1
|
Dong L, Li M, Cao T, Zhao Y, Wang S, Zou P, Zhang Y, Qu H, Zhao Y, Kong H. Protective Effect of Carbon Dots Derived from Salvia miltiorrhiza Pretreatment in Acute Myocardial Infarction in Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:242. [PMID: 39940217 PMCID: PMC11821062 DOI: 10.3390/nano15030242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/05/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025]
Abstract
Acute myocardial infarction is an ischemic injury of the myocardium caused by an imbalance in the blood supply to myocardial tissues, which poses a serious threat to human life and health. Oxidative stress has been recognized as a significant contributor to acute myocardial infarction. Salvia miltiorrhiza Carbonisata (SMC) is among the most frequently employed herbal remedies for the treatment of acute myocardial infarction; however, the exact identity of its principal active constituents is not well defined. Research indicates that carbon dots (CDs) exhibit significant biological properties. Consequently, we initially synthesized carbon dots (CDs) from Salvia miltiorrhiza Carbonisata, with the objective of exploring how SMC-CDs mitigate isoproterenol (ISO)-induced myocardial infarction (MI) in rats. The results showed that the pretreatment with SMC-CDs markedly enhanced compromised cardiac function, mitigated myocardial fibrosis and the infiltration of inflammatory cells, decreased the size of the infarct, and suppressed cardiomyocyte apoptosis. Furthermore, the antioxidant properties of myocardial tissue were enhanced, and oxidative stress caused by free radicals was effectively mitigated by SMC-CDs, which succeeded in reducing levels of myocardial enzymes and elevating the activity of relevant ATPases. This implies that SMC-CDs could be a potential candidate for novel nanomedicine strategies designed to address cardiovascular ailments.
Collapse
Affiliation(s)
- Liyang Dong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (L.D.); (M.L.); (Y.Z.); (S.W.); (P.Z.); (H.Q.); (Y.Z.)
| | - Menghan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (L.D.); (M.L.); (Y.Z.); (S.W.); (P.Z.); (H.Q.); (Y.Z.)
| | - Tianyou Cao
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China;
| | - Yafang Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (L.D.); (M.L.); (Y.Z.); (S.W.); (P.Z.); (H.Q.); (Y.Z.)
| | - Shuxian Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (L.D.); (M.L.); (Y.Z.); (S.W.); (P.Z.); (H.Q.); (Y.Z.)
| | - Peng Zou
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (L.D.); (M.L.); (Y.Z.); (S.W.); (P.Z.); (H.Q.); (Y.Z.)
| | - Yue Zhang
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China;
| | - Huihua Qu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (L.D.); (M.L.); (Y.Z.); (S.W.); (P.Z.); (H.Q.); (Y.Z.)
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (L.D.); (M.L.); (Y.Z.); (S.W.); (P.Z.); (H.Q.); (Y.Z.)
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (L.D.); (M.L.); (Y.Z.); (S.W.); (P.Z.); (H.Q.); (Y.Z.)
| |
Collapse
|
2
|
Ying H, Zhang Z, Wang W, Yang Z, You C, Li Y, Cai X, Li X. Inhibition of Calcium-Sensing Receptor Alleviates Chronic Intermittent Hypoxia-Induced Cognitive Dysfunction via CaSR-PKC-ERK1/2 Pathway. Mol Neurobiol 2023; 60:2099-2115. [PMID: 36600080 DOI: 10.1007/s12035-022-03189-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023]
Abstract
Obstructive sleep apnea-hypopnea syndrome (OSAHS) is typically characterized by chronic intermittent hypoxia (CIH), associated with cognitive dysfunction in children. Calcium-sensing receptor (CaSR) mediates the apoptosis of hippocampal neurons in various diseases. However, the effect of CaSR on OSAHS remains elusive. In the present study, we investigated the role of CaSR in CIH-induced memory dysfunction and underlying mechanisms on regulation of PKC-ERK1/2 signaling pathway in vivo and in vitro. CIH exposures for 4 weeks in mice, modeling OSAHS, contributed to cognitive dysfunction. CIH accelerated apoptosis of hippocampal neurons and resulted in the synaptic plasticity deficit via downregulated synaptophysin (Syn) protein level. The mice were intraperitoneally injected with CaSR inhibitor (NPS2143) 30 min before CIH exposure and the results demonstrated CaSR inhibitor alleviated the apoptosis and synaptic plasticity deficit in the hippocampus of CIH mice. We established intermittent hypoxia PC12 cell model and found that the activation of CaSR accelerated CIH-induced PC12 apoptosis and synaptic plasticity deficit by upregulated p-ERK1/2 and PKC. Overall, our findings revealed that CaSR held a critical function on CIH-induced cognitive dysfunction in mice by accelerating hippocampal neuronal apoptosis and reducing synaptic plasticity via augmenting CaSR-PKC-ERK1/2 pathway; otherwise, inhibition of CaSR alleviated CIH-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Huiya Ying
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China
- Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Zilong Zhang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China
- Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Wei Wang
- Department of Pediatric Orthopedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zijing Yang
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China
- Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Cancan You
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China
- Clinical Medicine, The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Yuanai Li
- Department of Pediatric Sleep, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohong Cai
- Department of Pediatric Sleep, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiucui Li
- Department of Pediatric Neurology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Western Road, Wenzhou, China.
| |
Collapse
|
3
|
Alrefaie Z, Awad H, Alsolami K, Hamed EA. Uncoupling proteins: are they involved in vitamin D3 protective effect against high-fat diet-induced cardiac apoptosis in rats? Arch Physiol Biochem 2022; 128:438-446. [PMID: 31794287 DOI: 10.1080/13813455.2019.1690526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
This study aimed to assess the impact of high-fat diet (HFD) and vitamin D3 supplementation on cardiac apoptosis, inflammation, oxidative stress, and cardiac uncoupling proteins (UCPs) 2&3 expression. Forty rats were fed either (45%) or (10%) fat diet with or without vitamin D3 (500 U/kg/day) for 6 months, then cardiac tissue expression of Bax, Bcl2, Fas, Fas-L (markers for apoptotic pathways), TNF-α, MDA7, GPX1 (inflammatory and oxidative markers) and UCP 2&3 were assessed. Results revealed the enhancement of intrinsic and extrinsic cardiomyocyte apoptosis cascades and increased inflammatory and oxidative burdens on the heart in HFD rats. Downregulation of UCP2 and upregulation of UCP3 gene expression at 6 months. After vitamin D3 supplementation with HFD, cardiac apoptotic, inflammatory and oxidative markers were mitigated and expression of UCP3 was downregulated and UCP2 was upregulated. This work highlights the novel cardioprotective effect of vitamin D3 in the experimental model of HFD feeding through the downregulation of UCP3.
Collapse
Affiliation(s)
- Zienab Alrefaie
- Physiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Physiology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hossam Awad
- Physiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khadeejah Alsolami
- Physiology Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Enas A Hamed
- Physiology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
4
|
Du L, Chen J, Wu Y, Xia G, Chen M, Zhao P, Wang Y, Yao D, Liu F, Zhang L, Wang X, Yang Y, Wang L. Long Non-coding RNA N1LR Protects Against Myocardial Ischemic/Reperfusion Injury Through Regulating the TGF-β Signaling Pathway. Front Cardiovasc Med 2021; 8:654969. [PMID: 34485393 PMCID: PMC8414635 DOI: 10.3389/fcvm.2021.654969] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 07/12/2021] [Indexed: 11/13/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play critical roles in various cell biological processes. However, the mechanism of lncRNAs in acute myocardial infarction (AMI) is not fully understood. Previous studies showed that lncRNA N1LR was down-regulated in ischemic cerebral stroke and its up-regulation was protective. The current study was designed to assess the protective effect of N1LR and further to explore potential mechanisms of N1LR in ischemic/reperfusion (I/R) injury after AMI. Male C57BL/6J mice and H9c2 cardiomyocytes were selected to construct in vivo and in vitro pathological models. In H9c2 cell line, N1LR expression was markedly decreased after H2O2 and CoCl2 treatments and N1LR overexpression alleviated apoptosis, inflammation reaction, and LDH release in cardiomyocytes treated with H2O2 and CoCl2. Mouse in vivo study showed that overexpression of N1LR enhanced cardiac function and suppressed inflammatory response and fibrosis. Mechanistically, we found that the expression of transforming growth factor (TGF)-β1 and smads were significantly decreased in the N1LR overexpression group exposed to H2O2. In a summary, our study indicated that N1LR can act as a protective factor against cardiac ischemic-reperfusion injury through regulating the TGF-β/Smads signaling pathway.
Collapse
Affiliation(s)
- Lin Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China.,Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jie Chen
- Department of Gastroenterology, Northern Jiangsu Province People's Hospital, Yangzhou University, Yangzhou, China
| | - Yong Wu
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Guangwei Xia
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Mingxing Chen
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Pei Zhao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yao Wang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Deshan Yao
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Fan Liu
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Lina Zhang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xue Wang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yi Yang
- Department of Cardiology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Liansheng Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing, China
| |
Collapse
|
5
|
Yuan H, Yang G, Li S, Li L, Wei T, Song G, Luan H, Meng J, Wang Q, Yu Y, Sun J. Calcium sensing receptor involving in therapy of embryonic stem cell transplantation alleviates acute myocardial infarction by inhibiting apoptosis and oxidative stress in rats. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1353-1359. [PMID: 33149870 PMCID: PMC7585542 DOI: 10.22038/ijbms.2020.47436.10916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Objective(s): The aims of the present study were to investigate the expression of calcium sensing receptor (CaSR) at different times in acute myocardial infarction (AMI) rat myocardial tissue after mouse embryonic stem cells (mESCs) transplantation treatment and to assess its effects on apoptosis and oxidative stress of cardiomyocytes. Materials and Methods: The AMI rats were treated with mESCs, Calindol (a CaSR agonist) and Calhex231 (a CaSR inhibitor). Serum measurements, Echocardiographic analysis and TUNEL assay were performed. Myocardial ultrastructure changes were viewed by electron microscopy. Additionally, western blotting was used to detect the protein expressions. Results: Compared to the sham group, it was found that the expression levels of CaSR, caspase-3, cytoplasmic cytochrome C (cyt-C) and Bcl2-associated x (Bax), and the levels of Malondialdehyde (MDA) were significantly increased in both AMI and AMI + mESCs + Calindol groups with the development of myocardial infarction. Furthermore, the ultra-microstructure of cardiomyocyte was highly damaged, the expression levels of mitochondrial cyt-C and B-cell lymphoma 2 (Bcl-2) were significantly decreased, and there was decreased activity of superoxide dismutase (SOD). However, the combination of Calhex231 and mESCs transplantation could inhibit these changes. Conclusion: Our results suggested that CaSR expression in myocardial tissue of AMI rats was increased over time, and that Calhex231 could enhance the efficacy of ESCs transplantation for the treatment of AMI, which would be a new therapeutic strategy for the treatment of AMI.
Collapse
Affiliation(s)
- Hui Yuan
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Guohong Yang
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Shu Li
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Li Li
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Tao Wei
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Gaochen Song
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Hairong Luan
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Jin Meng
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Qi Wang
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yaquan Yu
- Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Jian Sun
- Mudanjiang Medical University, Mudanjiang, 157011, China
| |
Collapse
|
6
|
Zhao F, Bai R, Li J, Feng X, Jiao S, Wuken S, Ge F, Zhang Q, Zhou X, Tu P, Chai X. Meconopsis horridula Hook. f. & Thomson extract and its alkaloid oleracein E exert cardioprotective effects against acute myocardial ischaemic injury in mice. JOURNAL OF ETHNOPHARMACOLOGY 2020; 258:112893. [PMID: 32387233 DOI: 10.1016/j.jep.2020.112893] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 03/19/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
Meconopsis horridula Hook. f. & Thomson (MH) is a traditional Tibetan medicine used to promote blood circulation, remove bruises, remove stasis and relieve chest pain which benefit to cardiovascular diseases. Oleracein E (OE), a major tetrahydroisoquinoline alkaloid, can be isolated from MH ethanol extract. The antioxidant and anti-apoptotic effects of OE have been reported by previous pharmacological research. The objective of this article was to investigate the cardioprotective effects of MH extract and OE in an ICR mouse of acute myocardial ischaemic injury. A left anterior descending (LAD) artery ligation mouse model of AMI was established. In vivo, cardiac function after MH and OE treatment was determined through measurement of EF, FS, LVEDd, and LVEDs by echocardiography. The levels of SOD, MDA, CK-MB and LDH in serum were also detected. A TUNEL assay was used to verify apoptosis. Changes in collagen deposition and inflammatory cell infiltration in ischemic myocardial tissue were observed by histopathological examination. In vitro, H9c2 cells were pre-treated with OE for 6 h, and then cultured in serum-free medium with H2O2 for 2 h. CCK8 assay measured cell viability, and flow cytometry determined apoptosis levels and ROS content. The mechanism was explored by western blotting. These results showed that MH and OE significantly affected acute myocardial ischaemia by improving cardiac function and that OE downregulated the expression of related proteins in the MAPK signalling pathway. These findings provide substantial evidence of MH may applicate in clinic, and indicate that such medicines have potential value for the treatment of ischaemia-induced heart disease.
Collapse
Affiliation(s)
- Feng Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Ruifeng Bai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Junjun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiao Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shungang Jiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Shana Wuken
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fuxing Ge
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xiaochun Zhou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Pengfei Tu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xingyun Chai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
7
|
Shen C, Cao K, Cui S, Cui Y, Mo H, Wen W, Dong Z, Lin H, Bai S, Yang L, Zhang R, Shi Y. SiNiSan ameliorates depression-like behavior in rats by enhancing synaptic plasticity via the CaSR-PKC-ERK signaling pathway. Biomed Pharmacother 2020; 124:109787. [DOI: 10.1016/j.biopha.2019.109787] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 12/18/2022] Open
|
8
|
Qin H, Zhang LL, Xiong XL, Jiang ZX, Xiao CP, Zhang LL, Wang YJ, Wu YT, Qiu YY, Zhou LS, Yan SQ. Li-Dan-He-Ji Improves Infantile Cholestasis Hepatopathy Through Inhibiting Calcium-Sensing Receptor-Mediated Hepatocyte Apoptosis. Front Pharmacol 2020; 11:156. [PMID: 32180721 PMCID: PMC7059769 DOI: 10.3389/fphar.2020.00156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Infantile cholestatic hepatopathy (ICH) is a clinical syndrome characterized by the accumulation of cytotoxic bile acids in infancy, leading to serious liver cirrhosis or liver failure. The aetiology of ICH is complicated and some of them is unknown. Regardless of the aetiology, the finial pathology of ICH is hepatocyte apoptosis caused by severe and persistent cholestasis. It is already known that activation of calcium-sensing receptor (CaSR) could lead to the apoptosis of cardiomyocytes. However, the mechanism by CaSR-mediated cholestasis-related hepatocyte apoptosis is not fully understood. Li-Dan-He-Ji (LDHJ), a Traditional Chinese Medicine prescription, was developed to treat ICH. Another aim of this study was to investigate the possible mechanisms of LDHJ in cholestasis-related hepatocyte apoptosis. Using the primary hepatocytes, we first investigated the molecular mechanism of CaSR-mediated hepatocyte apoptosis in cholestasis. Then we prepared LDHJ granules and used ultra-high-performance liquid chromatography to identify the predominant drugs; confirmed the stability of the main substances; and for cell experiments screened forsythoside-A, emodin and chlorogenic acid as the three active substances of LDHJ granules. In the young rats with ANIT-induced intrahepatic cholestasis and the primary hepatocytes with TCDC-induced cholestasis-related hepatocyte apoptosis, the levels of liver injury and cholestasis-related biomarkers, calcium-sensing receptor (CaSR), hepatocyte apoptosis, Bax/Bcl-2 ratio, Cytochrome-C, caspase-3, phosphorylated-c-Jun NH2-terminal kinase (p-JNK)/JNK, and p-P38/P38 were all increased, while the levels of p-extracellular signal-regulated kinase (p-ERK)/ERK were decreased. However, LDHJ granules and its three active substances effectively reversed these changes. Furthermore, the three active substances reduced the increases in the intracellular calcium concentration ([Ca2+]i) and ROS levels and attenuated the dissipation of the mitochondria membrane potential in the TCDC-induced primary hepatocytes. The opposite results were obtained from the TCDC-induced primary hepatocytes treated with an agonist of CaSR (GdCl3) plus forsythoside-A, emodin or chlorogenic acid. Based on the results from in vivo and in vitro studies, LDHJ functions as an antagonist of CaSR to regulate hepatocyte apoptosis in cholestasis through the mitochondrial pathway and mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Huan Qin
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ling-Ling Zhang
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China.,Department of Pediatrics, Wuhan NO.1 Hospital, Wuhan, China
| | - Xiao-Li Xiong
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Xia Jiang
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cui-Ping Xiao
- Department of Social Services, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lin-Li Zhang
- First Clinical College of Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Yu-Ji Wang
- Department of Statistics and Medical Records, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun-Tao Wu
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Yan Qiu
- Clinical College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, China
| | - Li-Shan Zhou
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Su-Qi Yan
- Department of Integrated Chinese and Western Medicine, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Chen Y, Gao Y, Tao Y, Lin D, An S. Identification of a Calcium-sensing Receptor in Human Dental Pulp Cells That Regulates Mineral Trioxide Aggregate–induced Mineralization. J Endod 2019; 45:907-916. [DOI: 10.1016/j.joen.2019.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 02/28/2019] [Accepted: 03/28/2019] [Indexed: 12/23/2022]
|
10
|
van der Vorst EPC, Peters LJF, Müller M, Gencer S, Yan Y, Weber C, Döring Y. G-Protein Coupled Receptor Targeting on Myeloid Cells in Atherosclerosis. Front Pharmacol 2019; 10:531. [PMID: 31191301 PMCID: PMC6540917 DOI: 10.3389/fphar.2019.00531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis, the underlying cause of the majority of cardiovascular diseases (CVDs), is a lipid-driven, inflammatory disease of the large arteries. Gold standard therapy with statins and the more recently developed proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have improved health conditions among CVD patients by lowering low density lipoprotein (LDL) cholesterol. Nevertheless, a substantial part of these patients is still suffering and it seems that 'just' lipid lowering is insufficient. The results of the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) have now proven that inflammation is a key driver of atherosclerosis and that targeting inflammation improves CVD outcomes. Therefore, the identification of novel drug targets and development of novel therapeutics that block atherosclerosis-specific inflammatory pathways have to be promoted. The inflammatory processes in atherosclerosis are facilitated by a network of immune cells and their subsequent responses. Cell networking is orchestrated by various (inflammatory) mediators which interact, bind and induce signaling. Over the last years, G-protein coupled receptors (GPCRs) emerged as important players in recognizing these mediators, because of their diverse functions in steady state but also and specifically during chronic inflammatory processes - such as atherosclerosis. In this review, we will therefore highlight a selection of these receptors or receptor sub-families mainly expressed on myeloid cells and their role in atherosclerosis. More specifically, we will focus on chemokine receptors, both classical and atypical, formyl-peptide receptors, the chemerin receptor 23 and the calcium-sensing receptor. When information is available, we will also describe the consequences of their targeting which may hold promising options for future treatment of CVD.
Collapse
Affiliation(s)
- Emiel P. C. van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research/Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
- Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| | - Linsey J. F. Peters
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Madeleine Müller
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Selin Gencer
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yi Yan
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| |
Collapse
|
11
|
Yin B, Hou XW, Lu ML. Astragaloside IV attenuates myocardial ischemia/reperfusion injury in rats via inhibition of calcium-sensing receptor-mediated apoptotic signaling pathways. Acta Pharmacol Sin 2019; 40:599-607. [PMID: 30030530 DOI: 10.1038/s41401-018-0082-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/20/2018] [Indexed: 02/07/2023]
Abstract
Astragaloside IV (AsIV) is an active saponin extracted from Astragalus membranaceus, which has shown cardioprotective effects in a number of experimental animals. In this study we investigated the molecular mechanisms by which AsIV attenuated the myocardial ischemia reperfusion (MI/R)-induced injury in vitro and in vivo by focusing on calcium-sensing receptor (CaSR) and extracellular signal-regulated kinase 1/2 (ERK1/2). Rat neonatal cardiac myocytes were subjected to a hypoxia/reoxygenation (H/R) procedure in vitro, which significantly decreased the cell viability, increased lactate dehydrogenase (LDH) release, induced cardiomyocyte apoptosis, and increased [Ca2+]i. H/R also increased the expression of CaSR and decreased ERK1/2 phosphorylation levels in H/R-exposed myocytes. Pretreatment with AsIV (60 μmol/L) significantly improved the cell viability and decreased LDH release, attenuated myocyte apoptosis, decreased [Ca2+]i and CaSR expression, and increased the ERK1/2 phosphorylation levels. The protective effects of AsIV against H/R injury were partially inhibited by co-treatment with a CaSR agonist, gadolinium chloride (GdCl3) or with a specific ERK1/2 inhibitor U0126. For in vivo studies, a rat MI/R model was established. Pre-administration of AsIV (80 mg/kg every day, ig) significantly decreased the myocardium infarct size, creatine kinase-MB (CK-MB) production, serum cardiac troponin (cTnI) levels, and cardiomyocyte apoptosis in the rats with MI/R injury. The therapeutic effects of AsIV were associated with the downregulation of CaSR expression and upregulation of ERK1/2 phosphorylation in myocardial tissues. In summary, astragaloside IV attenuates myocardial I/R injury via inhibition of CaSR/ERK1/2 and the related apoptotic signaling pathways.
Collapse
|
12
|
Eid RA, Alkhateeb MA, Al-Shraim M, Eleawa SM, Shatoor AS, El-Kott AF, Zaki MSA, Shatoor KA, Bin-Jaliah I, Al-Hashem FH. Ghrelin prevents cardiac cell apoptosis during cardiac remodelling post experimentally induced myocardial infarction in rats via activation of Raf-MEK1/2-ERK1/2 signalling. Arch Physiol Biochem 2019; 125:93-103. [PMID: 29447000 DOI: 10.1080/13813455.2018.1437751] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
CONTEXT Mechanisms by which ghrelin affords its cardioprotection in mammals remained unclear. OBJECTIVE To examine if ghrelin confers cardio-protection during cardiac remodelling post-MI by modulating the RAF-1-MEK1/2-ERK1/2 signalling pathway. MATERIALS AND METHODS Rats were divided into control, sham, sham + ghrelin, myocardial infarction (MI), and MI + ghrelin groups. Ghrelin (100 µg/kg) was administered for 21 days, starting one-day post-MI. RESULTS Ghrelin enhanced cardiac contractility and the activities of antioxidant enzymes, lowered serum levels of enzyme markers of cardiac dysfunction, and lowered inflammatory mediator levels. Ghrelin increased levels of phospho-Raf-1 (Ser338), phospho-MEK1/2 (Ser217/221), phospho-ERK1/2 (Thr202/Tyr204), and of their downstream target p-BAD (Ser112) and inhibited the cleavage of caspase-3. Concomitantly, ghrelin prevented the increases in the levels of fibrotic markers, including α-smooth muscle actin (α-SMA), metalloproteinase-9 (MPP-9), and type III collagen. CONCLUSION Post-MI in rats, ghrelin stimulated Raf-1-MEK1/2-ERK1/2-BAD signalling in the LV infarct areas, accounting for its anti-apoptotic effect, enhancing cardiac function, and inhibiting cardiac fibrosis during cardiac remodelling.
Collapse
Affiliation(s)
- Refaat A Eid
- a Department of Pathology, College of Medicine , King Khalid University , Abha , Saudi Arabia
| | - Mahmoud A Alkhateeb
- b Department of Basic Medical Sciences, College of Medicine , King Saud bin Abdulaziz University for Health Sciences , Riyadh , Saudi Arabia
| | - Mubarak Al-Shraim
- a Department of Pathology, College of Medicine , King Khalid University , Abha , Saudi Arabia
| | - Samy M Eleawa
- c Department of Applied Medical Sciences, College of Health Sciences , PAAET , Kuwait
| | - Abdullah S Shatoor
- d Cardiology section, Department of Medicine, College of Medicine , King Khalid University , Abha , Saudi Arabia
| | - Attalla Farag El-Kott
- e Department of Biology, College of Science , King Khalid University , Abha , Saudi Arabia
| | | | - Khalid A Shatoor
- g College of Medicine , King Khalid University , Abha , Saudi Arabia
| | - Ismaeel Bin-Jaliah
- h Department of Physiology, College of Medicine , King Khalid University , Abha , Saudi Arabia
| | - Fahaid H Al-Hashem
- h Department of Physiology, College of Medicine , King Khalid University , Abha , Saudi Arabia
| |
Collapse
|
13
|
Shukla SK, Rafiq K. Proteasome biology and therapeutics in cardiac diseases. Transl Res 2019; 205:64-76. [PMID: 30342797 PMCID: PMC6372329 DOI: 10.1016/j.trsl.2018.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/30/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023]
Abstract
The ubiquitin proteasome system (UPS) is the major pathway for intracellular protein degradation in most organs, including the heart. UPS controls many fundamental biological processes such as cell cycle, cell division, immune responses, antigen presentation, apoptosis, and cell signaling. The UPS not only degrades substrates but also regulates activity of gene transcription at the post-transcription level. Emerging evidence suggests that impairment of UPS function is sufficient to cause a number of cardiac diseases, including heart failure, cardiomyopathies, hypertrophy, atrophy, ischemia-reperfusion, and atherosclerosis. Alterations in the expression of UPS components, changes in proteasomal peptidase activities and increased ubiquitinated and oxidized proteins have also been detected in diabetic cardiomyopathy (DCM). However, the pathophysiological role of the UPS in DCM has not been examined. Recently, in vitro and in vivo studies have proven highly valuable in assessing effects of various stressors on the UPS and, in some cases, suggesting a causal link between defective protein clearance and disease phenotypes in different cardiac diseases, including DCM. Translation of these findings to human disease can be greatly strengthened by corroboration of discoveries from experimental model systems using human heart tissue from well-defined patient populations. This review will summarize the general role of the UPS in different cardiac diseases, with major focus on DCM, and on recent advances in therapeutic development.
Collapse
Affiliation(s)
- Sanket Kumar Shukla
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Khadija Rafiq
- Department of Medicine, Center for Translational Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
14
|
Lu M, Leng B, He X, Zhang Z, Wang H, Tang F. Calcium Sensing Receptor-Related Pathway Contributes to Cardiac Injury and the Mechanism of Astragaloside IV on Cardioprotection. Front Pharmacol 2018; 9:1163. [PMID: 30364197 PMCID: PMC6193074 DOI: 10.3389/fphar.2018.01163] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/24/2018] [Indexed: 11/29/2022] Open
Abstract
Activation of calcium sensing receptor (CaSR) contributes to cardiac injury, but the underlying mechanism has not yet been examined. Astragaloside IV (AsIV) was previously reported to exhibit protective effects against various myocardial injuries. The aim of the present study was to investigate the underlying mechanism of CaSR in cardiac hypertrophy and apoptosis and to evaluate whether the protective effect of AsIV against myocardial injury is associated with CaSR and its related signaling pathway. In vivo and in vitro myocardial injury was induced by isoproterenol (Iso) or GdCl3 (a CaSR agonist) in rats and heart H9C2 cells. Cardiac cell hypertrophy, apoptosis, function, Mitochondrial Membrane Potential (MMP), mitochondrial ultrastructure, and [Ca2+]i, as well as the protein expression of CaSR, calcium/calmodulin-dependent protein kinase II (CaMKII), calcineurin (CaN), sarcoplasmic reticulum Ca2+-ATPase2a (SERCA2a), and the inositol 1,4,5-trisphosphate receptor (IP3R), were measured in vivo and/or in vitro. The results showed that AsIV attenuated cardiac hypertrophy and apoptosis and attenuated impairments in cardiac function, mitochondrial structure, and MMP induced by Iso or GdCl3 in rat myocardial tissue and H9C2 cells. Importantly, AsIV treatment inhibited the enhancement of [Ca2+]i and CaSR expression induced by Iso or GdCl3, an effect similar to that of the CaSR antagonist NPS2143. In addition, AsIV treatment repressed CaSR, CaMKII, and CaN activation and inhibited NFAT-3 nuclear translocation. Mechanistic analysis using lentivirus infection showed that CaSR overexpression activated the CaMKII and CaN signaling pathways and that this response was enhanced by Iso. The results suggested that CaSR-mediated changes in [Ca2+]i and CaMKII and CaN signaling pathways contribute to cardiac hypertrophy and apoptosis and are involved in the protective effect of astragaloside IV against cardiac injury.
Collapse
Affiliation(s)
- Meili Lu
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Bin Leng
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Xin He
- Internal Medicine-Cardiovascular Department, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zhen Zhang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Hongxin Wang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| | - Futian Tang
- Key Laboratory of Cardiovascular and Cerebrovascular Drug Research of Liaoning Province, Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
15
|
Xu CQ, Wang Y, Bai S, He Y, Wei C. THE ROLE OF CALCIUM SENSING RECEPTOR IN DIABETIC CARDIOMYOPATHY AND ITS UNDERLAYING MECHANISM. PATHOPHYSIOLOGY 2018. [DOI: 10.1016/j.pathophys.2018.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
16
|
Guo Y, Yang X, He J, Liu J, Yang S, Dong H. Important roles of the Ca 2+-sensing receptor in vascular health and disease. Life Sci 2018; 209:217-227. [PMID: 30098342 DOI: 10.1016/j.lfs.2018.08.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/30/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023]
Abstract
Ca2+-sensing receptor (CaSR), a member of G protein-coupled receptor family, is widely expressed in the vascular system, including perivascular neurons, vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs). When stimulated, CaSR can further increase the cytosolic Ca2+ concentration ([Ca2+]cyt) in two ways: intracellular Ca2+ release from endo/sarcoplasmic reticulum (ER/SR) and extracellular Ca2+ entry through Ca2+-permeable cation channels. In endothelium, increased Ca2+ subsequently activate nitric oxide synthase (NOS) and intermediate conductance Ca2+-activated K+ channels (IKCa), resulting in vasodilation through NOS-mediated NO release or membrane hyperpolarization. In VSMCs, CaSR-induced intracellular Ca2+ increase causes blood vessel constriction. CaSR activation predominantly induces vasorelaxation of whole vascular tissues through VECs-dependent mechanisms; however, CaSR-induced Ca2+ signaling in VSMCs may play a braking role in CaSR-mediated vasorelaxation. Emerging evidence reveals the importance of CaSR in the regulation of vascular tone and blood pressure. Here, we summarized recent advances in CaSR-mediated vascular reaction and the underlying mechanisms in different species, including humans. In addition, several studies have demonstrated that CaSR dysfunction may be associated with some fatal vascular diseases, such as pulmonary arterial hypertension, primary hypertension, diabetes, acute myocardial infarction and vascular calcification. With the advance of studies on CaSR in vascular health and disease, it is expected positive modulators or negative modulators of CaSR used for the treatment of specific diseases may be promising therapeutic options for the prevention and/or treatment of vascular diseases.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Xin Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jialin He
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Jingjing Liu
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Hui Dong
- Department of Gastroenterology, Xinqiao Hospital, Army Medical University, Chongqing, China.
| |
Collapse
|
17
|
Calcium sensing receptor protects high glucose-induced energy metabolism disorder via blocking gp78-ubiquitin proteasome pathway. Cell Death Dis 2017; 8:e2799. [PMID: 28518143 PMCID: PMC5520714 DOI: 10.1038/cddis.2017.193] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
Abstract
Diabetic cardiomyopathy (DCM) is a major complication and fatal cause of the patients with diabetes. The calcium sensing receptor (CaSR) is a G protein-coupled receptor, which is involved in maintaining calcium homeostasis, regulating cell proliferation and apoptosis, and so on. In our previous study, we found that CaSR expression, intracellular calcium levels and cardiac function were all significantly decreased in DCM rats; however, the exact mechanism are not clear yet. The present study revealed the protective role of CaSR in myocardial energy metabolism disorder induced by high glucose (HG) as well as the underlying mechanism. Here, we demonstrated that HG decreased the expression of CaSR, mitochondrial fusion proteins (Mfn1, Mfn2), cell gap junction related proteins (Cx43, β-catenin, N-cadherin), and intracellular ATP concentration. In contrast, HG increased extracellular ATP concentration, the expression of gp78, mitochondrial fission proteins (Fis1, Drp1), and the ubiquitination levels of Mfn1, Mfn2 and Cx43. Moreover, CaSR agonist and gp78-siRNA significantly reduced the above changes. Taken together, these results suggest that HG induces myocardial energy metabolism disorder via decrease of CaSR expression, and activation of gp78-ubiquitin proteasome system. In turn, these effects disrupt the structure and function of the mitochondria and the cell gap junction, result in the reduced ATP synthesis and the increased ATP leakage. Stimulation of CaSR significantly attenuates HG-induced abnormal myocardial energy metabolism, suggesting CaSR would be a promising potential therapeutic target for DCM.
Collapse
|
18
|
Hong S, Zhang X, Zhang X, Liu W, Fu Y, Liu Y, Shi Z, Chi J, Zhao M, Yin X. Role of the calcium sensing receptor in cardiomyocyte apoptosis via mitochondrial dynamics in compensatory hypertrophied myocardium of spontaneously hypertensive rat. Biochem Biophys Res Commun 2017; 487:728-733. [PMID: 28450119 DOI: 10.1016/j.bbrc.2017.04.126] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 04/23/2017] [Indexed: 01/01/2023]
Abstract
Calcium sensing receptor (CaSR) mediates pathological cardiac hypertrophy. Mitochondria maintain their function through fission and fusion and disruption of mitochondrial dynamic is linked to various cardiac diseases. This study examined how inhibition of CaSR by the inhibitor Calhex231 affected the mitochondrial dynamics in a hypertensive model in rats. Spontaneously hypertensive rats (SHRs) and Wistar Kyoto (WKY) rats were used in this study. Cardiac function and blood pressure was evaluated at the end of the study. SHRs showed increases in the ratio of heart weight to body weight and the levels of CaSR; all of these increases were suppressed by Calhex231. Additionally, Calhex231 treatment of SHRs changed the expression of proteins involved in mitochondrial dynamics. Our results demonstrated that CaSR activation induced cardiomyocyte apoptosis through the mitochondrial dynamics mediated apoptotic pathway in hypertensive hearts.
Collapse
Affiliation(s)
- Siting Hong
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xin Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xiaohui Zhang
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wenxiu Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yu Fu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yue Liu
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Zhiyu Shi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jinyu Chi
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Meng Zhao
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Xinhua Yin
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
19
|
Calcium-sensing receptor-mediated mitogen-activated protein kinase pathway improves the status of transplanted mouse embryonic stem cells in rats with acute myocardial infarction. Mol Cell Biochem 2017; 431:151-160. [PMID: 28281186 DOI: 10.1007/s11010-017-2987-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 02/24/2017] [Indexed: 10/20/2022]
Abstract
Several studies have identified the critical role of calcium-sensing receptors (CaSRs) in cardiac ischaemia/reperfusion injury and cardiac hypertrophy and have demonstrated that CaSRs induce myocardial apoptosis by activating MAPKs. Using acute myocardial infarction rat models, we found that a combination therapy of CaSR inhibition and embryonic stem cell (ESC) transplantation after acute myocardial infarction (AMI) leads to a dramatic reduction in the infarct size; a significant increase in the maximum rising and falling rate (+dp/dtmax and -dp/dtmax, respectively) of left ventricular pressure; a significant decrease in left ventricular end-diastolic pressure; a significant decrease in the mRNA expression level of CaSR, Bax, Bcl-2, cleaved caspase-3, cleaved caspase-9, p-ERK, p-JNK and p-P38 protein together with apoptosis indexes in the C and E groups; and a significant decrease in cTnT levels as well as LDH and CK activity. These findings indicate that cardiac function could be enhanced significantly by combination therapy with CaSR inhibition and ESC transplantation; the effect was better than ESC transplantation alone, and the mechanism might be associated with a reduction in cell apoptosis via the inhibition of the MAPK pathway. Apoptosis could be reduced through CaSR, which regulates the MAPK pathway and apoptosis-related protein. Our study indicated that CaSR inhibitors have a pivotal role in the treatment of AMI.
Collapse
|
20
|
Fu WJ, Lei T, Yin Z, Pan JH, Chai YS, Xu XY, Yan YX, Wang ZH, Ke J, Wu G, Xu RH, Paranjpe M, Qu L, Nie H. Anti-atherosclerosis and cardio-protective effects of the Angong Niuhuang Pill on a high fat and vitamin D3 induced rodent model of atherosclerosis. JOURNAL OF ETHNOPHARMACOLOGY 2017; 195:118-126. [PMID: 27880884 DOI: 10.1016/j.jep.2016.11.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 10/11/2016] [Accepted: 11/04/2016] [Indexed: 06/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The Angong Niuhuang Pill (ANP) is a well known Chinese traditional therapeutic for the treatment for diseases affecting the Central Nervous System (CNS). Components of the ANP formulation, including Bovis Calculus Sativus, Pulvis Bubali Comus Concentratus, Moschus, Margarita, Cinnabaris, Realgar, Coptidis Rhizoma, Scutellariae Radix, Gardeniae Fructus, Curcumae Radix, and Bomeolum Syntheticum, have been used for the treatment of stroke, encephalitis and emergency meningitis across Asia, especially in China for hundreds of years. OBJECTIVE The goal of this study was to investigate the anti-atherosclerosis and cardio-protective effects of ANP administration using a rodent model of atherosclerosis induced by a high fat and vitamin D3. METHODS Specific Pathogen-Free (SPF) 78 male SD rats were randomly divided into a control group and 5 atherosclerotic model groups. The atherosclerotic groups were divided to receive either Simvastatin (SVTT, 0.005g/kg), Low-dose ANP (0.125g/kg), Medium-dose ANP (0.25g/kg), and High-dose ANP (0.5g/kg). Following adaptive feeding for one week, atherosclerosis was induced and the atherosclerosis model was established. Experimental drugs (either simvastatin or ANP) or normal saline were administered intragastrically once daily for 9 weeks starting from the 8th week. A carotid artery ultrasound was performed at the 17th week to determine whether atherosclerosis had been induced. After the atherosclerosis model was successfully established, platelet aggregation rates, serum biochemical indices, apoptosis-related Bcl-2, Bax proteins levels in the heart were assayed. Pathological and histological analysis was completed using artery tissue from different experimental different groups to assess the effects of ANP. RESULTS ANP significantly decreased aortic membrane thickness, the maximum platelet aggregation rates, and the ratio of low density lipoprotein cholesterol (LDL) to high density lipoprotein cholesterol (HDL). In addition, ANP significantly reduced serum contents of total cholesterol, low density lipoprotein, malondialdehyde, troponin I, high-sensitivity C-reactive protein, and lactate dehydrogenase. ANP markedly improved abnormal pathological conditions of the aorta and heart, and helped to prevent myocardial apoptosis. CONCLUSIONS We have demonstrated that ANP has robust ant-atherosclerosis and cardio-protective effects on a high-fat and vitamin D3 - induced rodent model of atherosclerosis due to its antiplatelet aggregation, lipid regulatory, antioxidant, anti-inflammatory and anti-apoptotic properties.
Collapse
Affiliation(s)
- Wen-Juan Fu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ting Lei
- Guangzhou Baiyunshan Zhongyi pharmaceutical co., ltd, Guangzhou 510530, Guangdong, China
| | - Zhen Yin
- Guangzhou Baiyunshan Zhongyi pharmaceutical co., ltd, Guangzhou 510530, Guangdong, China
| | - Jian-Hao Pan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yu-Shuang Chai
- Guangzhou Baiyunshan Zhongyi pharmaceutical co., ltd, Guangzhou 510530, Guangdong, China
| | - Xiao-Yun Xu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Yi-Xi Yan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zhi-Hua Wang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jian Ke
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China
| | - Gang Wu
- Guangzhou Baiyunshan Zhongyi pharmaceutical co., ltd, Guangzhou 510530, Guangdong, China
| | - Ren-He Xu
- Health Sciences, University of Macau, Taipa, 999000 Macau, China
| | - Manish Paranjpe
- Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Lintao Qu
- Department of Neurosurgery, Neurosurgery pain research institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Hong Nie
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong, China.
| |
Collapse
|
21
|
Zhong Z, Hu JQ, Wu XD, Sun Y, Jiang J. Anti-apoptotic effects of myocardin-related transcription factor-A on rat cardiomyocytes following hypoxia-induced injury. Can J Physiol Pharmacol 2016; 94:379-87. [PMID: 26854861 DOI: 10.1139/cjpp-2014-0461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Myocardin-related transcription factor-A (MRTF-A) can transduce both biomechanical and humoral signals, which can positively modulate cardiac damage induced by acute myocardial infarction. However, the molecular mechanism that underlies the contribution that MRTF-A provides to the myocardium is not completely understood. The objective of this study was to investigate the effects of MRTF-A on myocardium apoptosis and its mechanisms. Our experiment results showed that MRTF-A expression increased and Bcl-2 expression reduced during myocardial ischemia–reperfusion in rat. Meanwhile, primary cardiomyocytes were pretreated with wild-type MRTF-A or siRNA of MRTF-A before exposure to hypoxia. We found that overexpression of MRTF-A in myocardial cells inhibited apoptosis and the release of cytochrome c. MRTF-A enhanced Bcl-2, which contributes to MRTF-A interaction with Bcl-2 in the nuclei of cardiomyocytes. MRTF-A upregulation expression of Bcl-2 in cardiomyocytes induced by hypoxia was inhibited by PD98059, an ERK1/2 inhibitor. In conclusions, MRTF-A improved myocardial cell survival in a cardiomyocyte model of hypoxia-induced injury; this effect was correlated with the upregulation of anti-apoptotic gene Bcl-2 through the activation of ERK1/2.
Collapse
Affiliation(s)
- Ze Zhong
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, JianDe 311600, China
| | - Jia-qing Hu
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, JianDe 311600, China
| | - Xin-dong Wu
- The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, JianDe 311600, China
| | - Yong Sun
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Jun Jiang
- Department of Cardiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
22
|
Duan J, Yang Y, Liu H, Dou PC, Tan SY. Osthole ameliorates acute myocardial infarction in rats by decreasing the expression of inflammatory-related cytokines, diminishing MMP-2 expression and activating p-ERK. Int J Mol Med 2015; 37:207-16. [PMID: 26549213 DOI: 10.3892/ijmm.2015.2402] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 10/23/2015] [Indexed: 11/06/2022] Open
Abstract
Osthole, the active constituent of Cnidium monnieri extracts, has been shown to have a diverse range of pharmacological properties. In the present study, we aimed to evaluate the cardioprotective effects of osthole in a rat model of acute myocardial infarction (AMI). The rats with AMI were treated with 1, 3 and 10 mg/kg of osthole or the vehicle for 4 weeks. The infarct size of the rats with AMI was measured, and casein kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT) activities in the rats with AMI were analyzed using commercially available kits. The nuclear factor-κB (NF-κB), tumor necrosis factor‑α (TNF-α), interleukin (IL)-1β and IL-6 levels in whole blood from rats with AMI were also detected using commercially available kits. The levels of Toll-like receptors 2/4 (TLR2/4) and nucleotide-binding oligomerization domain-containing protein 1/2 (NOD1/2) were also detected by RT-qPCR. Moreover, the protein expression levels of endothelial nitric oxide synthase (eNOS) and mitogen-activated protein kinase (MAPK) cascades, including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK) and p38, cyclooxygenase-2 (COX-2), as well as matrix metalloproteinase-2 (MMP-2) were all assayed by western blot analysis. Our results revealed that osthole markedly reduced the infarct size, and the levels of CK, CK-MB, LDH and cTnT in the rats with AMI, and that these cardioprotective effects may be associated with the inhibition of inflammatory reactions, the reduction in MMP-2 activity and the activation of MAPK cascades.
Collapse
Affiliation(s)
- Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Yu Yang
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Hong Liu
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Peng-Cheng Dou
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Sheng-Yu Tan
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
23
|
Zhong Z, Hu JQ, Wu XD, Sun Y, Jiang J. Myocardin-related transcription factor-A-overexpressing bone marrow stem cells protect cardiomyocytes and alleviate cardiac damage in a rat model of acute myocardial infarction. Int J Mol Med 2015; 36:753-9. [PMID: 26135208 DOI: 10.3892/ijmm.2015.2261] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 05/15/2015] [Indexed: 11/05/2022] Open
Abstract
Myocardin-related transcription factor-A (MRTF-A) can transduce biomechanical and humoral signals, which can positively modulate cardiac damage induced by acute myocardial infarction (AMI). In the clinic, bone marrow stem cell (BMSC) therapy is being increasingly utilized for AMI; however, the effects of BMSC transplantation remain to be optimized. Therefore, a novel strategy to enhance BMSC‑directed myocardial repair is particularly important. The present study was performed to assess the efficacy of MRTF‑A-overexpressing BMSCs in a rat model of AMI. Primary cardiomyocytes were prepared from neonatal Sprague-Dawley rats and BMSCs were isolated from male Sprague-Dawley rats (aged 8-12 weeks). Annexin V-phycoerythrin/7-actinomycin D staining was used to evaluate BMSC and cardiomyocyte survival after exposure to hydrogen peroxide in vitro. B-cell lymphoma 2 (Bcl-2) protein expression was measured by flow cytometric and western blot analyses. The effects of MRTF-A‑overexpressing BMSCs in a rat model of AMI were investigated by hematoxylin and eosin staining and western blot analysis of Bcl-2 expression in myocardial tissue sections. MRTF-A enhanced the migration of BMSCs, and overexpression of MRTF-A in BMSCs prevented hydrogen peroxide-induced apoptosis in primary cardiomyocytes ex vivo. In addition, co-culture of cardiomyocytes with MRTF‑A-overexpressing BMSCs inhibited hydrogen peroxide-induced apoptosis and the enhanced expression of Bcl-2. Furthermore, in vivo, enhanced cell survival was observed in the MRTF-A-modified BMSC group compared with that in the control group. These observations indicated that MRTF-A-overexpressing BMSCs have the potential to exert cardioprotective effects against hydrogen peroxide-induced injury and that treatment with MRTF‑A‑modified BMSCs is able to reverse cardiac dysfunction after AMI.
Collapse
Affiliation(s)
- Ze Zhong
- The Second Affiliated Hospital (Jiande Branch), Department of Cardiology, Zhejiang University School of Medicine, Jiande, Zhejiang 311600, P.R. China
| | - Jia-Qing Hu
- The Second Affiliated Hospital (Jiande Branch), Department of Cardiology, Zhejiang University School of Medicine, Jiande, Zhejiang 311600, P.R. China
| | - Xin-Dong Wu
- The Second Affiliated Hospital (Jiande Branch), Department of Cardiology, Zhejiang University School of Medicine, Jiande, Zhejiang 311600, P.R. China
| | - Yong Sun
- The Second Affiliated Hospital (Jiande Branch), Department of Cardiology, Zhejiang University School of Medicine, Jiande, Zhejiang 311600, P.R. China
| | - Jun Jiang
- The Second Affiliated Hospital (Jiande Branch), Department of Cardiology, Zhejiang University School of Medicine, Jiande, Zhejiang 311600, P.R. China
| |
Collapse
|
24
|
Chen C, Du P, Wang J. Paeoniflorin ameliorates acute myocardial infarction of rats by inhibiting inflammation and inducible nitric oxide synthase signaling pathways. Mol Med Rep 2015; 12:3937-3943. [PMID: 26035555 DOI: 10.3892/mmr.2015.3870] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 04/28/2015] [Indexed: 11/06/2022] Open
Abstract
Paeoniflorin (PF) is the main active component of the commonly used Traditional Chinese Medicine peony, Paeonia Suffruticosa. PF has diverse biological functions and exhibits anti‑oxidative, anti‑inflammatory and anti‑apoptotic activity. Inducible nitric oxide synthase (iNOS) is a catalyzing enzyme that is involved in the synthesis of nitric oxide (NO). NO has an important regulatory role in the cardiovascular, immune and nervous systems. PF has previously been demonstrated to inhibit the gene expression of iNOS. The present study aimed to identify a potentially novel cytoprotective function of PF, and to elucidate its effects against myocardial ischemic damage in a rat model of acute myocardial infarction (AMI). PF was able to significantly decrease the myocardial infarct size as well as the activities of creatine kinase (CK), the MB isoenzyme of CK, lactate dehydrogenase and cardiac troponin T. In addition, in the PF‑treated groups, the expression levels of tumor necrosis factor‑α, interleukin (IL)‑1β, IL‑6 and nuclear factor‑κB were markedly inhibited. Furthermore, treatment with PF inhibited the activities and protein expression levels of iNOS. Decreased caspase‑3 and caspase‑9 activities were also observed in the AMI rat model treated with various doses of PF. The results of the present study indicated that the cardioprotective effects of PF may be associated with the inhibition of inflammation and iNOS signaling pathways.
Collapse
Affiliation(s)
- Chang Chen
- Department of Emergency, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Ping Du
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| | - Junjie Wang
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China
| |
Collapse
|
25
|
Zhao M, He X, Yang YH, Yu XJ, Bi XY, Yang Y, Xu M, Lu XZ, Sun Q, Zang WJ. Acetylcholine protects mesenteric arteries against hypoxia/reoxygenation injury via inhibiting calcium-sensing receptor. J Pharmacol Sci 2015; 127:481-8. [PMID: 25922231 DOI: 10.1016/j.jphs.2015.03.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 03/23/2015] [Accepted: 03/29/2015] [Indexed: 12/25/2022] Open
Abstract
The Ca(2+)-sensing receptor (CaSR) plays an important role in regulating vascular tone. In the present study, we investigated the positive effects of the vagal neurotransmitter acetylcholine by suppressing CaSR activation in mesenteric arteries exposed to hypoxia/reoxygenation (H/R). The artery rings were exposed to a modified 'ischemia mimetic' solution and an anaerobic environment to simulate an H/R model. Our results showed that acetylcholine (10(-6) mol/L) significantly reduced the contractions induced by KCl and phenylephrine and enhanced the endothelium-dependent relaxation induced by acetylcholine. Additionally, acetylcholine reduced CaSR mRNA expression and activity when the rings were subjected to 4 h of hypoxia and 12 h of reoxygenation. Notably, the CaSR antagonist NPS2143 significantly reduced the contractions but did not improve the endothelium-dependent relaxation. When a contractile response was achieved with extracellular Ca(2+), both acetylcholine and NPS2143 reversed the H/R-induced abnormal vascular vasoconstriction, and acetylcholine reversed the calcimimetic R568-induced abnormal vascular vasoconstriction in the artery rings. In conclusion, this study suggests that acetylcholine ameliorates the dysfunctional vasoconstriction of the arteries after H/R, most likely by decreasing CaSR expression and activity, thereby inhibiting the increase in intracellular calcium concentration. Our findings may be indicative of a novel mechanism underlying ACh-induced vascular protection.
Collapse
Affiliation(s)
- Ming Zhao
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xi He
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Yong-Hua Yang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China; Department of Pediatrics, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xiao-Jiang Yu
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xue-Yuan Bi
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Yang Yang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Man Xu
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Xing-Zhu Lu
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China
| | - Qiang Sun
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China.
| | - Wei-Jin Zang
- Department of Pharmacology, Xi'an Jiaotong University Health Science Center, Xi'an 710061, PR China.
| |
Collapse
|
26
|
MENG CONG, LIU CHUAN, LIU YUANWEI, WU FAN. Oxysophoridine attenuates the injury caused by acute myocardial infarction in rats through anti-oxidative, anti-inflammatory and anti-apoptotic pathways. Mol Med Rep 2014; 11:527-32. [DOI: 10.3892/mmr.2014.2748] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 06/20/2014] [Indexed: 11/06/2022] Open
|
27
|
Li H, Wei C, Gao J, Bai S, Li H, Zhao Y, Li H, Han L, Tian Y, Yang G, Wang R, Wu L, Xu C. Mediation of dopamine D2 receptors activation in post-conditioning-attenuated cardiomyocyte apoptosis. Exp Cell Res 2014; 323:118-130. [DOI: 10.1016/j.yexcr.2013.12.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 12/18/2013] [Accepted: 12/31/2013] [Indexed: 02/08/2023]
|
28
|
TAN SHENGYU, ZHOU SHENGHUA, LUO YINGQUAN. Baicalein pretreatment confers cardioprotection against acute myocardial infarction by activating the endothelial nitric oxide synthase signaling pathway and inhibiting oxidative stress. Mol Med Rep 2014; 9:2429-34. [DOI: 10.3892/mmr.2014.2091] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 03/03/2014] [Indexed: 11/06/2022] Open
|
29
|
Sui X, Gao C. Huperzine A ameliorates damage induced by acute myocardial infarction in rats through antioxidant, anti-apoptotic and anti-inflammatory mechanisms. Int J Mol Med 2014; 33:227-233. [PMID: 24190328 DOI: 10.3892/ijmm.2013.1546] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/21/2013] [Indexed: 11/06/2022] Open
Abstract
Huperzine A (HupA), an alkaloid used in traditional Chinese medicine and isolated from Huperzia serrata, has been shown to possess diverse biological activities. The present study was undertaken to evaluate the cardioprotective potential of HupA in myocardial ischemic damage using a rat model of acute myocardial infarction. HupA significantly diminished the infarct size and inhibited the activities of myocardial enzymes, including creatine kinase (CK), the MB isoenzyme of creatine kinase (CK-MB), lactate dehydrogenase (LDH) and cardiac troponin T (cTnT). A significantly reduced activity of malondialdehyde (MDA) and elevated activities of superoxide dismutase (SOD), of the non-enzymatic scavenger enzyme, glutathione (GSH), as well as of glutathione peroxidase (GSH-PX) were found in the HupA-treated groups. Furthermore, decreased protein levels of caspase-3 and Bax, and increased levels of Bcl-2 were observed in the infarcted hearts of the rats treated with various concentrations of HupA. In addition, treatment with HupA markedly inhibited the expression of the nuclear factor-κB (NF-κB) subunit p65, tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). These findings suggest that the cardioprotective potential of HupA is associated with its antioxidant, anti-apoptotic and anti-inflammatory properties in acute myocardial infarction in rats.
Collapse
Affiliation(s)
- Xizhong Sui
- Department of Cardiac Surgery, The PLA General Hospital, Medical School of Chinese PLA, Beijing 100098, P.R. China
| | | |
Collapse
|
30
|
Preventive Effect of Total Flavones of Choerospondias axillaries on Ischemia/Reperfusion-Induced Myocardial Infarction-Related MAPK Signaling Pathway. Cardiovasc Toxicol 2013; 14:145-52. [DOI: 10.1007/s12012-013-9238-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
31
|
CD59 underlines the antiatherosclerotic effects of C-phycocyanin on mice. BIOMED RESEARCH INTERNATIONAL 2013; 2013:729413. [PMID: 24319687 PMCID: PMC3844276 DOI: 10.1155/2013/729413] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Revised: 09/23/2013] [Accepted: 09/27/2013] [Indexed: 11/29/2022]
Abstract
The effects of C-phycocyanin (C-PC) on atherosclerosis and the regulatory effects of CD59 gene on anti-atherosclerotic roles of C-PC were investigated. Apolipoprotein E knockout (ApoE(−/−)) mice were randomly divided into four groups: control group, C-PC treatment group, CD59 transfection group and C-PC+CD59 synergy group. The mice were fed with high-fat-diet and treated with drug intervention at the same time. Results showed the atherosclerotic mouse model was successfully established. CD59 was over-expressed in blood and tissue cells. Single CD59 or C-PC could reduce blood lipid levels and promote the expression of anti-apoptotic Bcl-2 but inhibit pro-apoptotic Fas proteins in endothelial cells. The expression levels of cell cycle protein D1 (Cyclin D1) and mRNA levels of cyclin dependent protein kinase 4 (CDK4) in smooth muscle cells were restrained by CD59 and C-PC. CD59 or C-PC alone could inhibit the formation of atherosclerotic plaque by suppressing MMP-2 protein expression. In addition, C-PC could promote CD59 expression. So both CD59 and C-PC could inhibit the progress of atherosclerosis, and the anti-atherosclerotic effects of C-PC might be fulfilled by promoting CD59 expression, preventing smooth muscle cell proliferation and the apoptosis of endothelial cells, reducing blood fat levels, and at last inhibiting the development of atherosclerosis.
Collapse
|
32
|
Gao J, Guo J, Li H, Bai S, Li H, Wu B, Wang L, Xi Y, Tian Y, Yang G, Wang R, Wu L, Xu C, Li H. Involvement of dopamine D2 receptors activation in ischemic post-conditioning-induced cardioprotection through promoting PKC-ε particulate translocation in isolated rat hearts. Mol Cell Biochem 2013; 379:267-76. [DOI: 10.1007/s11010-013-1648-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 04/11/2013] [Indexed: 11/30/2022]
|
33
|
LPS induces cardiomyocyte injury through calcium-sensing receptor. Mol Cell Biochem 2013; 379:153-9. [PMID: 23564188 PMCID: PMC3666124 DOI: 10.1007/s11010-013-1637-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/28/2013] [Indexed: 12/18/2022]
Abstract
Calcium-sensing receptor (CaSR) belongs to the family C of G-protein coupled receptors. We have previously demonstrated that CaSR could induce apoptosis of cultured neonatal rat ventricular cardiomyocytes in simulated ischemia/reperfusion. It remains unknown whether the CaSR has function in lipopolysaccharide (LPS)-induced myocardial injure. The aim of this study was to investigate whether the CaSR plays a role in LPS-induced myocardial injury. Cultured neonatal rat cardiomyocytes were treated with LPS, with or without pretreatment with the CaSR-specific agonist gadolinium chloride (GdCl3) or the CaSR-specific antagonist NPS2390. Release of TNF-α and IL-6 from cardiomyocytes was observed. Levels of malonaldehyde (MDA), lactate dehydrogenase (LDH), and activity of superoxide dismutase (SOD) were measured. In addition, apoptosis of the cardiomyocytes, [Ca(2+)]i and level of CaSR expression were determined. The results showed that LPS increased cardiomyocytes apoptosis, [Ca(2+)]i, MDA, LDH, TNF-α, IL-6 release, and CaSR protein expression. Compared with LPS treatment alone, pretreatment with GdCl3 further increased apoptosis of cardiomyocytes, MDA, LDH, TNF-α, IL-6 release, [Ca(2+)]i, and the expression of the CaSR protein. Conversely, pretreatment with NPS2390 decreased apoptosis of cardiomyocytes, MDA, LDH, TNF-α, IL-6 release, [Ca(2+)]i and the expression of the CaSR protein. These results demonstrate that LPS could induce cardiomyocyte injury. Moreover, LPS-induced cardiomyocyte injury was related to CaSR-mediated cardiomyocytes apoptosis, TNF-α, IL-6 release, and increase of intracellular calcium.
Collapse
|