1
|
Trevisan Schroeder H, de Lemos Muller CH, Rodrigues MIL, Alves de Azevedo M, Borges VDS, Sponchiado CM, Homem de Bittencourt PI. Chronic whole-body heat treatment in obese insulin-resistant C57BL/6J mice. Arch Physiol Biochem 2025; 131:234-251. [PMID: 39324220 DOI: 10.1080/13813455.2024.2406904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/09/2024] [Indexed: 09/27/2024]
Abstract
AIM This study examined the effects of hyperthermic therapy (HT) on mice fed normal chow or a high-fat diet (HFD) for 18 or 22 weeks, undergoing four or eight weekly HT sessions. METHODS Mice were housed within their thermoneutral zone (TNZ) to simulate a physiological response. HFD-induced obesity-related changes, including weight gain, visceral fat accumulation, muscle loss (indicative of obesity sarcopenia), glucose intolerance, and hepatic triglyceride buildup. MAIN RESULTS HT upregulated HSP70 expression in muscles, mitigated weight gain, normalised QUICK index, and reduced plasma HSP70 concentrations. It also lowered the H-index of HSP70 balance, indicating improved immunoinflammatory status, and decreased activated caspase-1 and proliferative senescence in adipose tissue, both linked to insulin resistance. CONCLUSION The findings suggest that even animals on a "control" diet but with insufficient physical activity and within their TNZ may experience impaired glycaemic homeostasis.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos Henrique de Lemos Muller
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria Inês Lavina Rodrigues
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Marcela Alves de Azevedo
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Victor de Souza Borges
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cristiana Maria Sponchiado
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
2
|
Schroeder HT, de Lemos Muller CH, Rodrigues MIL, Azevedo MAD, Heck TG, Krause M, Homem de Bittencourt PI. Early detection and progression of insulin resistance revealed by impaired organismal anti-inflammatory heat shock response during ex vivo whole-blood heat challenge. Clin Sci (Lond) 2025; 139:85-113. [PMID: 39716481 DOI: 10.1042/cs20243515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
Chronic inflammatory diseases, e.g., obesity, cardiovascular disease and type-2 diabetes, progressively suppress the anti-inflammatory heat shock response (HSR) by impairing the synthesis of key components, perpetuating inflammation. Monitoring HSR progression offers predictive value for countering chronic inflammation. This study quantified HSR in high-fat diet (HFD) and normal chow (NC) mice by measuring 70 kDa heat shock protein (HSP70) expression after heat treatment of whole blood samples. To align with human translational relevance, animals were housed within their thermoneutral zone (TNZ). Whole blood was heat-challenged weekly at 42 °C for 1-2 hours over 22 weeks, and ΔHSP70 was calculated as the difference between HSP70 expressions at 42 °C and 37 °C. Results correlated with fasting glycaemia, oral glucose tolerance test, intraperitoneal insulin tolerance test and 2-hour post-glucose load glycaemia. ΔHSP70 levels >0.2250 indicated normal fasting glycaemia, while levels <0.2125 signalled insulin resistance and type-2 diabetes onset. A logistic model (five-parameter logistic) showed progressive HSR decline, with HFD mice exhibiting earlier ΔHSP70 reduction (t1/2 = 3.14 weeks) compared with NC mice (t1/2 = 8.24 weeks), highlighting compromised anti-inflammatory capacity in both groups of mice maintained at TNZ. Remarkably, even NC mice surpassed insulin resistance thresholds by week 22, relevant as control diets confronted interventions. Observed HSR decline mirrors tissue-level suppression in obese and type-2 diabetic individuals, underscoring HSR failure as a hallmark of obesity-driven inflammation. This study introduces a practical whole-blood assay to evaluate HSR suppression, allowing assessment of glycaemic status during obesity onset before any clinical manifestation.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
| | - Carlos Henrique de Lemos Muller
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, 90035-003 Porto Alegre, RS, Brazil
| | - Maria Inês Lavina Rodrigues
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
| | - Marcela Alves de Azevedo
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
| | - Thiago Gomes Heck
- Postgraduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI), 98700-000 Ijuí, RS, Brazil
- Postgraduate Program in Mathematical and Computational Modelling (PPGMMC), UNIJUI, 98700-000 Ijuí, RS, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, 90035-003 Porto Alegre, RS, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos 2600, laboratory 646, 90035-003 Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Heat shock response during the resolution of inflammation and its progressive suppression in chronic-degenerative inflammatory diseases. Cell Stress Chaperones 2024; 29:116-142. [PMID: 38244765 PMCID: PMC10939074 DOI: 10.1016/j.cstres.2024.01.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
The heat shock response (HSR) is a crucial biochemical pathway that orchestrates the resolution of inflammation, primarily under proteotoxic stress conditions. This process hinges on the upregulation of heat shock proteins (HSPs) and other chaperones, notably the 70 kDa family of heat shock proteins, under the command of the heat shock transcription factor-1. However, in the context of chronic degenerative disorders characterized by persistent low-grade inflammation (such as insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular diseases) a gradual suppression of the HSR does occur. This work delves into the mechanisms behind this phenomenon. It explores how the Western diet and sedentary lifestyle, culminating in the endoplasmic reticulum stress within adipose tissue cells, trigger a cascade of events. This cascade includes the unfolded protein response and activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome, leading to the emergence of the senescence-associated secretory phenotype and the propagation of inflammation throughout the body. Notably, the activation of the NOD-like receptor pyrin domain-containing protein-3 inflammasome not only fuels inflammation but also sabotages the HSR by degrading human antigen R, a crucial mRNA-binding protein responsible for maintaining heat shock transcription factor-1 mRNA expression and stability on heat shock gene promoters. This paper underscores the imperative need to comprehend how chronic inflammation stifles the HSR and the clinical significance of evaluating the HSR using cost-effective and accessible tools. Such understanding is pivotal in the development of innovative strategies aimed at the prevention and treatment of these chronic inflammatory ailments, which continue to take a heavy toll on global health and well-being.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. The dance of proteostasis and metabolism: Unveiling the caloristatic controlling switch. Cell Stress Chaperones 2024; 29:175-200. [PMID: 38331164 PMCID: PMC10939077 DOI: 10.1016/j.cstres.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024] Open
Abstract
The heat shock response (HSR) is an ancient and evolutionarily conserved mechanism designed to restore cellular homeostasis following proteotoxic challenges. However, it has become increasingly evident that disruptions in energy metabolism also trigger the HSR. This interplay between proteostasis and energy regulation is rooted in the fundamental need for ATP to fuel protein synthesis and repair, making the HSR an essential component of cellular energy management. Recent findings suggest that the origins of proteostasis-defending systems can be traced back over 3.6 billion years, aligning with the emergence of sugar kinases that optimized glycolysis around 3.594 billion years ago. This evolutionary connection is underscored by the spatial similarities between the nucleotide-binding domain of HSP70, the key player in protein chaperone machinery, and hexokinases. The HSR serves as a hub that integrates energy metabolism and resolution of inflammation, further highlighting its role in maintaining cellular homeostasis. Notably, 5'-adenosine monophosphate-activated protein kinase emerges as a central regulator, promoting the HSR during predominantly proteotoxic stress while suppressing it in response to predominantly metabolic stress. The complex relationship between 5'-adenosine monophosphate-activated protein kinase and the HSR is finely tuned, with paradoxical effects observed under different stress conditions. This delicate equilibrium, known as caloristasis, ensures that cellular homeostasis is maintained despite shifting environmental and intracellular conditions. Understanding the caloristatic controlling switch at the heart of this interplay is crucial. It offers insights into a wide range of conditions, including glycemic control, obesity, type 2 diabetes, cardiovascular and neurodegenerative diseases, reproductive abnormalities, and the optimization of exercise routines. These findings highlight the profound interconnectedness of proteostasis and energy metabolism in cellular function and adaptation.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel) Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
5
|
Schroeder HT, De Lemos Muller CH, Heck TG, Krause M, Homem de Bittencourt PI. Resolution of inflammation in chronic disease via restoration of the heat shock response (HSR). Cell Stress Chaperones 2024; 29:66-87. [PMID: 38309688 PMCID: PMC10939035 DOI: 10.1016/j.cstres.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
Effective resolution of inflammation via the heat shock response (HSR) is pivotal in averting the transition to chronic inflammatory states. This transition characterizes a spectrum of debilitating conditions, including insulin resistance, obesity, type 2 diabetes, nonalcoholic fatty liver disease, and cardiovascular ailments. This manuscript explores a range of physiological, pharmacological, and nutraceutical interventions aimed at reinstating the HSR in the context of chronic low-grade inflammation, as well as protocols to assess the HSR. Monitoring the progression or suppression of the HSR in patients and laboratory animals offers predictive insights into the organism's capacity to combat chronic inflammation, as well as the impact of exercise and hyperthermic treatments (e.g., sauna or hot tub baths) on the HSR. Interestingly, a reciprocal correlation exists between the expression of HSR components in peripheral blood leukocytes (PBL) and the extent of local tissue proinflammatory activity in individuals afflicted by chronic inflammatory disorders. Therefore, the Heck index, contrasting extracellular 70 kDa family of heat shock proteins (HSP70) (proinflammatory) and intracellular HSP70 (anti-inflammatory) in PBL, serves as a valuable metric for HSR assessment. Our laboratory has also developed straightforward protocols for evaluating HSR by subjecting whole blood samples from both rodents and human volunteers to ex vivo heat challenges. Collectively, this discussion underscores the critical role of HSR disruption in the pathogenesis of chronic inflammatory states and emphasizes the significance of simple, cost-effective tools for clinical HSR assessment. This understanding is instrumental in the development of innovative strategies for preventing and managing chronic inflammatory diseases, which continue to exert a substantial global burden on morbidity and mortality.
Collapse
Affiliation(s)
- Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Henrique De Lemos Muller
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Post Graduate Program in Integral Health Care (PPGAIS-UNIJUÍ/UNICRUZ/URI), Regional University of Northwestern Rio Grande Do Sul State (UNIJUI) and Post Graduate Program in Mathematical and Computational Modeling (PPGMMC), UNIJUI, Ijuí, Rio Grande do Sul, Brazil
| | - Mauricio Krause
- Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, ICBS, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel), Department of Physiology, Institute of Basic Health Sciences (ICBS), Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
6
|
Timofeev YS, Kiselev AR, Dzhioeva ON, Drapkina OM. Heat Shock Proteins (HSPs) and Cardiovascular Complications of Obesity: Searching for Potential Biomarkers. Curr Issues Mol Biol 2023; 45:9378-9389. [PMID: 38132434 PMCID: PMC10742314 DOI: 10.3390/cimb45120588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Heat shock proteins (HSPs), a family of proteins that support cellular proteostasis and perform a protective function under various stress conditions, such as high temperature, intoxication, inflammation, or tissue hypoxia, constitute a promising group of possible biochemical markers for obesity and cardiovascular diseases. HSP27 is involved in essential cellular processes occurring in conditions of obesity and its cardiometabolic complications; it has protective properties, and its secretion may indicate a cellular response to stress. HSP40 plays a controversial role in the pathogenesis of obesity. HSP60 is involved in various pathological processes of the cardiovascular, immune, excretory, and nervous systems and is associated with obesity and concomitant diseases. The hypersecretion of HSP60 is associated with poor prognosis; hence, this protein may become a target for further research on obesity and its cardiovascular complications. According to most studies, intracellular HSP70 is an obesity-promoting factor, whereas extracellular HSP70 exhibited inconsistent dynamics across different patient groups and diagnoses. HSPs are involved in the pathogenesis of cardiovascular pathology. However, in the context of cardiovascular and metabolic pathology, these proteins require further investigation.
Collapse
Affiliation(s)
| | - Anton R. Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | | | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| |
Collapse
|
7
|
Costa-Beber LC, Heck TG, Fiorin PBG, Ludwig MS. HSP70 as a biomarker of the thin threshold between benefit and injury due to physical exercise when exposed to air pollution. Cell Stress Chaperones 2021; 26:889-915. [PMID: 34677749 PMCID: PMC8578518 DOI: 10.1007/s12192-021-01241-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/15/2022] Open
Abstract
Physical exercise has acute and chronic effects on inflammatory balance, metabolic regulation, and redox status. Exercise-induced adaptations are mediated by enhanced 70-kDa heat shock protein (HSP70) levels and an improved heat shock response (HSR). Therefore, exercise could be useful against disease conditions [obesity, diabetes mellitus (DM), and exposure to atmospheric pollutants] marked by an impaired HSR. However, exercise performed by obese or diabetic subjects under pollution conditions might also be dangerous at certain intensities. Intensity correlates with an increase in HSP70 levels during physical exercise until a critical point at which the effort becomes harmful and impairs the HSR. Establishing a unique biomarker able to indicate the exercise intensity on metabolism and cellular fatigue is essential to ensure adequate and safe exercise recommendations for individuals with obesity or DM who require exercise to improve their metabolic status and live in polluted regions. In this review, we examined the available evidence supporting our hypothesis that HSP70 could serve as a biomarker for determining the optimal exercise intensity for subjects with obesity or diabetes when exposed to air pollution and establishing the fine threshold between anti-inflammatory and pro-inflammatory exercise effects.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil.
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil.
| | - Thiago Gomes Heck
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil
| | - Pauline Brendler Goettems Fiorin
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Postgraduate Program in Integral Attention to Health, Department of Life Sciences, Regional University of Northwestern State's Rio Grande do Sul (UNIJUI), Rua do Comercio, 3000 - Bairro Universitario -, Ijuí, RS, 98700-000, Brazil
- Postgraduation Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Ijuí, RS, Brazil
| |
Collapse
|
8
|
Costa-Beber LC, Goettems-Fiorin PB, Dos Santos JB, Friske PT, Heck TG, Hirsch GE, Ludwig MS. Ovariectomy reduces the cardiac cytoprotection in rats exposed to particulate air pollutant. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23395-23404. [PMID: 33443732 DOI: 10.1007/s11356-021-12350-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
Fine particulate matter (PM2.5) has been considered a risk factor for cardiovascular diseases by inducing an oxidative and inflammatory phenotype. Besides, the reduction of 17β-estradiol (E2) levels during menopause is a natural risk for cardiovascular outcomes. During the E2 downfall, there is a high requirement of the 70-kDa heat shock proteins (HSP70), which present essential antioxidant, anti-inflammatory, and anti-senescence roles. We investigated if the ovariectomy, an animal model for menopause, could induce additional effects in cardiac health by impairing oxidative and heat shock response parameters of female rats chronically exposed to residual oil fly ash (ROFA; an inorganic fraction of PM2.5). Thus, ROFA was obtained from São Paulo (Brazil) and solubilized it in saline. Further, female Wistar rats were exposed to 50 μL of saline (control group) or ROFA solution (250 μg) (polluted) by intranasal instillation, 5 days/week, 12 weeks. At the 12th week, animals were subdivided into four groups (n = 6 p/group): control, OVX, polluted, and polluted + OVX. Control and polluted were submitted to false surgery, while OVX and polluted + OVX were ovariectomized. ROFA or saline exposure continued for 12 weeks. Ovariectomy reduced the cardiac catalase activity and iHSP70 expression in female rats exposed to ROFA. Neither plasma eHSP72 levels nor H-index (eHSP72 to cardiac iHSP70 ratio) was affected. In conclusion, ovariectomy reduces the cardiac cytoprotection and antioxidant defense, and enhances the susceptibility to premature cellular senescence in rats exposed to ROFA.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil.
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite 245, Porto Alegre, RS, Brazil
| | - Jaíne Borges Dos Santos
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Paula Taís Friske
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
- Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| | - Gabriela Elisa Hirsch
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
- Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| |
Collapse
|
9
|
Atkin AS, Moin ASM, Al-Qaissi A, Sathyapalan T, Atkin SL, Butler AE. Plasma heat shock protein response to euglycemia in type 2 diabetes. BMJ Open Diabetes Res Care 2021; 9:9/1/e002057. [PMID: 33879515 PMCID: PMC8061861 DOI: 10.1136/bmjdrc-2020-002057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 03/10/2021] [Accepted: 03/28/2021] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Glucose variability is associated with mortality and macrovascular diabetes complications. The mechanisms through which glucose variability mediates tissue damage are not well understood, although cellular oxidative stress is likely involved. As heat shock proteins (HSPs) play a role in the pathogenesis of type 2 diabetes (T2D) complications and are rapidly responsive, we hypothesized that HSP-related proteins (HSPRPs) would differ in diabetes and may respond to glucose normalization. RESEARCH DESIGN AND METHODS A prospective, parallel study in T2D (n=23) and controls (n=23) was undertaken. T2D subjects underwent insulin-induced blood glucose normalization from baseline 7.6±0.4 mmol/L (136.8±7.2 mg/dL) to 4.5±0.07 mmol/L (81±1.2 mg/dL) for 1 hour. Control subjects were maintained at 4.9±0.1 mmol/L (88.2±1.8 mg/dL). Slow Off-rate Modified Aptamer-scan plasma protein measurement determined a panel of HSPRPs. RESULTS At baseline, E3-ubiquitin-protein ligase (carboxyl-terminus of Hsc70 interacting protein (CHIP) or HSPABP2) was lower (p=0.03) and ubiquitin-conjugating enzyme E2G2 higher (p=0.003) in T2D versus controls. Following glucose normalization, DnaJ homolog subfamily B member 1 (DNAJB1 or HSP40) was reduced (p=0.02) in T2D, with HSP beta-1 (HSPB1) and HSP-70-1A (HSP70-1A) (p=0.07 and p=0.09, respectively) also approaching significance relative to T2D baseline levels. CONCLUSIONS Key HSPRPs involved in critical protein interactions, CHIP and UBE2G2, were altered in diabetes at baseline. DNAJB1 fell in response to euglycemia, suggesting that HSPs are reacting to basal stress that could be mitigated by tight glucose control with reduction of glucose variability.
Collapse
Affiliation(s)
- Alexander S Atkin
- Department of Biochemistry, University of Cambridge, Cambridgeshire, UK
| | - Abu Saleh Md Moin
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| | | | | | - Stephen L Atkin
- Royal College of Surgeons in Ireland and Medical University of Bahrain, Busaiteen, Bahrain
| | - Alexandra E Butler
- Diabetes Research Center, Qatar Biomedical Research Institute, Doha, Qatar
| |
Collapse
|
10
|
Costa-Beber LC, Goettems-Fiorin PB, Dos Santos JB, Friske PT, Frizzo MN, Heck TG, Hirsch GE, Ludwig MS. Ovariectomy enhances female rats' susceptibility to metabolic, oxidative, and heat shock response effects induced by a high-fat diet and fine particulate matter. Exp Gerontol 2020; 145:111215. [PMID: 33340683 DOI: 10.1016/j.exger.2020.111215] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/20/2020] [Accepted: 12/12/2020] [Indexed: 01/21/2023]
Abstract
Obesity and exposure to fine particulate matter (air pollutant PM2.5) are important risk factors for metabolic and cardiovascular diseases. They are also related to early menopause. The reduction of 17β-estradiol (E2) levels during female climacteric, marked by menopause, is of significant concern because of its imminent influence on metabolism, redox and inflammatory status. This complex homeostasis-threatening scenario may induce a heat shock response (HSR) in cells, enhancing the expression of the 70 kDa heat shock protein (HSP70). A failure in this mechanism could predispose women to cardiovascular diseases. In this study, we evaluated if the climacteric could represent an additional risk among obese rats exposed to PM2.5 by worsening lipid, oxidative, and inflammatory parameters and HSP70 in cardiac tissue. We induced obesity in female Wistar rats using a high-fat diet (HFD) (58.3% as fats) and exposed them to 50 μL of saline 0.9% (control, n = 15) or 250 μg residual oil fly ash (ROFA, the inorganic portion of PM2.5) (polluted, n = 15) by intranasal instillation, 5 days/w for 12 weeks. At the 12th week, we subdivided these animals into four groups: control (n = 6), OVX (n = 9), polluted (n = 6) and polluted + OVX (n = 9). OVX and polluted + OVX were submitted to a bilateral ovariectomy (OVX), a surgical model for menopause, while control and polluted received a false surgery (sham). ROFA exposure and HFD consumption were continued for 12 additional weeks, after which the animals were euthanized. ROFA enhanced the susceptibility to ovariectomy-induced dyslipidemia, while ovariectomy predisposed female rats to the ROFA-induced decrease of cardiac iHSP70 expression. Ovariectomy also decreased the IL-6 levels and IL-6/IL-10 in obese animals, reinforcing a metabolic impairment and a failure to respond to unfavorable conditions. Our results support the hypothesis that obese ovariectomized animals are predisposed to a metabolic worsening under polluted conditions and are at higher risk of cardiovascular diseases.
Collapse
Affiliation(s)
- Lílian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil.
| | - Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Porto Alegre, RS, Brazil
| | - Jaíne Borges Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil
| | - Paula Taís Friske
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245 Porto Alegre, RS, Brazil; Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil; Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| | - Gabriela Elisa Hirsch
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, Brazil; Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil; Medicine Course, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Ijuí, RS, Brazil
| |
Collapse
|
11
|
Eik Filho W, Wanczinski Ferrari BJ, Masetto Antunes M, Batista Travassos P, Medri de Souza H, Menezes de Souza E, Barbosa Bazotte R. Glycerol Potentiates the Effects of Glucose in Promoting Glucose Recovery During Hypoglycemia: From Basic to Clinical Investigations and Their Therapeutic Application. J Med Food 2020; 24:908-915. [PMID: 33297841 DOI: 10.1089/jmf.2020.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We compared the effect of oral glucose versus oral glucose combined with glycerol (glucose + glycerol) in promoting glucose recovery during hypoglycemia. These studies were carried out in two series of experiments. In the first series of experiments, 16 overnight fasted rats received an intraperitoneal injection of lispro insulin (1 IU/kg), and 25 min later, they received oral water (control), glucose (0.25 g/kg), glycerol (2.5 g/kg), or glucose (0.25 g/kg) + glycerol (2.5 g/kg). In the second series of experiments on 164 eligible type 1 diabetic (T1D) patients, 30 individuals with a history of hypoglycemia were recruited. Five volunteers did not meet the inclusion criteria and two subjects were excluded after starting the clinical investigation; 23 patients concluded the study. All patients with symptoms of hypoglycemia ingested oral glucose (15 g) or glucose (15 g) + glycerol (9.45 g). To treat hypoglycemia in T1D patients, preparations containing glucose alone or glucose + glycerol were used alternately (2 weeks/2 weeks) in a double-blind crossover scheme. Throughout the clinical research (4 weeks), glucose concentrations were assessed with a continuous glucose monitoring device and the results after the use of glucose alone or glucose + glycerol preparations were compared. Oral glucose combined with glycerol was more effective in promoting glucose recovery in comparison with glucose alone, not only in rats but also in T1D patients. Taken together, our experimental and clinical investigations reported the best performance of oral administration of glucose + glycerol in comparison with isolated glucose.
Collapse
Affiliation(s)
- Wilson Eik Filho
- Department of Medicine, Endocrinology Unit, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Marina Masetto Antunes
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil
| | | | - Helenir Medri de Souza
- Department of Physiological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Eniuce Menezes de Souza
- Post-Graduate Program in Biostatistics, State University of Maringá, Maringá, Paraná, Brazil
| | - Roberto Barbosa Bazotte
- Post-Graduate Program in Pharmaceutical Sciences, State University of Maringá, Maringá, Paraná, Brazil.,Post-Graduate Program in Biological Sciences, State University of Maringá, Maringá, Paraná, Brazil.,Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
12
|
Bittencourt A, Schroeder HT, Porto RR, de Lemos Muller CH, Krause M, Homem de Bittencourt PI. Heat shock response to exercise in pancreatic islets of obese mice. Biochimie 2019; 168:28-40. [PMID: 31678111 DOI: 10.1016/j.biochi.2019.10.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/27/2019] [Indexed: 12/18/2022]
Abstract
Chronic obesity imposes an organismal state of low-grade inflammation because the physiological resolution of inflammation is progressively repressed giving rise to cellular senescence and its accompanying Senescence-Associated Secretory Phenotype (SASP), which avoids apoptosis but perpetuates the relay of inflammatory signals from adipose tissue toward the rest of the body. Conversely, resolution of inflammation depends on the integrity of heat shock response (HSR) pathway that leads to the expression of cytoprotective and anti-inflammatory protein chaperones of the 70 kDa family (HSP70). However, chronic exposure to the aforementioned injuring factors leads to SASP, which, in turn, suppresses the HSR. A main metabolic tissue severely jeopardized by obesity-related dysfunctions is the endocrine pancreas, particularly β-cells of the islets of Langerhans. Because exercise is a powerful inducer of HSR and predicted to alleviate negative health outcomes of obesity, we sought whether obesity influence HSP70 expression in pancreatic islets and other metabolic tissues (adipose tissue and skeletal muscle) of adult B6.129SF2/J mice fed on a high-fat diet (HFD) for 13 weeks since the weaning and whether acute exercise as well as moderate-intensity exercise training (8 weeks) could interfere with this scenario. We showed that acute exercise of moderate intensity protects pancreatic islets against cytokine-induced cell death. In addition, acute exercise challenge time-dependently increased islet HSP70 that peaked at 12 h post-exercise in both trained and untrained mice fed on a control diet, suggesting an adequate HSR to exercise training. Unexpectedly, however, neither exercise training nor acute exercise challenges were able to increase islet HSP70 contents in trained mice submitted to HFD, but only in untrained HFD animals. In parallel, HFD disrupted glycemic status which is accompanied by loss of muscular mass resembling sarcopenic obesity that could not be rescued by exercise training. These results suggest that exercise influences HSR in pancreatic islets but obesity undermines islet, muscle and adipose tissue HSR, which is associated with metabolic abnormalities observed in such tissues.
Collapse
Affiliation(s)
- Aline Bittencourt
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Helena Trevisan Schroeder
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rossana Rosa Porto
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Henrique de Lemos Muller
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Krause
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology (FisCel) and Laboratory of Inflammation, Metabolism and Exercise Research (LAPIMEX), Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil.
| |
Collapse
|
13
|
Baiardo Redaelli M, Zangrillo A, Gregorc V, Ciceri F, Dagna L, Tshomba Y, Navalesi P, Landoni G. How to obtain severe hypoglycemia without causing brain or cardiac damage. Med Hypotheses 2019; 130:109276. [DOI: 10.1016/j.mehy.2019.109276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/03/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
|
14
|
Goettems-Fiorin PB, Costa-Beber LC, Dos Santos JB, Friske PT, Sulzbacher LM, Frizzo MN, Ludwig MS, Rhoden CR, Heck TG. Ovariectomy predisposes female rats to fine particulate matter exposure's effects by altering metabolic, oxidative, pro-inflammatory, and heat-shock protein levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20581-20594. [PMID: 31104233 DOI: 10.1007/s11356-019-05383-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/03/2019] [Indexed: 06/09/2023]
Abstract
The reduction of estrogen levels, as a result of menopause, is associated with the development of metabolic diseases caused by alterations in oxidative stress (OS), inflammatory biomarkers, and 70-kDa heat-shock protein (HSP70) expression. Additionally, exposure to fine particulate matter air pollution modifies liver OS levels and predisposes organisms to metabolic diseases, such as type 2 diabetes (T2DM). We investigated whether ovariectomy affects hepatic tissue and alters glucose metabolism in female rats exposed to particulate air pollution. First, 24 female Wistar rats received an intranasal instillation of saline or particles suspended in saline 5 times per week for 12 weeks. The animals then received either bilateral ovariectomy (OVX) or false surgery (sham) and continued to receive saline or particles for 12 additional weeks, comprising four groups: CTRL, Polluted, OVX, and Polluted+OVX. Ovariectomy increased body weight and adiposity and promoted edema in hepatic tissue, hypercholesterolemia, glucose intolerance, and a pro-inflammatory profile (reduced IL-10 levels and increased IL-6/IL-10 ratio levels), independent of particle exposure. The Polluted+OVX group showed an increase in neutrophils and neutrophil/lymphocyte ratios, decreased antioxidant defense (SOD activity), and increased liver iHSP70 levels. In conclusion, alterations in the reproductive system predispose female organisms to particulate matter air pollution effects by affecting metabolic, oxidative, pro-inflammatory, and heat-shock protein expression.
Collapse
Affiliation(s)
- Pauline Brendler Goettems-Fiorin
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil.
| | - Lilian Corrêa Costa-Beber
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Jaíne Borges Dos Santos
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Paula Taís Friske
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Lucas Machado Sulzbacher
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil
| | - Matias Nunes Frizzo
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Mirna Stela Ludwig
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil
| | - Cláudia Ramos Rhoden
- Atmospheric Pollution Laboratory, Postgraduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, RS, Brazil
| | - Thiago Gomes Heck
- Research Group in Physiology, Department of Life Sciences, Regional University of Northwestern Rio Grande do Sul State (UNIJUÍ), Rua do Comércio, 3000 - Bairro Universitário, Ijuí, RS, 98700-000, Brazil.
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUÍ/UNICRUZ), Ijuí, RS, Brazil.
| |
Collapse
|
15
|
Hypoglycemia-activated Hypothalamic Microglia Impairs Glucose Counterregulatory Responses. Sci Rep 2019; 9:6224. [PMID: 30996341 PMCID: PMC6470310 DOI: 10.1038/s41598-019-42728-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 04/05/2019] [Indexed: 12/11/2022] Open
Abstract
Glucose is a major fuel for the central nervous system and hypoglycemia is a significant homeostatic stressor, which elicits counterregulatory reactions. Hypothalamic metabolic- and stress-related neurons initiate these actions, however recruitment of glia in control such adaptive circuit remain unknown. Groups of fed- and fasted-, vehicle-injected, and fasted + insulin-injected male mice were compared in this study. Bolus insulin administration to fasted mice resulted in hypoglycemia, which increased hypothalamo-pituitary-adrenal (HPA) axis- and sympathetic activity, increased transcription of neuropeptide Y (Npy) and agouti-related peptide (Agrp) in the hypothalamic arcuate nucleus and activated IBA1+ microglia in the hypothalamus. Activated microglia were found in close apposition to hypoglycemia-responsive NPY neurons. Inhibition of microglia by minocycline increased counterregulatory sympathetic response to hypoglycemia. Fractalkine-CX3CR1 signaling plays a role in control of microglia during hypoglycemia, because density and solidity of IBA1-ir profiles was attenuated in fasted, insulin-treated, CX3CR1 KO mice, which was parallel with exaggerated neuropeptide responses and higher blood glucose levels following insulin administration. Hypoglycemia increased Il-1b expression in the arcuate nucleus, while IL-1a/b knockout mice display improved glycemic control to insulin administration. In conclusion, activated microglia in the arcuate nucleus interferes with central counterregulatory responses to hypoglycemia. These results underscore involvement of microglia in hypothalamic regulation of glucose homeostasis.
Collapse
|
16
|
Baldissera FG, Dos Santos AB, Sulzbacher MM, Goettems-Fiorin PB, Frizzo MN, Ludwig MS, Rhoden CR, Heck TG. Subacute exposure to residual oil fly ash (ROFA) increases eHSP70 content and extracellular-to-intracellular HSP70 ratio: a relation with oxidative stress markers. Cell Stress Chaperones 2018; 23:1185-1192. [PMID: 29934712 PMCID: PMC6237679 DOI: 10.1007/s12192-018-0924-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 05/29/2018] [Accepted: 06/12/2018] [Indexed: 01/28/2023] Open
Abstract
The purpose of this study was to evaluate whether exposure to particles induces an imbalance in 70-kDa heat shock proteins (HSP70). Since intracellularly (iHSP70) it has anti-inflammatory roles whereas extracellularly (eHSP70) it has pro-inflammatory roles, we evaluate the effect of residual oil fly ash (ROFA) exposure on eHSP70-to-iHSP70 ratio (H index), a biomarker of inflammatory status that is related to oxidative stress in plasma and lymphoid tissue. Wistar rats that received ROFA suspension for three consecutive days (750 μg) showed an increase in plasma eHSP70 levels (mainly the 72-kDa inducible form). Also, ROFA promoted alterations on plasma oxidative stress (increased protein carbonyl groups and superoxide dismutase activity, and decrease sulfhydryl groups). There was an increase in H index of the plasma/thymus with no changes in circulating leukocyte level, iHSP70, or oxidative stress markers in lymphoid tissues. Our results support the hypothesis that eHSP70 content and H index represent inflammatory and oxidative biomarkers.
Collapse
Affiliation(s)
- Fernanda Giesel Baldissera
- Postgraduation Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Analú Bender Dos Santos
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Maicon Machado Sulzbacher
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Pauline Brendler Goettems-Fiorin
- Postgraduation Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Matias Nunes Frizzo
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Mirna Stela Ludwig
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil
| | - Claudia Ramos Rhoden
- Postgraduation Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Thiago Gomes Heck
- Postgraduate Program in Integral Attention to Health (PPGAIS-UNIJUI/UNICRUZ), Research Group in Physiology, Department of Life Sciences, Regional University of the Northwestern Rio Grande do Sul State (UNIJUI), Rua do Comércio, 3000, Universitário, Ijuí, Rio Grande do Sul, 98700-000, Brazil.
| |
Collapse
|
17
|
Porto RR, Dutra FD, Crestani AP, Holsinger RMD, Quillfeldt JA, Homem de Bittencourt PI, de Oliveira Alvares L. HSP70 Facilitates Memory Consolidation of Fear Conditioning through MAPK Pathway in the Hippocampus. Neuroscience 2018; 375:108-118. [PMID: 29374537 DOI: 10.1016/j.neuroscience.2018.01.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 01/08/2023]
Abstract
Heat shock proteins of the 70-kDa (HSP70) family are cytoprotective molecular chaperones that are present in neuronal cells and can be induced by a variety of homeostatically stressful situations (not only proteostatic insults), but also by synaptic activity, including learning tasks. Physiological stimuli that induce long-term memory formation are also capable of stimulating the synthesis of HSP70 through the activation of heat shock transcription factor-1 (HSF1). In this study, we investigated the influence of HSP70 on fear memory consolidation and MAPK activity. Male rats were trained in contextual fear conditioning task and HSP70 content was analyzed by western blot in the hippocampus at different time points. We observed rapid and transient elevations in HSP70 60 min following training. Double immunofluorescence with GFAP and HSP72 revealed that astrocytes were not the site for HSP72 induction by CFC training. HSP72 distribution markedly surrounded synapses between Shaffer collateral and CA1 pyramidal cells. Infusion of recombinant HSP70 (hspa1a) into the dorsal hippocampus immediately after training facilitated memory consolidation and enhanced ERK activity while decreasing the activated forms of JNK and p38 in the hippocampus. Blocking endogenous extracellular HSP70 through the administration of specific antibody did not produce any further effect on memory consolidation when applied immediately after training, suggesting that it is indeed acting intracellularly. Induction of HSP70 after fear conditioning is fast and can act as a signaling molecule, modulating MAPK downstream signaling during memory consolidation in the hippocampus, which is crucial for fear memory formation.
Collapse
Affiliation(s)
- Rossana R Porto
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Laboratory of Cellular Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil; Laboratory of Molecular Neuroscience and Dementia, Brain & Mind Centre, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Fabrício D Dutra
- Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - Ana Paula Crestani
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - R M Damian Holsinger
- Laboratory of Molecular Neuroscience and Dementia, Brain & Mind Centre, The University of Sydney, Camperdown, New South Wales 2050, Australia
| | - Jorge A Quillfeldt
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Laboratory, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS 91509-900, Brazil; Graduate Program in Neuroscience, Institute of Basic Health Sciences Federal University of Rio Grande do Sul, Porto Alegre, RS 90046-900, Brazil.
| |
Collapse
|
18
|
Miragem AA, Homem de Bittencourt PI. Nitric oxide-heat shock protein axis in menopausal hot flushes: neglected metabolic issues of chronic inflammatory diseases associated with deranged heat shock response. Hum Reprod Update 2018; 23:600-628. [PMID: 28903474 DOI: 10.1093/humupd/dmx020] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 06/28/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Although some unequivocal underlying mechanisms of menopausal hot flushes have been demonstrated in animal models, the paucity of similar approaches in humans impedes further mechanistic outcomes. Human studies might show some as yet unexpected physiological mechanisms of metabolic adaptation that permeate the phase of decreased oestrogen levels in both symptomatic and asymptomatic women. This is particularly relevant because both the severity and time span of hot flushes are associated with increased risk of chronic inflammatory disease. On the other hand, oestrogen induces the expression of heat shock proteins of the 70 kDa family (HSP70), which are anti-inflammatory and cytoprotective protein chaperones, whose expression is modulated by different types of physiologically stressful situations, including heat stress and exercise. Therefore, lower HSP70 expression secondary to oestrogen deficiency increases cardiovascular risk and predisposes the patient to senescence-associated secretory phenotype (SASP) that culminates in chronic inflammatory diseases, such as obesities, type 2 diabetes, neuromuscular and neurodegenerative diseases. OBJECTIVE AND RATIONALE This review focuses on HSP70 and its accompanying heat shock response (HSR), which is an anti-inflammatory and antisenescent pathway whose intracellular triggering is also oestrogen-dependent via nitric oxide (NO) production. The main goal of the manuscript was to show that the vasomotor symptoms that accompany hot flushes may be a disguised clue for important neuroendocrine alterations linking oestrogen deficiency to the anti-inflammatory HSR. SEARCH METHODS Results from our own group and recent evidence on hypothalamic control of central temperature guided a search on PubMed and Google Scholar websites. OUTCOMES Oestrogen elicits rapid production of the vasodilatory gas NO, a powerful activator of HSP70 expression. Whence, part of the protective effects of oestrogen over cardiovascular and neuroendocrine systems is tied to its capacity of inducing the NO-elicited HSR. The hypothalamic areas involved in thermoregulation (infundibular nucleus in humans and arcuate nucleus in other mammals) and whose neurons are known to have their function altered after long-term oestrogen ablation, particularly kisspeptin-neurokinin B-dynorphin neurons, (KNDy) are the same that drive neuroprotective expression of HSP70 and, in many cases, this response is via NO even in the absence of oestrogen. From thence, it is not illogical that hot flushes might be related to an evolutionary adaptation to re-equip the NO-HSP70 axis during the downfall of circulating oestrogen. WIDER IMPLICATIONS Understanding of HSR could shed light on yet uncovered mechanisms of menopause-associated diseases as well as on possible manipulation of HSR in menopausal women through physiological, pharmacological, nutraceutical and prebiotic interventions. Moreover, decreased HSR indices (that can be clinically determined with ease) in perimenopause could be of prognostic value in predicting the moment and appropriateness of starting a HRT.
Collapse
Affiliation(s)
- Antônio Azambuja Miragem
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil.,Federal Institute of Education, Science and Technology 'Farroupilha', Rua Uruguai 1675, Santa Rosa, RS 98900-000, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Federal University of Rio Grande do Sul, Rua Sarmento Leite 500, ICBS, 2nd Floor, Suite 350, Porto Alegre, RS 90050-170, Brazil
| |
Collapse
|
19
|
Fructuoso M, Rachdi L, Philippe E, Denis RG, Magnan C, Le Stunff H, Janel N, Dierssen M. Increased levels of inflammatory plasma markers and obesity risk in a mouse model of Down syndrome. Free Radic Biol Med 2018; 114:122-130. [PMID: 28958596 DOI: 10.1016/j.freeradbiomed.2017.09.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/20/2017] [Accepted: 09/24/2017] [Indexed: 12/27/2022]
Abstract
Down syndrome (DS) is caused by the trisomy of human chromosome 21 and is the most common genetic cause of intellectual disability. In addition to the intellectual deficiencies and physical anomalies, DS individuals present a higher prevalence of obesity and subsequent metabolic disorders than healthy adults. There is increasing evidence from both clinical and experimental studies indicating the association of visceral obesity with a pro-inflammatory status and recent studies have reported that obese people with DS suffer from low-grade systemic inflammation. However, the link between adiposity and inflammation has not been explored in DS. Here we used Ts65Dn mice, a validated DS mouse model, for the study of obesity-related inflammatory markers. Ts65Dn mice presented increased energy intake, and a positive energy balance leading to increased adiposity (fat mass per body weight), but did not show overweight, which only was apparent upon high fat diet induced obesity. Trisomic mice also had fasting hyperglycemia and hypoinsulinemia, and normal incretin levels. Those trisomy-associated changes were accompanied by reduced ghrelin plasma levels and slightly but not significantly increased leptin levels. Upon a glucose load, Ts65Dn mice showed normal increase of incretins accompanied by over-responses of leptin and resistin, while maintaining the hyperglycemic and hypoinsulinemic phenotype. These changes in the adipoinsular axis were accompanied by increased plasma levels of inflammatory biomarkers previously correlated with obesity galectin-3 and HSP72, and reduced IL-6. Taken together, these results suggest that increased adiposity, and pro-inflammatory adipokines leading to low-grade inflammation are important players in the propensity to obesity in DS. We conclude that DS would be a case of impaired metabolic-inflammatory axis.
Collapse
Affiliation(s)
- M Fructuoso
- Cellular & Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - L Rachdi
- INSERM U1016, Cochin Institute, Paris, France; CNRS UMR 8104, Paris, France; University of Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - E Philippe
- Université Paris Diderot, Sorbonne Paris Cité, Unité Biologie Fonctionnelle et Adaptative - CNRS UMR 8251, Paris, France
| | - R G Denis
- Université Paris Diderot, Sorbonne Paris Cité, Unité Biologie Fonctionnelle et Adaptative - CNRS UMR 8251, Paris, France
| | - C Magnan
- Université Paris Diderot, Sorbonne Paris Cité, Unité Biologie Fonctionnelle et Adaptative - CNRS UMR 8251, Paris, France
| | - H Le Stunff
- Université Paris Diderot, Sorbonne Paris Cité, Unité Biologie Fonctionnelle et Adaptative - CNRS UMR 8251, Paris, France; Université Paris Sud, France
| | - N Janel
- Université Paris Diderot, Sorbonne Paris Cité, Unité Biologie Fonctionnelle et Adaptative - CNRS UMR 8251, Paris, France
| | - M Dierssen
- Cellular & Systems Neurobiology, Systems Biology Program, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Spain.
| |
Collapse
|
20
|
Exercise Training under Exposure to Low Levels of Fine Particulate Matter: Effects on Heart Oxidative Stress and Extra-to-Intracellular HSP70 Ratio. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:9067875. [PMID: 29387296 PMCID: PMC5745714 DOI: 10.1155/2017/9067875] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/19/2017] [Indexed: 01/09/2023]
Abstract
Fine particulate matter (PM2.5) promotes heart oxidative stress (OS) and evokes anti-inflammatory responses observed by increased intracellular 70 kDa heat shock proteins (iHSP70). Furthermore, PM2.5 increases the levels of these proteins in extracellular fluids (eHSP70), which have proinflammatory roles. We investigated whether moderate and high intensity training under exposure to low levels of PM2.5 modifies heart OS and the eHSP70 to iHSP70 ratio (H-index), a biomarker of inflammatory status. Male mice (n = 32), 30 days old, were divided into six groups for 12 weeks: control (CON), moderate (MIT) and high intensity training (HIT), exposure to 5 μg of PM2.5 daily (PM2.5), and moderate and high intensity training exposed to PM2.5 (MIT + PM2.5 and HIT + PM2.5 groups). The CON and PM2.5 groups remained sedentary. The MIT + PM2.5 group showed higher heart lipid peroxidation levels than the MIT and PM2.5 groups. HIT and HIT + PM2.5 showed higher heart lipid peroxidation levels and lower eHSP70 and H-index levels compared to sedentary animals. No alterations were found in heart antioxidant enzyme activity or iHSP70 levels. Moderate exercise training under exposure to low levels of PM2.5 induces heart OS but does not modify eHSP70 to iHSP70 ratio (H-index). High intensity exercise training promotes anti-inflammatory profile despite exposure to low levels of PM2.5.
Collapse
|
21
|
Manerba M, Di Ianni L, Govoni M, Roberti M, Recanatini M, Di Stefano G. LDH inhibition impacts on heat shock response and induces senescence of hepatocellular carcinoma cells. Eur J Pharm Sci 2017; 105:91-98. [DOI: 10.1016/j.ejps.2017.05.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 05/02/2017] [Accepted: 05/09/2017] [Indexed: 12/15/2022]
|
22
|
Eik W, Marcon SS, Krupek T, Previdelli ITS, Pereira OCN, Silva MARCP, Bazotte RB. Blood levels of pro-inflammatory and anti-inflammatory cytokines during an oral glucose tolerance test in patients with symptoms suggesting reactive hypoglycemia. ACTA ACUST UNITED AC 2017; 49:S0100-879X2016000800702. [PMID: 27409331 PMCID: PMC4954733 DOI: 10.1590/1414-431x20165195] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/31/2016] [Indexed: 12/29/2022]
Abstract
We evaluated the impact of postprandial glycemia on blood levels of pro-inflammatory and anti-inflammatory cytokines during an oral glucose tolerance test in non-diabetic patients with symptoms suggesting reactive hypoglycemia. Eleven patients with clinical symptoms suggesting reactive hypoglycemia received an oral glucose solution (75 g) Blood was collected at 0 (baseline), 30, 60, 120 and 180 min after glucose ingestion and the plasma concentrations of interferon-α (IFN-α), interferon-γ (IFN-γ), interleukin-1 receptor antagonist (IL-1RA), interleukin 2 (IL-2), interleukin-2 receptor (IL-2R), interleukin 4 (IL-4), interleukin 6 (IL-6), interleukin 8 (IL-8), interleukin 10 (IL-10), interleukin-12 (IL-12), interleukin 13 (IL-13), interleukin 15 (IL-15), interleukin 17 (IL-17), IFN-γ inducible protein 10 (IP-10), monocyte chemotactic protein 1 (MCP1), monokine induced by IFN-γ (MIG), macrophage inflammatory protein-1α (MIP-1α), interleukin-1β (IL-1β), colony stimulating factor (G-CSF), granulocyte-macrophage CSF (GM-CSF), basic fibroblast growth factor (FGF-basic), eotaxin, tumor necrosis factor α (TNFα), epidermal growth factor (EGF), hepatocyte growth factor (HGF), vascular endothelial growth factor (VEGF), macrophage inflammatory protein-1α (MIP-1α), and 1β (MIP-1β) were evaluated. Overall, glycemic levels increased, reached its maximum at 30 min (phase 1), returned to baseline levels at 120 min (phase 2), followed by a mild hypoglycemia at 180 min (phase 3). During phase 1, cytokine blood levels were maintained. However, we observed a synchronous fall (P<0.05) in the concentrations of pro-inflammatory (IL-15, IL-17, MCP-1) and anti-inflammatory cytokines (FGF-basic, IL-13, IL-1RA) during phase 2. Furthermore, a simultaneous rise (P<0.05) of pro-inflammatory (IL-2, IL-5, IL-17) and anti-inflammatory cytokines (IL-4, IL-1RA, IL-2R, IL-13, FGF-basic) occurred during phase 3. Thus, mild acute hypoglycemia but not a physiological increase of glycemia was associated with increased blood levels of anti-inflammatory and pro-inflammatory cytokines.
Collapse
Affiliation(s)
- W Eik
- Disciplina de Endocrinologia, Departamento de Medicina, Universidade Estadual de Maringá, Maringá, PR, Brasil.,Programa de Pós Graduação em Ciências da Saúde, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - S S Marcon
- Programa de Pós Graduação em Ciências da Saúde, Centro de Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil.,Departamento de Enfermagem, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - T Krupek
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - I T S Previdelli
- Departamento de Estatística, Universidade Estadual de Maringá, Maringá, PR, Brasil.,Programa de Pós Graduação em Bioestatística, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - O C N Pereira
- Departamento de Estatística, Universidade Estadual de Maringá, Maringá, PR, Brasil.,Programa de Pós Graduação em Bioestatística, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - M A R C P Silva
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - R B Bazotte
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
23
|
Heck TG, Scomazzon SP, Nunes PR, Schöler CM, da Silva GS, Bittencourt A, Faccioni-Heuser MC, Krause M, Bazotte RB, Curi R, Homem de Bittencourt PI. Acute exercise boosts cell proliferation and the heat shock response in lymphocytes: correlation with cytokine production and extracellular-to-intracellular HSP70 ratio. Cell Stress Chaperones 2017; 22:271-291. [PMID: 28251488 PMCID: PMC5352601 DOI: 10.1007/s12192-017-0771-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/24/2017] [Accepted: 01/31/2017] [Indexed: 12/23/2022] Open
Abstract
Exercise stimulates immune responses, but the appropriate "doses" for such achievements are unsettled. Conversely, in metabolic tissues, exercise improves the heat shock (HS) response, a universal cytoprotective response to proteostasis challenges that are centred on the expression of the 70-kDa family of intracellular heat shock proteins (iHSP70), which are anti-inflammatory. Concurrently, exercise triggers the export of HSP70 towards the extracellular milieu (eHSP70), where they work as pro-inflammatory cytokines. As the HS response is severely compromised in chronic degenerative diseases of inflammatory nature, we wondered whether acute exercise bouts of different intensities could alter the HS response of lymphocytes from secondary lymphoid organs and whether this would be related to immunoinflammatory responses. Adult male Wistar rats swam for 20 min at low, moderate, high or strenuous intensities as per an overload in tail base. Controls remained at rest under the same conditions. Afterwards, mesenteric lymph node lymphocytes were assessed for the potency of the HS response (42 °C for 2 h), NF-κB binding activity, mitogen-stimulated proliferation and cytokine production. Exercise stimulated cell proliferation in an "inverted-U" fashion peaking at moderate load, which was paralleled by suppression of NF-κB activation and nuclear location, and followed by enhanced HS response in relation to non-exercised animals. Comparative levels of eHSP70 to iHSP70 (H-index) matched IL-2/IL-10 ratios. We conclude that exercise, in a workload-dependent way, stimulates immunoinflammatory performance of lymphocytes of tissues far from the circulation and this is associated with H-index of stress response, which is useful to assess training status and immunosurveillance balance.
Collapse
Affiliation(s)
- Thiago Gomes Heck
- Physiology Research Group, Department of Life Sciences, Postgraduate Program in Integral Attention to Health, Regional University of the Northwestern Rio Grande do Sul State, Rua do Comércio, 3000, Ijuí, RS, 98700-000, Brazil.
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil.
| | - Sofia Pizzato Scomazzon
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
- Department of Biology, University of Rome Tor Vergata, Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Patrícia Renck Nunes
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Cinthia Maria Schöler
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Gustavo Stumpf da Silva
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Aline Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Maria Cristina Faccioni-Heuser
- Department of Morphological Sciences, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mauricio Krause
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil
| | - Roberto Barbosa Bazotte
- Department of Pharmacology and Therapeutics, State University of Maringá, Maringá, PR, Brazil
| | - Rui Curi
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, 05508-900, Brazil
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Rua Galvão Bueno, 868 - 13° Andar, Bloco B, Sala 1302, Liberdade, São Paulo, SP, 01506-000, Brazil
| | - Paulo Ivo Homem de Bittencourt
- Laboratory of Cellular Physiology, Department of Physiology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Rua Sarmento Leite, 500 2nd floor, suite 350 lab 02, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
24
|
Leite JSM, Cruzat VF, Krause M, Homem de Bittencourt PI. Physiological regulation of the heat shock response by glutamine: implications for chronic low-grade inflammatory diseases in age-related conditions. ACTA ACUST UNITED AC 2016. [DOI: 10.1186/s41110-016-0021-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
25
|
Fine particulate matter potentiates type 2 diabetes development in high-fat diet-treated mice: stress response and extracellular to intracellular HSP70 ratio analysis. J Physiol Biochem 2016; 72:643-656. [PMID: 27356529 DOI: 10.1007/s13105-016-0503-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/21/2016] [Indexed: 12/21/2022]
Abstract
Exposure to fine particulate matter (PM2.5) air pollution is a risk factor for type 2 diabetes (T2DM). We argue whether the potentiating effect of PM2.5 over the development of T2DM in high-fat diet (HFD)-fed mice would be related to modification in cell stress response, particularly in antioxidant defenses and 70-kDa heat shock proteins (HSP70) status. Male mice were fed standard chow or HFD for 12 weeks and then randomly exposed to daily nasotropic instillation of PM2.5 for additional 12 weeks under the same diet schedule, divided into four groups (n = 14-15 each): Control, PM2.5, HFD, and HFD + PM2.5 were evaluated biometric and metabolic profiles of mice, and cellular stress response (antioxidant defense and HSP70 status) of metabolic tissues. Extracellular to intracellular HSP70 ratio ([eHSP72]/[iHSP70]), viz. H-index, was then calculated. HFD + PM2.5 mice presented a positive correlation between adiposity, increased body weight and glucose intolerance, and increased glucose and triacylglycerol plasma levels. Pancreas exhibited lower iHSP70 expression, accompanied by 3.7-fold increase in the plasma to pancreas [eHSP72]/[iHSP70] ratio. Exposure to PM2.5 markedly potentiated metabolic dysfunction in HFD-treated mice and promoted relevant alteration in cell stress response assessed by [eHSP72]/[iHSP70], a relevant biomarker of chronic low-grade inflammatory state and T2DM risk.
Collapse
|
26
|
Jung S, Ahn N, Kim S, Byun J, Joo Y, Kim S, Jung Y, Park S, Hwang I, Kim K. The effect of ladder-climbing exercise on atrophy/hypertrophy-related myokine expression in middle-aged male Wistar rats. J Physiol Sci 2015; 65:515-21. [PMID: 26223833 PMCID: PMC10717129 DOI: 10.1007/s12576-015-0388-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 07/02/2015] [Indexed: 01/15/2023]
Abstract
We investigated the change in myokine expression related to hypertrophy (IL-4, IL-6, IL-10) and atrophy (TNF-α, NFκB, IL-1β) in middle-aged rats after resistance exercise with ladder climbing. 50- and 10-week-old male Wistar rats were randomly assigned to two groups: the sedentary and exercise groups. The exercise groups underwent a ladder-climbing exercise for 8 weeks. While the tibialis anterior muscle mass in the young group significantly increased after the ladder-climbing exercise, the middle-aged group did not show any changes after undergoing the same exercise. To understand the molecular mechanism causing this difference, we analyzed the change in hypertrophy- and atrophy-related myokine levels from the tibialis anterior muscle. After 8 weeks of ladder-climbing exercise, the IL-4 and IL-10 protein levels did not change. However, the IL-6 level significantly increased after exercise training, but the amount of increase in the young training group was higher than in the middle-aged training group. IL-1β and TNF-α as well as NFκB protein levels were significantly higher in the middle-aged group than in the young group. Except for TNF-α, exercise training did not affect IL-1β and NFκB protein levels. The TNF-α level significantly decreased in the middle-aged exercise training group. AMPK and PGC-1α levels also significantly increased after exercise training, but there was no difference between age-related groups. Therefore, 8-week high-intensity exercise training using ladder climbing downregulates the skeletal muscle production of myokine involved in atrophy and upregulates hypertrophic myokine. However, the extent of these responses was lower in the middle-aged than young group.
Collapse
Affiliation(s)
- Suryun Jung
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Nayoung Ahn
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Sanghyun Kim
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Jayoung Byun
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Youngsik Joo
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Sungwook Kim
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Yeunho Jung
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Solee Park
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Ilseon Hwang
- Department of Pathology, College of Medicine, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea
| | - Kijin Kim
- Department of Physical Education, College of Physical Education, Keimyung University, 1095 Dalgubeuldaero, Dalseo-gu, Daegu, 704-701, Korea.
| |
Collapse
|
27
|
Estrogen deprivation does not affect vascular heat shock response in female rats: a comparison with oxidative stress markers. Mol Cell Biochem 2015; 407:239-49. [PMID: 26045174 DOI: 10.1007/s11010-015-2472-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/30/2015] [Indexed: 10/23/2022]
Abstract
Hot flashes, which involve a tiny rise in core temperature, are the most common complaint of peri- and post-menopausal women, being tightly related to decrease in estrogen levels. On the other hand, estradiol (E2) induces the expression of HSP72, a member of the 70 kDa family of heat shock proteins (HSP70), which are cytoprotective, cardioprotective, and heat inducible. Since HSP70 expression is compromised in age-related inflammatory diseases, we argued whether the capacity of triggering a robust heat shock (HS) response would be still present after E2 withdrawal. Hence, we studied the effects of HS treatment (hot tub) in female Wistar rats subjected to bilateral ovariectomy (OVX) after a 7-day washout period. Twelve h after HS, the animals were killed and aortic arches were surgically excised for molecular analyses. The results were compared with oxidative stress markers in the plasma (superoxide dismutase, catalase, and lipoperoxidation) because HSP70 expression is also sensitive to redox regulation. Extracellular (plasma) to intracellular HSP70 ratio, an index of systemic inflammatory status, was also investigated. The results showed that HS response was preserved in OVX animals, as inferred from HSP70 expression (up to 40% rise, p < 0.01) in the aortas, which was accompanied by no further alterations in oxidative stress, hematological parameters, and glycemic control either. This suggests that the lack of estrogen per se could not be solely ascribed as the unique source of low HSP70 expression as observed in long-term post-menopausal individuals. As a consequence, periodic evaluation of HSP70 status (iHSP70 vs. eHSP70) may be of clinical relevance because decreased HS response capacity is at the center of the onset of menopause-related dysfunctions.
Collapse
|
28
|
Stefani GP, Baldissera G, Nunes RB, Heck TG, Rhoden CR. Metabolic Syndrome and DNA Damage: The Interplay of Environmental and Lifestyle Factors in the Development of Metabolic Dysfunction. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojemd.2015.57009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|