1
|
Cheng S, Hu G, Zhang S, Lv R, Sun L, Zhang Z, Jin Z, Wu Y, Huang C, Ye L, Chen ZS, Feng Y, Yang A, Wang Z, Xue H. Machine Learning-Based Radiomics in Malignancy Prediction of Pancreatic Cystic Lesions: Evidence from Cyst Fluid Multi-Omics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2409488. [PMID: 40289610 DOI: 10.1002/advs.202409488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 03/27/2025] [Indexed: 04/30/2025]
Abstract
The malignant potential of pancreatic cystic lesions (PCLs) varies dramatically, leading to difficulties when making clinical decisions. This study aimed to develop noninvasive clinical-radiomic models using preoperative CT images to predict the malignant potential of PCLs. It also investigates the biological mechanisms underlying these models. Patients from two retrospective and one prospective cohort, all undergoing surgical resection for PCLs, are divided into four datasets: training, internal test, external test, and prospective application sets. Eleven machine learning classifiers are employed to construct radiomic models based on selected features. Cyst fluid from the prospective cohort is collected for proteomic and lipidomic analysis. The radiomic models demonstrated high accuracy, with area under the receiver operating characteristic curves (AUCs) > 0.93 across the training (n = 262), internal test (n = 50), and external test (n = 50) sets. AUCs ranged from 0.92 to 0.96 for the prospective cohort (n = 34). Meanwhile, differentially-expressed proteins and lipid molecules, along with their associated signaling pathways, are identified between high and low groups of clinical-radiomic scores. This models can effectively and accurately predict the malignant potential of PCLs, with multi-omics evidence suggesting the biological mechanisms involving secretion function and lipid metabolism underlying clinical-radiomic models.
Collapse
Affiliation(s)
- Sihang Cheng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Ge Hu
- Theranostics and Translational Research Center, National Infrastructures for Translational Medicine, Institute of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Shenbo Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Rui Lv
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Limeng Sun
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhe Zhang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yanyan Wu
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Chen Huang
- Department of Interventional Radiology, The Affiliated Panyu Central Hospital of Guangzhou Medical University, Guangzhou, 511400, China
| | - Lu Ye
- Interventional Center, Chengdu First People's Hospital, Chengdu, 610041, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yunlu Feng
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Aiming Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zhiwei Wang
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Huadan Xue
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, 100730, China
| |
Collapse
|
2
|
Graifer D, Malygin A, Shefer A, Tamkovich S. Ribosomal Proteins as Exosomal Cargo: Random Passengers or Crucial Players in Carcinogenesis? Adv Biol (Weinh) 2025; 9:e2400360. [PMID: 39895482 DOI: 10.1002/adbi.202400360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/28/2024] [Indexed: 02/04/2025]
Abstract
Many ribosomal proteins (RPs) have functions beyond their canonical role as constituents of the ribosome. They often relate to human pathologies, primarily, to carcinogenesis, and the expression of specific RPs is considerably changed in malignant cells. On the other hand, extracellular vesicles (including exosomes), which provide intercellular communication by transporting specific molecular cargo from donor to recipient cells, often contain specific sets of RPs. Thus, one can assume that oncogenic properties of RPs can be transferred from one cell to another by exosomes. Such kind transfer has been already documented with RPS3 and gastric cancer cells. However, it remains largely unclear how widespread is the above effect and to which extent it contributes to the tumor progression and metastasis. To shed light on this issue, a comparative analysis of the sets of RPs found in exosomes and of the available data on oncogenic properties of these proteins is conducted.
Collapse
Affiliation(s)
- Dmitri Graifer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| | - Alexey Malygin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| | - Aleksei Shefer
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| | - Svetlana Tamkovich
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of the Russian Academy of Sciences, pr. Lavrentieva, 8, Novosibirsk, 630090, Russia
| |
Collapse
|
3
|
Chaudhary S, Siddiqui JA, Pothuraju R, Bhatia R. Ribosome biogenesis, altered metabolism and ribotoxic stress response in pancreatic ductal adenocarcinoma tumor microenvironment. Cancer Lett 2025; 612:217484. [PMID: 39842499 DOI: 10.1016/j.canlet.2025.217484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/17/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy with a poor overall survival rate. Cellular stress response pathways promoting cancer cell fitness in harsh tumor microenvironment (TME) play a critical role in cancer growth and survival. The influence of oncogenic Kras, multi-functional heterogeneous cancer-associated fibroblasts (CAFs), and immunosuppressive TME on cancer cells makes the disease more complex and difficult to treat. The desmoplastic reaction by CAFs comprises approximately 90 % of the tumor, with only 10 % of cancer cells making things even more complicated, resulting in therapy resistance. Consistently increasing fibrosis creates a hypoxic environment and elevated interstitial fluid pressure inside the tumor constraining vascular supply. Stress conditions in TME alter translation efficiency and metabolism to fulfill the energy requirements of rapidly growing cancer cells. Extensive research has been conducted on multiple molecular and metabolic regulators in PDAC TME. However, the role of TME in influencing translation programs, a prerequisite for cell cycle progression and functional/growth requirements for cancer cells, remains elusive. This review highlights the recent advancements in understanding altered translational programs in PDAC TME. We emphasize the role of ribosome biogenesis, ribosome-induced stress response, and the concept of specialized ribosomes and their probable role in mutationally rewiring the pancreatic TME.
Collapse
Affiliation(s)
- Sanjib Chaudhary
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, 781039, Guwahati, Assam, India
| | - Jawed Akhtar Siddiqui
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA; Cancer Center Research Institute, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ramesh Pothuraju
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Poojappura, Thiruvananthapuram, Kerala, India.
| | - Rakesh Bhatia
- Amity School of Biological Sciences, Amity University Punjab, 82A, Mohali, Punjab, 140306, India.
| |
Collapse
|
4
|
Zhou M, Huang Y, Xu P, Li S, Duan C, Lin X, Bao S, Zou W, Pan J, Liu C, Jin Y. PRMT1 Promotes the Self-renewal of Leukemia Stem Cells by Regulating Protein Synthesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2308586. [PMID: 39668478 PMCID: PMC11791931 DOI: 10.1002/advs.202308586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 10/14/2024] [Indexed: 12/14/2024]
Abstract
The application of tyrosine kinase inhibitors (TKIs) has revolutionized the management of chronic myeloid leukemia (CML). However, disease relapse and progression particularly due to persistent leukemia stem cells (LSCs) remain a big challenge in the clinic. Therefore, validation of the therapeutic vulnerability in LSCs is urgently needed. This study verifies the critical role of protein arginine methyltransferase 1 (PRMT1) in the maintenance of CML LSCs. It is found that PRMT1 promotes the survival and serially plating abilities of human primary CML LSCs. Genetic deletion of Prmt1 significantly delays the leukemogenesis and impairs the self-renewal of LSCs in BCR-ABL-driven CML mice. PRMT1 regulates LSCs and leukemia development depending on its methyltransferase activity. Pharmacological inhibition of PRMT1 activity by MS023 remarkably eliminates LSCs and prolongs the survival of CML mice. Mechanistical studies reveal that PRMT1 promotes transcriptional activation of ribosomal protein L29 (RPL29) via catalyzing asymmetric dimethylation of histone H4R3 (H4R3me2a) at its gene promoter region. PRMT1 augments the global protein synthesis via RPL29 in CML LSCs. Taken together, the findings provide new evidence that histone arginine methylation modification regulates protein synthesis in LSCs and highlight PRMT1 as a valuable druggable target for patients with CML.
Collapse
Affiliation(s)
- Min Zhou
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Yi Huang
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Ping Xu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Shuyi Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Chen Duan
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Xiaoying Lin
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Shilai Bao
- State Key Laboratory of Molecular Developmental BiologyInstitute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
- School of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Waiyi Zou
- Department of HematologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhou510080China
| | - Jingxuan Pan
- State Key Laboratory of OphthalmologyZhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhou510060China
| | - Chang Liu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| | - Yanli Jin
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentJinan UniversityGuangzhou510632China
- Jinan University Institute of Tumor PharmacologyCollege of PharmacyJinan UniversityGuangzhou510632China
| |
Collapse
|
5
|
Wang M, Vulcano S, Xu C, Xie R, Peng W, Wang J, Liu Q, Jia L, Li Z, Li Y. Potentials of ribosomopathy gene as pharmaceutical targets for cancer treatment. J Pharm Anal 2024; 14:308-320. [PMID: 38618250 PMCID: PMC11010632 DOI: 10.1016/j.jpha.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 04/16/2024] Open
Abstract
Ribosomopathies encompass a spectrum of disorders arising from impaired ribosome biogenesis and reduced functionality. Mutation or dysexpression of the genes that disturb any finely regulated steps of ribosome biogenesis can result in different types of ribosomopathies in clinic, collectively known as ribosomopathy genes. Emerging data suggest that ribosomopathy patients exhibit a significantly heightened susceptibility to cancer. Abnormal ribosome biogenesis and dysregulation of some ribosomopathy genes have also been found to be intimately associated with cancer development. The correlation between ribosome biogenesis or ribosomopathy and the development of malignancies has been well established. This work aims to review the recent advances in the research of ribosomopathy genes among human cancers and meanwhile, to excavate the potential role of these genes, which have not or rarely been reported in cancer, in the disease development across cancers. We plan to establish a theoretical framework between the ribosomopathy gene and cancer development, to further facilitate the potential of these genes as diagnostic biomarker as well as pharmaceutical targets for cancer treatment.
Collapse
Affiliation(s)
- Mengxin Wang
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Stephen Vulcano
- Autoimmunity and Inflammation Program, HSS Research Institute, Hospital for Special Surgery New York, New York, NY, 10021, USA
| | - Changlu Xu
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Renjian Xie
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Weijie Peng
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Jie Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, Institute for Liver Diseases of Anhui Medical University, School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - Qiaojun Liu
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Lee Jia
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Zhi Li
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, CA, 90095, USA
| | - Yumei Li
- Key Laboratory of Biomaterials and Biofabrication in Tissue Engineering of Jiangxi Province, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
- School of Basic Medicine, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
6
|
Jia W, Yuan J, Li S, Cheng B. The role of dysregulated mRNA translation machinery in cancer pathogenesis and therapeutic value of ribosome-inactivating proteins. Biochim Biophys Acta Rev Cancer 2023; 1878:189018. [PMID: 37944831 DOI: 10.1016/j.bbcan.2023.189018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/17/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Dysregulated protein synthesis is a hallmark of tumors. mRNA translation reprogramming contributes to tumorigenesis, which is fueled by abnormalities in ribosome formation, tRNA abundance and modification, and translation factors. Not only malignant cells but also stromal cells within tumor microenvironment can undergo transformation toward tumorigenic phenotypes during translational reprogramming. Ribosome-inactivating proteins (RIPs) have garnered interests for their ability to selectively inhibit protein synthesis and suppress tumor growth. This review summarizes the role of dysregulated translation machinery in tumor development and explores the potential of RIPs in cancer treatment.
Collapse
Affiliation(s)
- Wentao Jia
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
7
|
Liang YC, Li R, Bao SR, Li ZL, Yin HZ, Dai CL. Artificial Downregulation of Ribosomal Protein L34 Restricts the Proliferation and Metastasis of Colorectal Cancer by Suppressing the JAK2/STAT3 Signaling Pathway. Hum Gene Ther 2023; 34:719-731. [PMID: 37427415 DOI: 10.1089/hum.2023.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023] Open
Abstract
The highly conserved ribosomal protein L34 (RPL34) has been reported to play an essential role in the progression of diverse malignancies. RPL34 is aberrantly expressed in multiple cancers, although its significant in colorectal cancer (CRC) is currently unclear. Here, we demonstrated that RPL34 expression was higher in CRC tissues than in normal tissues. Upon RPL34 overexpression, the ability of proliferation, migration, invasion, and metastasis of CRC cells were significantly enhanced in vitro and in vivo. Furthermore, high expression of RPL34 accelerated cell cycle progression, activated the JAK2/STAT3 signaling pathway, and induced the epithelial-to-mesenchymal transition (EMT) program. Conversely, RPL34 silencing inhibited the CRC malignant progression. Utilizing immunoprecipitation assays, we identified the RPL34 interactor, the cullin-associated NEDD8-dissociated protein 1 (CAND1), which is a negative regulator of cullin-RING ligases. CAND1 overexpression reduced the ubiquitin level of RPL34 and stabilized RPL34 protein. CAND1 silencing in CRC cells resulted in a decrease in the ability of proliferation, migration, and invasion. CAND1 overexpression promoted CRC malignant phenotypes and induced EMT, and RPL34 knockdown rescued CAND1-induced CRC progression. In summary, our study indicates that RPL34 acts as a mediator, is stabilized by CAND1, and promotes proliferation and metastasis, in part, through the activation of the JAK2/STAT3 signaling pathway and induction of EMT in CRC.
Collapse
Affiliation(s)
- Yi-Chao Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Rui Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Shu-Rui Bao
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Zhi-Long Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Hong-Zhuan Yin
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Chao-Liu Dai
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
8
|
Ramalingam PS, Priyadharshini A, Emerson IA, Arumugam S. Potential biomarkers uncovered by bioinformatics analysis in sotorasib resistant-pancreatic ductal adenocarcinoma. Front Med (Lausanne) 2023; 10:1107128. [PMID: 37396909 PMCID: PMC10310804 DOI: 10.3389/fmed.2023.1107128] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/11/2023] [Indexed: 07/04/2023] Open
Abstract
Background Mutant KRAS-induced tumorigenesis is prevalent in lung, colon, and pancreatic ductal adenocarcinomas. For the past 3 decades, KRAS mutants seem undruggable due to their high-affinity GTP-binding pocket and smooth surface. Structure-based drug design helped in the design and development of first-in-class KRAS G12C inhibitor sotorasib (AMG 510) which was then approved by the FDA. Recent reports state that AMG 510 is becoming resistant in non-small-cell lung cancer (NSCLC), pancreatic ductal adenocarcinoma (PDAC), and lung adenocarcinoma patients, and the crucial drivers involved in this resistance mechanism are unknown. Methods In recent years, RNA-sequencing (RNA-seq) data analysis has become a functional tool for profiling gene expression. The present study was designed to find the crucial biomarkers involved in the sotorasib (AMG 510) resistance in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells. Initially, the GSE dataset was retrieved from NCBI GEO, pre-processed, and then subjected to differentially expressed gene (DEG) analysis using the limma package. Then the identified DEGs were subjected to protein-protein interaction (PPI) using the STRING database, followed by cluster analysis and hub gene analysis, which resulted in the identification of probable markers. Results Furthermore, the enrichment and survival analysis revealed that the small unit ribosomal protein (RP) RPS3 is the crucial biomarker of the AMG 510 resistance in KRAS G12C-mutant MIA-PaCa2 cell pancreatic ductal adenocarcinoma cells. Conclusion Finally, we conclude that RPS3 is a crucial biomarker in sotorasib resistance which evades apoptosis by MDM2/4 interaction. We also suggest that the combinatorial treatment of sotorasib and RNA polymerase I machinery inhibitors could be a possible strategy to overcome resistance and should be studied in in vitro and in vivo settings in near future.
Collapse
Affiliation(s)
| | - Annadurai Priyadharshini
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Isaac Arnold Emerson
- Bioinformatics Programming Laboratory, Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sivakumar Arumugam
- Protein Engineering Lab, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
9
|
Zhang Y, Cai Q, Luo Y, Zhang Y, Li H. Integrated top-down and bottom-up proteomics mass spectrometry for the characterization of endogenous ribosomal protein heterogeneity. J Pharm Anal 2023; 13:63-72. [PMID: 36820077 PMCID: PMC9937802 DOI: 10.1016/j.jpha.2022.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Ribosomes are abundant, large RNA-protein complexes that are the sites of all protein synthesis in cells. Defects in ribosomal proteins (RPs), including proteoforms arising from genetic variations, alternative splicing of RNA transcripts, post-translational modifications and alterations of protein expression level, have been linked to a diverse range of diseases, including cancer and aging. Comprehensive characterization of ribosomal proteoforms is challenging but important for the discovery of potential disease biomarkers or protein targets. In the present work, using E. coli 70S RPs as an example, we first developed a top-down proteomics approach on a Waters Synapt G2 Si mass spectrometry (MS) system, and then applied it to the HeLa 80S ribosome. The results were complemented by a bottom-up approach. In total, 50 out of 55 RPs were identified using the top-down approach. Among these, more than 30 RPs were found to have their N-terminal methionine removed. Additional modifications such as methylation, acetylation, and hydroxylation were also observed, and the modification sites were identified by bottom-up MS. In a HeLa 80S ribosomal sample, we identified 98 ribosomal proteoforms, among which multiple truncated 80S ribosomal proteoforms were observed, the type of information which is often overlooked by bottom-up experiments. Although their relevance to diseases is not yet known, the integration of top-down and bottom-up proteomics approaches paves the way for the discovery of proteoform-specific disease biomarkers or targets.
Collapse
Affiliation(s)
- Ying Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qinghua Cai
- Henan Engineering Laboratory for Mammary Bioreactor, School of Life Sciences, Henan University, Kaifeng, Henan, 475004, China
| | - Yuxiang Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yu Zhang
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Huilin Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China
- Corresponding author. School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Lin S, Xian M, Ren T, Mo G, Zhang L, Zhang X. Mining of chicken muscle growth genes and the function of important candidate gene RPL3L in muscle development. Front Physiol 2022; 13:1033075. [PMID: 36407004 PMCID: PMC9669902 DOI: 10.3389/fphys.2022.1033075] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/14/2022] [Indexed: 12/12/2023] Open
Abstract
The birth weight of chickens does not significantly affect the weight at slaughter, while the different growth rate after birth was one of the important reasons for the difference in slaughter weight. Also, the increase in chickens' postnatal skeletal muscle weight is the main cause of the slaughter weight gain, but which genes are involved in this biological process is still unclear. In this study, by integrating four transcriptome datasets containing chicken muscles at different developmental times or different chicken tissues in public databases, a total of nine candidate genes that may be related to postnatal muscle development in chickens were obtained, including RPL3L, FBP2, ASB4, ASB15, CKMT2, PGAM1, YIPF7, PFKM, and LDHA. One of these candidate genes is RPL3L, whose 42 bp insertion/deletion (indel) mutation significantly correlated with multiple carcass traits in the F2 resource population from Xinghua chickens crossing with White Recessive Rock (WRR) chickens, including live weight, carcass weight, half eviscerated weight, eviscerated weight, breast meat weight, wing weight, leg muscle shear force, and breast muscle shear force. Also, there was a very significant difference between different genotypes of the RPL3L 42 bp indel mutation in these trains. Further experiments showed that RPL3L was highly expressed in chicken skeletal muscle, and its overexpression could promote the proliferation and inhibit the differentiation of chicken myoblasts by regulating ASB4 and ASB15 expression. Our findings demonstrated that the RPL3L 42 bp indel may be one of the molecular markers of chicken weight-related traits.
Collapse
Affiliation(s)
- Shudai Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Mingjian Xian
- Department of Animal Genetics Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Tuanhui Ren
- Department of Animal Genetics Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Guodong Mo
- Department of Animal Genetics Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Li Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, China
| | - Xiquan Zhang
- Department of Animal Genetics Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Temaj G, Saha S, Dragusha S, Ejupi V, Buttari B, Profumo E, Beqa L, Saso L. Ribosomopathies and cancer: pharmacological implications. Expert Rev Clin Pharmacol 2022; 15:729-746. [PMID: 35787725 DOI: 10.1080/17512433.2022.2098110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION The ribosome is a ribonucleoprotein organelle responsible for protein synthesis, and its biogenesis is a highly coordinated process that involves many macromolecular components. Any acquired or inherited impairment in ribosome biogenesis or ribosomopathies is associated with the development of different cancers and rare genetic diseases. Interference with multiple steps of protein synthesis has been shown to promote tumor cell death. AREAS COVERED We discuss the current insights about impaired ribosome biogenesis and their secondary consequences on protein synthesis, transcriptional and translational responses, proteotoxic stress, and other metabolic pathways associated with cancer and rare diseases. Studies investigating the modulation of different therapeutic chemical entities targeting cancer in in vitro and in vivo models have also been detailed. EXPERT OPINION Despite the association between inherited mutations affecting ribosome biogenesis and cancer biology, the development of therapeutics targeting the essential cellular machinery has only started to emerge. New chemical entities should be designed to modulate different checkpoints (translating oncoproteins, dysregulation of specific ribosome-assembly machinery, ribosomal stress, and rewiring ribosomal functions). Although safe and effective therapies are lacking, consideration should also be given to using existing drugs alone or in combination for long-term safety, with known risks for feasibility in clinical trials and synergistic effects.
Collapse
Affiliation(s)
| | - Sarmistha Saha
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | | | - Valon Ejupi
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Brigitta Buttari
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Elisabetta Profumo
- Department of Cardiovascular, Endocrine-metabolic Diseases, and Aging, Italian National Institute of Health, Rome, Italy
| | - Lule Beqa
- College UBT, Faculty of Pharmacy, Prishtina, Kosovo
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Italy
| |
Collapse
|
12
|
Elhamamsy AR, Metge BJ, Alsheikh HA, Shevde LA, Samant RS. Ribosome Biogenesis: A Central Player in Cancer Metastasis and Therapeutic Resistance. Cancer Res 2022; 82:2344-2353. [PMID: 35303060 PMCID: PMC9256764 DOI: 10.1158/0008-5472.can-21-4087] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/01/2022] [Accepted: 03/16/2022] [Indexed: 01/07/2023]
Abstract
Ribosomes are a complex ensemble of rRNA and ribosomal proteins that function as mRNA translation machines. Ribosome biogenesis is a multistep process that begins in the nucleolus and concludes in the cytoplasm. The process is tightly controlled by multiple checkpoint and surveillance pathways. Perturbations in these checkpoints and pathways can lead to hyperactivation of ribosome biogenesis. Emerging evidence suggests that cancer cells harbor a specialized class of ribosomes (onco-ribosomes) that facilitates the oncogenic translation program, modulates cellular functions, and promotes metabolic rewiring. Mutations in ribosomal proteins, rRNA processing, and ribosome assembly factors result in ribosomopathies that are associated with an increased risk of developing malignancies. Recent studies have linked mutations in ribosomal proteins and aberrant ribosomes with poor prognosis, highlighting ribosome-targeted therapy as a promising approach for treating patients with cancer. Here, we summarize various aspects of dysregulation of ribosome biogenesis and the impact of resultant onco-ribosomes on malignant tumor behavior, therapeutic resistance, and clinical outcome. Ribosome biogenesis is a promising therapeutic target, and understanding the important determinants of this process will allow for improved and perhaps selective therapeutic strategies to target ribosome biosynthesis.
Collapse
Affiliation(s)
- Amr R. Elhamamsy
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brandon J. Metge
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Heba A. Alsheikh
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lalita A. Shevde
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rajeev S. Samant
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama.,O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama.,Birmingham VA Medical Center, Birmingham, Alabama.,Corresponding Author: Rajeev S. Samant, The University of Alabama at Birmingham, WTI 320E, 1824 6th Avenue South, Birmingham, AL 35233. Phone: 205-975-6262; E-mail:
| |
Collapse
|
13
|
Suppramote O, Prasopporn S, Aroonpruksakul S, Ponvilawan B, Makjaroen J, Suntiparpluacha M, Korphaisarn K, Charngkaew K, Chanwat R, Pisitkun T, Okada S, Sampattavanich S, Jirawatnotai S. The Acquired Vulnerability Caused by CDK4/6 Inhibition Promotes Drug Synergism Between Oxaliplatin and Palbociclib in Cholangiocarcinoma. Front Oncol 2022; 12:877194. [PMID: 35664774 PMCID: PMC9157389 DOI: 10.3389/fonc.2022.877194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Cholangiocarcinoma (CCA) is one of the most difficult to treat cancers, and its nature of being largely refractory to most, if not all, current treatments results in generally poor prognosis and high mortality. Efficacious alternative therapies that can be used ubiquitously are urgently needed. Using acquired vulnerability screening, we observed that CCA cells that reprofile and proliferate under CDK4/6 inhibition became vulnerable to ribosomal biogenesis stress and hypersensitive to the anti-ribosome chemotherapy oxaliplatin. CCA cells overexpress the oncogenic ribosomal protein RPL29 under CDK4/6 inhibition in a manner that correlated with CDK4/6 inhibitor resistance. Depletion of RPL29 by small interfering RNAs (siRNAs) restored the sensitivity of CCA cells to CDK4/6 inhibition. Oxaliplatin treatment suppressed the RPL29 expression in the CDK4/6 inhibitor treated CCA cells and triggered RPL5/11-MDM2-dependent p53 activation and cancer apoptosis. In addition, we found that combination treatment with oxaliplatin and the CDK4/6 inhibitor palbociclib synergistically inhibited both parental and CDK4/6 inhibitor-resistant CCA, and prevented the emergence of CDK4/6 and oxaliplatin-resistant CCA. This drug combination also exerted suppressive and apoptosis effects on CCA in the in vitro 3-dimensional culture, patient-derived organoid, and in vivo xenograft CCA models. These results suggest the combination of the CDK4/6 inhibitor palbociclib and the anti-ribosome drug oxaliplatin as a potentially promising treatment for cholangiocarcinoma.
Collapse
Affiliation(s)
- Orawan Suppramote
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Sunisa Prasopporn
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Satinee Aroonpruksakul
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ben Ponvilawan
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jiradej Makjaroen
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Monthira Suntiparpluacha
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Krittiya Korphaisarn
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Komgrid Charngkaew
- Department of Pathology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Rawisak Chanwat
- Hepato-Pancreato-Biliary Surgery Unit, Department of Surgical Oncology, National Cancer Institute, Bangkok, Thailand
| | - Trairak Pisitkun
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Seiji Okada
- Division of Hematopoiesis, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
| | - Somponnat Sampattavanich
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Siwanon Jirawatnotai
- Siriraj Center of Research Excellence (SiCORE) for Systems Pharmacology, Department of Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
The Identification and Validation of Hub Genes Associated with Acute Myocardial Infarction Using Weighted Gene Co-Expression Network Analysis. J Cardiovasc Dev Dis 2022; 9:jcdd9010030. [PMID: 35050240 PMCID: PMC8778825 DOI: 10.3390/jcdd9010030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/08/2022] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
Acute myocardial infarction (AMI), one of the most severe and fatal cardiovascular diseases, remains the main cause of mortality and morbidity worldwide. The objective of this study is to investigate the potential biomarkers for AMI based on bioinformatics analysis. A total of 2102 differentially expressed genes (DEGs) were screened out from the data obtained from the gene expression omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) explored the co-expression network of DEGs and determined the key module. The brown module was selected as the key one correlated with AMI. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses demonstrated that genes in the brown module were mainly enriched in ‘ribosomal subunit’ and ‘Ribosome’. Gene Set Enrichment Analysis revealed that ‘TNFA_SIGNALING_VIA_NFKB’ was remarkably enriched in AMI. Based on the protein–protein interaction network, ribosomal protein L9 (RPL9) and ribosomal protein L26 (RPL26) were identified as the hub genes. Additionally, the polymerase chain reaction (PCR) results indicated that the expression levels of RPL9 and RPL26 were both downregulated in AMI patients compared with controls, in accordance with the bioinformatics analysis. In summary, the identified DEGs, modules, pathways, and hub genes provide clues and shed light on the potential molecular mechanisms of AMI.
Collapse
|
15
|
Deregulation of ribosomal proteins in human cancers. Biosci Rep 2021; 41:230380. [PMID: 34873618 PMCID: PMC8685657 DOI: 10.1042/bsr20211577] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/28/2021] [Accepted: 11/22/2021] [Indexed: 12/26/2022] Open
Abstract
The ribosome, the site for protein synthesis, is composed of ribosomal RNAs (rRNAs) and ribosomal proteins (RPs). The latter have been shown to have many ribosomal and extraribosomal functions. RPs are implicated in a variety of pathological processes, especially tumorigenesis and cell transformation. In this review, we will focus on the recent advances that shed light on the effects of RPs deregulation in different types of cancer and their roles in regulating the tumor cell fate.
Collapse
|
16
|
Wang Y, Wu Y, Xiao K, Zhao Y, Lv G, Xu S, Wu F. RPS24c Isoform Facilitates Tumor Angiogenesis Via Promoting the Stability of MVIH in Colorectal Cancer. Curr Mol Med 2021; 20:388-395. [PMID: 31797757 DOI: 10.2174/1566524019666191203123943] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is the second leading cause of death worldwide, and distant metastasis is responsible for the poor prognosis in patients with advanced-stage CRC. RPS24 (ribosomal protein S24) as a ribosomal protein, multiple transcript variant encoding different isoforms have been found for this gene. Our previous studies have demonstrated that RPS24 is overexpressed in CRC. However, the mechanisms underlying the role of RPS24 in tumor development have not been fully defined. METHODS Expression of RPS24 isoforms and lncRNA MVIH in CRC tissues and cell lines were quantified by real-time PCR or western blotting assay. Endothelial tube formation assay was performed to determine the effect of RPS24 on tumor angiogenesis. The cell viability of HUVEC was determined by MTT assay, and the migration and invasion ability of HUVEC were detected by transwell assay. PGK1 secretion was tested with a specific ELISA kit. RESULTS Here, we found that RPS24c isoform was a major contributor to tumor angiogenesis, a vital process in tumor growth and metastasis. Real-time PCR revealed that RPS24c isoform was highly expressed in CRC tissues, while other isoforms are present in both normal and CRC tissues with no statistical difference. Moreover the change of RPS24 protein level is mainly due to the fluctuation of RPS24c. Furthermore, we observed that silencing RPS24c could decrease angiogenesis by inhibiting tubule formation, HUVEC cell proliferation and migration. Additionally, we investigated the molecular mechanisms and demonstrated that RPS24c mRNA interacted with lncRNA MVIH, the binding-interaction enhanced the stability of each other, thereby activated angiogenesis by inhibiting the secretion of PGK1. CONCLUSION RPS24c facilitates tumor angiogenesis via the RPS24c/MVIH/PGK1 pathway in CRC. RPS24c inhibition may be a novel option for anti-vascular treatment in CRC.
Collapse
Affiliation(s)
- Yue Wang
- Department of General Surgery, The 8th Medical Center of Chinese PLA General Hospital, 17 Heishanhu Road, Beijing, China
| | - Youjun Wu
- Department of General Surgery, The 8th Medical Center of Chinese PLA General Hospital, 17 Heishanhu Road, Beijing, China
| | - Kun Xiao
- Department of Pulmonary & Critical Care Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Yingjie Zhao
- Department of General Surgery, The 8th Medical Center of Chinese PLA General Hospital, 17 Heishanhu Road, Beijing, China
| | - Gang Lv
- Department of General Surgery, The 8th Medical Center of Chinese PLA General Hospital, 17 Heishanhu Road, Beijing, China
| | - Shiyan Xu
- Department of General Surgery, The 8th Medical Center of Chinese PLA General Hospital, 17 Heishanhu Road, Beijing, China
| | - Fuquan Wu
- Department of General Surgery, The 8th Medical Center of Chinese PLA General Hospital, 17 Heishanhu Road, Beijing, China
| |
Collapse
|
17
|
Ludwig-Słomczyńska AH, Seweryn MT, Kapusta P, Pitera E, Mantaj U, Cyganek K, Gutaj P, Dobrucka Ł, Wender-Ożegowska E, Małecki MT, Wołkow PP. The transcriptome-wide association search for genes and genetic variants which associate with BMI and gestational weight gain in women with type 1 diabetes. Mol Med 2021; 27:6. [PMID: 33472578 PMCID: PMC7818927 DOI: 10.1186/s10020-020-00266-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Clinical data suggest that BMI and gestational weight gain (GWG) are strongly interconnected phenotypes; however, the genetic basis of the latter is rather unclear. Here we aim to find genes and genetic variants which influence BMI and/or GWG. METHODS We have genotyped 316 type 1 diabetics using Illumina Infinium Omni Express Exome-8 v1.4 arrays. The GIANT, ARIC and T2D-GENES summary statistics were used for TWAS (performed with PrediXcan) in adipose tissue. Next, the analysis of association of imputed expression with BMI in the general and diabetic cohorts (Analysis 1 and 2) or GWG (Analysis 3 and 4) was performed, followed by variant association analysis (1 Mb around identified loci) with the mentioned phenotypes. RESULTS In Analysis 1 we have found 175 BMI associated genes and 19 variants (p < 10-4) which influenced GWG, with the strongest association for rs11465293 in CCL24 (p = 3.18E-06). Analysis 2, with diabetes included in the model, led to discovery of 1812 BMI associated loci and 207 variants (p < 10-4) influencing GWG, with the strongest association for rs9690213 in PODXL (p = 9.86E-07). In Analysis 3, among 648 GWG associated loci, 2091 variants were associated with BMI (FDR < 0.05). In Analysis 4, 7 variants in GWG associated loci influenced BMI in the ARIC cohort. CONCLUSIONS Here, we have shown that loci influencing BMI might have an impact on GWG and GWG associated loci might influence BMI, both in the general and T1DM cohorts. The results suggest that both phenotypes are related to insulin signaling, glucose homeostasis, mitochondrial metabolism, ubiquitinoylation and inflammatory responses.
Collapse
Affiliation(s)
| | - Michał T Seweryn
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Przemysław Kapusta
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Ewelina Pitera
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland
| | - Urszula Mantaj
- Department of Reproduction, Poznan University of Medical Sciences, Poznan, Poland
| | - Katarzyna Cyganek
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł Gutaj
- Department of Reproduction, Poznan University of Medical Sciences, Poznan, Poland
| | - Łucja Dobrucka
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
| | - Ewa Wender-Ożegowska
- Department of Reproduction, Poznan University of Medical Sciences, Poznan, Poland
| | - Maciej T Małecki
- Department of Metabolic Diseases, University Hospital Kraków, Kraków, Poland
- Department of Metabolic Diseases, Jagiellonian University Medical College, Kraków, Poland
| | - Paweł P Wołkow
- Center for Medical Genomics OMICRON, Jagiellonian University Medical College, Kraków, Poland.
| |
Collapse
|
18
|
The tissue specific regulation of miR22 expression in the lung and brain by ribosomal protein L29. Sci Rep 2020; 10:16242. [PMID: 33004906 PMCID: PMC7530758 DOI: 10.1038/s41598-020-73281-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/15/2020] [Indexed: 11/23/2022] Open
Abstract
Endogenous miR22 is associated with a diverse range of biological processes through post-translational modification of gene expression and its deregulation results in various diseases including cancer. Its expression is usually tissue or cell-specific, however, the reasons behind this tissue or cell specificity are not clearly outlined till-date. Therefore, our keen interest was to investigate the mechanisms of tissue or cell-specific expression of miR22. In the current study, miR22 expression showed a tissues-specific difference in the poly(I:C) induced inflammatory mouse lung and brain tissues. The cell-specific different expression of miR22 was also observed in inflammatory glial cells and endothelial cells. The pattern of RPL29 expression was also similar to miR22 in these tissues and cells under the same treatment. Interestingly, the knockdown of RPL29 exerted an inhibitory effect on miR22 and its known transcription factors including Fos-B and c-Fos. Fos-B and c-Fos were also differentially expressed in the two cell lines transfected with poly(I:C). The knockdown of c-Fos also exerted its negative effects on miR22 expression in both cells. These findings suggest that RPL29 might have regulatory roles on tissue or cell-specific expression of miR22 through the transcription activities of c-Fos and also possibly through Fos-B.
Collapse
|
19
|
Babaylova ES, Kolobova AV, Gopanenko AV, Tupikin AE, Kabilov MR, Malygin AA, Karpova GG. The human ribosomal protein eL29 binds in vivo to the cognate mRNA by interacting with its coding sequence, as revealed from in-cell cross-linking data. Biochimie 2020; 177:68-77. [DOI: 10.1016/j.biochi.2020.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 07/31/2020] [Indexed: 01/21/2023]
|
20
|
Li C, Ge M, Chen D, Sun T, Jiang H, Xie Y, Lu H, Zhang B, Han L, Chen J, Zhu J. RPL21 siRNA Blocks Proliferation in Pancreatic Cancer Cells by Inhibiting DNA Replication and Inducing G1 Arrest and Apoptosis. Front Oncol 2020; 10:1730. [PMID: 33014855 PMCID: PMC7509406 DOI: 10.3389/fonc.2020.01730] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 08/03/2020] [Indexed: 12/12/2022] Open
Abstract
Background Our previous study showed that the ribosomal protein L21 (RPL21) may play an important role in the development and survival of pancreatic cancer. In this article, RNA interference (RNAi) experiments were performed with RPL21-specific small interfering RNA (siRNA) to elucidate the mechanism by which RPL21 controls PC PANC-1 and BxPC-3 cell proliferation. Methods In the present study, PANC-1, BxPC-3 cells, and BALB/c nude mice were used to investigate antitumor effect and mechanism by which RPL21 controls cell proliferation and apoptosis in vitro and in vivo. The effects of RPL21 knockdown on PANC-1 and BxPC-3 cell proliferation, cell cycle and cell apoptosis in vitro were determined using 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assays and flow cytometry assay. The mechanism of RPL21 regulating cell proliferation was investigated using transcriptome sequencing analysis and luciferase reporter assay. The effects of RPL21 knockdown on PANC-1 and BxPC-3 cell proliferation in vivo were determined using BALB/c nude mice tumor model. Results In PANC-1 and BxPC-3 cells, the knockdown of RPL21 expression with corresponding siRNA suppressed cell proliferation in vitro and in vivo, inhibited DNA replication, and induced arrests in the G1 phase of the cell cycle. Further results showed that the mini-chromosome maintenance (MCM) protein family (MCM2-7), CCND1 and CCNE1 were down-regulated significantly in PANC-1 and BxPC-3 cells after transfected with RPL21 siRNA, which suggests that the suppression of DNA replication is due to the reduced expression of MCM2-7 family, and the induction of G1 arrest is correlated with the inhibition of CCND1 and CCNE1. Luciferase reporter assay showed that RPL21 controls the DNA replication and G1-S phase progression possibly through the regulation of E2F1 transcription factor in PC cells. Moreover, RPL21 siRNA showed an apoptosis-inducing effect only in BxPC-3 and PANC-1 cells but not in normal HPDE6-C7 cells. The increase of caspase-8 activities and the loss of mitochondrial membrane potential after RPL21 silencing indicates that the RPL21 gene may be involved in caspase-8-related mitochondrial apoptosis. Conclusion Our findings suggest that siRNA against the RPL21 gene possesses a potential anti-cancer activity for PC cells by inhibiting their proliferation and DNA replication, as well as inducing cell cycle G1 arrest and cell apoptosis.
Collapse
Affiliation(s)
- Chaodong Li
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Jecho Biopharmaceuticals Co., Ltd., Tianjin, China
| | - Mei Ge
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Daijie Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Tao Sun
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Hua Jiang
- Jecho Laboratories, Inc., Frederick, MD, United States
| | - Yueqing Xie
- Jecho Laboratories, Inc., Frederick, MD, United States
| | - Huili Lu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Baohong Zhang
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Han
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Jecho Biopharmaceuticals Co., Ltd., Tianjin, China
| | - Junsheng Chen
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Jianwei Zhu
- Engineering Research Center of Cell and Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China.,Jecho Biopharmaceuticals Co., Ltd., Tianjin, China.,Jecho Laboratories, Inc., Frederick, MD, United States
| |
Collapse
|
21
|
The HMGB1-2 Ovarian Cancer Interactome. The Role of HMGB Proteins and Their Interacting Partners MIEN1 and NOP53 in Ovary Cancer and Drug-Response. Cancers (Basel) 2020; 12:cancers12092435. [PMID: 32867128 PMCID: PMC7564582 DOI: 10.3390/cancers12092435] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/14/2022] Open
Abstract
High mobility group box B (HMGB) proteins are overexpressed in different types of cancers such as epithelial ovarian cancers (EOC). We have determined the first interactome of HMGB1 and HMGB2 in epithelial ovarian cancer (the EOC-HMGB interactome). Libraries from the SKOV-3 cell line and a primary transitional cell carcinoma (TCC) ovarian tumor were tested by the Yeast Two Hybrid (Y2H) approach. The interactome reveals proteins that are related to cancer hallmarks and their expression is altered in EOC. Moreover, some of these proteins have been associated to survival and prognosis of patients. The interaction of MIEN1 and NOP53 with HMGB2 has been validated by co-immunoprecipitation in SKOV-3 and PEO1 cell lines. SKOV-3 cells were treated with different anti-tumoral drugs to evaluate changes in HMGB1, HMGB2, MIEN1 and NOP53 gene expression. Results show that combined treatment of paclitaxel and carboplatin induces a stronger down-regulation of these genes in comparison to individual treatments. Individual treatment with paclitaxel or olaparib up-regulates NOP53, which is expressed at lower levels in EOC than in non-cancerous cells. On the other hand, bevacizumab diminishes the expression of HMGB2 and NOP53. This study also shows that silencing of these genes affects cell-viability after drug exposure. HMGB1 silencing causes loss of response to paclitaxel, whereas silencing of HMGB2 slightly increases sensitivity to olaparib. Silencing of either HMGB1 or HMGB2 increases sensitivity to carboplatin. Lastly, a moderate loss of response to bevacizumab is observed when NOP53 is silenced.
Collapse
|
22
|
Knockdown of the Ribosomal Protein eL29 in Mammalian Cells Leads to Significant Changes in Gene Expression at the Transcription Level. Cells 2020; 9:cells9051228. [PMID: 32429214 PMCID: PMC7291024 DOI: 10.3390/cells9051228] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 01/02/2023] Open
Abstract
An imbalance in the synthesis of ribosomal proteins can lead to the disruption of various cellular processes. For mammalian cells, it has been shown that the level of the eukaryote-specific ribosomal protein eL29, also known as the one interacting with heparin/heparan sulfate, substantially affects their growth. Moreover, in animals lacking this protein, a number of anatomical abnormalities have been observed. Here, we applied next-generation RNA sequencing to HEK293 cells transfected with siRNAs specific for the mRNA of eL29 to determine what changes occur in the transcriptome profile with a decrease in the level of the target protein. We showed that an approximately 2.5-fold decrease in the content of eL29 leads to statistically significant changes in the expression of more than a thousand genes at the transcription level, without a noticeable effect on cell viability, rRNA level, and global translation. The set of eL29-dependent genes included both up-regulated and down-regulated ones, among which there are those previously identified as targets for proteins implicated in oncogenesis. Thus, our findings demonstrate that an insufficiency of eL29 in mammalian cells causes a significant reorganization of gene expression, thereby highlighting the relationship between the cellular balance of eL29 and the activities of certain genes.
Collapse
|
23
|
Shao YT, Ma L, Zhang TH, Xu TR, Ye YC, Liu Y. The Application of the RNA Interference Technologies for KRAS: Current Status, Future Perspective and Associated Challenges. Curr Top Med Chem 2019; 19:2143-2157. [PMID: 31456522 DOI: 10.2174/1568026619666190828162217] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/26/2019] [Accepted: 07/07/2019] [Indexed: 02/07/2023]
Abstract
KRAS is a member of the murine sarcoma virus oncogene-RAS gene family. It plays an important role in the prevention, diagnosis and treatment of tumors during tumor cell growth and angiogenesis. KRAS is the most commonly mutated oncogene in human cancers, such as pancreatic cancers, colon cancers, and lung cancers. Detection of KRAS gene mutation is an important indicator for tracking the status of oncogenes, highlighting the developmental prognosis of various cancers, and the efficacy of radiotherapy and chemotherapy. However, the efficacy of different patients in clinical treatment is not the same. Since RNA interference (RNAi) technologies can specifically eliminate the expression of specific genes, these technologies have been widely used in the field of gene therapy for exploring gene function, infectious diseases and malignant tumors. RNAi refers to the phenomenon of highly specific degradation of homologous mRNA induced by double-stranded RNA (dsRNA), which is highly conserved during evolution. There are three classical RNAi technologies, including siRNA, shRNA and CRISPR-Cas9 system, and a novel synthetic lethal interaction that selectively targets KRAS mutant cancers. Therefore, the implementation of individualized targeted drug therapy has become the best choice for doctors and patients. Thus, this review focuses on the current status, future perspective and associated challenges in silencing of KRAS with RNAi technology.
Collapse
Affiliation(s)
- Yu-Ting Shao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Li Ma
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Tie-Hui Zhang
- The First People's Hospital of Heishan County, Jinzhou city, Liaoning, Jinzhou 121400, China
| | - Tian-Rui Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yuan-Chao Ye
- Department of Internal Medicine, Gastroenterology and Hepatology, University of Iowa, Iowa City, IA 52242, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA 52242, United States
| | - Ying Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
24
|
Bowlt Blacklock KL, Birand Z, Selmic LE, Nelissen P, Murphy S, Blackwood L, Bass J, McKay J, Fox R, Beaver S, Starkey M. Genome-wide analysis of canine oral malignant melanoma metastasis-associated gene expression. Sci Rep 2019; 9:6511. [PMID: 31019223 PMCID: PMC6482147 DOI: 10.1038/s41598-019-42839-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 04/04/2019] [Indexed: 12/12/2022] Open
Abstract
Oral malignant melanoma (OMM) is the most common canine melanocytic neoplasm. Overlap between the somatic mutation profiles of canine OMM and human mucosal melanomas suggest a shared UV-independent molecular aetiology. In common with human mucosal melanomas, most canine OMM metastasise. There is no reliable means of predicting canine OMM metastasis, and systemic therapies for metastatic disease are largely palliative. Herein, we employed exon microarrays for comparative expression profiling of FFPE biopsies of 18 primary canine OMM that metastasised and 10 primary OMM that did not metastasise. Genes displaying metastasis-associated expression may be targets for anti-metastasis treatments, and biomarkers of OMM metastasis. Reduced expression of CXCL12 in the metastasising OMMs implies that the CXCR4/CXCL12 axis may be involved in OMM metastasis. Increased expression of APOBEC3A in the metastasising OMMs may indicate APOBEC3A-induced double-strand DNA breaks and pro-metastatic hypermutation. DNA double strand breakage triggers the DNA damage response network and two Fanconi anaemia DNA repair pathway members showed elevated expression in the metastasising OMMs. Cross-validation was employed to test a Linear Discriminant Analysis classifier based upon the RT-qPCR-measured expression levels of CXCL12, APOBEC3A and RPL29. Classification accuracies of 94% (metastasising OMMs) and 86% (non-metastasising OMMs) were estimated.
Collapse
Affiliation(s)
| | - Z Birand
- Animal Health Trust, Newmarket, Suffolk, UK
| | - L E Selmic
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, Ohio, USA
| | - P Nelissen
- Dick White Referrals, Newmarket, Suffolk, UK
| | - S Murphy
- Animal Health Trust, Newmarket, Suffolk, UK
- The Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - L Blackwood
- Institute of Veterinary Science, University of Liverpool, Liverpool, UK
| | - J Bass
- Animal Health Trust, Newmarket, Suffolk, UK
- Finn Pathologists, Harleston, UK
| | - J McKay
- IDEXX Laboratories, Ltd, Wetherby, UK
| | - R Fox
- Finn Pathologists, Harleston, UK
| | - S Beaver
- Nationwide Laboratory Services, Poulton-le-Fylde, UK
| | - M Starkey
- Animal Health Trust, Newmarket, Suffolk, UK.
| |
Collapse
|
25
|
Calamita P, Gatti G, Miluzio A, Scagliola A, Biffo S. Translating the Game: Ribosomes as Active Players. Front Genet 2018; 9:533. [PMID: 30498507 PMCID: PMC6249331 DOI: 10.3389/fgene.2018.00533] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/22/2018] [Indexed: 12/18/2022] Open
Abstract
Ribosomes have been long considered as executors of the translational program. The fact that ribosomes can control the translation of specific mRNAs or entire cellular programs is often neglected. Ribosomopathies, inherited diseases with mutations in ribosomal factors, show tissue specific defects and cancer predisposition. Studies of ribosomopathies have paved the way to the concept that ribosomes may control translation of specific mRNAs. Studies in Drosophila and mice support the existence of heterogeneous ribosomes that differentially translate mRNAs to coordinate cellular programs. Recent studies have now shown that ribosomal activity is not only a critical regulator of growth but also of metabolism. For instance, glycolysis and mitochondrial function have been found to be affected by ribosomal availability. Also, ATP levels drop in models of ribosomopathies. We discuss findings highlighting the relevance of ribosome heterogeneity in physiological and pathological conditions, as well as the possibility that in rate-limiting situations, ribosomes may favor some translational programs. We discuss the effects of ribosome heterogeneity on cellular metabolism, tumorigenesis and aging. We speculate a scenario in which ribosomes are not only executors of a metabolic program but act as modulators.
Collapse
Affiliation(s)
- Piera Calamita
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Guido Gatti
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Annarita Miluzio
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Alessandra Scagliola
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| | - Stefano Biffo
- INGM, National Institute of Molecular Genetics, "Romeo ed Enrica Invernizzi", Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
26
|
Molavi G, Samadi N, Hosseingholi EZ. The roles of moonlight ribosomal proteins in the development of human cancers. J Cell Physiol 2018; 234:8327-8341. [PMID: 30417503 DOI: 10.1002/jcp.27722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/23/2018] [Indexed: 12/13/2022]
Abstract
"Moonlighting protein" is a term used to define a single protein with multiple functions and different activities that are not derived from gene fusions, multiple RNA splicing, or the proteolytic activity of promiscuous enzymes. Different proteinous constituents of ribosomes have been shown to have important moonlighting extra-ribosomal functions. In this review, we introduce the impact of key moonlight ribosomal proteins and dependent signal transduction in the initiation and progression of various cancers. As a future perspective, the potential role of these moonlight ribosomal proteins in the diagnosis, prognosis, and development of novel strategies to improve the efficacy of therapies for human cancers has been suggested.
Collapse
Affiliation(s)
- Ghader Molavi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
27
|
Fan S, Liang Z, Gao Z, Pan Z, Han S, Liu X, Zhao C, Yang W, Pan Z, Feng W. Identification of the key genes and pathways in prostate cancer. Oncol Lett 2018; 16:6663-6669. [PMID: 30405806 PMCID: PMC6202544 DOI: 10.3892/ol.2018.9491] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/17/2018] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common malignancies in men globally. The aim of the present study was to identify the key genes and pathways involved in the occurrence of PCa. Gene expression profile (GSE55945) was downloaded from Gene Expression Omnibus, and the differentially expressed genes (DEGs) were identified. Subsequently, Gene ontology analysis, KEGG pathway analysis and protein-protein interaction (PPI) analysis of DEGs were performed. Finally, the identified key genes were confirmed by immunohistochemistry. The GO analysis results showed that the DEGs were mainly participated in cell cycle, cell division, cell development and cell junction. The KEGG pathway analysis showed that the DEGs were mainly enriched in proteoglycans in cancer, endocytosis, focal adhesion and hippo signaling pathway. The PPI analysis results showed that RPS21, FOXO1, BIRC5, POLR2H, RPL22L1 and NPM1 were the key genes involved in the occurrence of PCa, and the Module analysis indicated that the occurrence of PCa was associated with cell cycle, oocyte meiosis and ribosome biogenesis. IHC result showed that the expression of RPS21, BIRC5, POLR2H, RPL22L1 and NPM1 were significantly upregulated in PCa, while the expression of FOXO1 was significantly downregulated in PCa, matching with the bioinformatics analysis. Taken together, several key genes and pathways were identified involved in PCa, which might provide the potential biomarker for prognosis, diagnosis and drug targets.
Collapse
Affiliation(s)
- Shutong Fan
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zumu Liang
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiqin Gao
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhiwei Pan
- Department of Internal Medicine, Laizhou Development Zone Hospital, Yantai, Shandong 261400, P.R. China
| | - Shaojie Han
- Animal Epidemic Prevention and Epidemic Control Center, Changle County Bureau of Animal Health and Production, Weifang, Shandong 262400, P.R. China
| | - Xiaoying Liu
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Chunling Zhao
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Weiwei Yang
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Zhifang Pan
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| | - Weiguo Feng
- College of Bioscience and Technology, Weifang Medical University, Weifang, Shandong 261053, P.R. China
| |
Collapse
|
28
|
Delineating the HMGB1 and HMGB2 interactome in prostate and ovary epithelial cells and its relationship with cancer. Oncotarget 2018; 9:19050-19064. [PMID: 29721183 PMCID: PMC5922377 DOI: 10.18632/oncotarget.24887] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/27/2018] [Indexed: 12/19/2022] Open
Abstract
High Mobility Group B (HMGB) proteins are involved in cancer progression and in cellular responses to platinum compounds used in the chemotherapy of prostate and ovary cancer. Here we use affinity purification coupled to mass spectrometry (MS) and yeast two-hybrid (Y2H) screening to carry out an exhaustive study of HMGB1 and HMGB2 protein interactions in the context of prostate and ovary epithelia. We present a proteomic study of HMGB1 partners based on immunoprecipitation of HMGB1 from a non-cancerous prostate epithelial cell line. In addition, HMGB1 and HMGB2 were used as baits in yeast two-hybrid screening of libraries from prostate and ovary epithelial cell lines as well as from healthy ovary tissue. HMGB1 interacts with many nuclear proteins that control gene expression, but also with proteins that form part of the cytoskeleton, cell-adhesion structures and others involved in intracellular protein translocation, cellular migration, secretion, apoptosis and cell survival. HMGB2 interacts with proteins involved in apoptosis, cell motility and cellular proliferation. High confidence interactors, based on repeated identification in different cell types or in both MS and Y2H approaches, are discussed in relation to cancer. This study represents a useful resource for detailed investigation of the role of HMGB1 in cancer of epithelial origins, as well as potential alternative avenues of therapeutic intervention.
Collapse
|
29
|
Bian Y, Guo J, Qiao L, Sun X. miR-3189-3p Mimics Enhance the Effects of S100A4 siRNA on the Inhibition of Proliferation and Migration of Gastric Cancer Cells by Targeting CFL2. Int J Mol Sci 2018; 19:ijms19010236. [PMID: 29342841 PMCID: PMC5796184 DOI: 10.3390/ijms19010236] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/27/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
GDF15 is a downstream gene of S100A4. miR-3189 is embedded in the intron of GDF15—and coexpressed with it. miR-3189-3p functions to inhibit the proliferation and migration of glioblastoma cells. We speculated that S100A4 might regulate miR-3189-3p to affect its function in gastric cancer cells. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that miR-3189-3p expression was significantly downregulated in MGC803 cells after S100A4 knockdown. Overexpression of miR-3189-3p significantly inhibited the proliferation and migration of the cells. Moreover, miR-3189-3p mimics enhanced the effects of an S100A4 siRNA on the inhibition of cell proliferation and migration. Dual luciferase reporter assays, qRT-PCR, and Western blotting verified that CFL2 is a direct target of miR-3189-3p. CFL2 mediates the regulation of miR-3189-3p on the proliferation and migration of MGC803 cells. Data mining based on Kaplan–Meier plots showed that high CFL2 expression is associated with poor overall survival and first progression in gastric cancer. These data suggested that miR-3189-3p mimics enhanced the effects of the S100A4 siRNA on the inhibition of gastric cancer cell proliferation and migration by targeting CFL2. The findings suggested that when targeting S100A4 to treat gastric cancer, consideration and correction for counteracting factors should obtain a satisfactory effect.
Collapse
Affiliation(s)
- Yue Bian
- Department of Medical Genetics, China Medical University, Shenyang 110122, China.
| | - Junfu Guo
- Department of Medical Genetics, China Medical University, Shenyang 110122, China.
- Teaching and Experiment Center, Liaoning University of Traditional Chinese Medicine, Shenyang110847, China.
| | - Linlin Qiao
- Department of Medical Genetics, China Medical University, Shenyang 110122, China.
| | - Xiuju Sun
- Department of Medical Genetics, China Medical University, Shenyang 110122, China.
| |
Collapse
|
30
|
Tian S, Wu J, Liu Y, Huang X, Li F, Wang Z, Sun MX. Ribosomal protein NtRPL17 interacts with kinesin-12 family protein NtKRP and functions in the regulation of embryo/seed size and radicle growth. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5553-5564. [PMID: 29045730 PMCID: PMC5853406 DOI: 10.1093/jxb/erx361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/28/2017] [Indexed: 05/12/2023]
Abstract
We previously reported that a novel motor protein belonging to the kinesin-12 family, NtKRP, displays critical roles in regulating embryo and seed size establishment. However, it remains unknown exactly how NtKRP contributes to this developmental process. Here, we report that a 60S ribosomal protein NtRPL17 directly interacts with NtKRP. The phenotypes of NtRPL17 RNAi lines show notable embryo and seed size reduction. Structural observations of the NtRPL17-silenced embryos/seeds reveal that the embryo size reduction is due to a decrease in cell number. In these embryos, cell division cycle progression is delayed at the G2/M transition. These phenotypes are similar to that in NtKRP-silenced embryos/seeds, indicating that NtKRP and NtRPL17 function as partners in the same regulatory pathway during seed development and specifically regulate cell cycle progression to control embryo/seed size. This work reveals that NtRPL17, as a widely distributed ribosomal protein, plays a critical role in seed development and provides a new clue in the regulation of seed size. Confirmation of the interaction between NtKRP and NtRPL17 and their co-function in the control of the cell cycle also suggests that the mechanism might be conserved in both plants and animals.
Collapse
Affiliation(s)
- Shujuan Tian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jingjing Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuan Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fen Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zhaodan Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
31
|
Xie X, Guo P, Yu H, Wang Y, Chen G. Ribosomal proteins: insight into molecular roles and functions in hepatocellular carcinoma. Oncogene 2017; 37:277-285. [PMID: 28945227 DOI: 10.1038/onc.2017.343] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/21/2017] [Accepted: 08/14/2017] [Indexed: 02/07/2023]
Abstract
Ribosomes, which are important sites for the synthesis of proteins related to expression and transmission of genetic information in humans, have a complex structure and diverse functions. They consist of a variety of ribosomal proteins (RPs), ribosomal RNAs (rRNAs) and small nucleolar RNAs. Owing to the involvement of ribosomes in many important biological processes of cells, their major components, rRNAs and RPs, have an important role in human diseases, including the initiation and evolvement of malignancies. However, the main mechanisms underlying the involvement of ribosomes in cancer remain unclear. This review describes the crucial role of ribosomes in various common malignant tumors; in particular, it examines the effects of RPs, including S6, the receptor for activated C-kinase and RPS15A, on the development and progression of hepatocellular carcinoma.
Collapse
Affiliation(s)
- X Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - P Guo
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - H Yu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Y Wang
- Research Center of Evidence-Based Medicine and Clinical Epidemiology, School of Public Health and Management, Wenzhou Medical University, Wenzhou, China
| | - G Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
32
|
Transcriptional signature of lymphoblastoid cell lines of BRCA1, BRCA2 and non- BRCA1/2 high risk breast cancer families. Oncotarget 2017; 8:78691-78712. [PMID: 29108258 PMCID: PMC5667991 DOI: 10.18632/oncotarget.20219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 07/17/2017] [Indexed: 12/20/2022] Open
Abstract
Approximately 25% of hereditary breast cancer cases are associated with a strong familial history which can be explained by mutations in BRCA1 or BRCA2 and other lower penetrance genes. The remaining high-risk families could be classified as BRCAX (non-BRCA1/2) families. Gene expression involving alternative splicing represents a well-known mechanism regulating the expression of multiple transcripts, which could be involved in cancer development. Thus using RNA-seq methodology, the analysis of transcriptome was undertaken to potentially reveal transcripts implicated in breast cancer susceptibility and development. RNA was extracted from immortalized lymphoblastoid cell lines of 117 women (affected and unaffected) coming from BRCA1, BRCA2 and BRCAX families. Anova analysis revealed a total of 95 transcripts corresponding to 85 different genes differentially expressed (Bonferroni corrected p-value <0.01) between those groups. Hierarchical clustering allowed distinctive subgrouping of BRCA1/2 subgroups from BRCAX individuals. We found 67 transcripts, which could discriminate BRCAX from BRCA1/BRCA2 individuals while 28 transcripts discriminate affected from unaffected BRCAX individuals. To our knowledge, this represents the first study identifying transcripts differentially expressed in lymphoblastoid cell lines from major classes of mutation-related breast cancer subgroups, namely BRCA1, BRCA2 and BRCAX. Moreover, some transcripts could discriminate affected from unaffected BRCAX individuals, which could represent potential therapeutic targets for breast cancer treatment.
Collapse
|
33
|
Highly expressed ribosomal protein L34 indicates poor prognosis in osteosarcoma and its knockdown suppresses osteosarcoma proliferation probably through translational control. Sci Rep 2016; 6:37690. [PMID: 27883047 PMCID: PMC5121591 DOI: 10.1038/srep37690] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/01/2016] [Indexed: 01/25/2023] Open
Abstract
Osteosarcoma has devastating health implications on children and adolescents. However, due to its low incidence and high tumor heterogeneity, it is hard to achieve any further improvements in therapy and overall survival. Ribosomal protein L34 (RPL34) has been increasingly recognized to promote the proliferation of malignant cells, but its role in osteosarcoma has not been investigated. In this study, real-time quantitative PCR (RT-qPCR) and immunohistochemistry revealed that RPL34 was highly expressed in osteosarcoma tissues when compared to adjacent tissues and normal bone tissues. Survival analysis showed that high expression of RPL34 predicted a poor prognosis for osteosarcoma patients. Knockdown of RPL34 in Saos-2 cells via lentivirus-mediated small interfering RNA (siRNA) significantly inhibited cell proliferation, induced cell apoptosis and G2/M phase arrest. Moreover, screening of transcription factors using University of California Santa Cruz (UCSC) Genome Browser, protein-protein interaction (PPI) network analysis, Gene Ontology (GO) and pathway enrichment analysis revealed that MYC participates in the transcriptional regulation of RPL34, which interacts with the subunits of eukaryotic translation initiation factor 3 (eIF3) and probably involves the translational control of growth-promoting proteins. Our findings suggest that RPL34 plays an important role in the proliferation of osteosarcoma cells.
Collapse
|
34
|
Xu X, Xiong X, Sun Y. The role of ribosomal proteins in the regulation of cell proliferation, tumorigenesis, and genomic integrity. SCIENCE CHINA-LIFE SCIENCES 2016; 59:656-72. [DOI: 10.1007/s11427-016-0018-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/06/2016] [Indexed: 01/29/2023]
|
35
|
Zhang Y, Zhang G, Li X, Li B, Zhang X. The effect of ribosomal protein S15a in lung adenocarcinoma. PeerJ 2016; 4:e1792. [PMID: 26989627 PMCID: PMC4793315 DOI: 10.7717/peerj.1792] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 02/20/2016] [Indexed: 11/20/2022] Open
Abstract
Background: RPS15A (Ribosomal Protein S15A) promotes mRNA/ribosome interactions in translation. It is critical for the process of eukaryotic protein biosynthesis. Recently, aberrantly expressed RPS15A was found in the hepatitis virus and in malignant tumors. However, the role of RPS15A has not been fully revealed on the development of lung cancer. Method: In this study, a Tissue Microarray (TMA) of primary lung adenocarcinoma tissue specimens was carried out. Furthermore, to further investigate the function of RPS15A in lung cancer, RPS15A-specific short hairpin RNA (shRNA) expressing lentivirus (Lv-shRPS15A) was constructed and used to infect H1299 and A549 cells. Result: Our data showed that RPS15A expression was increased in tumor tissues. Furthermore, the knockdown of RSP15A inhibited cancer cell growth and induced apoptosis in the cancer cells. Gene expression profile microarray also revealed that the P53 signaling pathway was activated in Lv-shRPS15A-infected cancer cells. Conclusion: Taken together, our results demonstrate that RPS15A is a novel oncogene in non-small cell lung cancer and may be a potential therapeutic target in lung cancer.
Collapse
Affiliation(s)
- Yifan Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University , Changchun, Jilin , China
| | - Guangxin Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University , Changchun, Jilin , China
| | - Xin Li
- Jilin provincial key laboratory on molecular and chemical genetic, The Second Hospital of Jilin University , Changchun , China
| | - Bingjin Li
- Jilin provincial key laboratory on molecular and chemical genetic, The Second Hospital of Jilin University , Changchun , China
| | - Xingyi Zhang
- Department of Thoracic Surgery, The Second Hospital of Jilin University , Changchun, Jilin , China
| |
Collapse
|
36
|
Over-expressed RPL34 promotes malignant proliferation of non-small cell lung cancer cells. Gene 2016; 576:421-8. [DOI: 10.1016/j.gene.2015.10.053] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/21/2015] [Indexed: 01/18/2023]
|
37
|
Recursive Random Lasso (RRLasso) for Identifying Anti-Cancer Drug Targets. PLoS One 2015; 10:e0141869. [PMID: 26544691 PMCID: PMC4636151 DOI: 10.1371/journal.pone.0141869] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023] Open
Abstract
Uncovering driver genes is crucial for understanding heterogeneity in cancer. L1-type regularization approaches have been widely used for uncovering cancer driver genes based on genome-scale data. Although the existing methods have been widely applied in the field of bioinformatics, they possess several drawbacks: subset size limitations, erroneous estimation results, multicollinearity, and heavy time consumption. We introduce a novel statistical strategy, called a Recursive Random Lasso (RRLasso), for high dimensional genomic data analysis and investigation of driver genes. For time-effective analysis, we consider a recursive bootstrap procedure in line with the random lasso. Furthermore, we introduce a parametric statistical test for driver gene selection based on bootstrap regression modeling results. The proposed RRLasso is not only rapid but performs well for high dimensional genomic data analysis. Monte Carlo simulations and analysis of the "Sanger Genomics of Drug Sensitivity in Cancer dataset from the Cancer Genome Project" show that the proposed RRLasso is an effective tool for high dimensional genomic data analysis. The proposed methods provide reliable and biologically relevant results for cancer driver gene selection.
Collapse
|
38
|
Ma J, Zhang Z, Wang J. Small nuclear ribonucleoprotein associated polypeptide N accelerates cell proliferation in pancreatic adenocarcinoma. Mol Med Rep 2015; 12:6060-4. [PMID: 26261020 DOI: 10.3892/mmr.2015.4208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 04/10/2015] [Indexed: 11/06/2022] Open
Abstract
The spliceosome, the large RNA‑protein molecular complex, is crucial for pre‑mRNA splicing. Several antitumor drugs have been found to tightly bind to the components of the spliceosome and mutations in the spliceosome have been reported in several types of cancer. However, the involvement of the spliceosome in pancreatic adenocarcinoma remains unclear. In the present study, small nuclear ribonucleoprotein associated polypeptide N (SNRPN), a key constituent of spliceosomes, was disrupted in BxPC‑3 pancreatic adenocarcinoma cells using lentivirus‑mediated RNA interference (RNAi). It was found that knockdown of SNRPN reduced the proliferation ability of BxPC‑3 cells, as determined by an MTT assay. Furthermore, cell colony formation was impaired in SNRPN depleted adenocarcinoma cells and cell cycle analysis showed that depletion of SNRPN led to S phase cell cycle arrest and apoptosis. These results suggest that SNRPN is a key player in pancreatic adenocarcinoma cell growth, and targeted loss of SNRPN may be a potential therapeutic method for pancreatic cancer.
Collapse
Affiliation(s)
- Jin Ma
- Department of Gastroenterology, The Affiliated Ruijin Hospital Lu Wan Branch of Medical College, Shanghai Jiao Tong University, Shanghai 200020, P.R. China
| | - Zhuo Zhang
- Department of General Surgery, The Affiliated Ruijin Hospital of Medical College, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| | - Jiancheng Wang
- Department of General Surgery, The Affiliated Ruijin Hospital of Medical College, Shanghai Jiao Tong University, Shanghai 200025, P.R. China
| |
Collapse
|
39
|
Muro S, Miyake Y, Kato H, Tsutsumi K, Yamamoto K. Serum anti-60S ribosomal protein L29 antibody as a novel prognostic marker for unresectable pancreatic cancer. Digestion 2015; 91:164-73. [PMID: 25765324 DOI: 10.1159/000371545] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 12/12/2014] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Recently, we found the presence of anti-60S ribosomal protein L29 antibody (anti-RPL29) in human sera, inhibiting the proliferation of pancreatic cancer cells in vitro. We aimed to estimate the association of serum anti- RPL29 levels with clinical features in patients affected with unresectable pancreatic cancer. METHODS We retrospectively reviewed 105 patients with unresectable pancreatic cancer. Serum anti-RPL29 levels were measured by the indirect enzyme-linked immunosorbent assay. The cut-off was represented by the 95th percentile in 62 healthy volunteers. RESULTS Median survival time (MST) was 11.1 months in 49 patients showing serum anti-RPL29 level >cut-off and 7.4 months in 56 patients showing serum anti-RPL29 level ≤ cutoff. In locally advanced disease, MST was 17.9 months in 22 patients showing serum anti-RPL29 level >cut-off and 10.0 months in 19 patients showing serum anti-RPL29 level ≤ cutoff. In metastatic disease, MST was 8.7 months in 27 patients showing serum anti-RPL29 level >cut-off and 5.9 months in 37 patients showing serum anti-RPL29 level ≤ cut-off. In the multivariate Cox proportional hazard model, serum anti- RPL29 level >cut-off, abdominal or back pain, performance status, and metastatic disease were identified as independent prognostic factors. CONCLUSION Serum anti-RPL29 levels may be a novel candidate for a prognostic marker for unresectable pancreatic cancer.
Collapse
|
40
|
Jangravi Z, Tabar MS, Mirzaei M, Parsamatin P, Vakilian H, Alikhani M, Shabani M, Haynes PA, Goodchild AK, Gourabi H, Baharvand H, Salekdeh GH. Two Splice Variants of Y Chromosome-Located Lysine-Specific Demethylase 5D Have Distinct Function in Prostate Cancer Cell Line (DU-145). J Proteome Res 2015. [PMID: 26215926 DOI: 10.1021/acs.jproteome.5b00333] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
One of the major objectives of the Human Y Chromosome Proteome Project is to characterize sets of proteins encoded from the human Y chromosome. Lysine (K)-specific demethylase 5D (KDM5D) is located on the AZFb region of the Y chromosome and encodes a JmjC-domain-containing protein. KDM5D, the least well-documented member of the KDM5 family, is capable of demethylating di- and trimethyl H3K4. In this study, we detected two novel splice variants of KDM5D with lengths of 2650bp and 2400bp that correspond to the 100 and 80 kDa proteins in the human prostate cancer cell line, DU-145. The knockdown of two variants using the short interfering RNA (siRNA) approach increased the growth rate of prostate cancer cells and reduced cell apoptosis. To explore the proteome pattern of the cells after KDM5D downregulation, we applied a shotgun label-free quantitative proteomics approach. Of 820 proteins present in all four replicates of two treatments, the abundance of 209 proteins changed significantly in response to KDM5D suppression. Of these, there were 102 proteins observed to be less abundant and 107 more abundant in KDM5D knockdown cells compared with control cells. The results revealed that KDM5D knockdown altered the abundance of proteins involved in RNA processing, protein synthesis, apoptosis, the cell cycle, and growth and proliferation. In conjunction, these results provided new insights into the function of KDM5D and its splice variants. The proteomics data are available at PRIDE with ProteomeXchange identifier PXD000416.
Collapse
Affiliation(s)
- Zohreh Jangravi
- Molecular Systems Biology Department at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran.,Biochemistry Department, Iran University of Medical Sciences , Tehran, Iran
| | - Mehdi Sharif Tabar
- Molecular Systems Biology Department at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Mehdi Mirzaei
- The Australian School of Advanced Medicine, Faculty of Human Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Pouria Parsamatin
- Molecular Systems Biology Department at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Haghighat Vakilian
- Molecular Systems Biology Department at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Mehdi Alikhani
- Molecular Systems Biology Department at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Mohammad Shabani
- Biochemistry Department, Iran University of Medical Sciences , Tehran, Iran
| | - Paul A Haynes
- Department of Chemistry and Biomolecular Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Ann K Goodchild
- The Australian School of Advanced Medicine, Faculty of Human Sciences, Macquarie University , Sydney, New South Wales 2109, Australia
| | - Hamid Gourabi
- Department of Genetics at Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR , Tehran, Iran
| | - Hossein Baharvand
- Department of Developmental Biology, University of Science and Culture, ACECR , Tehran, Iran.,Department of Stem Cells and Developmental Biology at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran
| | - Ghasem Hosseini Salekdeh
- Molecular Systems Biology Department at Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR , Tehran, Iran.,Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran , Karaj, Iran
| |
Collapse
|
41
|
de Las Heras-Rubio A, Perucho L, Paciucci R, Vilardell J, LLeonart ME. Ribosomal proteins as novel players in tumorigenesis. Cancer Metastasis Rev 2015; 33:115-41. [PMID: 24375388 DOI: 10.1007/s10555-013-9460-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ribosome biogenesis is the most demanding energetic and metabolic expenditure of the cell. The nucleolus, a nuclear compartment, coordinates rRNA transcription, maturation, and assembly into ribosome subunits. The transcription process is highly coordinated with ribosome biogenesis. In this context, ribosomal proteins (RPs) play a crucial role. In the last decade, an increasing number of studies have associated RPs with extraribosomal functions related to proliferation. Importantly, the expression of RPs appears to be deregulated in several human disorders due, at least in part, to genetic mutations. Although the deregulation of RPs in human malignancies is commonly observed, a more complex mechanism is believed to be involved, favoring the tumorigenic process, its progression and metastasis. This review explores the roles of the most frequently mutated oncogenes and tumor suppressor genes in human cancer that modulate ribosome biogenesis, including their interaction with RPs. In this regard, we propose a new focus for novel therapies.
Collapse
Affiliation(s)
- A de Las Heras-Rubio
- Oncology and Pathology Group, Institut de Recerca Hospital Vall d'Hebron, Passeig Vall d'Hebron 119-129, 08035, Barcelona, Spain
| | | | | | | | | |
Collapse
|
42
|
Zhang W, Zeng T, Liu X, Chen L. Diagnosing phenotypes of single-sample individuals by edge biomarkers. J Mol Cell Biol 2015; 7:231-41. [DOI: 10.1093/jmcb/mjv025] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 01/27/2015] [Indexed: 01/31/2023] Open
|
43
|
Wang W, Nag S, Zhang X, Wang MH, Wang H, Zhou J, Zhang R. Ribosomal proteins and human diseases: pathogenesis, molecular mechanisms, and therapeutic implications. Med Res Rev 2014; 35:225-85. [PMID: 25164622 DOI: 10.1002/med.21327] [Citation(s) in RCA: 156] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ribosomes are essential components of the protein synthesis machinery. The process of ribosome biogenesis is well organized and tightly regulated. Recent studies have shown that ribosomal proteins (RPs) have extraribosomal functions that are involved in cell proliferation, differentiation, apoptosis, DNA repair, and other cellular processes. The dysfunction of RPs has been linked to the development and progression of hematological, metabolic, and cardiovascular diseases and cancer. Perturbation of ribosome biogenesis results in ribosomal stress, which triggers activation of the p53 signaling pathway through RPs-MDM2 interactions, resulting in p53-dependent cell cycle arrest and apoptosis. RPs also regulate cellular functions through p53-independent mechanisms. We herein review the recent advances in several forefronts of RP research, including the understanding of their biological features and roles in regulating cellular functions, maintaining cell homeostasis, and their involvement in the pathogenesis of human diseases. We also highlight the translational potential of this research for the identification of molecular biomarkers, and in the discovery and development of novel treatments for human diseases.
Collapse
Affiliation(s)
- Wei Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106; Cancer Biology Center, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, Texas, 79106
| | | | | | | | | | | | | |
Collapse
|
44
|
Heterogeneity research in muscle-invasive bladder cancer based on differential protein expression analysis. Med Oncol 2014; 31:21. [DOI: 10.1007/s12032-014-0021-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 05/01/2014] [Indexed: 12/15/2022]
|
45
|
Kardos GR, Dai MS, Robertson GP. Growth inhibitory effects of large subunit ribosomal proteins in melanoma. Pigment Cell Melanoma Res 2014; 27:801-12. [PMID: 24807543 DOI: 10.1111/pcmr.12259] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 04/29/2014] [Indexed: 12/26/2022]
Abstract
Ribosome biogenesis can modulate protein synthesis, a process heavily relied upon for cancer cell proliferation. In this study, involvement of large subunit ribosomal proteins (RPLs) in melanoma has been dissected and RPLs categorized based on modulation of cell proliferation and therapeutic targeting potential. Based on these results, two categories of RPLs were identified: the first causing negligible effects on cell viability, p53 expression, and protein translation, while the second category decreased cell viability and inhibited protein synthesis mediated with or without p53 protein stabilization. RPL13 represents the second category, where siRNA-mediated targeting inhibited tumor development through decreased cellular proliferation. Mechanistically, decreased RPL13 levels increased p53 stability mediated by RPL5 and RPL11 binding to and preventing MDM2 from targeting p53 for degradation. The consequence was p53-dependent cell cycle arrest and decreased protein translation. Thus, targeting certain category 2 RPL proteins can inhibit melanoma tumor development mediated through the MDM2-p53 pathway.
Collapse
Affiliation(s)
- Gregory R Kardos
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, PA, USA; The Melanoma Center, The Pennsylvania State University College of Medicine, Hershey, PA, USA; The Melanoma Therapeutics Program, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | |
Collapse
|
46
|
Li C, Chen D, Luo M, Ge M, Zhu J. Knockdown of ribosomal protein L39 by RNA interference inhibits the growth of human pancreatic cancer cells in vitro and in vivo. Biotechnol J 2014; 9:652-63. [PMID: 24799381 DOI: 10.1002/biot.201300321] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/02/2014] [Accepted: 03/14/2014] [Indexed: 12/19/2022]
Abstract
Pancreatic cancer remains a major unsolved health problem lacking a potent therapeutic option. Our previous studies showed that the ribosomal protein L39 (RPL39) gene was up-regulated after long-term silencing of oncogenic KRAS in pancreatic cancer PANC-1 cells, which indicated that RPL39 may be important for pancreatic cancer development and survival. In the current study, small interfering RNA (siRNA) targeting of the RPL39 gene was performed to determine the effects of the RPL39 gene on growth of pancreatic cancer PANC-1 and BxPC-3 cells in vitro and in vivo. Results from in vitro experiments showed that knockdown of RPL39 expression with RPL39-siRNA suppressed cell proliferation and specifically enhanced cell apoptosis significantly in both PANC-1 and BxPC-3 cells. The increase of caspase-8 activities and the loss of mitochondrial membrane potential after RPL39 silencing indicated that the RPL39 gene may be involved in caspase-8-related mitochondrial apoptosis. Further, treatment with the RPL39-siRNA inhibited the growth of a human pancreatic cancer xenograft in BALB/c nude mice, accompanied by a decreased expression of RPL39. In the xenograft tumors with injection of RPL39-siRNA, the expressions of Ki-67 and CD31 were significantly down-regulated, and apoptosis was markedly induced. Our findings suggested that siRNA against the RPL39 gene may be of value for gene therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Chaodong Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China; Engineering Research Center for Cell Engineering and Therapeutic Antibody, SJTU, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
47
|
Wang Z, Hou J, Lu L, Qi Z, Sun J, Gao W, Meng J, Wang Y, Sun H, Gu H, Xin Y, Guo X, Yang G. Small ribosomal protein subunit S7 suppresses ovarian tumorigenesis through regulation of the PI3K/AKT and MAPK pathways. PLoS One 2013; 8:e79117. [PMID: 24244431 PMCID: PMC3823983 DOI: 10.1371/journal.pone.0079117] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 09/18/2013] [Indexed: 11/19/2022] Open
Abstract
Small ribosomal protein subunit S7 (RPS7) has been reported to be associated with various malignancies, but the role of RPS7 in ovarian cancer remains unclear. In this study, we found that silencing of RPS7 by a specific shRNA promoted ovarian cancer cell proliferation, accelerated cell cycle progression, and slightly reduced cell apoptosis and response to cisplatin treatment. Knockdown of RPS7 resulted in increased expression of P85α, P110α, and AKT2. Although the basal levels of ERK1/2, MEK1/2, and P38 were inconsistently altered in ovarian cancer cells, the phosphorylated forms of MEK1/2 (Ser217/221), ERK1/2 (Thr202/Tyr204), JNK1/2 (Thr183/Tyr185), and P38 (Thr180/Tyr182) were consistently reduced after RPS7 was silenced. Both the in vitro anchorage-independent colony formation and in vivo animal tumor formation capability of cells were enhanced after RPS7 was depleted. We also showed that silencing of RPS7 enhanced ovarian cancer cell migration and invasion. In sum, our results suggest that RPS7 suppresses ovarian tumorigenesis and metastasis through PI3K/AKT and MAPK signal pathways. Thus, RPS7 may be used as a potential marker for diagnosis and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Ziliang Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jing Hou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lili Lu
- Life and Environment Science College, Shanghai Normal University, Shanghai, China
| | - Zihao Qi
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianmin Sun
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen Gao
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jiao Meng
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Huizhen Sun
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hongyu Gu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuhu Xin
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaomao Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- * (XMG); (GY)
| | - Gong Yang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- * (XMG); (GY)
| |
Collapse
|
48
|
Kuersten S, Radek A, Vogel C, Penalva LOF. Translation regulation gets its 'omics' moment. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:617-30. [PMID: 23677826 DOI: 10.1002/wrna.1173] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 12/22/2022]
Abstract
The fate of cellular RNA is largely determined by complex networks of protein-RNA interactions through ribonucleoprotein (RNP) complexes. Despite their relatively short half-life, transcripts associate with many different proteins that process, modify, translate, and degrade the RNA. Following biogenesis some mRNPs are immediately directed to translation and produce proteins, but many are diverted and regulated by processes including miRNA-mediated mechanisms, transport and localization, as well as turnover. Because of this complex interplay estimates of steady-state expression by methods such as RNAseq alone cannot capture critical aspects of cellular fate, environmental response, tumorigenesis, or gene expression regulation. More selective and integrative tools are needed to measure protein-RNA complexes and the regulatory processes involved. One focus area is measurements of the transcriptome associated with ribosomes and translation. These so-called polysome or ribosome profiling techniques can evaluate translation efficiency as well as the interplay between translation initiation, elongation, and termination-subject areas not well understood at a systems biology level. Ribosome profiling is a highly promising technique that provides mRNA positional information of ribosome occupancy, potentially bridging the gap between gene expression (i.e., RNAseq and microarray analysis) and protein quantification (i.e., mass spectrometry). In combination with methods such as RNA immunoprecipitation, miRNA profiling, or proteomics, we obtain a fresh view of global post-transcriptional and translational gene regulation. In addition, these techniques also provide new insight into new regulatory elements, such as alternative open reading frames, and translation regulation under different conditions.
Collapse
|
49
|
Li CD, Ge M, Luo MY, Chen DJ. SiRNA-mediated silencing of the RPL31 gene inhibits proliferation of human pancreatic cancer PANC-1 cells. Shijie Huaren Xiaohua Zazhi 2012; 20:2895-2901. [DOI: 10.11569/wcjd.v20.i30.2895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the impact of small interfering RNA (siRNA)-mediated RPL31 gene silencing on biological behavior of human pancreatic cancer PANC-1 cells, and to explore the feasibility of using the human RPL31 gene as a therapeutic target for pancreatic cancer.
METHODS: Three RPL31-specific siRNAs were designed and transfected into PANC-1 cells using LipofectamineTM 2000. Blank control and negative control groups were run at the same time. After PANC-1 cells were transfected with RPL31-specific siRNA, the levels of RPL31 mRNA and protein were detected by quantitative real-time PCR (qRT-PCR) and Western blot, respectively. Cell proliferation was detected by MTT assay. Cell cycle progression was determined by flow cytometry. Cell migration was determined by Transwell chamber assay. Vascular endothelial growth factor (VEGF) expression in cells was detected by ELISA.
RESULTS: All three RPL31-specific siRNAs could silence the expression of RPL31 at the mRNA and protein levels 48 hours after transfection. MTT assay showed that cell proliferation was significantly inhibited. Flow cytometry analysis revealed that PANC-1 cells transfected with RPL31 siRNA had a more significant cell cycle arrest (G0/G1 phase: 59.85% ± 5.47% vs 45.71% ± 3.44%; S phase: 28.63% ± 4.52% vs 45.13% ± 2.64%, both P < 0.05). RPL31 knockdown significantly suppressed VEGF expression (1563.45 ± 24.95 pg/106 cells/24 h vs 2804.6 ± 40.46 pg/106 cells/24 h, 2791.5 ± 44.77 pg/106 cells/24 h, both P < 0.05) and the migration of PANC-1 cells (178.6 ± 30.3 vs 470.5 ± 22.8, 474.2 ± 20.4, both P < 0.05) compared to the blank control and negative control groups.
CONCLUSION: Transfection of RPL31-specific siRNAs could effectively inhibit RPL31 expression, significantly suppress cell proliferation, and reduce cell migration and VEGF expression. RPL31 might serve as a target for gene therapy of pancreatic cancer.
Collapse
|