E, Birim D, Armağan G. Celecoxib inhibits NLRP1 inflammasome pathway in MDA-MB-231 Cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9191-9202. [PMID: 38990306 PMCID: PMC11522188 DOI: 10.1007/s00210-024-03286-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
NLRP1 is predominantly overexpressed in breast cancer tissue, and the evaluated activation of NLRP1 inflammasome is associated with tumor growth, angiogenesis, and metastasis. Therefore, targeting NLRP1 activation could be a crucial strategy in anticancer therapy. In this study, we investigated the hypothesis that NLRP1 pathway may contribute to the cytotoxic effects of celecoxib and nimesulide in MDA-MB-231 cells. First of all, IC50 values and inhibitory effects on the colony-forming ability of drugs were evaluated in cells. Then, the alterations in the expression levels of NLRP1 inflammasome components induced by drugs were investigated. Subsequently, the release of inflammatory cytokine IL-1β and the activity of caspase-1 in drug-treated cells were measured. According to our results, celecoxib and nimesulide selectively inhibited the viability of MDA-MB-231 cells. These drugs remarkably inhibited the colony-forming ability of cells. The expression levels of NLRP1 inflammasome components decreased in celecoxib-treated cells, accompanied by decreased caspase-1 activity and IL-1β release. In contrast, nimesulide treatment led to the upregulation of the related protein expressions with unchanged caspase-1 activity and increased IL-1β secretion. Our results indicated that the NLRP1 inflammasome pathway might contribute to the antiproliferative effects of celecoxib in MDA-MB-231 cells but is not a crucial mechanism for nimesulide.
Collapse
Affiliation(s)
- Ege Arzuk
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Ege University, Bornova, 35040, Izmir, Turkey.
| | - Derviş Birim
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| | - Güliz Armağan
- Department of Biochemistry, Faculty of Pharmacy, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
3
|
Ferreira T, Faustino-Rocha AI, Gaspar VM, Medeiros R, Mano JF, Oliveira PA. Contribution of non-steroidal anti-inflammatory drugs to breast cancer treatment: In vitro and in vivo studies. Vet World 2024; 17:1052-1072. [PMID: 38911075 PMCID: PMC11188899 DOI: 10.14202/vetworld.2024.1052-1072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 04/19/2024] [Indexed: 06/25/2024] Open
Abstract
Chronic inflammation plays a crucial role in carcinogenesis. High levels of serum prostaglandin E2 and tissue overexpression of cyclooxygenase-2 (COX-2) have been described in breast, urinary, colorectal, prostate, and lung cancers as being involved in tumor initiation, promotion, progression, angiogenesis, and immunosuppression. Non-steroidal anti-inflammatory drugs (NSAIDs) are prescribed for several medical conditions to not only decrease pain and fever but also reduce inflammation by inhibiting COX and its product synthesis. To date, significant efforts have been made to better understand and clarify the interplay between cancer development, inflammation, and NSAIDs with a view toward addressing their potential for cancer management. This review provides readers with an overview of the potential use of NSAIDs and selective COX-2 inhibitors for breast cancer treatment, highlighting pre-clinical in vitro and in vivo studies employed to evaluate the efficacy of NSAIDs and their use in combination with other antineoplastic drugs.
Collapse
Affiliation(s)
- Tiago Ferreira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000–801 Vila Real, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC), 4200–072 Porto, Portugal
- Department of Chemistry, Aveiro Institute of Materials (CICECO), University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
| | - Ana I. Faustino-Rocha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000–801 Vila Real, Portugal
- Department of Zootechnics, School of Sciences and Technology, University of Évora, Évora 7004-516, Portugal
- Comprehensive Health Research Center, 7004–516 Évora, Portugal
| | - Vítor M. Gaspar
- Department of Chemistry, Aveiro Institute of Materials (CICECO), University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
| | - Rui Medeiros
- Molecular Oncology and Viral Pathology Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto), Porto Comprehensive Cancer Center (Porto. CCC), 4200–072 Porto, Portugal
- Faculty of Medicine of the University of Porto, 4200–319 Porto, Portugal
- Department of Research, Portuguese League against Cancer-Regional Nucleus of the North (Liga Portuguesa Contra o Cancro-Núcleo Regional do Norte), 4200–177 Porto, Portugal
- Virology Service, IPO Porto, 4200-072 Porto, Portugal
- Biomedical Research Center (CEBIMED), Faculty of Health Sciences, Fernando Pessoa University, Porto 4249-004, Portugal
| | - João F. Mano
- Department of Chemistry, Aveiro Institute of Materials (CICECO), University of Aveiro, Campus Universitário de Santiago, 3810–193, Aveiro, Portugal
| | - Paula A. Oliveira
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
- Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), UTAD, 5000–801 Vila Real, Portugal
| |
Collapse
|
4
|
Hedayat M, Khezri MR, Jafari R, Malekinejad H, Majidi Zolbanin N. Concomitant effects of paclitaxel and celecoxib on genes involved in apoptosis of triple-negative metastatic breast cancer cells. Med Oncol 2023; 40:263. [PMID: 37548777 DOI: 10.1007/s12032-023-02119-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/05/2023] [Indexed: 08/08/2023]
Abstract
Although triple-negative breast cancer accounts for less than one-fifth of breast cancers, it has a higher rate of metastasis and mortality. This study investigated the effects of combination treatment with paclitaxel and celecoxib on the expression of genes involved in the apoptosis of triple-negative metastatic breast cancer cells. MDA-MB-231 cells were cultured and then treated with certain concentrations of celecoxib (CLX), paclitaxel (PTX), and combination of them for 24 and 48 h. Cell viability was assessed by the MTT method. The real-time PCR method was utilized to assess the expression level of the genes involved in apoptosis. Western blotting was used for evaluating protein expression. IC50 values for CLX and PTX were 73.95 μM and 3.15 μM, respectively. The results demonstrated that PTX, CLX, and PTX + CLX significantly (p < 0.05) reduced cell viability. The comparison of combination treatment with PTX showed a significant increase in caspase 3 gene expression at both time points, in Bax gene expression after 48 h, and a remarkable decrease in Bcl-2 gene expression at both times. Western blotting results were in line with genes' expression. These findings indicate that a combination of PTX and CLX results in a significantly more reduction in cell viability of breast cancer cells. In addition, it seems CLX may be an effective agent in regulating the expression level of caspase 3, Bax, and Bcl-2 when combined with PTX.
Collapse
Affiliation(s)
- Mohaddeseh Hedayat
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Malekinejad
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Naime Majidi Zolbanin
- Experimental and Applied Pharmaceutical Sciences Research Center, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Sero Road, Urmia, 5715799313, Iran.
| |
Collapse
|
5
|
Vo NB, Ngo QA. Synthesis, Anti‐inflammatory and Cytotoxic Activity of Novel Pyrazolo[4,3‐
c
][2,1]benzothiazine 4,4‐dioxide Derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ngoc Binh Vo
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Quoc Anh Ngo
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| |
Collapse
|
6
|
Ngo QA, Thi THN, Pham MQ, Delfino D, Do TT. Antiproliferative and antiinflammatory coxib-combretastatin hybrids suppress cell cycle progression and induce apoptosis of MCF7 breast cancer cells. Mol Divers 2021; 25:2307-2319. [PMID: 32602075 DOI: 10.1007/s11030-020-10121-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
In our study, some newly synthesized aryl-substituted pyrazole derivatives mimicking cis-diphenylethylene scaffold of two apoptotic inducing agents celecoxib and combretastatin A-4 were found to have strong antiproliferative as well as antiinflammatory activities. Among these coxib-combretastatin hybrids, two lead compounds 8 and 6c simultaneously inhibited prostaglandin E2 (PGE2) production in LPS-activated murine macrophage RAW 264.7 cells and suppressed cell cycle progression of MCF7 cells at G2/M or G0/G1 phases, but only compound 8 induced apoptosis via caspase-3 activation. Both the lead compounds showed good docking energies with both protein targets COX-2 and tubulin in the molecule interaction modeling. The cis-diphenylethylene scaffold of celecoxib or combretastatin A-4 as well as functional groups such as the ethyl ester group and the sulfonamide could be considered as potential key features for the dual activity of studied compounds meanwhile the trimethoxybenzene remained the crucial characterization of the newly derived compounds of combretastatins.
Collapse
Affiliation(s)
- Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| | - Thuy Hang Nguyen Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Domenico Delfino
- Department of Internal Medicine, Università degli Studi di Perugia, Perugia, Italy.
| | - Thi Thao Do
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| |
Collapse
|
7
|
Zhou S, Zhang H. Synergies of Targeting Angiogenesis and Immune Checkpoints in Cancer: From Mechanism to Clinical Applications. Anticancer Agents Med Chem 2021; 20:768-776. [PMID: 32031076 DOI: 10.2174/1871520620666200207091653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/23/2019] [Accepted: 01/12/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Angiogenesis marks key progress in the growth, recurrence, and metastasis of various cancers. Antiangiogenic drugs can improve the blood supply and oxygen content of tumors and enhance the effects of chemotherapy and radiotherapy by normalizing tumor blood vessels and microenvironment. The further recent developments of Immune Checkpoint Inhibitors (ICIs) provide significant progress in cancer immunotherapy. The study focused on programmed cell death protein 1 (PD-1) and Cytotoxic T Lymphocyte Antigen 4 (CTLA-4) blockade, reflecting on the evidence of durable responses among various tumor types. The aim of this review was to sum up present evidence and clarify the rationale behind supporting the benefits of combining antiangiogenic drugs with immunotherapy for cancer treatment as well as list the ongoing clinical trials that are being conducted. METHODS Using PubMed and Web of Science, published articles have been searched and comprehensively reviewed. RESULTS Antiangiogenic agents can trigger antitumor and immunity, and they can also be induced by the immune system. Combining antiangiogenic drugs with immunotherapy may be effective for the treatment of human cancers. CONCLUSION It is evidenced that combining angiogenesis inhibitors with immunotherapy has a synergistic effect thus improving the curative effect of both agents.
Collapse
Affiliation(s)
- Shi Zhou
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, Jiangsu, China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, Jiangsu, China
| |
Collapse
|
8
|
Tian J, Wang V, Wang N, Khadang B, Boudreault J, Bakdounes K, Ali S, Lebrun JJ. Identification of MFGE8 and KLK5/7 as mediators of breast tumorigenesis and resistance to COX-2 inhibition. Breast Cancer Res 2021; 23:23. [PMID: 33588911 PMCID: PMC7885389 DOI: 10.1186/s13058-021-01401-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/31/2021] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Cyclooxygenase 2 (COX-2) promotes stemness in triple negative breast cancer (TNBC), highlighting COX-2 as a promising therapeutic target in these tumors. However, to date, clinical trials using COX-2 inhibitors in breast cancer only showed variable patient responses with no clear significant clinical benefits, suggesting underlying molecular mechanisms contributing to resistance to COX-2 inhibitors. METHODS By combining in silico analysis of human breast cancer RNA-seq data with interrogation of public patient databases and their associated transcriptomic, genomic, and clinical profiles, we identified COX-2 associated genes whose expression correlate with aggressive TNBC features and resistance to COX-2 inhibitors. We then assessed their individual contributions to TNBC metastasis and resistance to COX-2 inhibitors, using CRISPR gene knockout approaches in both in vitro and in vivo preclinical models of TNBC. RESULTS We identified multiple COX-2 associated genes (TPM4, RGS2, LAMC2, SERPINB5, KLK7, MFGE8, KLK5, ID4, RBP1, SLC2A1) that regulate tumor lung colonization in TNBC. Furthermore, we found that silencing MFGE8 and KLK5/7 gene expression in TNBC cells markedly restored sensitivity to COX-2 selective inhibitor both in vitro and in vivo. CONCLUSIONS Together, our study supports the establishment and use of novel COX-2 inhibitor-based combination therapies as future strategies for TNBC treatment.
Collapse
Affiliation(s)
- Jun Tian
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada
| | - Vivian Wang
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada
| | - Ni Wang
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada
| | - Baharak Khadang
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada
| | - Julien Boudreault
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada
| | - Khldoun Bakdounes
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada
| | - Suhad Ali
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada
| | - Jean-Jacques Lebrun
- Department of Medicine, McGill University Health Center, Cancer Research Program, 1001 Decarie Blvd, Bloc E, Suite E02.6224, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
9
|
Clemente SM, Martínez-Costa OH, Monsalve M, Samhan-Arias AK. Human erythrocytes exposure to juglone leads to an increase of superoxide anion production associated with cytochrome b 5 reductase uncoupling. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2020; 1861:148134. [PMID: 33167334 PMCID: PMC7663840 DOI: 10.3390/molecules25215144] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/30/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
Cytochrome b5 reductase is an enzyme with the ability to generate superoxide anion at the expenses of NADH consumption. Although this activity can be stimulated by cytochrome c and could participate in the bioenergetic failure accounting in apoptosis, very little is known about other molecules that may uncouple the function of the cytochrome b5 reductase. Naphthoquinones are redox active molecules with the ability to interact with electron transfer chains. In this work, we made an inhibitor screening against recombinant human cytochrome b5 reductase based on naphthoquinone properties. We found that 5-hydroxy-1,4-naphthoquinone (known as juglone), a natural naphthoquinone extracted from walnut trees and used historically in traditional medicine with ambiguous health and toxic outcomes, had the ability to uncouple the electron transfer from the reductase to cytochrome b5 and ferricyanide. Upon complex formation with cytochrome b5 reductase, juglone is able to act as an electron acceptor leading to a NADH consumption stimulation and an increase of superoxide anion production by the reductase. Our results suggest that cytochrome b5 reductase could contribute to the measured energetic failure in the erythrocyte apoptosis induced by juglone, that is concomitant with the reactive oxygen species produced by cytochrome b5 reductase.
Collapse
Affiliation(s)
- Sofia M. Clemente
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal;
| | - Oscar H. Martínez-Costa
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| | - Maria Monsalve
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| | - Alejandro K. Samhan-Arias
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
- Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (CSIC-UAM), c/Arturo Duperier 4, 28029 Madrid, Spain;
| |
Collapse
|
10
|
Human cytomegalovirus infection is correlated with enhanced cyclooxygenase-2 and 5-lipoxygenase protein expression in breast cancer. J Cancer Res Clin Oncol 2019; 145:2083-2095. [PMID: 31203442 PMCID: PMC6658585 DOI: 10.1007/s00432-019-02946-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/27/2019] [Indexed: 01/26/2023]
Abstract
Purpose While enhanced expression of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LO) and their derived metabolites is associated with breast cancer (BC) risk, the precise link between BC carcinogenesis and enhanced inflammatory activity remains to be clarified. Human Cytomegalovirus (HCMV) may induce expression of COX-2 and 5-LO and is frequently found in breast cancer biopsies. Thus, we investigated whether there is an association between HCMV proteins and expression of COX-2 and 5-LO in human BC tissue and BC cell lines. Materials and methods Paraffin embedded biopsies obtained from 49 patients with breast cancer and 26 tissue samples from adjacent, benign breast tissues were retrospectively examined for HCMV-immediate early (IE), HCMV-Late (LA), COX-2, and 5-LO proteins by immunohistochemistry. In vitro, uninfected and HCMV-infected BC cell lines were examined for COX-2 and 5-LO transcripts and proteins by PCR and flow cytometry. Results Extensive expression of COX-2, 5-LO and HCMV-IE proteins were preferentially detected in BC samples. We found a statistically significant concordant correlation between extensive HCMV-IE and COX-2 (P < 0.0001) as well as with HCMV-IE and 5-LO (P = 0.0003) in infiltrating BC. In vitro, HCMV infection induced COX-2 and 5-LO transcripts and COX-2 proteins in MCF-7 cells (P =0.008, P =0.018, respectively). In MDA-MB-231 cells that already had high base line levels of COX-2 expression, HCMV induced both COX-2 and 5-LO proteins but not transcripts. Conclusion Our findings demonstrate a significant correlation between extensive HCMV-IE protein expression and overexpression of COX-2 and 5-LO in human breast cancer. Electronic supplementary material The online version of this article (10.1007/s00432-019-02946-8) contains supplementary material, which is available to authorized users.
Collapse
|
11
|
Thi THN, Thi YT, Nguyen LA, Vo NB, Ngo QA. Design, Synthesis and Biological Activities of New Pyrazole Derivatives Possessing Both Coxib and Combretastatins Pharmacophores. Chem Biodivers 2019; 16:e1900108. [PMID: 30977306 DOI: 10.1002/cbdv.201900108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/11/2019] [Indexed: 12/30/2022]
Abstract
In our efforts to discover novel multi-target agents having better antitumor activities than celecoxib, 21 new aryl-substituted pyrazole derivatives possessing cis-diphenylethylene scaffold were mostly synthesized by a one-pot approach to ethyl 1,4,5-triaryl-1H-pyrazole-3-carboxylates via an improved Claisen condensation - Knorr reaction sequence. The cytotoxic effects of these compounds against three human cancer cell lines HT-29, Hep-G2, MCF-7 as well as their inhibition of NO production were studied. Results showed that incorporation of the important pharmacophoric groups of two original molecules celecoxib and combretastatin A-4 in a single molecule plays an important role in determining a better biological activities of the new coxib-hybrided compounds.
Collapse
Affiliation(s)
- Thuy Hang Nguyen Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam.,Graduate University of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Yen Tran Thi
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Le Anh Nguyen
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Ngoc Binh Vo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| | - Quoc Anh Ngo
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam.,Graduate University of Science and Technology, 18 Hoang Quoc Viet, CauGiay, 100000, Hanoi, Viet Nam
| |
Collapse
|
12
|
Abstract
Breast cancer has a high incidence worldwide. The results of substantial studis reveal that inflammation plays an important role in the initiation, development, and aggressiveness of many malignancies. The use of celecoxib, a novel NSAID, is repetitively associated with the reduced risk of the occurrence and progression of a number of types of cancer, particularly breast cancer. This observation is also substantiated by various meta-analyses. Clinical trials have been implemented on integration treatment of celecoxib and shown encouraging results. Celecoxib could be treated as a potential candidate for antitumor agent. There are, nonetheless, some unaddressed questions concerning the precise mechanism underlying the anticancer effect of celecoxib as well as its activity against different types of cancer. In this review, we discuss different mechanisms of anticancer effect of celecoxib as well as preclinical/clinical results signifying this beneficial effect.
Collapse
Affiliation(s)
- Jieqing Li
- Department of Breast Surgery, Tianjin Central Hospital of Gynecology and Obstetrics, Tianjin, China.,Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ;
| | - Qiongyu Hao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ;
| | - Wei Cao
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,Department of Nuclear Medicine, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jaydutt V Vadgama
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA, ;
| | - Yong Wu
- Division of Cancer Research and Training, Department of Internal Medicine, Charles R. Drew University of Medicine and Science, Los Angeles,CA, USA, ; .,David Geffen UCLA School of Medicine and UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA, USA, ;
| |
Collapse
|
13
|
Conejo I, Pajares B, Alba E, Cuesta-Vargas AI. Effect of neuromuscular taping on musculoskeletal disorders secondary to the use of aromatase inhibitors in breast cancer survivors: a pragmatic randomised clinical trial. Altern Ther Health Med 2018; 18:180. [PMID: 29890985 PMCID: PMC5996544 DOI: 10.1186/s12906-018-2236-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/21/2018] [Indexed: 12/27/2022]
Abstract
Background Aromatase inhibitors reduce breast cancer recurrence rates in postmenopausal women by about 30% compared with tamoxifen while treatments differ. Unfortunately, nearly half of women taking AIs report AI-associated arthralgia (AIA), leading to therapy abandon in on third of patients, which could lead to cancer recurrence. The purpose of the current study was to evaluate the effectiveness of Neuromuscular Taping (NMT) in the treatment of AIA in women who have been treated of BC. Methods This study included 40 BC survivors receiving endocrine therapy (either AIs or TMX) from Hospital Universitario Virgen de la Victoria (Málaga, Spain) suffered from AIA. Patients were randomized to one of the two groups that made this pilot study: A. Placebo intervention B. Real NMT. Clinical data were collected from medical history, grip strength, algometry measured, questionnaires and VAS scale. There have been three interventions prior to the completion of the study, 5 weeks later. The primary objective of this pilot study was to achieve an improvement of pain by 20% decrease of VAS. Results Significant differences in measures of VAS (p = 0.009), global health status/QoL (p = 0.005), fatigue (p = 0.01) and pain (p = 0.04) were observed post intervention with NMT. Conclusions An intervention by NMT to MSCM under treatment with AIs improves their subjective sensation of pain. In addition, this taping had an impact on variables related to the quality of life. This pilot study may be the basis for others to support the use of NMT for the treatment of AIAs, thereby improving their well-being and reducing the dropout rate. Trial registration ClinicalTrials.gov Identifier: NCT02406794. Registered on 2 April 2015 Retrospectively registered.
Collapse
|
14
|
Ma Q, Gao Y, Wei DF, Jiang NH, Ding L, He X, Wei L, Zhang JW. The effects of celecoxib on the proliferation and ultrastructural changes of MDA-MB-231 breast cancer cells. Ultrastruct Pathol 2018; 42:289-294. [PMID: 29668331 DOI: 10.1080/01913123.2018.1459996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
This study sought to investigate the effects of celecoxib on the proliferation and morphological changes of triple-negative breast cancer (TNBC) MDA-MB-231 cells. In this study, after MDA-MB-231 cells were treated with a certain concentration of celecoxib, a cell counting kit-8 (CCK-8) proliferation assay was used to detect cell viability. Western blotting was utilized to analyze the expression level of caspase-3, which is an apoptosis-related protein. In addition, the morphological changes in the cells and nuclei were determined with fluorescence and electron microscope. Apoptotic nuclei and obvious cytoplasmic vacuolization were observed with a microscope. Collectively, celecoxib can inhibit the proliferation of MDA-MB-231 cells by increasing caspase-3 expression and causing ultrastructural changes.
Collapse
Affiliation(s)
- Qing Ma
- a Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , China
| | - Yang Gao
- a Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , China
| | - De-Fei Wei
- a Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , China
| | - Nan-Hui Jiang
- a Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , China
| | - Liang Ding
- a Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , China
| | - Xin He
- a Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , China
| | - Lei Wei
- b Department of Pathology and Pathophysiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, School of Basic Medical Sciences , Wuhan University , Wuhan , China
| | - Jing-Wei Zhang
- a Department of Breast and Thyroid Surgery, Zhongnan Hospital, Hubei Key Laboratory of Tumor Biological Behaviors, Hubei Cancer Clinical Study Center , Wuhan University , Wuhan , China
| |
Collapse
|
15
|
Silva RS, Kido LA, Montico F, Vendramini-Costa DB, Pilli RA, Cagnon VHA. Steroidal hormone and morphological responses in the prostate anterior lobe in different cancer grades after Celecoxib and Goniothalamin treatments in TRAMP mice. Cell Biol Int 2018; 42:1006-1020. [DOI: 10.1002/cbin.10967] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/24/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Rafael Sauce Silva
- Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); P.O. Box 6109, 13083-865 Campinas São Paulo Brazil
| | - Larissa Akemi Kido
- Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); P.O. Box 6109, 13083-865 Campinas São Paulo Brazil
| | - Fabio Montico
- Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); P.O. Box 6109, 13083-865 Campinas São Paulo Brazil
| | | | - Ronaldo Aloise Pilli
- Department of Organic Chemistry, Institute of Chemistry; University of Campinas (UNICAMP); Campinas São Paulo Brazil
| | - Valeria Helena Alves Cagnon
- Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); P.O. Box 6109, 13083-865 Campinas São Paulo Brazil
| |
Collapse
|
16
|
HPV16 E6 Promotes Breast Cancer Proliferation via Upregulation of COX-2 Expression. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2948467. [PMID: 29250535 PMCID: PMC5700552 DOI: 10.1155/2017/2948467] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/10/2017] [Accepted: 07/03/2017] [Indexed: 01/10/2023]
Abstract
Background. Breast cancer remains the leading cause of cancer-related mortality worldwide. It has been indicated that human papillomaviruses 16 (HPV16) might participate in the pathogenesis and development of breast cancer. However, the detected rate of HPV16 varies with region. We will investigate HPV16 E6 expression in North China and explore the effects and mechanism of HPV16 E6 on breast cancer proliferation in this study. Methods. The expressions of HPV16 E6 and COX-2 in paraffin-embedded tissues of the invasive ductal breast cancer were detected by qPCR and IHC. The effects of HPV16 E6 on breast cancer proliferation were determined by function studies. The mechanism of HPV16 E6 in promoting breast cancer proliferation was explored by Western blot and Dual-Luciferase Reporter Assay. Results. HPV16 E6 was positive in 28% invasive ductal breast carcinoma in North China; HPV16 E6 promoted breast cancer proliferation. Inhibition of COX-2 by siCOX-2 or Celecoxib attenuated the proliferation of breast cancer cells with HPV16 E6 expression; and the upregulation of COX-2 could be suppressed by the inhibition of NF-κB activity. Conclusion. HPV16 E6 promotes breast cancer proliferation by activation of NF-κB signaling pathway and increase of COX-2 expression. COX-2 will be a potential target for HPV16 E6-associated breast cancer.
Collapse
|
17
|
Lee K, Cho SG, Choi YK, Choi YJ, Lee GR, Jeon CY, Ko SG. Herbal prescription, Danggui-Sayuk-Ga-Osuyu-Senggang-Tang, inhibits TNF-α-induced epithelial-mesenchymal transition in HCT116 colorectal cancer cells. Int J Mol Med 2017; 41:373-380. [PMID: 29115450 DOI: 10.3892/ijmm.2017.3241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 09/28/2017] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor‑α‑mediated (TNF‑α) epithelial‑mesenchymal transition (EMT) is associated with distant metastasis in patients with colorectal cancer with poor prognosis. Although traditional herbal medicines have long been used to treat colorectal cancer, the incidence and mortality in patients with colorectal cancer has continued to increase. Danggui‑Sayuk‑Ga‑Osuyu‑Saenggang‑Tang (DSGOST) has long been used for treatment of chills, while few studies have reported its anticancer effect. This study aimed to demonstrate the inhibitory effect of DSGOST on TNF‑α‑mediated invasion and migration of colorectal cancer HCT116 cell lines. MTT was used to measure cell viability. Wound healing and Τranswell invasion assay were used to detect migration and invasion of cells, respectively. The intracellular localization of proteins of interest was assessed by immunocytochemistry. Western blotting was performed to determine the expression level of various proteins. A non‑toxic dose of DSGOST (50 µg/ml) on HCT116 cells was determined by MTT assay. Furthermore, DSGOST prevented the TNF‑α‑induced invasive phenotype in HCT116 cells. DSGOST inhibition of the invasive phenotype was also associated with increased expression of EMT markers. Furthermore, DSGOST treatment blocked TNF‑α‑induced migration and invasion of HCT116 cells. In addition, DSGOST treatment inhibited TNF‑α‑mediated nuclear translocation of Snail. DSGOST treatment also downregulated TNF‑α‑induced phosphorylation of AKT and glycogen synthase kinase‑3β. Therefore, the findings of the current study suggest that DSGOST exhibits anti‑migration and anti‑invasion effects in TNF‑α‑treated HCT116 human colorectal cells.
Collapse
Affiliation(s)
- Kangwook Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Sung-Gook Cho
- Department of Biotechnology, Korea National University of Transportation, Chungbuk 27469, Republic of Korea
| | - Youn Kyung Choi
- Jeju International Marine Science Center for Research and Education, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Yu-Jeong Choi
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Gyu-Ri Lee
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Chan-Yong Jeon
- Department of Korean Internal Medicine, College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul 02453, Republic of Korea
| |
Collapse
|
18
|
Bhatia A, Muthusamy S, Giridhar K, Goel S. Knockdown of PINCH-1 protein sensitizes the estrogen positive breast cancer cells to chemotherapy induced apoptosis. Pathol Res Pract 2017; 214:290-295. [PMID: 29079319 DOI: 10.1016/j.prp.2017.09.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/18/2017] [Accepted: 09/27/2017] [Indexed: 12/18/2022]
Abstract
INTRODUCTION PINCH-1 is a ubiquitously expressed protein belonging to the focal adhesion protein group which has a role in cell survival, spreading, adhesion and migration. It has been implicated in pathogenesis of several cancers. In the present study we aimed to investigate the role of this protein in estrogen positive and negative breast cancer subtypes. MATERIALS AND METHODS PINCH-1 expression was studied in two estrogen positive(T47D and MCF-7) and one estrogen negative cell lines before and after treatment with six drugs (Cyclophosphamide, Celecoxib, Doxorubicin, Paclitaxel, Etoposide and Tamoxifen). Then the protein was knocked down using siRNA against PINCH-1 and change in percentage of apoptotic cells was analysed by flow cytometry. RESULTS We observed increased but differential expression of PINCH-1 in the three breast cancer cell lines with a higher expression in estrogen positive cell lines. Knocking down of PINCH-1 led to a significant (p-value<0.05) enhancement in apoptosis in T47D cells in response to 4/6 (cyclophosphamide, celecoxib, paclitaxel, doxorubicin) drugs. Though an increase in apoptosis was observed in MCF-7 cells also, it was not found to be significant.The MDA-MB-231 cells however, did not show significant apoptosis upon PINCH-1 knockdown. CONCLUSION The results suggest that PINCH-1 may be playing an important role in etiopathogenesis of both subtypes breast cancer. However, enhanced apoptosis observed only in estrogen positive and not in estrogen negative cells upon PINCH-1 knockdown point towards participation of some other protein with redundant functions in the later subtype which needs to be investigated.
Collapse
Affiliation(s)
- Alka Bhatia
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| | - Sasikala Muthusamy
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Kriti Giridhar
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sumit Goel
- Department of Experimental Medicine & Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
19
|
Krishnamachary B, Stasinopoulos I, Kakkad S, Penet MF, Jacob D, Wildes F, Mironchik Y, Pathak AP, Solaiyappan M, Bhujwalla ZM. Breast cancer cell cyclooxygenase-2 expression alters extracellular matrix structure and function and numbers of cancer associated fibroblasts. Oncotarget 2017; 8:17981-17994. [PMID: 28152501 PMCID: PMC5392301 DOI: 10.18632/oncotarget.14912] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/27/2016] [Indexed: 01/21/2023] Open
Abstract
Cyclooxygenase-2 (COX-2) is a critically important mediator of inflammation that significantly influences tumor angiogenesis, invasion, and metastasis. We investigated the role of COX-2 expressed by triple negative breast cancer cells in altering the structure and function of the extracellular matrix (ECM). COX-2 downregulation effects on ECM structure and function were investigated using magnetic resonance imaging (MRI) and second harmonic generation (SHG) microscopy of tumors derived from triple negative MDA-MB-231 breast cancer cells, and a derived clone stably expressing a short hairpin (shRNA) molecule downregulating COX-2. MRI of albumin-GdDTPA was used to characterize macromolecular fluid transport in vivo and SHG microscopy was used to quantify collagen 1 (Col1) fiber morphology. COX-2 downregulation decreased Col1 fiber density and altered macromolecular fluid transport. Immunohistochemistry identified significantly fewer activated cancer associated fibroblasts (CAFs) in low COX-2 expressing tumors. Metastatic lung nodules established by COX-2 downregulated cells were infrequent, smaller, and contained fewer Col1 fibers.COX-2 overexpression studies were performed with tumors derived from triple negative SUM-149 breast cancer cells lentivirally transduced to overexpress COX-2. SHG microscopy identified significantly higher Col1 fiber density in COX-2 overexpressing tumors with an increase of CAFs. These data expand upon the roles of COX-2 in shaping the structure and function of the ECM in primary and metastatic tumors, and identify the potential role of COX-2 in modifying the number of CAFs in tumors that may have contributed to the altered ECM.
Collapse
Affiliation(s)
- Balaji Krishnamachary
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA
| | - Ioannis Stasinopoulos
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA
| | - Samata Kakkad
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA
| | - Marie-France Penet
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Desmond Jacob
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA
| | - Flonne Wildes
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA
| | - Yelena Mironchik
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA
| | - Arvind P Pathak
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Meiyappan Solaiyappan
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA
| | - Zaver M Bhujwalla
- JHU ICMIC Program, Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD 21205, USA.,Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
20
|
Tian J, Hachim MY, Hachim IY, Dai M, Lo C, Raffa FA, Ali S, Lebrun JJ. Cyclooxygenase-2 regulates TGFβ-induced cancer stemness in triple-negative breast cancer. Sci Rep 2017; 7:40258. [PMID: 28054666 PMCID: PMC5215509 DOI: 10.1038/srep40258] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 12/02/2016] [Indexed: 12/14/2022] Open
Abstract
Triple negative breast cancer (TNBC), an aggressive subtype of breast cancer, display poor prognosis and exhibit resistance to conventional therapies, partly due to an enrichment in breast cancer stem cells (BCSCs). Here, we investigated the role of the cyclooxygenase-2 (COX-2), a downstream target of TGFβ, in regulating BCSCs in TNBC. Bioinformatics analysis revealed that COX-2 is highly expressed in TNBC and that its expression correlated with poor survival outcome in basal subtype of breast cancer. We also found TGFβ-mediated COX-2 expression to be Smad3-dependent and to be required for BCSC self-renewal and expansion in TNBCs. Knocking down COX-2 expression strikingly blocked TGFβ-induced tumorsphere formation and TGFβ-induced enrichment of the two stem-like cell populations, CD24lowCD44high and ALDH+ BCSCs. Blocking COX-2 activity, using a pharmacological inhibitor also prevented TGFβ-induced BCSC self-renewal. Moreover, we found COX-2 to be required for TGFβ-induced expression of mesenchymal and basal breast cancer markers. In particular, we found that TGFβ-induced expression of fibronectin plays a central role in TGFβ-mediated breast cancer stemness. Together, our results describe a novel role for COX-2 in mediating the TGFβ effects on BCSC properties and imply that targeting the COX-2 pathway may prove useful for the treatment of TNBC by eliminating BCSCs.
Collapse
Affiliation(s)
- Jun Tian
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, H4A 3J1, Canada
| | - Mahmood Y Hachim
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, H4A 3J1, Canada
| | - Ibrahim Y Hachim
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, H4A 3J1, Canada
| | - Meiou Dai
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, H4A 3J1, Canada
| | - Chieh Lo
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, H4A 3J1, Canada
| | - Fatmah Al Raffa
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, H4A 3J1, Canada
| | - Suhad Ali
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, H4A 3J1, Canada
| | - Jean Jacques Lebrun
- Department of Medicine, McGill University Health Center, Cancer Research Program, Montreal, Quebec, H4A 3J1, Canada
| |
Collapse
|
21
|
MAJDZADEH M, ALIEBRAHIMI S, VATANKHAH M, OSTAD SN. Effects of celecoxib and L-NAME on apoptosis and cell cycle ofMCF-7 CD44+/CD24–/low subpopulation. Turk J Biol 2017. [DOI: 10.3906/biy-1703-101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
22
|
Siddiqui R, Lakhundi S, Iqbal J, Khan NA. Effect of non-steroidal anti-inflammatory drugs on biological properties of Acanthamoeba castellanii belonging to the T4 genotype. Exp Parasitol 2016; 168:45-50. [PMID: 27381503 DOI: 10.1016/j.exppara.2016.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/29/2016] [Indexed: 10/21/2022]
Abstract
Non-steroidal anti-inflammatory drug, Diclofenac, targeting COX have shown promise in the treatment of Acanthamoeba keratitis, but the underlying mechanisms remain unknown. Using various NSAIDs, Diclofenac sodium, Indomethacin, and Acetaminophen, here we determined the effects of NSAIDs on the biological properties of Acanthamoeba castellanii belonging to the T4 genotype. Using amoebicidal assays, the results revealed that Diclofenac sodium, and Indomethacin affected growth of A. castellanii. In contrast, none of the compounds tested had any effect on the viability of A. castellanii. Importantly, all NSAIDs tested abolished A. castellanii encystation. This is a significant finding as the ability of amoebae to transform into the dormant cyst form presents a significant challenge in the successful treatment of infection. The NSAIDs inhibit production of cyclo-oxegenase, which regulates the synthesis of prostaglandins suggesting that cyclooxygenases (COX-1 and COX-2) and prostaglandins play significant role(s) in Acanthamoeba biology. As NSAIDs are routinely used in the clinical practice, these findings may help design improved preventative strategies and/or of therapeutic value to improve prognosis, when used in combination with other anti-amoebic drugs.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, Selangor, Malaysia
| | - Sahreena Lakhundi
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Junaid Iqbal
- Division of Pediatric Infectious Diseases, Vanderbilt University School of Medicine, Nashville, USA
| | - Naveed Ahmed Khan
- Department of Biological Sciences, Faculty of Science and Technology, Sunway University, Selangor, Malaysia.
| |
Collapse
|
23
|
Regulski M, Regulska K, Prukała W, Piotrowska H, Stanisz B, Murias M. COX-2 inhibitors: a novel strategy in the management of breast cancer. Drug Discov Today 2015; 21:598-615. [PMID: 26723915 DOI: 10.1016/j.drudis.2015.12.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/07/2015] [Accepted: 12/09/2015] [Indexed: 01/24/2023]
Abstract
Cyclooxygenase-2 (COX-2) inhibitors are common anti-inflammatory drugs with pleiotropic, endogenous actions that could be useful in the management of breast cancer. Here, we provide a complete understanding of the biochemistry of COX-2 and discuss the various molecular mechanisms behind its increased expression in breast cancer. We also analyze the possible mechanisms responsible for the anticancer effect of COX-2 inhibitors and provide an overview of the available preclinical and clinical data on the use of COX-2 inhibitors in breast cancer. Finally, we describe a mathematical model of the relation between the structure and biological potency of promising new COX-2 inhibitors (trans-stilbenes) using a 2D quantitative structure-activity relationship (QSAR) technique.
Collapse
Affiliation(s)
- Miłosz Regulski
- Poznan University of Medical Sciences, Chair and Department of Toxicology, 30th Dojazd Street, 60-631 Poznań, Poland
| | - Katarzyna Regulska
- Greater Poland Oncology Center, 15th Garbary Street, 61-866 Poznań, Poland
| | - Wiesław Prukała
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Nucleosides and Nucleotides Chemistry, 6th Grunwaldzka Street, 60-780 Poznan, Poland
| | - Hanna Piotrowska
- Poznan University of Medical Sciences, Chair and Department of Toxicology, 30th Dojazd Street, 60-631 Poznań, Poland
| | - Beata Stanisz
- Poznan University of Medical Sciences, Chair and Department of Pharmaceutical Chemistry, 6th Grunwaldzka Street, 60-780 Poznań, Poland
| | - Marek Murias
- Poznan University of Medical Sciences, Chair and Department of Toxicology, 30th Dojazd Street, 60-631 Poznań, Poland.
| |
Collapse
|
24
|
Ragot T, Provost C, Prignon A, Cohen R, Lepoivre M, Lausson S. Apoptosis induction by combination of drugs or a conjugated molecule associating non-steroidal anti-inflammatory and nitric oxide donor effects in medullary thyroid cancer models: implication of the tumor suppressor p73. Thyroid Res 2015; 8:13. [PMID: 26273323 PMCID: PMC4535850 DOI: 10.1186/s13044-015-0025-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2015] [Accepted: 08/02/2015] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Medullary thyroid cancer (MTC) is a C-cell neoplasm. Surgery remains its main treatment. Promising therapies based on tyrosine kinase inhibitors demand careful patient selection. We previously observed that two non-steroidal anti-inflammatory drugs (NSAID), indomethacin, celecoxib, and nitric oxide (NO) prevented tumor growth in a model of human MTC cell line (TT) in nude mice. METHODS In the present study, we tested the NO donor: glyceryl trinitrate (GTN), at pharmacological dose, alone and in combination with each of the two NSAIDs on TT cells. We also assessed the anti-proliferative potential of NO-indomethacin, an indomethacin molecule chemically conjugated with a NO moiety (NCX 530, Nicox SA) on TT cells and indomethacin/GTN association in rMTC 6-23 cells. The anti-tumoral action of the combined sc. injections of GTN with oral delivery of indomethacin was also studied on subcutaneous TT tumors in nude mice. Apoptosis mechanisms were assessed by expression of caspase-3, TAp73α, TAp73α inhibition by siRNA or Annexin V externalisation. RESULTS The two NSAIDs and GTN reduced mitotic activity in TT cells versus control (cell number and PCNA protein expression). The combined treatments amplified the anti-tumor effect of single agents in the two tested cell lines and promoted cell death. Moreover, indomethacin/GTN association stopped the growth of established TT tumors in nude mice. We observed a significant cleavage of full length PARP, a caspase-3 substrate. The cell death appearance was correlated with a two-fold increase in TAp73α expression, with inhibition of apoptosis after TAp73α siRNA addition, demonstrating its crucial role in apoptosis. CONCLUSION Association of NO with NSAID exhibited amplified anti-tumoral effects on in vitro and in vivo MTC models by inducing p73-dependent apoptotic cell death.
Collapse
Affiliation(s)
- Thierry Ragot
- UMR 8203, Gustave Roussy, Laboratoire de Vectorologie et de Thérapeutiques Anticancéreuses, Villejuif, 94805 France ; UMR 8203, CNRS, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, Villejuif, 94805 France ; UMR 8203, Univ Paris-Sud, Laboratoire de Vectorologie et Thérapeutiques Anticancéreuses, Villejuif, 94805 France
| | - Claire Provost
- Sorbonne Universités, UPMC University Paris 06, plateforme LIMP, Laboratoire d'Imagerie Médicale Positonique, Hôpital Tenon, Paris, 75020 France
| | - Aurélie Prignon
- Sorbonne Universités, UPMC University Paris 06, plateforme LIMP, Laboratoire d'Imagerie Médicale Positonique, Hôpital Tenon, Paris, 75020 France
| | - Régis Cohen
- Hopital Delafontaine, Endocrinology Unit, Saint Denis, France
| | - Michel Lepoivre
- IBBMC, CNRS 8619, bat 430, Université Paris Sud XI, Orsay, Paris, 91405 France
| | - Sylvie Lausson
- Sorbonne Universités, UPMC University Paris 06, plateforme LIMP, Laboratoire d'Imagerie Médicale Positonique, Hôpital Tenon, Paris, 75020 France
| |
Collapse
|
25
|
Bowers LW, deGraffenried LA. Targeting the COX-2 Pathway to Improve Therapeutic Response in the Obese Breast Cancer Patient Population. ACTA ACUST UNITED AC 2015; 1:336-345. [PMID: 26442202 DOI: 10.1007/s40495-015-0041-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Multiple studies have demonstrated that obesity is associated with a worse outcome for all breast cancer subtypes and that obese breast cancer patients do not respond as well as normal weight patients to aromatase inhibitor treatment and chemotherapy. While a number of mechanisms have been proposed to explain this link, recent studies have provided evidence that elevated local cyclooxygenase-2 (COX-2) expression and the resulting increase in prostaglandin E2 (PGE2) production may play an important role. COX-2 upregulation in breast tumors is associated with a poor prognosis, a connection generally attributed to PGE2's direct effects on apoptosis and invasion as well as its stimulation of pre-adipocyte aromatase expression and subsequent estrogen production. Research in this area has provided a strong foundation for the hypothesis that COX-2 signaling is involved in the obesity-breast cancer link, and further study regarding the role of COX-2 in this link is warranted.
Collapse
Affiliation(s)
- Laura W Bowers
- Department of Nutritional Sciences, University of Texas at Austin, 1400 Barbara Jordan Boulevard, R1800, Austin, TX 78723
| | - Linda A deGraffenried
- Department of Nutritional Sciences, University of Texas at Austin, 1400 Barbara Jordan Boulevard, R1800, Austin, TX 78723
| |
Collapse
|
26
|
Hajipour AR, Khorsandi Z, Mortazavi M, Farrokhpour H. Green, efficient and large-scale synthesis of benzimidazoles, benzoxazoles and benzothiazoles derivatives using ligand-free cobalt-nanoparticles: as potential anti-estrogen breast cancer agents, and study of their interactions with estrogen receptor by molecular docking. RSC Adv 2015. [DOI: 10.1039/c5ra22207a] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile and high yielding method for the synthesis of 2-aryl benzoxazoles, benzimidazole and benzothiazoles is reported employing cobalt oxide nanoparticles.
Collapse
Affiliation(s)
- Abdol R. Hajipour
- Pharmaceutical Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156
- Islamic Republic of Iran
| | - Zahra Khorsandi
- Pharmaceutical Research Laboratory
- Department of Chemistry
- Isfahan University of Technology
- Isfahan 84156
- Islamic Republic of Iran
| | - Maryam Mortazavi
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- I. R. Iran
- Department of Chemistry
| | | |
Collapse
|
27
|
Cao J, Yang X, Li WT, Zhao CL, Lv SJ. Silencing of COX-2 by RNAi modulates epithelial-mesenchymal transition in breast cancer cells partially dependent on the PGE2 cascade. Asian Pac J Cancer Prev 2014; 15:9967-72. [PMID: 25520137 DOI: 10.7314/apjcp.2014.15.22.9967] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In order to prove whether downregulation of COX-2 (Cyclooxygenase-2) could modulate the epithelial- mesenchymal transition (EMT) of breast cancer, celecoxib and siRNA were respectively used to inhibit COX-2 function and expression in MDA-MB-231 cells. The EMT reversal effect in the RNAi treated group was better than that of the celecoxib group while there were no obvious differences in the medium PGE2 levels between the two groups. The results show that COX-2 pathways may contribute considerably to EMT of breast cancer cells, partially dependent on the PGE2 cascade. Akt2, ZEB2 and Snail were measured to clarify the underlying mechanisms of COX-2 on EMT; COX-2 may modulate EMT of breast cancer by regulating these factors. This finding may be helpful to elucidate the mechanisms of selective COX-2 inhibitor action in EMT modulation in breast cancer.
Collapse
Affiliation(s)
- Juan Cao
- Department of Health Care, Weifang Medical University, Weifang, Shandong Province, China E-mail :
| | | | | | | | | |
Collapse
|
28
|
Bowers LW, Maximo IXF, Brenner AJ, Beeram M, Hursting SD, Price RS, Tekmal RR, Jolly CA, deGraffenried LA. NSAID use reduces breast cancer recurrence in overweight and obese women: role of prostaglandin-aromatase interactions. Cancer Res 2014; 74:4446-57. [PMID: 25125682 DOI: 10.1158/0008-5472.can-13-3603] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Obesity is associated with a worse breast cancer prognosis and elevated levels of inflammation, including greater cyclooxygenase-2 (COX-2) expression and activity in adipose-infiltrating macrophages. The product of this enzyme, the proinflammatory eicosanoid prostaglandin E2 (PGE2), stimulates adipose tissue aromatase expression and subsequent estrogen production, which could promote breast cancer progression. This study demonstrates that daily use of a nonsteroidal anti-inflammatory drug (NSAID), which inhibits COX-2 activity, is associated with reduced estrogen receptor α (ERα)-positive breast cancer recurrence in obese and overweight women. Retrospective review of data from ERα-positive patients with an average body mass index of >30 revealed that NSAID users had a 52% lower recurrence rate and a 28-month delay in time to recurrence. To examine the mechanisms that may be mediating this effect, we conducted in vitro studies that utilized sera from obese and normal-weight patients with breast cancer. Exposure to sera from obese patients stimulated greater macrophage COX-2 expression and PGE2 production. This was correlated with enhanced preadipocyte aromatase expression following incubation in conditioned media (CM) collected from the obese-patient, sera-exposed macrophages, an effect neutralized by COX-2 inhibition with celecoxib. In addition, CM from macrophage/preadipocyte cocultures exposed to sera from obese patients stimulated greater breast cancer cell ERα activity, proliferation, and migration compared with sera from normal-weight patients, and these differences were eliminated or reduced by the addition of an aromatase inhibitor during CM generation. Prospective studies designed to examine the clinical benefit of NSAID use in obese patients with breast cancer are warranted.
Collapse
Affiliation(s)
- Laura W Bowers
- Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas
| | - Ilane X F Maximo
- Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas
| | - Andrew J Brenner
- Division of Hematology and Medical Oncology, University of Texas Health Science Center, San Antonio, Texas
| | | | - Stephen D Hursting
- Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas
| | - Ramona S Price
- Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas
| | - Rajeshwar R Tekmal
- Department of Obstetrics and Gynecology, University of Texas Health Science Center, San Antonio, Texas
| | - Christopher A Jolly
- Department of Nutritional Sciences, University of Texas at Austin, Austin, Texas
| | | |
Collapse
|
29
|
Payton-Stewart F, Tilghman SL, Williams LG, Winfield LL. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells. Biochem Biophys Res Commun 2014; 450:1358-62. [PMID: 24997336 PMCID: PMC4190015 DOI: 10.1016/j.bbrc.2014.06.130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/27/2014] [Indexed: 12/29/2022]
Abstract
Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules upregulate ERβ activity while down regulating that of ERα.
Collapse
Affiliation(s)
- Florastina Payton-Stewart
- Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA, USA
| | - Syreeta L Tilghman
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, USA
| | - LaKeisha G Williams
- Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA, USA
| | | |
Collapse
|
30
|
SHAO DAN, KAN MUJIE, QIAO PING, PAN YUE, WANG ZHENG, XIAO XUANANG, LI JING, CHEN LI. Celecoxib induces apoptosis via a mitochondria-dependent pathway in the H22 mouse hepatoma cell line. Mol Med Rep 2014; 10:2093-8. [DOI: 10.3892/mmr.2014.2461] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 06/05/2014] [Indexed: 11/06/2022] Open
|
31
|
Lee KS, Lee DH, Chun SY, Nam KS. Metastatic potential in MDA-MB-231 human breast cancer cells is inhibited by proton beam irradiation via the Akt/nuclear factor-κB signaling pathway. Mol Med Rep 2014; 10:1007-12. [PMID: 24859472 DOI: 10.3892/mmr.2014.2259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/09/2014] [Indexed: 11/05/2022] Open
Abstract
A previous study has revealed that proton beam irradiation affects cell migration in MDA-MB-231 human breast cancer cells. Cyclooxygenase-2 (COX-2) and matrix metalloproteinase‑9 (MMP-9) are highly expressed in various cancers, such as colon, lung and breast cancer, and enhance cell migration and metastasis in vitro and in vivo. In the present study, the effects of proton beam irradiation on COX-2 and MMP-9 expression levels in MDA-MB‑231 human breast cancer cells were investigated, along with the signaling pathway involved in the proton beam irradiation‑mediated antimetastatic effect. The results revealed that 12-O-tetradecanoylphorbol-13‑acetate‑induced increases in COX-2 and MMP-9 expression levels were reversed by proton beam irradiation in a dose-dependent manner. In addition, proton beam irradiation inhibited phosphorylation of protein kinase B (also known as Akt) and nuclear factor-κB (NF-κB), which are activated by phosphoinositide 3-kinase (PI3K) stimulation. MMP-9 and COX-2 expression levels are regulated by PI3K/Akt and/or protein kinase C/mitogen-activated protein kinase signaling pathways that enhance NF-κB and activator protein-1 transcriptional activities. Therefore, the results suggest that proton beam irradiation inhibited the cancer cell growth and metastasis associated with COX-2 and MMP-9 expression in MDA-MB‑231 human breast cancer cells, and that the antimetastatic effect of proton beam irradiation is achieved by the suppression of NF-κB phosphorylation via inhibition of Akt activation.
Collapse
Affiliation(s)
- Kyu-Shik Lee
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju 780-714, Republic of Korea
| | - Do-Hyung Lee
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju 780-714, Republic of Korea
| | - So-Young Chun
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju 780-714, Republic of Korea
| | - Kyung-Soo Nam
- Department of Pharmacology, College of Medicine, Dongguk University, Gyeongju 780-714, Republic of Korea
| |
Collapse
|
32
|
Seo KW, Coh YR, Rebhun RB, Ahn JO, Han SM, Lee HW, Youn HY. Antitumor effects of celecoxib in COX-2 expressing and non-expressing canine melanoma cell lines. Res Vet Sci 2014; 96:482-6. [PMID: 24656746 DOI: 10.1016/j.rvsc.2014.03.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 12/08/2013] [Accepted: 03/01/2014] [Indexed: 01/10/2023]
Abstract
Cyclooxygenase-2 (COX-2) is a potential target for chemoprevention and cancer therapy. Celecoxib, a selective COX-2 inhibitor, inhibits cell growth of various types of human cancer including malignant melanoma. In dogs, oral malignant melanoma represents the most common oral tumor and is often a fatal disease. Therefore, there is a desperate need to develop additional therapeutic strategies. The purpose of this study was to investigate the anticancer effects of celecoxib on canine malignant melanoma cell lines that express varying levels of COX-2. Celecoxib induced a significant anti-proliferative effect in both LMeC and CMeC-1 cells. In the CMeC cells, treatment of 50 μM celecoxib caused an increase in cells in the G0/G1 and a decreased proportion of cells in G-2 phase. In the LMeC cells, 50 μM of celecoxib led to an increase in the percentage of cells in the sub-G1 phase and a significant activation of caspase-3 when compared to CMeC-1 cells. In conclusion, these results demonstrate that celecoxib exhibits antitumor effects on canine melanoma LMeC and CMeC-1 cells by induction of G1-S cell cycle arrest and apoptosis. Our data suggest that celecoxib might be effective as a chemotherapeutic agent against canine malignant melanoma.
Collapse
Affiliation(s)
- Kyoung-Won Seo
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Chungnam National University, 99 Daehakro, Yuseoung gu, Daejon 305-764, Korea
| | - Ye-Rin Coh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA
| | - Jin-Ok Ahn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Sei-Myung Han
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Hee-Woo Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea
| | - Hwa-Young Youn
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul 151-742, Korea.
| |
Collapse
|
33
|
Vosooghi M, Amini M. The discovery and development of cyclooxygenase-2 inhibitors as potential anticancer therapies. Expert Opin Drug Discov 2014; 9:255-67. [PMID: 24483845 DOI: 10.1517/17460441.2014.883377] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
INTRODUCTION In the past, clinical studies had demonstrated that aspirin and NSAIDs reduce the risk of colorectal cancer. After the discovery of selective prostaglandin-endoperoxide synthase 2 (PTGS2) inhibitors, the further beneficial effects of celecoxib and some other related structures (coxibs) have been demonstrated in both in vivo and in vitro studies. AREAS COVERED The authors illustrate the role of prostaglandins following the overexpression of PTGS2 (COX-2) in signaling pathways. The authors elucidate the role of coxibs in cell proliferation, apoptosis, angiogenesis and multi-drug resistance and discuss the molecular mechanisms involved. The authors also present the strong evidence related to the usefulness of coxibs in several cancer cell lines. EXPERT OPINION There have been a number of PTGS2 (COX-2) selective inhibitors suggested as potential anticancer therapies. In recent years, the development of nanotechnology has also had an impact on chemotherapy. Indeed, nanoparticles of cytotoxic drug carriers have demonstrated potential through their accumulation in cancer cells, and targeting these nanoparticles has been under evaluation. This area could be opened up for coxib development as they are potentially important targets in cancer cells. Further research using celecoxib as a co-drug with PTGS2-overexpressed and PTGS2-independent cancer is still needed.
Collapse
Affiliation(s)
- Mohsen Vosooghi
- Tehran University of Medical Sciences, Faculty of Pharmacy, Drug Design & Development Research Center, Department of Medicinal Chemistry , Tehran , Iran
| | | |
Collapse
|
34
|
Bocca C, Ievolella M, Autelli R, Motta M, Mosso L, Torchio B, Bozzo F, Cannito S, Paternostro C, Colombatto S, Parola M, Miglietta A. Expression of Cox-2 in human breast cancer cells as a critical determinant of epithelial-to-mesenchymal transition and invasiveness. Expert Opin Ther Targets 2013; 18:121-35. [PMID: 24325753 DOI: 10.1517/14728222.2014.860447] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Cyclooxygenase-2 (COX-2) is overexpressed in several malignancies and is implicated in breast cancer progression. OBJECTIVES We investigated whether changes in COX-2 expression may affect epithelial-to-mesenchymal transition (EMT) and then invasive potential of human breast cancer cells, in relationship with hypoxia. COX-2-null MCF-7 human breast cancer cells, MCF-7 cells transiently expressing COX-2 and COX-2-expressing MDA-MB-231 cells were employed. RESULTS COX-2 overexpression resulted in downregulation of E-cadherin and β-catenin, upregulation of vimentin, N-cadherin and SNAI1, suggesting EMT occurrence. COX-2-overexpressing MCF-7 cells were also characterized by increased invasiveness and release of matrix-metalloproteinase-9. The above-mentioned characteristics, homologous to those detected in highly invasive MDA-MB-231 cells, were reverted by treatment of COX-2-overexpressing MCF-7 cells with celecoxib, a COX-2-specific inhibitor, partly through the inhibition of COX-2-related intracellular generation of reactive oxygen species. Hypoxia further exacerbated COX-2 expression, EMT changes and invasive ability in both COX-2-overexpressing MCF-7 cells and MDA-MB-231 cells. Finally, immunohistochemistry performed on samples from normal and neoplastic human breast tissues revealed that COX-2-positive malignant cells were also positive for EMT-related antigens, hypoxia-inducible factor (HIF)-2α and the oxidative stress marker heme oxygenase. CONCLUSIONS These findings support the existence of a direct link between COX-2 overexpression, EMT and invasiveness in human breast cancer cells, emphasizing the role of hypoxic microenvironment.
Collapse
Affiliation(s)
- Claudia Bocca
- University of Torino, Department of Clinical and Biological Sciences , C.so Raffaello, 30 - 10125 Torino , Italy +39 0116707756 ; +39 0116707753 ;
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Perroud HA, Rico MJ, Alasino CM, Queralt F, Mainetti LE, Pezzotto SM, Rozados VR, Scharovsky OG. Safety and therapeutic effect of metronomic chemotherapy with cyclophosphamide and celecoxib in advanced breast cancer patients. Future Oncol 2013; 9:451-62. [PMID: 23469980 DOI: 10.2217/fon.12.196] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Metronomic chemotherapy (MCT), the chronic administration, at regular intervals, of low doses of chemotherapeutic drugs without extended rest periods, allows chronic treatment with therapeutic efficacy and low toxicity. Our preclinical results suggested that combined MCT with cyclophosphamide and celecoxib could inhibit breast cancer growth. The aim of this study was to determine the toxicity, safety and efficacy of oral MCT with cyclophosphamide 50 mg per orem daily and celecoxib 400 mg (200 mg per orem two-times a day) in advanced breast cancer patients. During the first stage of the study, the therapeutic response consisted of prolonged stable disease for ≥24 weeks in six out of 15 (40%) patients with a median duration of 37.5 weeks and a partial response in one out of 15 (response rate: 6.7%) patients lasting 6 weeks. The overall clinical benefit rate was 46.7%. The median time to progression was 14 weeks. Progression-free survival at 24 weeks was 40% and the 1-year overall survival rate was 46.7%. The adverse events were mild (gastric, grade 1; and hematologic, grade 1 or 2). No grade 3 or 4 toxicities were associated with the treatment. Evaluation of patients' quality of life showed no changes during the response period. MCT with cyclophosphamide plus celecoxib is safe and shows a therapeutic effect in advanced breast cancer patients.
Collapse
Affiliation(s)
- Herman A Perroud
- Institute of Experimental Genetics, School of Medical Sciences, National University of Rosario, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Chow LWC, Tung SY, Ng TY, Im SA, Lee MH, Yip AYS, Toi M, Glück S. Concurrent celecoxib with 5-fluorouracil/epirubicin/cyclophosphamide followed by docetaxel for stages II - III invasive breast cancer: the OOTR-N001 study. Expert Opin Investig Drugs 2013; 22:299-307. [PMID: 23394482 DOI: 10.1517/13543784.2013.766715] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
OBJECTIVES This prospective study aimed at investigating the efficacy and safety of the concurrent use of celecoxib (CXB) with 5-fluorouracil, epirubicin and cyclophosphamide (FEC), followed by docetaxel (T) in the neoadjuvant setting. PATIENTS AND METHODS A total of 64 invasive breast cancer patients were recruited in the N001 Phase II, multicenter, open-label, single-arm study to receive four cycles of FEC (500, 100, 500 mg/m(2)) followed by four cycles of T (100 mg/m(2)) with concurrent CXB (200 mg b.i.d.) as neoadjuvant therapy (NAT). The combined chemotherapies were administered on day 1 of each cycle every 3 weeks. Primary endpoints were pathologic complete response (pCR) rate and objective response rate (ORR). Quasi-pCR (QpCR), pCR and near pCR (npCR) were discussed considering their similar survival outcomes. ORR included clinical complete response (cCR) and clinical partial response (cPR). Secondary endpoints included safety, breast conservation rate and disease-free survival. RESULTS Between February 2006 and January 2010, 57 of 64 evaluable patients with luminal A (n = 35, 61.4%), luminal B (n = 12, 21.1%), HER-2 positive (n = 8, 14%) and triple-negative (n = 2, 3.5%) breast cancer completed NAT and surgery. QpCR rate was observed in 18 (31.6%) patients. Exclusive of triple-negative subtype, pCR (p = 0.761) did not differ compared to other subtypes, while npCR (p = 0.043) exhibited a difference. Patients with HER-2 overexpression had a significantly higher QpCR than those of the disease attribute (10/20 vs 8/37, p = 0.029). After NAT, 43 (75.4%) and 13 (22.8%) patients achieved cCR and cPR, respectively. Patients responding to FEC were more likely to achieve a better ORR after subsequent T (p = 0.004). Over 80% of all patients received breast-conserving therapy (BCT) after receiving NAT, and 11 of 14 (78.6%) patients with T3 tumor at diagnosis became eligible for BCT after NAT. A total of 60 patients completed ≥ 6 cycles of NAT, followed by surgery; at a median follow-up of 50 months, 80% of the patients are disease-free. Neither drug-induced life-threatening toxicity nor cardiotoxicity was observed. CONCLUSIONS Neoadjuvant use of FEC-T with concurrent CXB is active and safe for treatment of operable invasive breast cancer. The ORR was higher, but QpCR was comparable to other studies. Most patients are still disease-free, and BCT became an option for the females. Further clinical and translational studies on the use of cyclooxygenase-2 inhibitors with neoadjuvant chemotherapy are warranted.
Collapse
Affiliation(s)
- Louis W C Chow
- Organisation for Oncology and Translational Research, Unit A, 9/F, CNT Commercial Building, 302 Queen's Road Central, Hong Kong, China.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Abrahão AC, Giudice FS, Sperandio FF, Pinto Junior DDS. Effects of celecoxib treatment over the AKT pathway in head and neck squamous cell carcinoma. J Oral Pathol Med 2013; 42:793-8. [DOI: 10.1111/jop.12081] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2013] [Indexed: 12/14/2022]
Affiliation(s)
- Aline Corrêa Abrahão
- Department of Oral Pathology; School of Dentistry; University of São Paulo; São Paulo Brazil
- Department of Pathology and Oral Diagnosis; School of Dentistry; Federal University of Rio de Janeiro; Rio de Janeiro Brazil
| | | | | | | |
Collapse
|
38
|
Acceptable cardiac safety profile of neoadjuvant 5-fluorouracil, epirubicin, cyclophosphamide and celecoxib (FEC-C) for breast cancer: a subanalysis of biomarkers for cardiac injury. Int J Biol Markers 2013; 28:E92-9. [PMID: 23592005 DOI: 10.5301/jbm.5000012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2013] [Indexed: 11/20/2022]
Abstract
PURPOSES This substudy aimed to examine the changes in biomarkers for cardiac injury in patients who received neoadjuvant 5-fluorouracil, epirubicin, cyclophosphamide with concurrent celecoxib (FEC-C). METHODS Thirty-four female patients with histologically confirmed locally advanced breast cancer preoperatively received 3 cycles of FEC-C (500 mg/m<sup>2</sup>, 75 mg/m<sup>2</sup>, 500 mg/m<sup>2</sup>) with concurrent celecoxib (400 mg bid). Blood samples were drawn from patients on day (D) 0, D3, D21, D42, and D63 (end of therapy), and the serum levels of lactate dehydrogenase (LDH) and plasma levels of cardiac troponin I (cTnI) and N-terminal prohormone brain-type natriuretic peptide (NT-proBNP) were measured with commercially available test kits. RESULTS All patients tolerated this regimen well. Neither life-threatening toxicity nor clinical symptoms of cardiac damage were observed. Serum LDH increased significantly from baseline after 3 cycles of FEC-C (p<0.0001), but the change was possibly brought about by chemotherapy-induced liver derangement. However, NT-proBNP decreased significantly (p=0.009), while cTnI increased nonsignificantly (p=0.078) after 3 cycles of FEC-C compared to baseline, although this increase was still regarded as normal. CONCLUSIONS Short-term use of the FEC-C regimen has proven to be effective in locally advanced breast cancer, with an acceptable cardiac safety profile.
Collapse
|
39
|
Abstract
Though aromatase inhibitors (AIs) are an essential part of estrogen receptor-positive (ER+) breast cancer therapy, many patients discontinue the medicine before their adjuvant therapy is completed because of the arthralgia which often accompanies the medicine. Up to half of women on AI therapy experience joint pain, and up to 20% will become non-compliant with the medicine because of the joint pain. Yet, very little is known about what causes AI-induced arthralgia (AIA), and there is no established, effective treatment for this difficult problem. It compromises survivors' quality of life and leads to non-compliance. This paper will discuss AIA in depth, including potential etiologies, clinical significance, risk factors, and possible management solutions. Of note, this article presents one of the first proposed algorithms which clearly lays out a treatment plan for AIA, incorporating a variety of interventions which have been proven by the available literature.
Collapse
Affiliation(s)
- P Niravath
- Medicine Department, Lester & Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
40
|
Olivares CN, Bilotas MA, Ricci AG, Barañao RI, Meresman GF. Anastrozole and celecoxib for endometriosis treatment, good to keep them apart? Reproduction 2013; 145:119-26. [DOI: 10.1530/rep-12-0386] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Endometriosis is a benign gynecological disease. Cyclooxygenase-2 (COX-2) and aromatase proteins have been shown to be overexpressed in eutopic endometrium from women suffering from this disease compared to disease-free women. Furthermore, inhibition of these molecules individually was demonstrated to have antiproliferative and proapoptotic effects both in vitro and in vivo in several models. In this study, the effect of combining celecoxib, a selective COX-2 inhibitor, and anastrozole, an aromatase inhibitor, on the implantation and growth of endometriotic like lesions in a murine model of endometriosis was evaluated. Endometriosis was surgically induced in female BALB/c mice. After 28 days of treatment with celecoxib, anastrozole, or their combination, animals were killed and lesions were counted, measured, excised, and fixed. Immunohistochemistry for proliferating cell nuclear antigen and CD34 was performed for assessment of cell proliferation and vascularization. TUNEL technique was performed for apoptosis evaluation. Celecoxib was the only treatment to significantly reduce the number of lesions established per mouse, their size and vascularized area. In addition, cell proliferation was significantly diminished and apoptosis was significantly enhanced by both individual treatments. When the therapies were combined, they reversed their effects. These results confirm that celecoxib and anastrozole separately decrease endometriotic growth, but when combined they might have antagonizing effects.
Collapse
|
41
|
Increase of cyclooxygenase-2 inhibition with celecoxib combined with 5-FU enhances tumor cell apoptosis and antitumor efficacy in a subcutaneous implantation tumor model of human colon cancer. World J Surg Oncol 2013; 11:16. [PMID: 23347845 PMCID: PMC3599060 DOI: 10.1186/1477-7819-11-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 01/06/2013] [Indexed: 12/02/2022] Open
Abstract
Background The purpose of this study was to investigate the anti-tumor effect and explore the mechanisms of celecoxib (a selective cyclooxygenase-2 inhibitor) combined with 5-fluorouracil (5-FU) on the treatment of human colorectal cancer in a BALB/C nude mouse subcutaneous xenograft model. Methods Effects of celecoxib combined with 5-FU on the proliferation of xenograft carcinoma induced by HT-29 were investigated. The apoptotic cells were detected by electron microscope and TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) assay. Immunohistochemistry and Western blot were used to estimate the expression of cytochrome C, caspase-3 and caspase-9. Results Compared with the control group, treatment groups showed significant inhibition of tumor growth. More apoptotic cells existed after treatment with celecoxib combined with 5-FU. Cytochrome C, caspase-3 and caspase-9 were increased in treated groups, and more obviously in the drug combination group. Cyclooxygenase-2 (COX-2) were decreased after treatment with celecoxib only or combined with 5-FU. And the combined group showed a greater decrease. Conclusions Celecoxib combined with 5-FU could inhibit the growth of tumors in vivo by inducing apoptosis and activation of the cytochrome C dependency apoptosis signal pathway. A decrease of COX-2 and an increase of cytochrome C, caspase-3 and caspase-9 may be involved in this process.
Collapse
|
42
|
Effect of systemic celecoxib on human meningioma after intracranial transplantation into nude mice. Acta Neurochir (Wien) 2013; 155:173-82. [PMID: 23143216 DOI: 10.1007/s00701-012-1534-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Accepted: 10/16/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Meningiomas are mostly benign, but they may have a notorious tendency to recur when total resection is not possible. Systemic chemotherapeutical treatment has been largely disappointing. The treatment of meningiomas with the cyclooxygenase-2 (COX-2) inhibitor celecoxib showed inhibitory-growth effects in vitro and in vivo after subcutaneous transplantation into mouse. So far, celecoxib has never been tested in an orthotopic model of meningioma. In this work, we tested the effects of celecoxib on the growth of human benign meningiomas after transplantation into the prefrontal cortex of nude mice after confirming the inhibitory in vitro effect on these cells. METHODS Primary cell cultures were stereotactically implanted into mice and were treated with 0, 750, or 1,500 ppm celecoxib for 3 months. The mice were then killed and blood was analyzed for celecoxib concentration. The mice brains were histologically processed for measurement of tumor volume, COX-2 expression, proliferation index (PI), intratumoral microvessel density (iMVD), and vascular endothelial growth factor (VEGF) expression. RESULTS Treatment with celecoxib had no effect on tumor volume, despite the fact that we found a dose-dependent inhibitory effect on cell cultures and there was a sufficiently high celecoxib concentration in blood plasma and brain tissue. Additionally, celecoxib had neither an effect on COX-2 and VEGF expression nor on the PI and iMVD. CONCLUSIONS Our findings suggest that celecoxib may not be effective on meningioma growth in clinical settings. In general, these results may indicate that the effect of treatment on brain tumors should not only be tested in a heterotopic environment but also in the orthotopic location of these tumors.
Collapse
|
43
|
Cohen A, Crozet MD, Rathelot P, Azas N, Vanelle P. Synthesis and promising in vitro antiproliferative activity of sulfones of a 5-nitrothiazole series. Molecules 2012; 18:97-113. [PMID: 23344190 PMCID: PMC6270398 DOI: 10.3390/molecules18010097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 11/14/2012] [Accepted: 12/12/2012] [Indexed: 11/29/2022] Open
Abstract
The synthesis in water of new sulfone derivatives under microwave irradiation is described. This eco-friendly process leads to the expected products in good yields by reaction of various substituted sulfinates (commercially available or obtained by reduction of the corresponding sulfonyl chlorides) with 4-chloromethyl-2-methyl-5-nitro-1,3-thiazole. In order to evaluate the antiproliferative effect of these compounds, several sulfone derivatives are also dichlorinated on the Cα next to the sulfonyl group. An evaluation on different cancer cell lines reveals promising selective in vitro antiproliferative activity toward HepG2 human cell lines by dihydrogenated sulfones, suggesting further research should be to explore their anticancer potential in the treatment of liver cancer.
Collapse
Affiliation(s)
- Anita Cohen
- Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Institut de Chimie Radicalaire ICR UMR 7273, Aix-Marseille Univ, CNRS, 27 Boulevard Jean Moulin - CS30064 - 13385 Marseille cedex 05, France
- Infections Parasitaires, Transmission, Pharmacologie et Thérapeutique IP-TPT UMR MD3, Faculté de Pharmacie, Aix-Marseille Univ, 27 Boulevard Jean Moulin - CS30064 - 13385 Marseille cedex 05, France
| | - Maxime D. Crozet
- Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Institut de Chimie Radicalaire ICR UMR 7273, Aix-Marseille Univ, CNRS, 27 Boulevard Jean Moulin - CS30064 - 13385 Marseille cedex 05, France
| | - Pascal Rathelot
- Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Institut de Chimie Radicalaire ICR UMR 7273, Aix-Marseille Univ, CNRS, 27 Boulevard Jean Moulin - CS30064 - 13385 Marseille cedex 05, France
| | - Nadine Azas
- Infections Parasitaires, Transmission, Pharmacologie et Thérapeutique IP-TPT UMR MD3, Faculté de Pharmacie, Aix-Marseille Univ, 27 Boulevard Jean Moulin - CS30064 - 13385 Marseille cedex 05, France
- Authors to whom correspondence should be addressed; (P.V., for chemistry); (N.A., for biology); Tel.: +33-4-9183-5573 (P.V.); Fax: +33-4-8613-6822 (P.V.); Tel.: +33-4-9183-5564 (N.A.); Fax: +33-4-9183-5537 (N.A.)
| | - Patrice Vanelle
- Laboratoire de Pharmaco-Chimie Radicalaire, Faculté de Pharmacie, Institut de Chimie Radicalaire ICR UMR 7273, Aix-Marseille Univ, CNRS, 27 Boulevard Jean Moulin - CS30064 - 13385 Marseille cedex 05, France
- Authors to whom correspondence should be addressed; (P.V., for chemistry); (N.A., for biology); Tel.: +33-4-9183-5573 (P.V.); Fax: +33-4-8613-6822 (P.V.); Tel.: +33-4-9183-5564 (N.A.); Fax: +33-4-9183-5537 (N.A.)
| |
Collapse
|
44
|
Duncan K, Uwimpuhwe H, Czibere A, Sarkar D, Libermann TA, Fisher PB, Zerbini LF. NSAIDs induce apoptosis in nonproliferating ovarian cancer cells and inhibit tumor growth in vivo. IUBMB Life 2012; 64:636-43. [DOI: 10.1002/iub.1035] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 03/02/2012] [Indexed: 12/28/2022]
|
45
|
Expression of cyclooxygenase-2 (COX-2) and p53 in neighboring invasive and in situ components of breast tumors. Acta Histochem 2012; 114:226-31. [PMID: 21683430 DOI: 10.1016/j.acthis.2011.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/05/2011] [Accepted: 05/08/2011] [Indexed: 11/23/2022]
Abstract
The aim of the study was to assess the relationship between the expression of COX-2 and p53, hormone receptors and HER-2 in the in situ (DCIS) and invasive components of ductal carcinomas (IDC) of the same breast. The expression of COX-2, p53, and hormone receptors was assessed in 87 cases of IDC with contiguous areas of DCIS. Results showed that there was no difference in COX-2 expression comparing the in situ and invasive components of the tumors. In the in situ component, there was a statistically borderline increase in p53 expression in tumors that also expressed COX-2. ER-positive specimens were more common in the group of tumors that expressed COX-2 in the invasive component. From this study we conclude that the expression of COX-2 was similar in the in situ and invasive components of the breast carcinomas. COX-2 positivity was marginally related with the expression of p53 in the in situ components, and with the ER expression in the invasive components.
Collapse
|
46
|
Inada T, Kubo K, Shingu K. Possible link between cyclooxygenase-inhibiting and antitumor properties of propofol. J Anesth 2011; 25:569-75. [DOI: 10.1007/s00540-011-1163-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2011] [Accepted: 04/22/2011] [Indexed: 12/24/2022]
|