1
|
Evergren E, Mills IG, Kennedy G. Adaptations of membrane trafficking in cancer and tumorigenesis. J Cell Sci 2024; 137:jcs260943. [PMID: 38770683 PMCID: PMC11166456 DOI: 10.1242/jcs.260943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Membrane trafficking, a fundamental cellular process encompassing the transport of molecules to specific organelles, endocytosis at the plasma membrane and protein secretion, is crucial for cellular homeostasis and signalling. Cancer cells adapt membrane trafficking to enhance their survival and metabolism, and understanding these adaptations is vital for improving patient responses to therapy and identifying therapeutic targets. In this Review, we provide a concise overview of major membrane trafficking pathways and detail adaptations in these pathways, including COPII-dependent endoplasmic reticulum (ER)-to-Golgi vesicle trafficking, COPI-dependent retrograde Golgi-to-ER trafficking and endocytosis, that have been found in cancer. We explore how these adaptations confer growth advantages or resistance to cell death and conclude by discussing the potential for utilising this knowledge in developing new treatment strategies and overcoming drug resistance for cancer patients.
Collapse
Affiliation(s)
- Emma Evergren
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ian G. Mills
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Grace Kennedy
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| |
Collapse
|
2
|
Kundu S, Jaiswal M, Babu Mullapudi V, Guo J, Kamat M, Basso KB, Guo Z. Investigation of Glycosylphosphatidylinositol (GPI)-Plasma Membrane Interaction in Live Cells and the Influence of GPI Glycan Structure on the Interaction. Chemistry 2024; 30:e202303047. [PMID: 37966101 PMCID: PMC10922586 DOI: 10.1002/chem.202303047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
Glycosylphosphatidylinositols (GPIs) need to interact with other components in the cell membrane to transduce transmembrane signals. A bifunctional GPI probe was employed for photoaffinity-based proximity labelling and identification of GPI-interacting proteins in the cell membrane. This probe contained the entire core structure of GPIs and was functionalized with photoreactive diazirine and clickable alkyne to facilitate its crosslinking with proteins and attachment of an affinity tag. It was disclosed that this probe was more selective than our previously reported probe containing only a part structure of the GPI core for cell membrane incorporation and an improved probe for studying GPI-cell membrane interaction. Eighty-eight unique membrane proteins, many of which are related to GPIs/GPI-anchored proteins, were identified utilizing this probe. The proteomics dataset is a valuable resource for further analyses and data mining to find new GPI-related proteins and signalling pathways. A comparison of these results with those of our previous probe provided direct evidence for the profound impact of GPI glycan structure on its interaction with the cell membrane.
Collapse
Affiliation(s)
- Sayan Kundu
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Mohit Jaiswal
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | | | - Jiatong Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Manasi Kamat
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- UF Health Cancer Centre, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
3
|
Feng Z, Shen Y, Fan G, Li T, Wu C, Ye Y. Unravelling the Proteomic Profiles of Bovine Colostrum and Mature Milk Derived from the First and Second Lactations. Foods 2023; 12:4056. [PMID: 38002115 PMCID: PMC10670645 DOI: 10.3390/foods12224056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Bovine colostrum (BC) and mature bovine milk are highly nutritious. In addition to being consumed by adults, these dairy products are also used as protein ingredients for infant formula. However, the differences in the nutritional composition of BC and mature milk, especially regarding proteins present in trace amounts, have not been comprehensively studied. Furthermore, the distinct proteomic profiles of mature milk derived from the first lactation (Milk-L1) and the second lactation (Milk-L2) are not fully understood. To address these gaps, this study aims to uncover the subtle differences in protein compositions of BC, Milk-L1, and Milk-L2 by proteomics. Compared with BC, anti-microbial proteins β-defensins and bovine hemoglobin subunit were up-regulated in Milk-L1, while Milk-L2 exhibited higher levels of enteric β-defensin, sterol regulatory element binding transcription factor 1, sydecan-2, and cysteine-rich secretory protein 2. Additionally, immune proteins such as vacuolar protein sorting-associated protein 4B, polymeric immunoglobulin receptor (PIGR), and Ig-like domain-containing protein were found at higher levels in Milk-L1 compared with Milk-L2. The study provides a comprehensive understanding of the distinct proteomic profiles of BC, Milk-L1, and Milk-L2, which contributes to the development of protein ingredients for infant formula.
Collapse
Affiliation(s)
- Zhen Feng
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (Z.F.); (G.F.); (T.L.)
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yan Shen
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (Z.F.); (G.F.); (T.L.)
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (Z.F.); (G.F.); (T.L.)
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China; (Z.F.); (G.F.); (T.L.)
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Yuhui Ye
- Jiangsu Key Laboratory for Food Quality and Safety—State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| |
Collapse
|
4
|
Huang LJ, Zhan ST, Pan YQ, Bao W, Yang Y. The role of Vps4 in cancer development. Front Oncol 2023; 13:1203359. [PMID: 37404768 PMCID: PMC10315677 DOI: 10.3389/fonc.2023.1203359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
VPS4 series proteins play a crucial role in the endosomal sorting complexes required for the transport (ESCRT) pathway, which is responsible for sorting and trafficking cellular proteins and is involved in various cellular processes, including cytokinesis, membrane repair, and viral budding. VPS4 proteins are ATPases that mediate the final steps of membrane fission and protein sorting as part of the ESCRT machinery. They disassemble ESCRT-III filaments, which are vital for forming multivesicular bodies (MVBs) and the release of intraluminal vesicles (ILVs), ultimately leading to the sorting and degradation of various cellular proteins, including those involved in cancer development and progression. Recent studies have shown a potential relationship between VPS4 series proteins and cancer. Evidence suggests that these proteins may have crucial roles in cancer development and progression. Several experiments have explored the association between VPS4 and different types of cancer, including gastrointestinal and reproductive system tumors, providing insight into the underlying mechanisms. Understanding the structure and function of VPS4 series proteins is critical in assessing their potential role in cancer. The evidence supporting the involvement of VPS4 series proteins in cancer provides a promising avenue for future research and therapeutic development. However, further researches are necessary to fully understand the mechanisms underlying the relationship between VPS4 series proteins and cancer and to develop effective strategies for targeting these proteins in cancer therapy. This article aims to review the structures and functions of VPS4 series proteins and the previous experiments to analyze the relationship between VPS4 series proteins and cancer.
Collapse
Affiliation(s)
- Li Juan Huang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Shi Tong Zhan
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Yu Qin Pan
- Surgical Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Wei Bao
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| | - Ye Yang
- Obstetrics and Gynecology Department, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Hongkou, Shanghai, China
| |
Collapse
|
5
|
Gai Y, Qian L, Jiang S, Li J, Zhang X, Yang X, Pan H, Liao Y, Wang H, Huang S, Zhang S, Nie H, Ma M, Li H. Vacuolar protein sorting 35 (VPS35) acts as a tumor promoter via facilitating cell cycle progression in pancreatic ductal adenocarcinoma. Funct Integr Genomics 2023; 23:90. [PMID: 36933061 DOI: 10.1007/s10142-023-01020-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is insidious and highly malignant with extremely poor prognosis and drug resistance to current chemotherapies. Therefore, there is a critical need to investigate the molecular mechanism underlying PDAC progression to develop promising diagnostic and therapeutic interventions. In parallel, vacuolar protein sorting (VPS) proteins, involved in the sorting, transportation, and localization of membrane proteins, have gradually attracted the attention of researchers in the development of cancers. Although VPS35 has been reported to promote carcinoma progression, the specific molecular mechanism is still unclear. Here, we determined the impact of VPS35 on the tumorigenesis of PDAC and explored the underlying molecular mechanism. We performed a pan-cancer analysis of 46 VPS genes using RNAseq data from GTEx (control) and TCGA (tumor) and predicted potential functions of VPS35 in PDAC by enrichment analysis. Furthermore, cell cloning experiments, gene knockout, cell cycle analysis, immunohistochemistry, and other molecular and biochemical experiments were used to validate the function of VPS35. Consequently, VPS35 was found overexpressed in multiple cancers and correlated with the poor prognosis of PDAC. Meanwhile, we verified that VPS35 could modulate the cell cycle and promote tumor cell growth in PDAC. Collectively, we provide solid evidence that VPS35 facilitates the cell cycle progression as a critical novel target in PDAC clinical therapy.
Collapse
Affiliation(s)
- Yanzhi Gai
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Liheng Qian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shuheng Jiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jun Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xueli Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaomei Yang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Hong Pan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yingna Liao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Huiling Wang
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Shan Huang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Shan Zhang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Huizhen Nie
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| | - Mingze Ma
- Department of Infectious Diseases, Shandong Provincial Hospital, Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, People's Republic of China.
| | - Hui Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
6
|
Chen D, He F, Lu T, Huang J, Li M, Cai D, Huang C, Chen D, Xiong F. VPS4B deficiency causes early embryonic lethality and induces signal transduction disorders of cell endocytosis. Genesis 2021; 59:e23415. [PMID: 33682352 DOI: 10.1002/dvg.23415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 11/08/2022]
Abstract
VPS4B (vacuolar protein sorting 4B), a member of the ATPase associated with diverse cellular activities (AAA) protein family, is a component of the endosomal sorting complexes required for transport machinery which regulates the internalization and lysosomal degradation of membrane proteins. We previously reported that VPS4B is one of the pathogenic genes related to dentin dysplasia type I, although its function was largely unknown. To investigate the role of VPS4B in tooth development, we deleted the Vps4b gene in mice. We found that heterozygous knockout mice (Vps4b+/- ) developed normally and were fertile. However, homozygous deletion of the Vps4b gene resulted in early embryonic lethality of Vps4b-/- mice at approximately embryonic day 9.5 (E9.5). To investigate the underlying molecular mechanisms, we examined the molecular functions of VPS4B in vivo and in vitro. Cell experiments showed that VPS4B influenced the proliferation, apoptosis, and cell cycle of transfected human neuroblastoma cells (IMR-32 cells) with over-expression or knockdown of VPS4B. Moreover, qRT-PCR detection showed that the mRNA expression levels of apoptosis-, cell cycle-, and endocytosis-related genes was significantly down or up-regulated in RNA interference-mediated knockdown of VPS4B in IMR-32 cells and Vps4b+/- E12.5 embryos. We accordingly speculated that signal transduction disorders of cell endocytosis are a contributing factor to the prenatal lethality of Vps4b-/- mice.
Collapse
Affiliation(s)
- Danna Chen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fei He
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ting Lu
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jin Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Meiyi Li
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Decheng Cai
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Cheng Huang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Dong Chen
- Department of Stomatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fu Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Single Cell Technology and Application in Guangdong, Guangzhou, China.,Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, China
| |
Collapse
|
7
|
Moon CI, Tompkins W, Wang Y, Godec A, Zhang X, Pipkorn P, Miller CA, Dehner C, Dahiya S, Hirbe AC. Unmasking Intra-tumoral Heterogeneity and Clonal Evolution in NF1-MPNST. Genes (Basel) 2020; 11:genes11050499. [PMID: 32369930 PMCID: PMC7291009 DOI: 10.3390/genes11050499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 12/15/2022] Open
Abstract
Sarcomas are highly aggressive cancers that have a high propensity for metastasis, fail to respond to conventional therapies, and carry a poor 5-year survival rate. This is particularly true for patients with neurofibromatosis type 1 (NF1), in which 8%–13% of affected individuals will develop a malignant peripheral nerve sheath tumor (MPNST). Despite continued research, no effective therapies have emerged from recent clinical trials based on preclinical work. One explanation for these failures could be the lack of attention to intra-tumoral heterogeneity. Prior studies have relied on a single sample from these tumors, which may not be representative of all subclones present within the tumor. In the current study, samples were taken from three distinct areas within a single tumor from a patient with an NF1-MPNST. Whole exome sequencing, RNA sequencing, and copy number analysis were performed on each sample. A blood sample was obtained as a germline DNA control. Distinct mutational signatures were identified in different areas of the tumor as well as significant differences in gene expression among the spatially distinct areas, leading to an understanding of the clonal evolution within this patient. These data suggest that multi-regional sampling may be important for driver gene identification and biomarker development in the future.
Collapse
Affiliation(s)
- Chang-In Moon
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - William Tompkins
- Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Yuxi Wang
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - Abigail Godec
- College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA;
| | - Xiaochun Zhang
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
| | - Patrik Pipkorn
- Department of Otolaryngology, Division of Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA;
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
| | - Christopher A. Miller
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- McDonnell Genome Institute, Division of Oncology—Stem Cell Biology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Carina Dehner
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Sonika Dahiya
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Angela C. Hirbe
- Division of Medical Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; (C.-I.M.); (Y.W.); (X.Z.)
- Siteman Cancer Center, St. Louis, MO 63110, USA; (C.A.M.); (S.D.)
- Correspondence: ; Tel.: +1-314-747-3096
| |
Collapse
|
8
|
Szymańska E, Nowak P, Kolmus K, Cybulska M, Goryca K, Derezińska-Wołek E, Szumera-Ciećkiewicz A, Brewińska-Olchowik M, Grochowska A, Piwocka K, Prochorec-Sobieszek M, Mikula M, Miączyńska M. Synthetic lethality between VPS4A and VPS4B triggers an inflammatory response in colorectal cancer. EMBO Mol Med 2020; 12:e10812. [PMID: 31930723 PMCID: PMC7005644 DOI: 10.15252/emmm.201910812] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Somatic copy number alterations play a critical role in oncogenesis. Loss of chromosomal regions containing tumor suppressors can lead to collateral deletion of passenger genes. This can be exploited therapeutically if synthetic lethal partners of such passenger genes are known and represent druggable targets. Here, we report that VPS4B gene, encoding an ATPase involved in ESCRT‐dependent membrane remodeling, is such a passenger gene frequently deleted in many cancer types, notably in colorectal cancer (CRC). We observed downregulation of VPS4B mRNA and protein levels from CRC patient samples. We identified VPS4A paralog as a synthetic lethal interactor for VPS4B in vitro and in mouse xenografts. Depleting both proteins profoundly altered the cellular transcriptome and induced cell death accompanied by the release of immunomodulatory molecules that mediate inflammatory and anti‐tumor responses. Our results identify a pair of novel druggable targets for personalized oncology and provide a rationale to develop VPS4 inhibitors for precision therapy of VPS4B‐deficient cancers.
Collapse
Affiliation(s)
- Ewelina Szymańska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Paulina Nowak
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Krzysztof Kolmus
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Magdalena Cybulska
- Department of Genetics, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland
| | - Krzysztof Goryca
- Department of Genetics, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland
| | - Edyta Derezińska-Wołek
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Anna Szumera-Ciećkiewicz
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | | | - Aleksandra Grochowska
- Department of Genetics, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland.,Department of Gastroenterology, Hepatology and Clinical Oncology, Medical Center for Postgraduate Education, Warsaw, Poland
| | - Katarzyna Piwocka
- Laboratory of Cytometry, Nencki Institute of Experimental Biology, Warsaw, Poland
| | - Monika Prochorec-Sobieszek
- Department of Pathology and Laboratory Medicine, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland.,Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Skłodowska-Curie Institute-Oncology Centre, Warsaw, Poland
| | - Marta Miączyńska
- Laboratory of Cell Biology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
9
|
Pan Y, Lu T, Peng L, Chen Z, Li M, Zhang K, Xiong F, Wu B. Vacuolar protein sorting 4B regulates the proliferation and odontoblastic differentiation of human dental pulp stem cells through the Wnt-β-catenin signalling pathway. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2575-2584. [PMID: 31218890 DOI: 10.1080/21691401.2019.1629950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Our previous studies have revealed that a dominant mutation in vacuolar protein sorting 4B (VPS4B), a member of the AAA ATPase family, causes dentin dysplasia type I. The purpose of the present study was to investigate the roles of VPS4B in human dental pulp stem cells (hDPSCs) and to elucidate the underlying molecular mechanisms. In this study, we found that VPS4B was highly expressed in the dental pulp cells of the mouse molar tooth germ, and the expression of VPS4B increased significantly during the odontoblastic differentiation of hDPSCs. VPS4B downregulation inhibited the proliferation, migration, and odontoblastic differentiation of hDPSCs. Moreover, treatment with lithium chloride, an agonist of the Wnt-β-catenin signalling pathway, partially reversed the VPS4B knockdown-driven suppression of proliferation and of odontoblastic differentiation of hDPSCs. Collectively, our findings indicate that VPS4B, via Wnt-β-catenin signalling, acts as a regulator of the proliferation and differentiation of hDPSCs. Our results suggest potential therapeutic avenues for dentin formation and regenerative endodontics in patients with dentin dysplasia type I.
Collapse
Affiliation(s)
- Yuhua Pan
- a Department of Stomatology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Ting Lu
- a Department of Stomatology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Ling Peng
- a Department of Stomatology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Zhao Chen
- a Department of Stomatology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Meiyi Li
- b Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University , Guangzhou , China.,c Guangdong Provincial Key Laboratory of Single-Cell Technology and Application , Guangzhou , China
| | - Kaiying Zhang
- a Department of Stomatology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| | - Fu Xiong
- b Department of Medical Genetics, School of Basic Medicine Sciences, Southern Medical University , Guangzhou , China.,c Guangdong Provincial Key Laboratory of Single-Cell Technology and Application , Guangzhou , China
| | - Buling Wu
- a Department of Stomatology, Nanfang Hospital, Southern Medical University , Guangzhou , China
| |
Collapse
|
10
|
Chen D, Li X, Lu F, Wang Y, Xiong F, Li Q. Dentin dysplasia type I-A dental disease with genetic heterogeneity. Oral Dis 2018; 25:439-446. [PMID: 29575674 PMCID: PMC7818184 DOI: 10.1111/odi.12861] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 02/26/2018] [Accepted: 03/04/2018] [Indexed: 12/12/2022]
Abstract
Hereditary dentin disorders include dentinogenesis imperfecta (DGI) and dentin dysplasia (DD), which are autosomal dominant diseases characterized by altered dentin structure such as abnormality in dentin mineralization and the absence of root dentin. Shields classified DGI into three subgroups and DD into two subtypes. Although they are all hereditary dentin diseases, they do not share the same causative genes. To date, the pathogenic genes of DGI type I, which is considered a clinical manifestation of syndrome osteogenesis imperfecta, include COL1A1 and COL1A2. Mutations of the DSPP gene, which encodes the dentin sialophosphoprotein, a major non-collagenous protein, are responsible for three isolated dentinal diseases: DGI-II, DGI-III, and DD-II. However, DD-I appears to be special in that researchers have found three pathogenicity genes-VPS4B, SSUH2, and SMOC2-in three affected families from different countries. It is believed that DD-I is a genetically heterogeneous disease and is distinguished from other types of dentin disorders. This review summarizes the DD-I literature in the context of clinical appearances, radiographic characteristics, and functions of its pathogenic genes and aims to serve clinicians in further understanding and diagnosing this disease.
Collapse
Affiliation(s)
- D Chen
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - X Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - F Lu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Y Wang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - F Xiong
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Q Li
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Li X, Liu J, Qian L, Ke H, Yao C, Tian W, Liu Y, Zhang J. Expression of PFKFB3 and Ki67 in lung adenocarcinomas and targeting PFKFB3 as a therapeutic strategy. Mol Cell Biochem 2018; 445:123-134. [PMID: 29327288 DOI: 10.1007/s11010-017-3258-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 12/23/2017] [Indexed: 12/20/2022]
Abstract
Phosphofructokinase-2/fructose-2, 6-bisphosphatase 3 (PFKFB3) catalyzes the synthesis of F2,6BP, which is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1): the rate-limiting enzyme of glycolysis. During tumorigenesis, PFKFB3 increases glycolysis, angiogenesis, and tumor progression. In this study, our aim was to investigate the significance of PFKFB3 and Ki67 in human lung adenocarcinomas and to target PFKFB3 as a therapeutic strategy. In this study, we determined the expression levels of PFKFB3 mRNA and proteins in cancerous and normal lung adenocarcinomas by quantitative reverse transcription PCR (qRT-PCR), Western blot analysis, and tissue microarray immunohistochemistry analysis, respectively. In human adenocarcinoma tissues, PFKFB3 and Ki67 protein levels were related to the clinical characteristics and overall survival. Both PFKFB3 mRNA and protein were significantly higher in lung adenocarcinoma cells (all P < 0.05). A high expression of PFKFB3 and Ki67 were associated with the degree of differentiation, TNM staging, lymph node metastasis, and survival. A high expression of PFKFB3 protein was an independent prognostic marker in lung adenocarcinoma. Subsequently, 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one (PFK15) was used as a selective antagonist of PFKFB3. Glycolytic flux was determined by measuring glucose uptake, F2,6BP, and lactate production. Cell viability, cell cycle, cell apoptosis, cell migration, and invasion were analyzed by MTT, flow cytometry, Western blot analysis, wound healing assay, and transwell chamber assay. By targeting PFKFB3, it inhibited cell viability and glycolytic activity. It also caused apoptosis and induced cell cycle arrest. Furthermore, the migration and invasion of A549 cells was inhibited. We conclude that PFKFB3 bears an oncogene-like regulatory element in lung adenocarcinoma progression. In the treatment of lung adenocarcinoma, targeting PFKFB3 would be a promising therapeutic strategy.
Collapse
Affiliation(s)
- Xiaoli Li
- Department of Pathology, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Jian Liu
- Department of Chemotherapy, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Li Qian
- Department of Pathology, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Honggang Ke
- Department of Respiratory Medicine, Haian County People's Hospital, Affiliated to Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Chan Yao
- Department of Pathology, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Wei Tian
- Department of Pathology, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - Yifei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China.
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
VPS52 induces apoptosis via cathepsin D in gastric cancer. J Mol Med (Berl) 2017; 95:1107-1116. [PMID: 28791438 DOI: 10.1007/s00109-017-1572-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 07/17/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023]
Abstract
Vacuolar protein sorting (VPS) genes encode a class of proteins involved in vesicular trafficking. Growing evidence suggests that VPS proteins play roles in tumor biology. Vacuolar protein sorting 52 (VPS52) is involved in retrograde transport of endosomes, and its roles in cancers have not been explored. This study investigated the genetic alterations, protein changes, biological role, and molecular mechanism of VPS52 in gastric cancer. Loss of heterozygosity of VPS52 was detected in 52.9% (9/17) of gastric cancer samples. Twenty-five percent (5/20) gastric cancer samples contained somatic stop-gain mutation of VPS52, two of which also had simultaneous loss of heterozygosity. Lack of VPS52 protein expression in gastric cancer tissue was found compared with pericancerous tissue and was significantly correlated with more advanced TNM staging and shorter 3-year overall survival. Overexpression of VPS52 significantly reduced viability and increased apoptosis in gastric cancer cells in vitro and reduced tumor volume and tumor weight in xenograft model in vivo. Activation of the cathepsin D/Bax/cytochrome C/caspase 9/caspase 3 pathway was detected in gastric cancer cells overexpressing VPS52. Collectively, VPS52 is a tumor suppressor gene in gastric cancer and could be used as a biomarker. VPS52 adenovirus could be a novel anti-tumor reagent for future gene therapy. KEY MESSAGES Loss of heterozygosity and stop-gain mutation of VPS52 were found in gastric cancer. Negative expression of VPS52 significantly correlated with poor prognosis. VPS52 inhibited viability and induced apoptosis of gastric cancer cells in vitro. VPS52 reduced tumor volume and tumor weight in vivo. VPS52 activated the apoptotic pathway through cathepsin D in gastric cancer cells.
Collapse
|
13
|
Role of ESCRT component HD-PTP/ PTPN23 in cancer. Biochem Soc Trans 2017; 45:845-854. [PMID: 28620046 DOI: 10.1042/bst20160332] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 03/29/2017] [Accepted: 04/07/2017] [Indexed: 12/11/2022]
Abstract
Sustained cellular signalling originated from the receptors located at the plasma membrane is widely associated with cancer susceptibility. Endosomal sorting and degradation of the cell surface receptors is therefore crucial to preventing chronic downstream signalling and tumorigenesis. Since the Endosomal Sorting Complexes Required for Transport (ESCRT) controls these processes, ESCRT components were proposed to act as tumour suppressor genes. However, the bona fide role of ESCRT components in tumorigenesis has not been clearly demonstrated. The ESCRT member HD-PTP/PTPN23 was recently identified as a novel haplo-insufficient tumour suppressor in vitro and in vivo, in mice and humans. In this mini-review, we outline the role of the ESCRT components in cancer and summarize the functions of HD-PTP/PTPN23 in tumorigenesis.
Collapse
|
14
|
Xu L, Zhai L, Ge Q, Liu Z, Tao R. Vacuolar Protein Sorting 4B (VPS4B) Regulates Apoptosis of Chondrocytes via p38 Mitogen-Activated Protein Kinases (MAPK) in Osteoarthritis. Inflammation 2017; 40:1924-1932. [DOI: 10.1007/s10753-017-0633-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
15
|
Liu Y, Yao X, Zhang Q, Qian L, Feng J, Bian T, Zhang J, Tian Y. Expression of Kruppel-like factor 8 and Ki67 in lung adenocarcinoma and prognosis. Exp Ther Med 2017; 14:1351-1356. [PMID: 28810596 PMCID: PMC5526062 DOI: 10.3892/etm.2017.4632] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 04/07/2017] [Indexed: 01/23/2023] Open
Abstract
Kruppel-like factor 8 (KLF8) belongs to the KLF family and has various roles in the regulation of the cell cycle, proliferation and tumor genesis. KLF8 is overexpressed in gastric, ovarian, breast and renal cancer. Additionally, KLF8 may affect invasion and metastasis of tumors. However, whether KLF8 also acts as an ontogeny in lung adenocarcinoma (LAC) remains unknown. The aim of the present study was to determine the association between KLF8 expression and various clinical and pathological parameters. Western blot assays and immune histochemistry analyses revealed that KLF8 level in LAC tissues was higher than that in the normal lung tissues and KLF8 expression was significantly associated with clinical variables (P<0.05). Kaplan-Meier curves revealed that high expression of KLF8 was related to poor prognosis in patients with LAC. The present study also demonstrated that KLF8 was involved in the progression of lung adenocarcinoma. This data suggested that KLF8 may act as a prognostic factor in lung adenocarcinoma progression.
Collapse
Affiliation(s)
- Yifei Liu
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China.,Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiufang Yao
- Department of Pathology, The First People's Hospital of Rudong, Nantong, Jiangsu 226401, P.R. China
| | - Qing Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Li Qian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jia Feng
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Tingting Bian
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Jianguo Zhang
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
16
|
Yang Q, Chen D, Xiong F, Chen D, Liu C, Liu Y, Yu Q, Xiong J, Liu J, Li K, Zhao L, Ye Y, Zhou H, Hu L, Tian Z, Shang X, Zhang L, Wei X, Zhou W, Li D, Zhang W, Xu X. A splicing mutation inVPS4Bcauses dentin dysplasia I. J Med Genet 2016; 53:624-33. [DOI: 10.1136/jmedgenet-2015-103619] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 04/08/2016] [Indexed: 12/22/2022]
|
17
|
Ni T, Mao G, Xue Q, Liu Y, Chen B, Cui X, Lv L, Jia L, Wang Y, Ji L. Upregulated expression of ILF2 in non-small cell lung cancer is associated with tumor cell proliferation and poor prognosis. J Mol Histol 2015; 46:325-35. [DOI: 10.1007/s10735-015-9624-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/29/2015] [Indexed: 01/13/2023]
|
18
|
Tang J, Ji L, Wang Y, Huang Y, Yin H, He Y, Liu J, Miao X, Wu Y, Xu X, He S, Cheng C. Cell adhesion down-regulates the expression of vacuolar protein sorting 4B (VPS4B) and contributes to drug resistance in multiple myeloma cells. Int J Hematol 2015; 102:25-34. [DOI: 10.1007/s12185-015-1783-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 12/13/2022]
|
19
|
Jiang D, Hu B, Wei L, Xiong Y, Wang G, Ni T, Zong C, Ni R, Lu C. High expression of vacuolar protein sorting 4B (VPS4B) is associated with accelerated cell proliferation and poor prognosis in human hepatocellular carcinoma. Pathol Res Pract 2015; 211:240-7. [DOI: 10.1016/j.prp.2014.11.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 10/26/2014] [Accepted: 11/21/2014] [Indexed: 12/19/2022]
|
20
|
Ni S, Zhu J, Zhang J, Zhang S, Li M, Ni R, Liu J, Qiu H, Chen W, Wang H, Guo W. Expression and clinical role of NF45 as a novel cell cycle protein in esophageal squamous cell carcinoma (ESCC). Tumour Biol 2015; 36:747-756. [PMID: 25286760 DOI: 10.1007/s13277-014-2683-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 09/25/2014] [Indexed: 12/15/2022] Open
Abstract
NF45 (also known as ILF2), as one subunit of NF-AT (nuclear factor of activated T cells), repairs DNA breaks, inhibits viral replication, and also functions as a negative regulator in the microRNA processing pathway in combination with NF90. Recently, it was found that implicated in the mitotic control of HeLa cells and deletion of endogenous NF45 decreases growth of HeLa cells. While the role of NF45 in cancer biology remains under debate. In this study, we analyzed the expression and clinical significance of NF45 in esophageal squamous cell carcinoma ESCC. The expression of NF45 was evaluated by Western blot in 8 paired fresh ESCC tissues and immunohistochemistry on 105 paraffin-embedded slices. NF45 was highly expressed in ESCC and significantly associated with ESCC cells tumor stage and Ki-67. Besides, high NF45 expression was an independent prognostic factor for ESCC patients' poor survival. To determine whether NF45 could regulate the proliferation of ESCC cells, we increased endogenous NF45 and analyzed the proliferation of TE1 ESCC cells using Western blot, CCK8, flow cytometry assays and colony formation analyses, which together indicated that overexpression of NF45 favors cell cycle progress of TE1 ESCC cells. While knockdown of NF45 resulted in cell cycle arrest at G0/G1-phase and thus abolished the cell growth. These findings suggested that NF45 might play an important role in promoting the tumorigenesis of ESCC, and thus be a promising therapeutic target to prevent ESCC progression.
Collapse
Affiliation(s)
- Sujie Ni
- Department of Medical Oncology, Shanghai Cancer Center, Fudan University, No. 270 Dong An Road, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Vacuolar protein sorting 4B regulates apoptosis of intestinal epithelial cells via p38 MAPK in Crohn's disease. Exp Mol Pathol 2015; 98:55-64. [DOI: 10.1016/j.yexmp.2014.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 12/18/2014] [Indexed: 01/16/2023]
|
22
|
Seol HS, Akiyama Y, Shimada S, Lee HJ, Kim TI, Chun SM, Singh SR, Jang SJ. Epigenetic silencing of microRNA-373 to epithelial-mesenchymal transition in non-small cell lung cancer through IRAK2 and LAMP1 axes. Cancer Lett 2014; 353:232-41. [PMID: 25063738 PMCID: PMC7707239 DOI: 10.1016/j.canlet.2014.07.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 07/11/2014] [Accepted: 07/14/2014] [Indexed: 12/21/2022]
Abstract
The role of microRNAs (miRNAs) in carcinogenesis as tumor suppressors or oncogenes has been widely reported. Epigenetic change is one of the mechanisms of transcriptional silencing of miRNAs in cancer. To identify lung cancer-related miRNAs that are mediated by histone modification, we conducted microarray analysis in the Calu-6 non-small cell lung cancer (NSCLC) cell line after treatment with suberoylanilide hydroxamic acid (SAHA), a histone deacetylase (HDAC) inhibitor. The expression level of miR-373 was enhanced by SAHA treatment in this cell line by microarray and the following quantitative RT-PCR analyses. Treatment with another HDAC inhibitor, Trichostatin A, restored the levels of miR-373 expression in A549 and Calu-6 cells, while demethylation drug treatment did not. Importantly, miR-373 was found to be down-regulated in NSCLC tissues and cell lines. Transfection of miR-373 into A549 and Calu-6 cells attenuated cell proliferation, migration, and invasion and reduced the expression of mesenchymal markers. Additional microarray analysis of miR-373-transfected cells and computational predictions identified IRAK2 and LAMP1 as targets of miR-373. Knockdown of these two genes showed similar biological effects to those of miR-373 overexpression. In clinical samples, overexpression of IRAK2 correlated with decreased disease-free survival of patients with non-adenocarcinoma. In conclusion, we found that miR-373 is silenced by histone modification in lung cancer cells and identified its function as a tumor suppressor and negative regulator of the mesenchymal phenotype through downstream IRAK2 and LAMP1 target genes.
Collapse
Affiliation(s)
- Hyang Sook Seol
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, South Korea; Asan Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, South Korea
| | - Yoshimitsu Akiyama
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Shu Shimada
- Department of Molecular Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Hee Jin Lee
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, South Korea
| | - Tae Im Kim
- Asan Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, South Korea
| | - Sung Min Chun
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, South Korea; Asan Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, South Korea
| | - Shree Ram Singh
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA.
| | - Se Jin Jang
- Department of Pathology, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, South Korea; Asan Center for Cancer Genome Discovery, University of Ulsan College of Medicine, Asan Medical Center, Seoul 138-736, South Korea.
| |
Collapse
|
23
|
Zhu J, Ji L, Zhang J, Yang L, Guan C, Wang Y, Zhu J, Liang L, Ni R. Upregulation of SYF2 in esophageal squamous cell carcinoma promotes tumor cell proliferation and predicts poor prognosis. Tumour Biol 2014; 35:10275-85. [PMID: 25034528 DOI: 10.1007/s13277-014-2305-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 07/01/2014] [Indexed: 01/14/2023] Open
Abstract
SYF2, also known as CCNDBP1-interactor or p29, is reported in pre-mRNA splicing and cell cycle progression. However, the role of SYF2 in esophageal squamous cell carcinoma (ESCC) development remains elusive. In the present study, Western blot and immunohistochemistry assays demonstrated that SYF2 was overexpressed in ESCC tumor tissues and cell lines. In addition, immunohistochemistry analysis revealed that SYF2 expression was positively correlated with tumor grade and predicted poor prognosis of ESCC. In vitro studies using serum starvation-refeeding experiment and SYF2-siRNA transfection assay demonstrated that SYF2 expression promoted proliferation of ESCC cells, while SYF2 knockdown led to decreased cell growth rate and colony formation resulted from growth arrest of cell cycle at G0/G1 phase. Furthermore, our results indicated that SYF2 can down-regulate the sensitivity of ESCC cells for cisplatin. Our findings for the first time supported that SYF2 might play an important role in the regulation of ESCC proliferation and would provide a novel therapeutic strategy against human ESCC.
Collapse
Affiliation(s)
- Junya Zhu
- Department of Gastroenterology, Affiliated Hospital of Nantong University, 19 Qixiu Road, Nantong, 226001, Jiangsu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Cui G, Wang Y, Yu S, Yang L, Li B, Wang W, Zhou P, Wu J, Lu T, Chen D. The expression changes of vacuolar protein sorting 4B (VPS4B) following middle cerebral artery occlusion (MCAO) in adult rats brain hippocampus. Cell Mol Neurobiol 2014; 34:83-94. [PMID: 24077878 PMCID: PMC11488887 DOI: 10.1007/s10571-013-9989-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 09/17/2013] [Indexed: 11/28/2022]
Abstract
Vacuolar protein sorting 4 (VPS4), is a member of ATPases associated with diverse cellular activities protein family. VPS4 is composed of VPS4A and VPS4B, VPS4B plays an important role in the lysosomal degradation pathway, intracellular protein trafficking, virus budding and abscission of cytokinesis. However, information regarding its distribution and possible function in the central nervous system is limited. Therefore, we performed a middle cerebral artery occlusion (MCAO) in adult rats and detected the dynamic changes of VPS4B in hippocampus CA1 subregion. We found that the VPS4B expression was increased strongly after MCAO and reached the peak after 3 days. VPS4B mainly located in the cytoplasm of neurons, but not astrocytes and microglia. Moreover, there was a concomitant up-regulation of active caspase-3. In vitro studies indicated that the up-regulation of VPS4B may be involved in oxygen-glucose deprivation-induced PC12 cell death. And knock-down of VPS4B in cultured differentiated PC12 cells by siRNA showed that VPS4B promoted the expression of active caspase-3. Collectively, all these results and MTT assay suggested that the up-regulation of VPS4B played an important role in the pathophysiology after MCAO, and further research is needed to have a good understanding of its function and mechanism.
Collapse
Affiliation(s)
- Gang Cui
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province People’s Republic of China
| | - Yunfeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province People’s Republic of China
| | - Shanshan Yu
- Department of Dermatology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province People’s Republic of China
| | - Lixiang Yang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province People’s Republic of China
| | - Bing Li
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province People’s Republic of China
| | - Wei Wang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province People’s Republic of China
| | - Peng Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province People’s Republic of China
| | - Jiang Wu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province People’s Republic of China
| | - Ting Lu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province People’s Republic of China
| | - Dongjian Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 Jiangsu Province People’s Republic of China
| |
Collapse
|